Building the anycasted RCauth Federated authentication proxy

David Groep
Nikhef PDP programme
UM Dept. of Advanced Computing Sciences
ISGC Taipei, March 2023

a multi-domain anycasted high availability solution for stateful services in RCauth.eu
We live in a federated world!
But just identity federation with your home organisation is not enough

- Access services using **identities from their Home Organizations**.
- Access services **based on role(s)** users have in the collaboration. This info is not known to IdPs/eduGAIN.
- Secure integration of **guest identity solutions** and **support for stronger authentication** mechanisms.
- Requirement for **one persistent identity** across all the community’s services when needed and **account linking**.
- Web and **non-web** resources
- **Hide complexity** of multiple IdPs/feds/At Auth/technologies.
Most trust flows from the (research) community

Seamless (eduGAIN) Access to (non-Web) Resources using PKIX?

Traditional workflow – using a client-held credential

Works great *provided* the user understand the technology – and we may have found all users that know how to manage this 😞
In-line token translation services SAML-to-PKIX?

Community Science Portal

Accredited PKIX Authority

Built on CILogon and MyProxy

www.cilogon.org

REFEDS R&S
Sirtfi Trust

Infrastructure Master Portal Credential Store

Policy Filtering WAYF / eduGAIN

User Home Org
or Infrastructure IdP

see also https://rcdemo.nikhef.nl/
RCauth.eu and the MasterPortal OIDC credential manager
RCauth.eu – a white-label IOTA CA in Europe

• Cover as much as R&E Federated (Europe++) as possible
• Scoped to research and collaborative use cases
• In a scalable and sustainable deployment model

Service inspired by and using components (such as the DS) from Jim Basney’s CILogon, see https://www.cilogon.org/docs/20141030-basney-cilogon.pdf
global IdPs in eduGAIN
the quest for a reasonable, non-reassigned name

The joys of global interfederation
Our Registration Authorities: the Federated IdPs

- RAs are the eligible IdPs connected through a Federated Identity Management System (FIMS)
- primarily: ensemble of IdPs in eduGAIN that meet the policy requirements of this CA
- Eligible applicants are all affiliated to an RA

Three eligibility models

1. Direct relationship CA-IdP, with agreement declaration
2. Rest of eduGAIN:
 - “Sirtfi” security incident response and OpSec capabilities plus
 - REFEDS “R&S section 6” non-reassigned identifiers and applicant name are required, and tested via statement in ‘meta-data’ and by releasing the proper attributes
3. within the Netherlands, SURFconext Annex IX* already ensures compliance for all IdPs

“IdPs within eduGAIN [#3] are deemed to have entered materially into an agreement with the CA”
Unique certificated from FIM via eduPerson and REFEDS R&S

Sources of naming and uniqueness, that work today

- **eduPersonPrincipalName** – scoped point-in-time unique identifier, which could be, but usually is not, privacy preserving: “davidg@nikhef.nl”, “P70081609@maastrichtuniversity.nl”

- **eduPersonTargetedID** – scoped transient non-reassigned identifier, like urn:geant:nikhef.nl:nikidm:idp:sso!27c8d63ed42c84af2875e2984

- **subject-id** - a scoped persistent non-reassigned identifier, which should be privacy-preserving: 44f7751265a6e8b228f9@nikhef.nl

Plus the (domain-name based) schacHomeOrganisation and a ‘representation of the real name’

/DC=eu/DC=rcauth/DC=rcauth-clients/O=orgdisplayname/CN=commonName +uniqueness

uniqueness will added to commonName via hashing of ePPN, ePTID, subject-id, so that an enquiry via the issuer allows unique identification of the vetted entity”
‘REFEDS R&S’ gives a subset of attributes that should be released:

1. the `displayName` attribute from the IdP
2. the `givenName` attribute, followed by a space, followed by the `sn` attribute from the IdP
3. the `commonName` (cn) attribute from the IdP

but we need to make it printable in ASCII

We tried using `java.text.Normalizer.Form.NFD` and map the remainder to “X”, which gives:

<table>
<thead>
<tr>
<th>If IdP sends us this UTF-8</th>
<th>Representation in CN RDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jőzsi Bácsi</td>
<td>Jozsi Bacsi</td>
</tr>
<tr>
<td>Guðrún Ósvifursdóttir</td>
<td>GuXrun Osvifursdottir</td>
</tr>
<tr>
<td>Χρηστος Κανελλοπουλος</td>
<td>XXXXXXXX XXXXXXXXXXXXXXX</td>
</tr>
<tr>
<td>簡禎儀</td>
<td>XXX</td>
</tr>
</tbody>
</table>

Oops!
but also Νικόλας Λιαμπότης may not quite like that ... and I understand ...

• `java.text.Normalizer.Form.NFD` and ‘X-ing’ the rest particularly bad for Greeks, Bulgarians, Chinese, Georgians, Thai, Armenians, Serbians, ...

ICU - International Components for Unicode (icu-project.org) appears to be better, but:
• there are many options for transliteration
• some code points shared between different languages, that prefer different transliterations
• some code points are absent even in UTF-8 causing ambiguity

So we moved to the ICO, but even then the mapping is not trivial:

```
ICU ICU regex

UTF-8 → Latin-1 → ASCII → IA5String (we need PrintableString + “@” and minus [:/=])
```

thanks go to Mischa Sallé for the transliteration studies (and much more)
But straightforward translation is not always good

Just Any-Latin fails for Slavonic unique “sh” sounds. E.g. for ‘Миша’
- With Any-Latin becomes ‘Miša’ which then translates into ‘Misa’ after the Latin-Ascii but quite some people called ‘Миша’ want to see ‘Mischa’, but not all, so you need
- First Russian-Latin/BGN, making it ‘Misha’, which is slightly better, then do Any-Latin (1-to-1)
- But “Russian-Latin/BGN+Serbian-Latin/BGN” is different from the reverse ...

First Any-Latin/BGN, then Any-Latin, to fix mapping to → š and the → s
- Мїша → Barel ashkhарх (with the /BGN, to ensure the “sh”)
-ישראל → ysr'ї (taken care of without the /BGN, otherwise the щ never makes it)

And Unicode does not distinguish the diaeresis and the umlaut
- Günter Strauß → Guenter Strauss should have been ‘Guenter Strauss’
- Daniëlle → Danielle is good, you definitely don’t want ‘Danieelle’

As the so for stability, we keep Any-Latin here and treat all as a diaeresis
What will we get?

$ java -cp icu4j-59_1.jar: transliterate2 [...] "Jõzsi Bácsi" "Guðrún Ósvífursdóttir" \ "Χρηστος Κανελλοπουλος" "簡禎儀"

Input: Jõzsi Bácsi
Output: Jozsi Bacsi

Input: Guðrún Ósvífursdóttir
Output: Gudrun Osvifursdottir

Input: Χρηστος Κανελλοπουλος
Output: Christos Kanellopoulos

Input: 簡禎儀
Output: jian zhen yi
Building the initial RCauth.eu
A fully compliant ‘Heath Robinson’ CA
Physical controls

- Located at Nikhef, Amsterdam, NL
- Scientific Data Centre part of the Nikhef Housing Facilities
- ID based access control, 24hr guard on-site
- CA and security systems in locked dedicated cabinet on 2nd floor
- On-line CA signing system in locked drawer
Logical set-up

Security Service Hosting Environment

CA Repository Service (www.rcauth.eu)

rsync-retrieve by reposerver from CA web server

OpenID AuthZ Server

myproxy CA Inbound only

CA Web Server on-line system (Delegation Service)

http(s) inbound

ssh inbound

HSM

HSM pin entry

Inbound only MyProxy service port

NDPF Backup Service

TSMC by Vancis from NDFP BS

Tape Backup Service

rsync-retrieve by NDFP backup service from CA web server
A local highly-available setup at Nikhef Amsterdam

- Most ‘fault-prone’ components are
 - Intel NUC (single power supply)
 - HSM (can lock itself down, and the USB connection is prone to oxidation)
 - DS front-end servers (they are physical hardware, albeit with redundant disks and powersupplies)

- Eliminated first using ‘local HA’
towards a pan-European distributed service
RCauth.eu Governance

Governance Board

Representatives (and one alternate) from each Materially Contributing Stakeholder: EGI.eu, EUDAT (ETFC), GÉANT, Nikhef (SURF)

RCauth PMA

Individuals drawn from the wide community [...] experts in the field of identity management for research and collaboration, PKI technology and identity bridging

Ops Coordination Team

Operations people from each of the **hosting partners** with a (copy of) the RCauth.eu signing key, and those partners otherwise involved in OPS

Representatives (and one alternate) from each Materially Contributing Stakeholder: EGI.eu, EUDAT (ETFC), GÉANT, Nikhef (SURF)

Individuals drawn from the wide community [...] experts in the field of identity management for research and collaboration, PKI technology and identity bridging

Operations people from each of the hosting partners with a (copy of) the RCauth.eu signing key, and those partners otherwise involved in OPS
From a single instance ...
... to a 3-fold continuously-consistent setup
HA solutions

Local high availability, three distinct providers?
• pushes account linking burden to the relying parties/service providers
• users may have 3 credentials, which is confusing
• a single identifier would require ‘ensured’ database synchronization – no true independence

DNS-based fail-over?
• the ‘trivial’ model relies on the client not to cache answers for long,
 and not to round-robin the DNS answers - since the WAYF and DS go together
• short TTL is quite bad for reliance, since both service and domain name provider must be up
• ‘advanced’ DNS-based solutions (like for InAcademia) – with near-realtime updates of a distributed DNS may appear better, but still: need a overly-low TTL, and move the HA problem to the DNS provider (or ccTLD), rather than solve it

So we looked at network-layer resilience, the ‘go-to’ solution for large CDN providers
Services at a site go up and down together - adding an HAproxy
Since we do not like SPOFs …

Implement a High Availability setup
• across the 3 sites
• using IP anycast
• L3 VPN or L2 VPC
• with minimal effort

work supported by EOSC Hub and EOSC Future
Building the anycasted RCauth Federated authentication proxy

Distributed RCauth service

selected imagery: Mischa Sallé, Jens Jensen, Nicolas Liampotis

similar for the filtering WAYF
A transparent multi-site setup

User
- connects to HA proxy at {wayf,ica}.rcauth.eu
- HA proxy sends users to “closest” working service
- forward mainly to its own DS when available

and wherever the user is, the service is at
- 2a07:8504:01a0::1
- and 145.116.216.1 (for legacy IP users)

If a HA loses its backend DS, can still route to another DS over VPC/VPN backend

selected imagery: Mischa Sallé, Jens Jensen, Nicolas Liampotis
Intermezzo – BGP routing principles

Data: TraceMON IPmap from RIPE NCC Atlas atlas.ripe.net measurement 9249079
How does a packet flow?

I want to sent this to e.g. 194.171.96.130

grey-dash lines for illustration only: may not correspond to actual peerings or transit agreements; red lines: the three existing LHCOPN and R&E fall-back routes; yellow: public internet fall-back (least preferred option)
Anycast: when the same place exists many times

So we used

- 3 (now: 2) sites
- one VM at each site
- exposing 2a07:8504:01a0::1
- smallest v6 subnet (/48)
- bird + a service probe
- each site’s own ASN
- some IRR DB editing
- v4 is similar, with a /24

and some monitoring
BIRD config and probes

you need
• a health checker to drive the local BGP daemon
• a BGP talker, such as bird
• a very simple config

Generated 2023-02-05 14:49:36.063331
by anycast-healthchecker (pid=1299)
2001:db8::1/128 is a dummy IP Prefix.
It should NOT be used and REMOVED
from the constant.
define ACAST6_PS_ADVERTISE =
 [2001:db8::1/128,
 2a07:8504:1a0::1/128
];
But what is ‘healthy’?

Service status verification tool needed to ‘drive’ bird actions
• anycast_healthchecker by Pavlos Parissis

• with HAproxy on the front-end host on each site

```
[haproxy]
check_cmd = /usr/local/sbin/check_haproxy.sh
on_disabled = withdraw
ip_prefix = 145.116.216.1/32

[haproxy6]
check_cmd = /usr/local/sbin/check_haproxy.sh
on_disabled = withdraw
ip_prefix = 2a07:8504:1a0::1/128
```

Packager : Mischa Sallé <msalle@nikhef.nl>
Vendor : Pavlos Parissis <pavlos.parissis@gmail.com>
URL : https://github.com/unixsurfer/anycast_healthchecker
Summary : A healthchecker for Anycasted Services
Description : Anycast-healthchecker monitors a service by doing periodic health checks and based on the result instructs Bird daemon to either advertise or withdraw the route to reach the monitored service. As a result Bird will only advertise routes for healthy services.
Both Delegation Service and filtering WAYF should be up

But since Nikhef also has local HA with two back-ends, either is OK!

```bash
# Checks WAYF backends, at least one should be up or starting
# i.e. in state 2 or 3 (see Section 9.3 Unix Socket commands in
# management.txt).
check_wayf() {  
    echo $state_cmd |\  
    socat unix-connect:${haproxy_socket} stdio |\  
    grep $wayf_pattern |\  
    cut -d' ' -f${site_col},${state_col} |\  
    while read wayf_site wayf_state  
    do  
        if [ "$wayf_state" -ge 1 -a "$wayf_state" -le 2 ];then  
            # Found at least one up DS  
            info "WAYF $wayf_site has state $wayf_state"  
            return 1  
        else  
            warn "WAYF $wayf_site has state $wayf_state" >&2  
            fi  
    done  
    return $((1-$?))  
}
```
Getting 2a07:8504:01a0::/48 out there

route maps: bgp.tools for 145.116.216.0/24 – IPv6 is similar
Building the anycasted RCauth Federated authentication proxy

CERN Looking Glass Results - ee1

inet6.0: 155476 destinations, 303862 routes (155437 active, 0 holddown)
+ = Active Route, - = Last Active, * = Both

2a07:8504:1a0::/48 *[BGP/170] 01:08:50, MED 20, localpref 10500
AS path: 20965 5408 I, validation-state: unverified
> to 2001:798:99:1::39 via irb.200
AS path: 1103 1104 I, validation-state: unverified
> to fe80::1a2a:d300:140f:bdb0 via irb.20
[BGP/170] 6d 23:17:01, MED 20, localpref 10500
AS path: 2603 1103 1104 I, validation-state: unverified
> to 2001:1458:0:9::2 via irb.2903
[BGP/170] 01:08:26, MED 25, localpref 10500
AS path: 559 20965 5408 I, validation-state: unverified
> to 2001:1458:0:2c::2 via irb.2902
[BGP/170] 01:08:49, MED 10, localpref 10200
AS path: 174 174 21320 5408 I, validation-state: unverified
> to 2001:978:2:2::2a:1 via irb.3811
Shortest path, also when mixing with the default-free zone

[root@kwark ~]# traceroute -IA 145.116.216.1
traceroute to 145.116.216.1 (145.116.216.1), 30 hops max, 60 byte packets
1 cmbr.connected.by.freedominter.net
 (185.93.175.234) [AS206238]
2 connected.by.freedom.nl
 (185.93.175.240) [AS206238]
3 et-0-0-0-1002.core1.fi001.nl.freedomnet.nl
 (185.93.175.208) [AS206238]
4 as1104.frys-ix.net (185.1.203.66) [*]
5 parkwachter.nikhef.nl
 (192.16.186.141) [AS1104]
6 gw-anyt-01.rcauth.eu
 (145.116.216.1) [AS786/AS5408/AS1104]
Prerequisites are relatively simple

- IPv4 /24 netblock and IPv6 /48
- your own, or a friendly, ASN
- a set of corresponding IRR route objects, and either none, or a correct RPKI (easily done in your local RIR registry: APNIC, RIPE, ARIN, AfriNIC, LACNIC)
- front-end service (HAproxy) for the Delegation Service and filtering WAYF
- bird (or quagga) with a service health checker

But you do not per-se need …
- a unique AS just for this anycast activity - it works equally well without it
- a balanced AS path length - unless you want load balancing as well as redundancy
- your own AS - if you have a friendly AS willing to re-announce your specific route
And you get reasonable load balancing

map: RIPE NCC RIPE Atlas - 500 probes, distributed across Europe (https://atlas.ripe.net/measurements/50949024/)
Other HA options

- Local HA with an HA proxy and pacemaker/CRM failover works on the local network – and can be meshed with two signing systems … this is used extensively (also active/passive) for other services at Nikhef

- DNS-based fast-failover – the method used for e.g. InAcademia automatic updating of DNS a distributed set of servers, auto-updating each other … does require that the DNS domain level operator remains available, since you need *very* short TTLs, and still your ccTLD/gTLD needs HA as well

- Use dedicated HA links for the back-end database connection or ip-forwarding e.g. multiple redundant circuits over an MPLS cloud emerging at each site
Current status

• All sites can sign production certificates
• DS databases cross-site replication using Galera over VPN
• HA CRL cross site synchronisation and issuance
• WAYF servers (GRNET and Nikhef)
Reuse the RCauth experience

All sources, Ansible playbooks, and materials are on GitHub
https://github.com/rcauth-eu

HA database and back-end VPN
- 3-node peer-peer redundant VPN with automatic failover
- extensible to >3, but then topology is less clear

Web services
- HAProxy stability and flexibility and coordinated ‘up-down’ status per site

HAHAP | BGP Anycast
- ‘bog-standard’ if service admins, cloud admins, and network people can collaborate and investigate incidents together

secure credential sharing and moving shared secrets is still cumbersome in practice
‘the difference between theory and practice is that, in theory, there is no difference’
This work has also been co-supported by projects that have received funding from the European Union’s Horizon research and innovation programmes under Grant Agreement No. 856726 (GN4-3), 101017536 (EOSC Future), 777536 (EOSC-hub), 730941 (AARC2).

Still here? Thanks!

RCauth.eu distributed setup in collaboration with Mischa Sallé and Tristan Suerink (Nikhef), Nicolas Liampotis and Kyriakos Gkinis (GRNET), and Jens Jensen (STFC RAL)

David Groep
davidg@nikhef.nl
https://www.nikhef.nl/~davidg/presentations/
https://orcid.org/0000-0003-1026-6606