
The Globus Toolkit 4 Programmer’s
Tutorial

Borja Sotomayor
University of Chicago

Department of Computer Science

The Globus Toolkit 4 Programmer’s Tutorial
by Borja Sotomayor

Copyright © 2004, 2005 Borja Sotomayor

This tutorial is available for use and redistribution under the terms of the Apache Public License (http://www.apache.org/licenses/LICENSE-2.0)

Revision History

Revision 0.2.1 26 Nov 2005 Revised by: Borja Sotomayor
Added placeholder chapters for Information Services, Execution Management, and Data Management, to emphasize that the tutorial will eventually include material on these subjects (also: to emphasize that GT4 isnot only about Web services programming). Tutorial includes a PDF version again. Thanks to Andreas Dinges for pointing out another (better) way of generating the PDF from the DocBook sources. Switched from the Globus Toolkit Public License to the Apache Public License. Note that this is not a big change since (a) the previous license (GTPL) was practically identical to the APL, and (b) the toolkit itself (starting with version 4.0.1) is licensed with the APL. A few typos corrected.
Revision 0.2 15 Oct 2005 Revised by: Borja Sotomayor
Added security chapters. The first two security chapters are very similar to the ones found in The GT3 Programmer’s Tutorial (an introduction to fundamental security concepts and an introduction to GSI). The third security chapter explains how to write a basic secure service. More security chapters will be included later on. Updated to GSBT (http://gsbt.sourceforge.net/) 0.2.5 which fixes a bug when using the -d and -s arguments. A lot of typos corrected (10^6 thanks to everyone who’s reported typos and bugs since the last release)
Revision 0.1.1 19 Jun 2005 Revised by: Borja Sotomayor
Updated to GSBT (http://gsbt.sourceforge.net/) 0.2.4 which fixes an important bug in the Python build script. Several typos corrected.
Revision 0.1 13 May 2005 Revised by: Borja Sotomayor
First stable release of the tutorial. The examples have been tested with GT4.0. The tutorial includes a Python build script which can be used by Windows users to run the examples. Please note that this build script has not been thoroughly tested under Windows yet. Feedback from Windows users will be very welcome. Several typos corrected.
Revision 0.0.7.1 21 Apr 2005 Revised by: Borja Sotomayor
Fixed buildfile + script so it won’t fail if it does not find an "etc" directory. A few typos corrected.
Revision 0.0.7 13 Apr 2005 Revised by: Borja Sotomayor
Examples have been tested with GT3.9.5. The tutorial examples now implement the singleton or the factory/instance pattern correctly when necessary (see Changelog entry for version 0.0.6). Split the first chapter into three chapters that gradually build from a very simple singleton resource service, to a multiple resource factory/instance service. New chapters: Resource properties, lifecycle management, and notifications. The tutorial now uses theglobus-build-service script (from the Globus Service Build Tools (http://gsbt.sourceforge.net/) project). Several typos corrected.
Revision 0.0.6 08 Feb 2005 Revised by: Borja Sotomayor
The tutorial now includes (in the Additional Examples appendix) two examples (a Singleton and a Factory example) that more accurately reflect how ’real’ WSRF services should be designed. These two examples will eventually replace the example used in the first chapter of the tutorial, which implements the factory pattern poorly. If you’re going to reuse code from the tutorial, make sure you use the Singleton and Factory examples found in the Additional Examples appendix. Many thanks to Frank Siebenlist and Sam Meder for pointing out the flaw in the original example and helping out with the new examples. Several typos corrected.
Revision 0.0.5 29 Dec 2004 Revised by: Borja Sotomayor
First ’readable’ version of the First WSRF Web Service chapter (instead of just a collection of notes). Added "How to...write a WSDL description of your WSRF stateful Web service" appendix (before this version it was simply the same appendix as the GT3 Tutorial) Made some minor modifications to the example (both the service code and the client code). Also added another more complete client which is more effective at demonstrating the statefulness of the service. Minor modifications to the Key Concepts to make terminology a bit more consistent throughout the chapter.
Revision 0.0.4 23 Dec 2004 Revised by: Borja Sotomayor
First ’readable’ version of the Key Concepts chapter (instead of just a collection of notes).
Revision 0.0.3 19 Dec 2004 Revised by: Borja Sotomayor
Examples work with GT3.9.4 Polished source code of example (uses ReflectionResourceProperty to make code a bit clearer -- Thanks to Sam Meder for suggesting this) Included an "Additional examples" appendix (currently only includes one additional example) Polished source code of build script. It is now easier to extend the script so it will accept new parameters (e.g. it now accepts a "--debug" parameter that is passed on to Ant to produce debug information). Added some random notes to the Key Concepts section. However, at this point it is still in the ’bare bones’ stage. Several bug and typo fixes.
Revision 0.0.2 13 Nov 2004 Revised by: Borja Sotomayor
Polished source code of example. Included new (easier to use) build script, based on Scott Gose’s improvements (http://www-unix.mcs.anl.gov/~gose/tutorial/). Added the bare bones of the Key Concepts chapter. At this point, it is little more that some recycled chunks from the GT3 Tutorial with a couple of WSRF notes. Added some appendices.
Revision 0.0.1 06 Nov 2004 Revised by: Borja Sotomayor
Very first version of the GT4 Tutorial.

Table of Contents
Introduction ..??

GT4 Prerequisite Documents...??
Audience..??
Assumptions...??
Related Documents..??
Document Conventions..??

Code..??
Inlined code..??
Shell commands..??
Notes...??

About the author & acknowledgments...??
Acknowledgments..??

I. Getting Started ...??

1. Key Concepts...??
OGSA, WSRF, and GT4...??
A short introduction to Web Services...??

A Typical Web Service Invocation..??
Web Services Architecture..??
Web Services Addressing...??
How does this work in practice?...??

A Typical Web Service Invocation (redux)...??
The server side, up close...??

WSRF: The Web Services Resource Framework...??
WSRF: It’s all about state...??
The resource approach to statefulness..??
The WSRF specification...??

WS-ResourceProperties..??
WS-ResourceLifetime...??
WS-ServiceGroup...??
WS-BaseFaults..??

Related specifications..??
WS-Notification..??
WS-Addressing...??

The Globus Toolkit 4..??
Architecture...??
GT4 Components..??

Common Runtime...??
Security..??
Data management..??
Information services..??
Execution management...??

Where to learn Java & XML..??
2. Installation..??

iii

II. GT4 Java WS Core...??

3. Writing Your First Stateful Web Service in 5 Simple Steps..??
Step 1: Defining the interface in WSDL...??

The WSDL code...??
WSRF and Globus-specific features of WSDL..??
Namespace mappings..??

Step 2: Implementing the service in Java...??
The QNames interface..??
The service implementation..??

Step 3: Configuring the deployment in WSDD (and JNDI)...??
The WSDD deployment descriptor...??

The ’service name’..??
className..??
The WSDL file..??
The operation providers...??
Load on startup..??
The common parameters...??

The JNDI deployment file...??
Step 4: Create a GAR file with Ant..??

Ant...??
Theglobus-build-service script and buildfile...??
Creating the MathService GAR..??

Step 5: Deploy the service into a Web Services container...??
A simple client..??

4. Singleton resources..??
Splitting up the implementation...??

The resource, the home, and the service...??
The WSDL file..??
The QNames interface..??
The resource resource...??
The service implementation..??
The resource home..??

Build, deploy, and try it out... with the same client..??
5. Multiple resources..??

The WS-Resource factory pattern..??
Implementing the WS-Resource factory pattern in GT4..??
The factory service...??
The instance service...??
The resource...??
The resource home...??
Build and deploy...??

The deployment descriptor...??
The JNDI deployment file...??
Build and deploy...??

A simple client..??
A slightly less simple client..??

The creating client...??
The adding client...??

iv

6. Resource Properties..??
A closer look at resource properties...??

Standard interfaces..??
GetResourceProperty..??
GetMultipleResourceProperties..??
SetResourceProperties...??
QueryResourceProperties..??

Accessing resource properties the right way..??
The WSDL file..??
The Java files...??
The deployment files...??
Build and deploy...??
Client code..??

Invoking getResourceProperty ...??
Invoking SetResourceProperties to update...??
Invoking GetMultipleResourceProperties ...??

7. Lifecycle Management...??
Immediate destruction..??
Scheduled destruction...??

The WSDL file..??
The resource implementation..??
Deployment...??
The client..??

8. Notifications...??
What are notifications?...??
WS-Notifications..??

WS-Topics...??
WS-BaseNotification..??
WS-BrokeredNotification...??

Notifications in GT4...??
Notifying changes in a resource property...??

The WSDL file..??
The resource implementation..??

SimpleResourceProperty ...??
Publishing our RPs as topics withResourcePropertyTopic??

The service implementation..??
Deployment Descriptor...??
Compile and deploy..??
Client code..??

Listener client..??
Adding client...??
Compile and run..??

III. GT4 Security ..??

9. Fundamental Security Concepts...??
What is a secure communication?..??

The Three Pillars of a Secure Communication...??
Privacy...??

v

Integrity...??
Authentication...??

Authorization..??
Introduction to cryptography..??

Key-based algorithms...??
Symmetric and asymmetric key-based algorithms...??

Public key cryptography...??
A secure conversation using public-key cryptography...??
Pros and cons of public-key systems..??
Digital signatures: Integrity in public-key systems...??
Authentication in public-key systems...??

Certificates and certificate authorities..??
It’s all about trust..??
X.509 certificate format..??

Distinguished names...??
CA hierarchies..??

10. GSI: Grid Security Infrastructure...??
Introduction to GSI...??
Transport-level and message-level security..??
Authentication..??
Authorization..??

Server-side authorization..??
Client-side authorization...??
Custom authorization..??

Delegation and single sign-on (proxy certificates)...??
The problem..??
The solution: proxy certificates...??
What the solution achieves: Delegation and single sign-on (and more).......................??
The specifics..??

How a proxy certificate is generated...??
Validation of a proxy certificate..??
More on proxy certificates...??

Container, service, and resource security...??
11. Writing a Secure Math Service..??

A secure service..??
The service interface...??
The service implementation..??

The security descriptor...??
A secure client..??
Trying it out..??
Does this really work?..??

IV. GT4 Information Services [Coming soon]..??

Work in progress!...??

V. GT4 Execution Management [Coming later]...??

Work in progress!...??

VI. GT4 Data Management [Coming even later]..??

Work in progress!...??

vi

VII. Appendices..??

A. How to...??
...write a WSDL description of your WSRF stateful Web service...??

The bare bones of our WSDL file...??
The Port Type..??
The messages..??
The response and request types...??
Declaring the resource properties...??
Summing up..??

...use the tutorial’s build script..??
B. Tutorial directory structure..??

Brief overview..??
Build files..??
WSDL files...??
Implementation files...??
Client code..??

vii

List of Tables
10-1. Comparison of transport-level and message-level security..??

viii

Introduction
Welcome to the Globus Toolkit 4 Programmer’s Tutorial! This document is intended as a starting point
for anyone who is going to develop applications using the Globus Toolkit 4 (GT4).

The tutorial is divided into 3 main areas:

• Getting Started: An introduction to key concepts related with GT4 and the Web Services Resource
Framework (WSRF)

• GT4 Java Core: A guide to programming basic Web Services which only use the Java WS Core
component of GT4.

• GT4 Security: A guide to programmingsecureWeb Services using the toolkit’s security components.

Please note that the tutorial, at this point, only covers theJava WS Corecomponent and a small part of
the security components of the toolkit. These are an important butsmallpart of the whole toolkit. At the
end of this tutorial you will know how to program stateful Web services using GT4. This will allow you
to progress towards using the higher-level services of the toolkit (using official Globus documentation).
However it is important to understand thatyou cannot program Grid-based applications using only the
Java WS Core component of the toolkit. This tutorial should be approached as a stepping stone towards
more powerful tooling, not as a definite guide on Grid programming.

GT4 Prerequisite Documents
This tutorial has no GT4 prerequisite documents, since it is intended as a starting point for GT4
programmers. However, you should already be familiar with Grid Computing. A good, short introduction
to what Grid Computing is can be found in Ian Foster’s paper The Grid: A New Infrastructure for 21st
Century Science (http://www.aip.org/pt/vol-55/iss-2/p42.html). A more extense, and very easy to read,
introduction can be found at the Grid Café (http://gridcafe.org/).

For a much more detailed text, you might want to check out the following book: The Grid 2: Blueprint
for a New Computing Infrastructure (http://www.mkp.com/grid2) (Edited by Ian Foster and Carl
Kesselman. 2003). Most of the book is easy to read and not too technical. It is also known as "The Grid
Bible". With a name like that, you can assume it’s worth taking a look at it :-)

You might also be interested in taking a look at the ’Publications’ section in the Globus website
(http://www.globus.org), specially the documents listed below. However, these documents are rather
technical and might be too hard for a beginner. You might want to just skim through them at first, and
then reread them once you’re familiar with GT4.

• The Anatomy of the Grid: Enabling Scalable Virtual Organizations
(http://www.globus.org/research/papers/anatomy.pdf) . I. Foster, C. Kesselman, S. Tuecke.

• The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration
(http://www.globus.org/research/papers/ogsa.pdf) . I. Foster, C. Kesselman, J. Nick, S. Tuecke.

ix

Introduction

Audience
This document is intended for programmers who are new to the Globus Toolkit 4 (GT4).

Assumptions
The following knowledge is assumed:

• Programming in Java. If you don’t know Java, you can find some useful links . Also, prior experience
of distributed systems programming with Java (with CORBA, RMI, etc.) will certainly come in handy,
but is not strictly required.

• Basic knowledge of XML. If you have no idea of XML, you can find some useful links .

• You should know your way around a UNIX system. This tutorial is mainly UNIX-oriented, although
in the future we hope to include sections for Windows users.

• Basic knowledge of what the Grid and grid-based applications are. This tutorial is not intended as an
introduction to Grid Computing, but rather as an introduction to a toolkit which can enable you to
program grid-based applications.

The following knowledge isnot required:

• Web Services. The tutorial includes an introduction to fundamental Web Services concepts needed to
use GT4.

• Globus Toolkit 2 or 3

Related Documents

• Specifications

• OASIS WSRF Page (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf): The
most recent version of the WSRF specifications can be found here.

Globus WSRF Page (http://www.globus.org/wsrf/): Contains pointers to papers and presentations
related to WSRF.

• Official Globus Documentation

• GT4 Fact Sheet (http://www-unix.globus.org/toolkit/GT4Facts/): Everything there is to know about
GT4.

• Official GT4.0 Documentation (http://www.globus.org/toolkit/docs/4.0/): Includes the installation
guide.

• Other related documents

x

Introduction

• Ian Foster’s Globus Toolkit Primer
(http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf) provides a detailed look at the
toolkit and all the components included in it.

• Scott Gose’s WSRF Grid Services (http://www-unix.mcs.anl.gov/%7Egose/grid-services/) page.
Includes easy-to-understand instructions on how to set up a minimal WSRF container.

Document Conventions
The following conventions will be observed throughout this document:

Code

public class HelloWorld
{

public static final void main(String args[])
{

➊

// Code in bold is important
System.out.println("Hello World");

}
}

➊ This is a callout, further explaining an important part of the code.

Inlined code
Whenever we refer to bits of code from the main text, it will be highlightedlike this . For example:

TheHelloWorld class has a singlemain method that prints out a"Hello World" string.

Shell commands

javac HelloWorld.java

If a command is too long to fit in a single line, it will be wrapped into several lines using the backslash
("\") character. On most UNIX shells (including BASH) you should be able to copy and paste all the
lines at once into your console.

javac \
-classpath /usr/lib/java/Hello.jar \
HelloWorld.java \
HelloUniverse.java \
HelloEveryone.java

xi

Introduction

Notes
You can find three types of notes in the text: complementary information, reminders, and warnings.

Tip: This is a complementary information block.

This kind of note contains interesting information that complements what is currently being discussed
in the text.

Note: This is a reminder.

This kind of notes are usually used after a block of code to remind you of where you can find the file
that contains that particular code. It is also used to remind you of important concepts, and to suggest
what sections of the tutorial you should read again if you have a hard time understanding a particular
section.

Caution
This is a warning.

Warnings are used to emphatically point out something. They generally refer to
common pitfalls or to things that you should take into account when writing your
own code.

About the author & acknowledgments
The Globus Toolkit 4 Programmer’s Tutorial is written and maintained by Borja Sotomayor, a Ph.D.
student at the Department of Computer Science (http://www.cs.uchicago.edu/) at the University of
Chicago (http://www.uchicago.edu/). You can find out more about me in my UofC personal page
(http://people.cs.uchicago.edu/~borja/).

Acknowledgments
This tutorial can hardly be considered a one-person effort. The following people have, in one way or
another, helped to make the GT4 Tutorial a reality:

• Lisa Childers

• Rebeca Cortazar (http://paginaspersonales.deusto.es/cortazar/)

xii

Introduction

• Ian Foster (http://www-fp.mcs.anl.gov/~foster/)

• Leon Kuntz (in memoriam)

• Jesus Marco

• All the Globus gurus who have reviewed the tutorial on countless occasions

A lot of readers have helped to improve the tutorial by reporting bugs and typos, as well as making very
constructive comments and suggestions:

Rodrigo Calheiros, Nicholas Chase, Ben Clifford, Nurcan Coskun, Joe Davey, Andreas Dinges, Kay
Dörnemann, Felipe Franciosi, Tim Freeman, Pedro Gama, Scott Gose, Ming Jiang, Makoto Kisimoto, Martin
Kuba, Sam Meder, Alexandre Prado Teles, V.Shirikov, Frank Siebenlist, Larry Tan, Johan Tordsson, Thomas
Weishäupl

If you’ve reported a bug, typo, or helped out in any way, and you are not listed here, please do let me
know!

The following people helped out back when the GT4 Tutorial was the GT3 Tutorial:

Balamurali Ananthan, Sebastien Barre, Thomas Becker, Luther Blake, Robert M. Bram, Javier Cano, Paulo
Cortes, Jun Ebihara, Qin Feng, Luis Ferreira, Fernando Fraticelli, Anders Keldsen, Britt Johnston, Steve Mock,
Elizabeth Post, Philippe Prados, Michael Schneider, Shiva Shankar Chetan, Nelson Sproul, Ian Stokes-Rees,
Jason Young, Matthew Vranicar, James Werner

xiii

I. Getting Started

Chapter 1. Key Concepts
There are certain key concepts that must be well understood before being able to program with GT4.
This chapter gives a brief overview of all those fundamental concepts.

• OGSA, WSRF, and GT4: We’ll take a look at what these oft-mentioned acronyms mean, and how
they are related.

• Web Services: OGSA, WSRF, and GT4 are based on standard Web Services technologies such as
SOAP and WSDL. You don’t need to be a Web Services expert to program with GT4, but you should
be familiar with the Web Services architecture and languages. We provide a basic introduction and
give you pointers to interesting sites about Web Services.

• The Web Services Resource Framework: WSRF is the core of GT4. We take a look at what a Web
Service Resource (or WS-Resource) is, and how it is related to Web Services.

• The GT4 Architecture: After seeing both WS-Resources and Web Services, we take a look at the
whole GT4 architecture, and how WSRF fits in it.

• Java & XML : Finally, if you want to use GT4, you need to be able to program in Java, and to
understand basic XML. If you’re new to Java and XML, we provide a couple links that can help you
get started.

OGSA, WSRF, and GT4
If you’ve started looking at GT4, you’ve probably encountered at least these two acronyms: OGSA and
WSRF. But... what do they mean? How are they related to the Globus Toolkit 4? This section attempts to
clarify these important concepts. First of all, let’s start by taking a look at OGSA and WSRFwithout
seeing just yet how they are related to GT4.

Figure 1-1. Relationship between OGSA, WSRF, and Web Services

1

Chapter 1. Key Concepts

OGSA
A grid application will usually consist of several different components. For example, a typical grid
application could have:

• VO Management Service: To manage what nodes and users are part of each Virtual Organization.

• Resource Discovery and Management Service:So applications on the grid can discover resources
that suit their needs, and then manage them.

• Job Management Service: So users can submit tasks (in the form of "jobs") to the Grid.

• And a whole other bunch of services like security, data management, etc.

Note: If you have absolutely no idea of what I have just said (and feel slightly confused), remember
that the tutorial assumes that you know what Grid Computing is. If you don’t, please read the
Prerequisites documents section to get up to speed.

Furthermore, all these services are interacting constantly. For example, the Job Management Service
might consult the Resource Discovery Service to find computational resources that match the job’s
requirements. With so many services, and so many interactions between them, there exists the potential
for chaos. What if every vendor out there decided to implement a Job Management Service in a
completely different way, exposing not only different functionality but also different interfaces? It would
be very difficult (or nearly impossible) to get all the different software pieces to work together.

The solution isstandardization: define a common interface for each type of service. For example, take a
look at the World Wide Web. One of the reasons why the Web is such a popular Internet application is
because it is based onstandards(HTML, HTTP, etc.) agreed upon by all the different major players
(Microsoft, Netscape, etc.). Imagine, on the other hand, that you could only use a Microsoft browser to
access websites implemented with Microsoft technology (ditto for Netscape, Opera, etc.) It would be
definitely uncool. Thanks to standards, I can use my favorite browser (provided it follows standards,
which most modern browsers do) to access most of the websites out there (regardless of what technology
is used to implement the website). Why? Because a set of common languages was agreed upon for all the
browsers and websites out there. Standardization is definitely a good thing.

The Open Grid Services Architecture (OGSA), developed by The Global Grid Forum
(http://www.ggf.org), aims to define a common, standard, and open architecture for grid-based
applications. The goal of OGSA is to standardize practically all the services one commonly finds in a
grid application (job management services, resource management services, security services, etc.) by
specifying a set of standard interfaces for these services. At the time of writing this tutorial, this "set of
standard interfaces" is still in the works. However, OGSA already defines a set of requirements that must
be met by these standard interfaces. In other words, OGSA has already gone as far as identifying the
most important services one encounters in Grid applications, and which most stand to benefit from
standardization.

2

Chapter 1. Key Concepts

OGSA requires ’stateful services’
However, when the powers-that-be undertook the task of creating this new architecture, they realized
they needed to choose some sort of distributed middleware on which tobasethe architecture. In other
words, if OGSA (for example) defines that the JobSubmissionInterface has a submitJob method, there
has to be a common and standard way toinvokethat method if we want the architecture to be adopted as
an industry-wide standard. Thisbasefor the architecture could, in theory, be any distributed middleware
(CORBA, RMI, or even traditional RPC). For reasons that will be explained further on, Web Services
were chosen as the underlying technology.

However, although the Web Services Architecture was certainly the best option, it still didn’t meet one of
OGSA’s most important requirements: the underlying middleware had to bestateful(don’t worry if you
don’t know what a "stateful" service is, it is explained in the next section). Unfortunately, although Web
services can in theory be either stateless or stateful, they are usually stateless and there is no standard
way of making them stateful. So, clearly, something had to be done!

WSRF
Enter the Web Services Resource Framework, a specification developed by OASIS
(http://www.oasis-open.org). WSRF specifies how we can make our Web Services stateful, along with
adding a lot of other cool features. It is important to note that WSRF is a joint effort by the Grid and Web
Services communities, so it fits pretty nicely inside the whole Web Services Architecture (in the diagram:
WSRF extends Web Services).

So what exactly is the relation between OGSA and WSRF? It’s very simple: WSRF provides the stateful
services that OGSA needs. In the diagram:WSRF specifies stateful services(as opposed to those
services simply ’being required’ by OGSA). Another way of expressing this relation is that, while OGSA
is thearchitecture, WSRF is theinfrastructureon which that architecture is built on.

How does this relate to GT4?
Now that we’ve cleared up what OGSA and WSRF are, we are ready to complete the above diagram to
see how GT4 fits into the picture:

3

Chapter 1. Key Concepts

Figure 1-2. Relationship between OGSA, GT4, WSRF, and Web Services

The Globus Toolkit 4
The Globus Toolkit is a software toolkit, developed by The Globus Alliance (http://www.globus.org),
which we can use to program grid-based applications. The toolkit, first and foremost, includes quite a
few high-level servicesthat we can use to build Grid applications. These services, in fact, meet most of
the abstract requirements set forth in OGSA. In other words, the Globus Toolkit includes a resource
monitoring and discovery service, a job submission infrastructure, a security infrastructure, and data
management services (to name a few!). Since the working groups at GGF are still working on defining
standard interfaces for these types of services, we can’t say (at this point) that GT4 is an implementation
of OGSA (although GT4 does implement some security specifications defined by GGF). However, itis a
realization of the OGSA requirements and a sort ofde factostandard for the Grid community while GGF
works on standardizing all the different services.

Most of these services are implementedon top of WSRF(the toolkit also includes some services that are
not implemented on top of WSRF and are called thenon-WS components). The Globus Toolkit 4, in fact,
includes a complete implementation of the WSRF specification. This part of the toolkit (the WSRF

4

Chapter 1. Key Concepts

implementation) is a very important part of the toolkit since nearly everything else is built on top of it.
However, it’s worth noting that it’s also avery smallpart of the toolkit. At this point, we’ll repeat
something we said at the very beginning of the tutorial:

At the end of this tutorial you will know how to program stateful Web Services using GT4. This will allow you
to progress towards using the higher-level services of the toolkit. However it is important to understand that
you cannot program Grid-based applications using only the Java WS Core included in this tutorial. This
tutorial should be approached as a stepping stone towards more powerful tooling, not as a definite guide on
GT4 programming.

I’m sorry to insist so much on this, but this really is a very important concept. Never forget that, on the
long road towards true Grid Nirvana, WSRF is indeed a necessary step, but only thefirst step.

Finally, take into account that GT4 isn’t the only WSRF implementation out there. For example, another
complete implementation of the WSRF specification is WSRF.NET
(http://www.cs.virginia.edu/~gsw2c/wsrf.net.html).

The mandatory layered diagram
If there’s something we computer geeks like in documentation, it’s layered diagrams! So, this section
really wouldn’t be complete without a diagram that explains the relationship between OGSA, WSRF,
and GT4 using the wonderful language of layers.

Figure 1-3. Layered diagram of OGSA, GT4, WSRF, and Web Services

A short introduction to Web Services
Before we take a closer look at what the Web Services Resource Framework (WSRF) is, we need to have
a basic understanding of how Web Services work (so we can better appreciate how WSRF extends Web
Services). If you’re already familiar with Web Services, you can safely skip this section.

5

Chapter 1. Key Concepts

For quite a while now, there has been a lot of buzz about "Web Services," and many companies have
begun to rely on them for their enterprise applications. So, what exactly are Web Services? To put it quite
simply, they areyet anotherdistributed computing technology (like CORBA, RMI, EJB, etc.). They
allow us to create client/server applications.

For example, let’s suppose I keep a database with up-to-date information about weather in the United
States, and I want to distribute that information to anyone in the world. To do so, I couldpublishthe
weather information through a Web Service that, given a ZIP code, will provide the weather information
for that ZIP code.

Caution
Don’t mistake this with publishing something on a website. Information on a
website (like the one you’re reading right now) is intended for humans. Information
which is available through a Web Service will always be accessed by software,
never directly by a human (despite the fact that there might be a human using that
software). Even though Web Services rely heavily on existing Web technologies
(such as HTTP, as we will see in a moment), they have no relation to web browsers
and HTML. Repeat after me: websites for humans, Web Services for software :-)

Theclients(programs that want to access the weather information) would then contact theWeb Service
(in theserver), and send aservice requestasking for the weather information. The server would return
the forecast through aservice response. Of course, this is a very sketchy example of how a Web Service
works. We’ll see all the details in a moment.

Figure 1-4. Web Services

Some of you might be thinking:"Hey! Wait a moment! I can do that with RMI, CORBA, EJBs, and
countless other technologies!"So, what makes Web Services special? Well, Web Services have certain
advantages over other technologies:

• Web Services are platform-independent and language-independent, since they use standard XML
languages. This means that my client program can be programmed in C++ and running under
Windows, while the Web Service is programmed in Java and running under Linux.

• Most Web Services use HTTP for transmitting messages (such as the service request and response).
This is a major advantage if you want to build an Internet-scale application, since most of the
Internet’s proxies and firewalls won’t mess with HTTP traffic (unlike CORBA, which usually has
trouble with firewalls).

Of course, Web Services also have some disadvantages:

6

Chapter 1. Key Concepts

• Overhead. Transmitting all your data in XML is obviously not as efficient as using a proprietary binary
code. What you win in portability, you lose in efficiency. Even so, this overhead is usually acceptable
for most applications, but you will probably never find a critical real-time application that uses Web
Services.

• Lack of versatility. Currently, Web Services are not very versatile, since they only allow for some very
basic forms of service invocation. CORBA, for example, offers programmers a lot of supporting
services (such as persistency, notifications, lifecycle management, transactions, etc.). Fortunately,
there are a lot of emerging Web services specifications (including WSRF) that are helping to make
Web services more and more versatile.

However, there is one important characteristic that distinguishes Web Services. While technologies such
as CORBA and EJB are geared towardshighly coupleddistributed systems, where the client and the
server are very dependent on each other, Web Services are more adequate forloosely coupledsystems,
where the client might have no prior knowledge of the Web Service until it actually invokes it. Highly
coupled systems are ideal for intranet applications, but perform poorly on an Internet scale. Web
Services, however, are better suited to meet the demands of an Internet-wide application, such as
grid-oriented applications.

A Typical Web Service Invocation
So how does this all actually work? Let’s take a look at all the steps involved in a complete Web Service
invocation. For now, don’t worry about all the acronyms (SOAP, WSDL, ...). We’ll explain them in detail
in just a moment.

Figure 1-5. A typical Web Service invocation

7

Chapter 1. Key Concepts

1. As we said before, a client may have no knowledge of what Web Service it is going to invoke. So,
our first step will be todiscovera Web Service that meets our requirements. For example, we might
be interested in locating a public Web Service which can give me the weather forecast in US cities.
We’ll do this by contacting adiscovery service(which is itself a Web service).

2. The discovery service will reply, telling us what servers can provide us the service we require.

3. We now know the location of a Web Service, but we have no idea of how to actually invoke it. Sure,
we know it can give me the forecast for a US city, but how do we perform the actual service
invocation? The method I have to invoke might be called "string getCityForecast(int

CityPostalCode) ", but it could also be called "string getUSCityWeather(string

cityName, bool isFarenheit) ". We have to ask the Web Service todescribeitself (i.e. tell us
how exactly we should invoke it)

4. The Web Service replies in a language called WSDL.

5. We finally know where the Web Service is located and how to invoke it. The invocation itself is done
in a language called SOAP. Therefore, we will first send aSOAP requestasking for the weather
forecast of a certain city.

6. The Web Service will kindly reply with aSOAP responsewhich includes the forecast we asked for,
or maybe an error message if our SOAP request was incorrect.

Web Services Architecture
So, what exactly are SOAP and WSDL? They’re essential parts of the Web Services Architecture:

Figure 1-6. The Web Services architecture

• Service Processes: This part of the architecture generally involves more than one Web service. For
example, discovery belongs in this part of the architecture, since it allows us to locate one particular
service from among a collection of Web services.

• Service Description: One of the most interesting features of Web Services is that they are
self-describing.This means that, once you’ve located a Web Service, you can ask it to ’describe itself’

8

Chapter 1. Key Concepts

and tell you what operations it supports and how to invoke it. This is handled by the Web Services
Description Language (WSDL).

• Service Invocation: Invoking a Web Service (and, in general, any kind of distributed service such as a
CORBA object or an Enterprise Java Bean) involves passing messages between the client and the
server. SOAP (Simple Object Access Protocol) specifies how we should format requests to the server,
and how the server should format its responses. In theory, we could use other service invocation
languages (such as XML-RPC, or even somead hocXML language). However, SOAP is by far the
most popular choice for Web Services.

• Transport : Finally, all these messages must be transmitted somehow between the server and the
client. The protocol of choice for this part of the architecture is HTTP (HyperText Transfer Protocol),
the same protocol used to access conventional web pages on the Internet. Again, in theory we could be
able to use other protocols, but HTTP is currently the most used one.

In case you’re wondering, most of the Web Services Architecture is specified and standardized by the
World Wide Web Consortium (http://www.w3c.org/), the same organization responsible for XML,
HTML, CSS, etc.

Web Services Addressing
We have just seen a simple Web Service invocation. At one point, a discovery service ’told’ the client
wherethe Web Service is located. But... how exactly are Web services addressed? The answer is very
simple: just like web pages. We use plain and simple URIs (Uniform Resource Identifiers). If you’re
more familiar with the term URL (Uniform Resource Locator), don’t worry: URI and URL are
practically the same thing.

For example, the discovery registry might have replied with the following URI:

http://webservices.mysite.com/weather/us/WeatherService

This could easily be the address of a web page. However, remember that Web Services are always used
by software (never directly by humans). If you typed a Web Service URI into your web browser, you
would probably get an error message or some unintelligible code (some web serverswill show you a nice
graphical interface to the Web Service, but that isn’t very common). When you have a Web Service URI,
you will usually need to give that URI to a program. In fact, most of the client programs we will write
will expect to receive a Web service URI as a command-line argument.

Tip: If you’re anxious to see a real Web service working, then today’s your lucky day! A "Weather
Web Service" is probably one of the most typical examples of a simple web service. You can find a
real Weather Web Service here:

http://live.capescience.com/ccx/GlobalWeather

Wait a second... You didn’t actually try to visit that URI, did you? Haven’t you been paying attention?
That’s a Web service URI, so even though it may look and feel like the URIs you type in your browser
when you want to visit your favorite website, this URI is meant only for software that "knows" how to
invoke Web services.

Fortunately, the authors of that web service have been kind enough to provide a description
(http://www.capescience.com/webservices/globalweather/index.shtml) of the Web service, along with

9

Chapter 1. Key Concepts

a web interface (http://live.capescience.com/GlobalWeather) so you can actually invoke the service’s
methods. If you feel specially curious, you can even take a look at the Web service’s WSDL
(http://live.capescience.com/wsdl/GlobalWeather.wsdl) (also available in a slightly more readable
version
(http://www.w3.org/2000/06/webdata/xslt?xslfile=http://www.capescience.com/simplifiedwsdl.xslt&xmlfile=http://live.capescience.com/wsdl/GlobalWeather.wsdl&transform=Submit))

For example, if you visit the web interface (http://live.capescience.com/GlobalWeather) you’ll see that
the Weather Web service offers a getWeatherReport operation that expects a single string
parameter (an IATA airport designation, e.g. ORD for Chicago O’Hare and LHR for London
Heathrow). If you invoke getWeatherReport , the Web service will return a WeatherReport structure
with all sorts of interesting weather data. Fun!

How does this work in practice?
OK, now that you have an idea of what Web Services are, you are probably anxious to start programming
Web Services right away. Before you do that, you might want to know how Web Services-based
applications are structured. If you’ve ever used CORBA or RMI, this structure will look pretty familiar.

First of all, you should know that despite having a lot of protocols and languages floating around, Web
Services programmers usually only have to concentrate on writing code in their favorite programming
language and, in some cases, in writing WSDL. SOAP code, on the other hand, is always generated and
interpreted automatically for us. Once we’ve reached a point where our client application needs to invoke
a Web Service, wedelegatethat task on a piece of software called astub. The good news is that there are
plenty of tools available that will generate stubs automatically for us, usually based on the WSDL
description of the Web Service.

Figure 1-7. Client and server stubs are generated from the WSDL file

Using stubs simplifies our applications considerably. We don’t have to write a complex client program
that dynamically generates SOAP requests and interprets SOAP responses (and similarly for the server
side of our application). We can simply concentrate on writing the client and/or server code, and leave all
the dirty work to the stubs (which, again, we don’t even have to write ourselves... they can be generated
automatically from the WSDL description of a web service).

The stubs are generally generated only once. In other words, you shouldn’t interpret the "Typical Web
Service Invocation" figure (above) as saying that we go through the discovery process every single time
we want to invoke a Web service, and generate the client stubs every time we want to invoke the service.
In general, we only go through the discovery step once, then generate the stubs once (based on the
WSDL of the service we’ve discovered) and then reuse the stubs as many times as we want (unless the

10

Chapter 1. Key Concepts

maintainers of the Web service decide to change the service’s interface and, thus, its WSDL description).
Of course, there are more complex invocation scenarios, but for now the one we’ve described is more
than enough to understand how Web services work.

A Typical Web Service Invocation (redux)

So, let’s suppose that we’ve already located the Web Service we want to use (either because we consulted
a discovery service, or because the Web service URI was given to us), and we’ve generated the client
stubs from the WSDL description. What exactly happens when we want to invoke a Web service
operation from a program?

Figure 1-8. A typical Web Service invocation (more detailed)

1. Whenever the client application needs to invoke the Web Service, it will really call the client stub.
The client stub will turn this ’local invocation’ into a proper SOAP request. This is often called the
marshalingor serializingprocess.

2. The SOAP request is sent over a network using the HTTP protocol. The server receives the SOAP
requests and hands it to the server stub. The server stub will convert the SOAP request into
something the service implementation can understand (this is usually calledunmarshalingor
deserializing)

3. Once the SOAP request has been deserialized, the server stub invokes the service implementation,
which then carries out the work it has been asked to do.

4. The result of the requested operation is handed to the server stub, which will turn it into a SOAP
response.

5. The SOAP response is sent over a network using the HTTP protocol. The client stub receives the
SOAP response and turns it into something the client application can understand.

6. Finally the application receives the result of the Web Service invocation and uses it.

The server side, up close
Finally, let’s take a close look at what the server looks like, specially what software we should expect to
have to get Web services up and running on our server.

11

Chapter 1. Key Concepts

Figure 1-9. The server side in a Web Services application

• Web service: First and foremost, we have our Web service. As we have seen, this is basically a piece
of software that exposes a set of operations. For example, if we are implementing our Web service in
Java, our service will be a Java class (and the operations will be implemented as Java methods).
Obviously, we want a set of clients to be able to invoke those operations. However, our Web service
implementation knows nothing about how to interpret SOAP requests and how to create SOAP
responses. That’s why we need a...

• SOAP engine: This is a piece of software that knows how to handle SOAP requests and responses. In
practice, it is more common to use a generic SOAP engine than to actually generate server stubs for
each individual Web service (note, however, that we still need client stubs for the client). One good
example of a SOAP engine is Apache Axis (http://ws.apache.org/axis/) (this is, in fact, the SOAP
engine used by the Globus Toolkit). However, the functionality of the SOAP engine is usually limited
to manipulating SOAP. To actually function as a server that can receive requests from different clients,
the SOAP engine usually runs within an...

• Application server: This is a piece of software that provides a ’living space’ for applications that
must be accessed by different clients. The SOAP engine runs as an application inside the application
server. A good example is the Jakarta Tomcat (http://jakarta.apache.org/tomcat/) server, a Java Servlet
and Java ServerPages container that is frequently used with Apache Axis and the Globus Toolkit.

Many application servers already include some HTTP functionality, so we can have Web services up
and running by installing a SOAP engine and an application server. However, when an application
server lacks HTTP functionality, we also need an...

• HTTP Server: This is more commonly called a ’Web server’. It is a piece of software that knows how
to handle HTTP messages. A good example is the Apache HTTP Server (http://httpd.apache.org/), one

12

Chapter 1. Key Concepts

of the most popular web servers in the Internet.

Note: Terminology in this area is still a bit inconsistent, so you might encounter different terms for the
concepts we’ve just seen. In particular, it’s very common to use the term Web services container as
a catch-all term for the SOAP engine + application server + HTTP server.

WSRF: The Web Services Resource Framework
As we have just seen, Web Services are the technology of choice for Internet-based applications with
loosely coupled clients and servers. That makes them the natural choice for building the next generation
of grid-based applications. However, remember Web Services do have certain limitations. In fact, plain
Web Services (as currently specified by the W3C) wouldn’t be very helpful for building a grid
application. EnterWSRF, which improves several aspects of web services to make them more adequate
for grid applications.

In this section we’ll take a brief look at the different parts of the WSRF specification. However, before
doing that, we need to take a close look at the main improvement in WSRF:statefulness.

WSRF: It’s all about state
Plain Web services are usuallystateless(even though, in theory, there is nothing in the Web Services
Architecture that says they can’t be stateful). This means that the Web service can’t "remember"
information, orkeep state, from one invocation to another. For example, imagine we want to program a
very simple Web service which simply acts as an integer accumulator. This accumulator is initialized to
zero, and we want to be able to add (accumulate) values in it. Suppose we have anadd operation which
receives the value to add and returns the current value of the accumulator. As shown in the following
figure, our first invocation of this operation might seem to work (we request that 5 be added, and we
receive 5 in return). However, since a Web service is stateless, the following invocations have no idea of
what was done in the previous invocations. So, in the second call toadd we get back 6, instead of 11
(which would be the expected value if the Web service was able to keep state).

13

Chapter 1. Key Concepts

Figure 1-10. A stateless Web Service invocation

The fact that Web services don’t keep state information is not necessarily a bad thing. There are plenty of
applications which have no need whatsoever for statefulness. For example, the Weather Web service we
saw in the previous section is a real, working Web service which has no need to know what happened in
the previous invocations.

However, Grid applicationsdogenerally require statefulness. So, we would ideally like our Web service
to somehow keep state information:

14

Chapter 1. Key Concepts

Figure 1-11. A stateful Web Service invocation

However, this is a pretty peculiar dilemma since, as mentioned above, a Web service is usually a stateless
entity. In fact, some people might argue that a "stateful Web service" is a bit of a contradiction in terms!
So, how do we get out of this jam?

The resource approach to statefulness
Giving Web services the ability to keep state information while still keeping them stateless seems like a
complex problem. Fortunately, it’s a problem with a very simple solution: simply keep the Web service
and the state information completely separate.

Instead of putting the statein the Web service (thus making it stateful, which is generally regarded as a
bad thing) we will keep it in a separate entity called aresource, which will store all the state information.
Each resource will have a uniquekey, so whenever we want astateful interactionwith a Web service we
simply have to instruct the Web service to use a particular resource.

For example, take the accumulator example. As shown in the next figure, our Web service could have
three different resources (A, B, C) to choose from. If we want the integer value to be ’remembered’ from
invocation to invocation, the client simply has to specify that he wants a method invokedwith a certain
resource.

15

Chapter 1. Key Concepts

Figure 1-12. The resource approach to statefulness

In the figure we can see that the client wants theadd operation invoked with resource C. When the Web
service receives theadd request, it will make sure to retrieve resource C so thatadd is actually
performed on that resource. The resource themselves can be stored in memory, on secondary storage, or
even in a database. Also, notice how a Web service can have access to more than one resource.

Of course, resources can come in all different shapes and sizes. A resource can keep multiple values (not
just a simple integer value, as shown in the previous figure). For example, our resources could represent
files:

16

Chapter 1. Key Concepts

Figure 1-13. A Web Service with several resources. Each resource represents a file.

You might be wondering: And how exactly does the client specify what resource must be used? A URI
might be enough to address the Web service, but how do we specify the resource on top of that? There
are actually several different ways of doing this. As we’ll see later on, the preferred way of doing it is to
use a relatively new specification called WS-Addressing which provides a more versatile way of
addressing Web Services (when compared to plain URIs).

Finally, a bit of terminology before we continue. A pairing of a Web service with a resource is called a
WS-Resource. The address of a particular WS-Resource is called anendpoint reference(this is
WS-Addressing lingo).

17

Chapter 1. Key Concepts

Figure 1-14. WS-Resource

The WSRF specification
The Web Services Resources Framework is a collection of five different specifications. Of course, they
all relate (in some way or another) to the management of WS-Resources.

WS-ResourceProperties

A resource is composed of zero or moreresource properties. For example, in the figure shown above
each resource has three resource properties: Filename, Size, and Descriptors. WS-ResourceProperties
specifies how resource properties are defined and accessed. As we’ll see later on when we start
programming, the resource properties are defined in the Web service’s WSDL interface description.

WS-ResourceLifetime

Resources have non-trivial lifecycles. In other words, they’re not a static entity that is created when our
server starts and destroyed when our server stops. Resources can be created and destroyed at any time.
The WS-ResourceLifetime supplies some basic mechanisms to manage the lifecycle of our resources.

WS-ServiceGroup

We will often be interested in managinggroups of Web Servicesor groups of WS-Resources, and
performing operations such as ’add new service to group’, ’remove this service from group’, and (more

18

Chapter 1. Key Concepts

importantly) ’find a service in the group that meets condition FOOBAR’. The WS-ServiceGroup
specifies how exactly we should go about grouping services or WS-Resources together. Although the
functionality provided by this specification is very basic, it is nonetheless the base of more powerful
discovery services (such as GT4’s IndexService) which allow us to group different services together and
access them through a single point of entry (the service group).

WS-BaseFaults

Finally, this specification aims to provide a standard way of reporting faults when something goes wrong
during a WS-Service invocation.

Related specifications

WS-Notification

WS-Notification is another collection of specifications that, although not a part of WSRF, is closely
related to it. This specification allows a Web service to be configured as anotification producer, and
certain clients to benotification consumers(or subscribers). This means that if a change occurs in the
Web service (or, more specifically, in one of the WS-Resources), that change isnotifiedto all the
subscribers (notall changes are notified, only the ones the Web services programmer wants to).

WS-Addressing

As mentioned before, the WS-Addressing specification provides us a mechanism to address Web
services which is much more versatile than plain URIs. In particular, we can use WS-Addressing to
address a Web service + resource pair (a WS-Resource).

The Globus Toolkit 4
So, WSRF sure seems pretty cool and exciting, huh? However, if you’ve already programmed
Grid-based applications, you’re probably thinking that this is all very nice, but hardly enough for The
Grid. Remember that WSRF is only a small (but important!) part of the whole GT4 Architecture: it is the
infrastructureon top of which most of the toolkit is built. Besides the WSRF implementation, the toolkit
includes a lot of components which we can use to program Grid applications.

Architecture
The Globus Toolkit 4 is composed of several software components. As shown in the following figure,
these components are divided into five categories: Security, Data Management, Execution Management,
Information Services, and the Common Runtime. Notice how, despite the fact that GT4 focuses on Web
services, the toolkit also includes components which arenot implemented on top of Web services. For

19

Chapter 1. Key Concepts

example, the GridFTP component uses a non-WS protocol which started as an ad hoc Globus protocol,
but later became a GGF specification.

20

Chapter 1. Key Concepts

Figure 1-15. GT4 architecture

21

Chapter 1. Key Concepts

As mentioned in the preface, the tutorial currently focuses only on the Java WS Core component. Once
again, it is important to realize that the Globus Toolkit includes a lot of other components which can help
us build Grid systems. Even so, the Java WS Core component is specially interesting because it is the
base for most of the WS components. Note that we do not need to have in-depth knowledge about Java
WS Core tousemany GT4 components like GRAM, MDS, etc. However, if we want to build a Grid
system thatintegratesall of these components with our own services, we will need to know about Java
WS Core to actually "glue" all those services together and to program our own services.

GT4 Components
Let’s take a quick look at what we can find in each of the five families of GT4 component. For more
detailed descriptions, please refer to the official Globus documentation or to the Globus Primer (you can
find a link in the preface)

Common Runtime

The Common Runtime components provide a set of fundamental libraries and tools which are needed to
build both WS and non-WS services.

Security

Using the Security components, based on the Grid Security Infrastructure (GSI), we can make sure that
our communications are secure.

Data management

These components will allow us to manage large sets of data in our virtual organization.

Information services

The Information Services, more commonly referred to as the Monitoring and Discovery Services (MDS),
includes a set of components to discover and monitor resources in a virtual organization. Note that GT4
also includes a non-WS version of MDS (MDS2) for legacy purposes. This component is deprecated and
will surely disappear in future releases of the toolkit.

Execution management

Execution Management components deal with the initiation, monitoring, management, scheduling and
coordination of executable programs, usually calledjobs, in a Grid.

22

Chapter 1. Key Concepts

Where to learn Java & XML
After seeing all the theory behind GT4, we’re almost ready to start programming. However, remember
you need to know Java to follow this tutorial. If you’re new to Java, you will probably find the following
sites interesting:

• The Java Tutorial (http://java.sun.com/docs/books/tutorial/) : The official tutorial from Sun, the makers
of Java. Very good if you know absolutely nothing about Java.

• The Coffee Break (http://www.javacoffeebreak.com/) : Website with resources for Java programmers,
including tutorials and FAQs.

Also, you need to be familiar with XML. You don’t have to be an XML wizard, but should at least be
able to read and interpret the different elements of an XML document. If you’ve never worked with
XML, you should probably take a look at the following sites:

• W3Schools XML Tutorial (http://www.w3schools.com/xml/) : Tutorial that covers both the basics and
the more advanced aspects of XML.

• ZVON.org (http://www.zvon.org/) : Tons of XML resources. Includes some very good reference
guides.

23

Chapter 2. Installation
The tutorial doesn’t include its own installation guide, since the official Globus installation guide is
already very easy to follow and understand. Just follow the instructions in the GT4.0 System
Administrator’s Guide (http://www.globus.org/toolkit/docs/4.0/admin/docbook/). For the tutorial, you
should be fine just installing the Java WS Core release of the toolkit. However, in the long run, you might
prefer to have the complete toolkit install (be forewarned: the complete toolkit takes along time to
install).

24

II. GT4 Java WS Core

Chapter 3. Writing Your First Stateful Web
Service in 5 Simple Steps

MathService
In this chapter we are going to write and deploy a simple stateful web service that uses WSRF to keep
state information. Our first web service is an extremely simpleMath Web Service, which we’ll refer to as
MathService. It will allow users to perform the following operations:

• Addition

• Subtraction

Furthermore, MathService will have the following resource properties (RPs for short):

• Value (integer)

• Last operation performed (string)

We will also add a "Get Value" operation to access the Value RP. In we will see a better way of
accessing resource properties, without having to add get/set operations.

MathService’s internal logic is very simple. Once a new resource is created, the "value" RP is initialized
to zero, and the "last operation" RP is initialized to "NONE". The addition and subtraction operations
expect onlyone integer parameter. This parameter is added/subtracted to the "value" RP, and the "last
operation" RP is changed to "ADDITION" or "SUBTRACTION" accordingly. Also, the addition and
subtraction operations don’t return anything.

Finally, this first example will be limited to havingone single resource. In the following chapters we will
see how we can write a service that has several resources associated to it, as seen in .

High-tech stuff, huh? Don’t worry if this seems a bit lackluster. Since this is going to be our first stateful
web service, it’s better to start with a small didactic service which we’ll gradually improve by adding
more complex resource properties, notifications, etc. You should always bear in mind that MathService
is, after all, just a means to get acquainted with GT4. Typical WSRF Web Services are generally much
more complex and do more than expose trivial operations (such as addition and subtraction).

The Five Steps
Writing and deploying a WSRF Web Service is easier than you might think. You just have to follow five
simple steps.

1. Define the service’s interface. This is done withWSDL

26

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

2. Implement the service. This is done withJava.

3. Define the deployment parameters. This is done withWSDDandJNDI

4. Compile everything and generate a GAR file. This is done withAnt

5. Deploy service. This is also done witha GT4 tool

Don’t worry if you don’t understand these five steps or are baffled by terms such as WSDL, WSDD, and
Ant. In this first example we’re going to go through each step in great detail, explaining what each step
accomplishes, and giving detailed instructions on how to perform each step. The rest of the examples in
the tutorial will also follow these five steps, but won’t repeat the whole explanation of what that step is.
So, if you ever find that you don’t understand a particular step, you can always come back to this chapter
("Writing Your First Stateful Web Service in 5 Simple Steps") to review the details of that step.

Before we start...
Ready to start? Ok! Just hold your horses for a second. Don’t forget to download the tutorial files before
you start. You can find a link to the tutorial files in the tutorial website
(http://gdp.globus.org/gt4-tutorial). The examples bundle includes all the tutorial source files, plus a
couple of extra files we’ll need to successfully build and deploy our service. Just create an empty
directory on your file system and untar-gunzip the file there. From now on, we’ll refer to that directory as
$EXAMPLES_DIR .

Once you have the files, take into account that there are two ways of following the first chapters of the
tutorial:

• With the example source files: You’ll have all the source code (Java, WSDL, and WSDD) ready to
use in$EXAMPLES_DIR, so there’s no need to manually modify these files.

• Without the examples source files: Some people don’t like getting all the source code ready to use
out-of-the-box, but prefer to write the files themselves so they can have a better understanding of what
they’re doing at each point. In fact, we think this is probably the best way to follow this chapter
(except for a few files which would take too long to write manually). Since this chapter includes
complete code listings (which you can copy and paste to a file), you can easily write all the files
yourself. However, youdoneed a set of auxiliary files included in the examples bundle that are needed
to build and deploy the services. So, if you want to follow the examples without the source files, you
still need to download the examples files. Once you’re in$EXAMPLES_DIR, simply delete directory
"org " to delete the source files, butdon’t delete anything else.

Ok, nowwe’re ready to start :-)

Step 1: Defining the interface in WSDL
The first step in writing a web service (including those that use WSRF to keep state) is to define the
service interface. We need to specify what our service is going to provide to the outer world. At this
point we’re not concerned with the inner workings of that service (what algorithms it uses, other systems

27

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

it interacts with, etc.). We just need to know whatoperationswill be available to our users. In Web
Services lingo, the service interface is usually called theport type(usually writtenportType).

As we saw in , there is a special XML language which can be used to specify what operations a web
service offers: the Web Service Description Language (WSDL). So, what we need to do in this step is
write a description of our MathService using WSDL.

At first sight, it might seem that starting with an interface language (such as a Java interface or an IDL
interface) might be the best option, since (as you’ll soon find out) it is more user-friendly than directly
coding in WSDL. In fact, if we wanted to define our interface in Java, we could simply write the
following:

public interface Math
{

public void add(int a);

public void subtract(int a);

public int getValueRP();
}

...and we’d be nearly finished with step 1! (we would still need to specify the resource properties).
However, we are going to start with a WSDL description of the interface, even if it is a bit harder to
understand than using a Java interface. The main reason for this is that, although Java interfaces might be
easier to write and understand, in the long run they produce much more problems than WSDL. So, the
sooner we start writing WSDL, the better. Before that, we’ll take a good look at the WSDL code which is
equivalent to the Java interface shown above.

However, the goal of this page is not to give a detailed explanation of how to write a WSDL file, but
rather to present the WSDL file for this particular example. If you have no idea whatsoever of how to
write WSDL, now is a good time to take a look at . Come on, go take a look at the appendix. We’ll be
waiting for you right here.

The WSDL code
Ok, so supposing you either know WSDL or have visited the WSDL appendix, take a good thorough
look at this WSDL code:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MathService"

targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
namespace=

28

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

"http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

<!--==

T Y P E S

==-->
<types>
<xsd:schema targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"

xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- REQUESTS AND RESPONSES -->

<xsd:element name="add" type="xsd:int"/>
<xsd:element name="addResponse">
<xsd:complexType/>
</xsd:element>

<xsd:element name="subtract" type="xsd:int"/>
<xsd:element name="subtractResponse">
<xsd:complexType/>
</xsd:element>

<xsd:element name="getValueRP">
<xsd:complexType/>
</xsd:element>
<xsd:element name="getValueRPResponse" type="xsd:int"/>

<!-- RESOURCE PROPERTIES -->

<xsd:element name="Value" type="xsd:int"/>
<xsd:element name="LastOp" type="xsd:string"/>

<xsd:element name="MathResourceProperties">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:Value" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:LastOp" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

<!--==

29

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

M E S S A G E S

==-->
<message name="AddInputMessage">
<part name="parameters" element="tns:add"/>
</message>
<message name="AddOutputMessage">
<part name="parameters" element="tns:addResponse"/>
</message>

<message name="SubtractInputMessage">
<part name="parameters" element="tns:subtract"/>
</message>
<message name="SubtractOutputMessage">
<part name="parameters" element="tns:subtractResponse"/>
</message>

<message name="GetValueRPInputMessage">
<part name="parameters" element="tns:getValueRP"/>
</message>
<message name="GetValueRPOutputMessage">
<part name="parameters" element="tns:getValueRPResponse"/>
</message>

<!--==

P O R T T Y P E

==-->
<portType name="MathPortType"

wsdlpp:extends="wsrpw:GetResourceProperty"
wsrp:ResourceProperties="tns:MathResourceProperties">

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>
</operation>

<operation name="subtract">
<input message="tns:SubtractInputMessage"/>
<output message="tns:SubtractOutputMessage"/>
</operation>

<operation name="getValueRP">
<input message="tns:GetValueRPInputMessage"/>
<output message="tns:GetValueRPOutputMessage"/>
</operation>

</portType>

</definitions>

30

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

Note: This file is $EXAMPLES_DIR/schema/examples/MathService_instance/Math.wsdl . This file
is located in that particular directory because of the tool we’ll be using to build the service. You can
find more details about the directory structure required by this tool in .

If you know WSDL, you’ll recognize this as a pretty straightforward WSDL file which defines three
operations:add , subtract , andgetValueRP (along with all the necessary messages and types).
However, this WSDL file does have some peculiarities specific to WSRF and Globus.

WSRF and Globus-specific features of WSDL
Our WSDL file has three features which are specific to WSRF or to the Globus implementation of WSRF
we’re using. The following is just a brief overview of these three features. You can find more WSDL
details in .

• Resource properties: We use thewsrp:ResourceProperties attribute of theportType element
to specify what our service’s resource properties are. The resource properties must be declared in the
<types> section of the WSDL file. Remember that the resource properties are where we’ll keep all
our state information.

• The WSDL Preprocessor: Thanks to thewsdlpp:extends attribute of theportType element we
can include existing WSRF portTypes in our own portType without having to copy-and-paste from the
official WSRF WSDL files. A WSDL Preprocessor will use the value of that attribute to generate
correct WSDL which includes our own portType definitions plus any WSRF portType we might need
in our service. This is a Globus-specific feature that is included to make life easier for programmers.

In our case, notice how we’re including the theGetResourceProperty portType from the
WS-ResourceProperties WSDL file.

• No bindings: Bindings are an essential part of a normal WSDL file. However, we don’t have to add
them manually, since they are generated automatically by a GT4 tool that is called when we build the
service.

31

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

The WSDL Preprocessor
The WSDL Preprocessor (the wsdlpp:extends attribute in the portType element)
is provided in GT4 as a convenience. Conceptually, it is very important to
understand that WSDL files using wsdlpp:extends will always be converted to
standard WSDL before they are actually used. In other words, wsdlpp:extends

doesn’t affect GT4’s interoperability with other WSRF implementations because
the extends attribute is always "purged" from our WSDL file before the service is
deployed. This process is usually called "flattening" because we take several
WSDL files (our file plus any WSRF WSDL files we extend from) and then merge
them into a single (flattened) file. GT4 will always publish the flattened version of
our WSDL file.

Also, take into account that you are not required to use wsdlpp:extends . If you
choose to, you can write the flattened version directly. However, this involves a fair
amount of copy-pasting that can be very error-prone. The book examples all use
wsdlpp:extends .

Bottom line: GT4 doesn’t require that other Web Services implementations or other
WSRF implementations use wsdlpp:extends because WSDL files are always
exchanged in their flattened versions. It is a purely internal feature of the toolkit.

Namespace mappings
One of the nice things about WSDL is that it’slanguage-neutral. In other words, there is no mention of
the language in which the service is going to be implemented, or of the language in which the client is
going to be implemented.

However, there will of course come a moment when we’ll want to refer to this interface from a specific
language (in our case, Java). We do this through a set ofstub classes(stubs were described in) which are
generated from the WSDL file using a GT4 tool. For that tool to successfully generate the stub classes,
we need to tell it where (i.e. in what Java package) to place the stub classes. We do this with amappings
file, which maps WSDL namespaces to Java packages:

http\://www.globus.org/namespaces/examples/core/MathService_instance=
org.globus.examples.stubs.MathService_instance

http\://www.globus.org/namespaces/examples/core/MathService_instance/bindings=
org.globus.examples.stubs.MathService_instance.bindings

http\://www.globus.org/namespaces/examples/core/MathService_instance/service=
org.globus.examples.stubs.MathService_instance.service

Note: Each mapping must go in one line (i.e. the above file should have three lines). Also, take into
account that the backslash before the colon is intentional. This file is
$EXAMPLES_DIR/namespace2package.properties .

The first namespace is the target namespace of the WSDL file. The other two namespaces are
automatically generated when a GT4 tool ’completes’ the WSDL file (including the necessary bindings).
Throughout the tutorial, the stub classes for the examples will be placed in the following Java package:

32

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

org.globus.examples.stubs

Since we’re defining a service calledMathService_instance , we’re specifically mapping the WSDL
file to the following package:

org.globus.examples.stubs. MathService_instance

However, take into account that the stubs classes aregeneratedfrom the WSDL file, so they won’t exist
until we compile the service (which is when the stub classes are generated). In other words, don’t look
for theorg.globus.examples.stubs package in$EXAMPLES_DIR, because you won’t find them
there. If you are of a curious disposition, don’t worry: as soon as we generate the stub classes, we’ll take
a (very brief) look at the directory where they are generated.

Step 2: Implementing the service in Java
After defining the service interface ("what the service does"), the next step is implementing that
interface. The implementation is "howthe service does what it says it does".

The QNames interface
The first bit of code we need is a very simple Java interface that will make our life a bit easier. When we
have to refer to just about anything related to a service, we will need to do so using itsqualified name, or
QName for short. This is a name which includes a namespace and alocal name. For example, the
QName of theValue RP is:

{http://www.globus.org/namespaces/examples/core/MathService_instance}Value

Note: This is a common string representation of a QName. The namespace is placed between curly
braces, and the local name is placed right after the namespace.

A qualified name is represented in Java using theQNameclass. Since we’ll be referring to the service’s
qualified names frequently, it is a good practice to put them all in a separate interface:

package org.globus.examples.services.core.first.impl;

import javax.xml.namespace.QName;

public interface MathQNames {
public static final String NS = "http://www.globus.org/namespaces/examples/core/MathService_instance";

public static final QName RP_VALUE = new QName(NS, "Value");

public static final QName RP_LASTOP = new QName(NS, "LastOp");

public static final QName RESOURCE_PROPERTIES = new QName(NS,
"MathResourceProperties");

33

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/first/impl/MathQNames.java .

We are not really required to write this interface, but in the long run it’s much better to have all the
QNames in a single spot, so we can avoid making mistakes when manually writing QNames in our other
classes.

The service implementation
In this first simple example, our service implementation will consist of a single Java class with the code
for both the serviceand the resource. We will see in the following chapters that it is more common (in
fact, desirable) to split the implementation into at least two classes: one for the service and another one
for the resource. You should only use the approach described in this first example when coding very
simple services.

Writing the code for the service is actually very mechanical. The only non-trivial piece of code is the
method that will be in charge of initializing our service’s single resource.

The bare bones of our resource class will be the following:

package org.globus.examples.services.core.first.impl;

import java.rmi.RemoteException;

import org.globus.wsrf.Resource;
import org.globus.wsrf.ResourceProperties;
import org.globus.wsrf.ResourceProperty;
import org.globus.wsrf.ResourcePropertySet;
import org.globus.wsrf.impl.ReflectionResourceProperty;
import org.globus.wsrf.impl.SimpleResourcePropertySet;
import org.globus.examples.stubs.MathService_instance.AddResponse;
import org.globus.examples.stubs.MathService_instance.SubtractResponse;
import org.globus.examples.stubs.MathService_instance.GetValueRP;

public class MathService implements Resource ➊, ResourceProperties ➋ {

}

➊ Since our Java class will implement both the service and the resource, we need to implement the
Resource interface. However, this interface doesn’t require any methods. It is simply a way of
tagging a class as being a resource.

➋ By implementing theResourceProperties interface we are indicating that our class has a set of
resource properties which we want to make available. This interface requires that we add the
following to our class:

private ResourcePropertySet propSet;

34

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

public ResourcePropertySet getResourcePropertySet() {
return this.propSet;
}

Now, remember that our resource has two resource properties:Value of typexsd:int andLastOp of
typexsd:string . We need to add an attribute for each resource property along with a get/set method
pair for each resource property:

package org.globus.examples.services.core.first.impl;

import java.rmi.RemoteException;

import org.globus.wsrf.Resource;
import org.globus.wsrf.ResourceProperties;
import org.globus.wsrf.ResourceProperty;
import org.globus.wsrf.ResourcePropertySet;
import org.globus.wsrf.impl.ReflectionResourceProperty;
import org.globus.wsrf.impl.SimpleResourcePropertySet;
import org.globus.examples.stubs.MathService_instance.AddResponse;
import org.globus.examples.stubs.MathService_instance.SubtractResponse;
import org.globus.examples.stubs.MathService_instance.GetValueRP;

public class MathService implements Resource, ResourceProperties {

/* Resource Property set */
private ResourcePropertySet propSet;

/* Resource properties */
private int value;
private String lastOp;

/* Get/Setters for the RPs */
public int getValue() {
return value;
}

public void setValue(int value) {
this.value = value;
}

public String getLastOp() {
return lastOp;
}

public void setLastOp(String lastOp) {
this.lastOp = lastOp;
}

/* Required by interface ResourceProperties */

35

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

public ResourcePropertySet getResourcePropertySet() {
return this.propSet;
}
}

Caution
It is important for the attributes to have the same name that was given to the
resource properties in the WSDL file (but with the first letter in lowercase).
Remember:

<xsd:element name="Value" type="xsd:int"/>
<xsd:element name="LastOp" type="xsd:string"/>

This translates to:

private int value ;
private String lastOp ;

As for the get/set methods, we again have to use the same name used in the
WSDL file (keeping the first letter in uppercase):

public int getValue () {...}
public void setValue (int value) {...}
public String getLastOp () {...}
public void setLastOp (String lastOp) {...}

Next, we have to implement the constructor. Here we will initialize the resource properties.

/* Constructor. Initializes RPs */
public MathService() throws RemoteException {
➊

this.propSet = new SimpleResourcePropertySet(
MathQNames.RESOURCE_PROPERTIES);

/* Initialize the RP’s */
try {
➋

ResourceProperty valueRP = new ReflectionResourceProperty(
MathQNames.RP_VALUE, "Value", this);
this.propSet.add(valueRP);
setValue(0);

ResourceProperty lastOpRP = new ReflectionResourceProperty(
MathQNames.RP_LASTOP, "LastOp", this);
this.propSet.add(lastOpRP);
setLastOp("NONE");
} catch (Exception e) {
throw new RuntimeException(e.getMessage());
}
}

36

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

➊ We create the resource property set. To do so, we need to provide the qualified name of the resource
properties. In our case, that QName is:
{http://www.globus.org/namespaces/examples/core/MathService_instance}MathResourceProperties

This was specified in the WSDL file. Remember that we put this QName in theMathQNames

interface so we could access it with ease.

➋ We create the individual resource properties, and initialize them (again, notice how we’re referring
to each resource property’s QName:RP_VALUEandRP_LASTOP)

ReflectionResourceProperty: What we have just seen is the simplest type of resource creation:
using ReflectionResourceProperty to represent each resource property. This makes the
implementation much simpler, but also adds quite a bit of restrictions on our resource implementation
(such as the need for get/set methods, as outlined in the caution box above). GT4 includes other
classes to deal with more complex resource scenarios (such as SimpleResourceProperty ,
PersistentResourceProperty , etc.). In fact, we will start using SimpleResourceProperty in .

Finally, we need to provide the implementation of our remotely-accessible methods (add , subtract ,
andgetValueRP). These are pretty straightforward, except for some peculiarities in how the parameters
and return types have to be declared. For example, take a look at theadd method: (thesubtract

method is similar)

public AddResponse add(int a) throws RemoteException {
value += a;
lastOp = "ADDITION";

return new AddResponse();
}

You’ll notice that, even though we defined theadd operation as having no return type in the WSDL file,
now the return type isAddResponse . A similar thing happens in thegetValueRP method:

public int getValueRP(GetValueRP params) throws RemoteException {
return value;
}

Even thoughgetValueRP was defined as having no parameters, it turns out our method has a single
"GetValueRP params " parameter. Don’t get nervous... this all has a very logical explanation. This is
due to the fact that WSRF usesdocument/literal bindings, which requires that the parameters be
implemented in a very particular way.

How document/literal bindings affect our parameters: Whenever we write an operation which is
part of our WSDL interface (such as add , subtract , or getValueRP), the parameters and the return
values will in some cases be ’boxed’ inside stub classes (which are generated automatically from the
WSDL file). This is more evident when we have several parameters. For example, if we declared the
following operation in our WSDL file:

void multiply(int a1, int a2);

37

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

The actual Java code would look like this:

public MultiplyResponse multiply(Multiply params) throws RemoteException
{
int a1 = params.getA1()
int a2 = params.getA2()

// Do something

return new MultiplyResponse();
}

Multiply and MultiplyResponse are stub classes. Notice how the two parameters (a1 and a2) are
’boxed’ inside a single Multiply parameter, and how we return a MultiplyResponse object, even
though we don’t really want to return anything.

The tricky thing about this is that, as mentioned earlier, this ’boxing’ process only happens in some
cases:

• When the number of parameters is more than one. For example, our add method has a single
parameter, so it is not ’boxed’.

• When the return type is void or a complex type. For example, our getValueRP method returns an
int value, so it is not ’boxed’. On the other hand, both add and subtract return void, so what we
really have to return is AddResponse and SubtractResponse .

The complete class would look like this:

package org.globus.examples.services.core.first.impl;

import java.rmi.RemoteException;

import org.globus.wsrf.Resource;
import org.globus.wsrf.ResourceProperties;
import org.globus.wsrf.ResourceProperty;
import org.globus.wsrf.ResourcePropertySet;
import org.globus.wsrf.impl.ReflectionResourceProperty;
import org.globus.wsrf.impl.SimpleResourcePropertySet;
import org.globus.examples.stubs.MathService_instance.AddResponse;
import org.globus.examples.stubs.MathService_instance.SubtractResponse;
import org.globus.examples.stubs.MathService_instance.GetValueRP;

public class MathService implements Resource, ResourceProperties {

/* Resource Property set */
private ResourcePropertySet propSet;

/* Resource properties */
private int value;
private String lastOp;

/* Constructor. Initializes RPs */
public MathService() throws RemoteException {

38

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

/* Create RP set */
this.propSet = new SimpleResourcePropertySet(
MathQNames.RESOURCE_PROPERTIES);

/* Initialize the RP’s */
try {
ResourceProperty valueRP = new ReflectionResourceProperty(
MathQNames.RP_VALUE, "Value", this);
this.propSet.add(valueRP);
setValue(0);

ResourceProperty lastOpRP = new ReflectionResourceProperty(
MathQNames.RP_LASTOP, "LastOp", this);
this.propSet.add(lastOpRP);
setLastOp("NONE");
} catch (Exception e) {
throw new RuntimeException(e.getMessage());
}
}

/* Get/Setters for the RPs */
public int getValue() {
return value;
}

public void setValue(int value) {
this.value = value;
}

public String getLastOp() {
return lastOp;
}

public void setLastOp(String lastOp) {
this.lastOp = lastOp;
}

/* Remotely-accessible operations */

public AddResponse add(int a) throws RemoteException {
value += a;
lastOp = "ADDITION";

return new AddResponse();
}

public SubtractResponse subtract(int a) throws RemoteException {
value -= a;
lastOp = "SUBTRACTION";

return new SubtractResponse();
}

39

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

public int getValueRP(GetValueRP params) throws RemoteException {
return value;
}

/* Required by interface ResourceProperties */
public ResourcePropertySet getResourcePropertySet() {
return this.propSet;
}
}

Note: This file is
$EXAMPLE_DIR/org/globus/examples/services/core/first/impl/MathService.java .

Step 3: Configuring the deployment in WSDD (and JNDI)
Up to this point, we have written the two most important parts of our stateful Web service: the service
interface (WSDL) and the service implementation (Java). However, we still seem to be missing
something... How do we actually make our web service available to client connections? Does our Java
class simply float around in some sort of mysterious ether? This next step will actually take all the loose
pieces we have written up to this point and make them available through aWeb services container. This
step is called thedeploymentof the web service.

Note: Remember: The "Web Services container" is a catch-all term referring to all the software
(SOAP Engine, Application Server, and HTTP Server) we need to make Web services available to
clients. This might be a good moment to review .

The WSDD deployment descriptor
One of the key components of the deployment phase is a file called thedeployment descriptor. It’s the
file that tells the Web Services container how it should publish our web service (for example, telling it
what the our service’s URI will be). The deployment descriptor is written in WSDD format (Web Service
Deployment Descriptor). The deployment descriptor for our Web service will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<service name="examples/core/first/MathService" provider="Handler" use="literal" style="document">
<parameter name="className" value="org.globus.examples.services.core.first.impl.MathService"/>
<wsdlFile>share/schema/examples/MathService_instance/Math_service.wsdl</wsdlFile>
<parameter name="allowedMethods" value="*"/>

40

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="providers" value="GetRPProvider"/>
<parameter name="loadOnStartup" value="true"/>

</service>

</deployment>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/first/deploy-server.wsdd .

Let’s take a close look at what all this means...

The ’service name’

<service name="examples/core/first/MathService" provider="Handler" use="literal" style="document">

This specifies the location where our web service will be found. If we combine this with the base address
of our Web Services container, we will get the full URI of our web service. For example, if we are using
the GT4 standalone container, the base URL will probably be
http://localhost:8080/wsrf/services . Therefore, our service’s URI would be:

http://localhost:8080/wsrf/services/examples/core/first/MathService

className

<parameter name="className" value="org.globus.examples.services.core.first.impl.MathService"/>

This parameter refers to the class which implements the service interface (in our case,MathService

from the previous section).

The WSDL file

<wsdlFile>share/schema/examples/MathService_instance/Math_service.wsdl</wsdlFile>

ThewsdlFile tag tells the Web Services container where the WSDL file for this service can be found.
Notice how there’s a"_service " at the end of the filename. This is not a typo. This WSDL file
(Math_service.wsdl) will be generated automatically by a GT4 tool when we compile the service.

The operation providers

For now, you can safely ignore theproviders parameter, as we will not be using it in this example.

41

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

Load on startup

<parameter name="loadOnStartup" value="true"/>

This parameter allows us to control if we want the service to be loaded as soon as the container is started.
Since our service has a single resource, it is usually best to load it at startup.

The common parameters

<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>

These are three parameters which we’ll see in every web service we program and are better left
untouched.

The JNDI deployment file
This file barely comes into play in this example since we’re implementing our service the simplest
possible way. However, we still have to include this file, but we need you to take a little leap of faith at
this point and just accept that we need the file "because we need it". In the next chapter we will introduce
the concept ofresource homesand we will explain this file in more detail (we will also revisit the file
seen in this example).

So, the JNDI deployment file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<jndiConfig xmlns="http://wsrf.globus.org/jndi/config">

<service name="examples/core/first/MathService">
<resource name="home" type="org.globus.wsrf.impl.ServiceResourceHome">
<resourceParams>

<parameter>
<name>factory</name>
<value>org.globus.wsrf.jndi.BeanFactory</value>
</parameter>

</resourceParams>

</resource>
</service>

</jndiConfig>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/first/deploy-jndi-config.xml .

42

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

Step 4: Create a GAR file with Ant
At this point we have (1) a service interface in WSDL, (2) a service implementation in Java, and (3) a
deployment descriptor in WSDD and JNDI telling the Web Services container how to present (1) and (2)
to the outer world. However, all this is a bunch of loose files. How are we supposed to place this in a Web
services container? Do we have to copy these files to strategically located directories? And what about
the Java files? We haven’t compiled those yet!

Fear not, for this is the step when everything comes together in perfect harmony. Using those three files
we wrote in the previous three pages we will generate aGrid Archive, or GAR file. This GAR file is a
single file which contains all the files and information the Web services container needs todeployour
service and make it available to the whole world. In fact, in the next section we’ll instruct the GT4
standalone container to take the GAR and deploy it.

However, creating a GAR file is a pretty complex task which involves the following:

• Processing the WSDL file to add missing pieces (such as bindings)

• Creating the stub classes from the WSDL

• Compiling the stubs classes

• Compiling the service implementation

• Organize all the files into a very specific directory structure

Don’t be scared by all this. Thanks to the hard work of the Globus guys and gals, we can do all this in a
single step using a very useful tool called Ant.

Ant
Ant, an Apache Software Foundation (http://www.apache.org/) project, is a Javabuild tool. In concept, it
is very similar to the classic UNIXmake command. It allows programmers to forget about the individual
steps involved in obtaining an executable from the source files, which will be taken care of by Ant. Each
project is different, so the individual steps are described in abuildfile (’Makefile’ in the make jargon).
This buildfile directs Ant on what it should compile, how it should compile it, and in what order. This
simplifies the whole process considerably. In fact, it reduces the number of steps to one! With Ant, all we
have to worry about is writing the service interface, the service implementation, and the deployment
descriptor. Ant takes care of the rest:

43

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

Figure 3-1. Generating a GAR file with Ant

As you can see, Ant generates the GAR directly from the three sets of source files. Internally, it is
carrying out all the steps listed earlier, sparing us the cumbersome task of doing them ourselves. In a
GT4 project, Ant uses two sets of buildfiles: a couple of buildfiles which are a part of GT4, and a
buildfile we’ll have to write on our own. The GT4 buildfiles cover all the important steps (generating the
WSDL code, generating the stubs, ...). Our build file essentially has all the unique parameters of our web
service, and a bunch of calls to the GT4 buildfiles.

Finally, if you want to learn more about Ant, take a look at the Ant Website (http://ant.apache.org/). It
includes plenty of documentation, tutorials, etc.

The globus-build-service script and buildfile
Throughout the tutorial, we won’t have to write a separate buildfile for each of our services. We will be
relying on theglobus-build-service script and buildfile, one of the tools developed as part of the
Globus Service Build Tools (GSBT) project. This tool will allow us to create a GAR file with minimal

44

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

effort, and without having to modify an Ant buildfile every time we move on to the next example. A copy
of globus-build-service is included with the examples bundle, and more information on the tool
can be found on the GSBT website (http://gsbt.sourceforge.net/).

Creating the MathService GAR
Using the provided Ant buildfile and the handy script, building a web service is as simple as doing the
following:

./globus-build-service.sh -d <service base directory> -s <service’s WSDL file>

Note: Make sure you have an environment variable called GLOBUS_LOCATION pointed to your
Globus Toolkit root (the script depends on this)

Note: Windows users can use a Python build script included with the downloadable tutorial files (and
also a part of the GSBT project). If you prefer to use the Python script, simply replace
globus-build-service.sh with globus-build-service.py in all the following examples.

The "service base directory" is the directory where we placed thedeploy-server.wsdd file, and
where the Java files can be found (inside animpl directory). To build the first example we simply need
to do the following:

./globus-build-service.sh \
-d org/globus/examples/services/core/first/ \
-s schema/examples/MathService_instance/Math.wsdl

globus-build-service also allows us to use a shorthand notation which is much easier (and faster)
to use. For example, to build our first example and generate its GAR file, we simply need to do the
following:

./globus-build-service.sh first

Note: Make sure you run this from $EXAMPLES_DIR.

We will be able to use this shorthand notation with all the examples included in the tutorial. However,
this shorthand notation will work because the examples bundle includes a file that maps an abbreviated
name (likefirst) to a specific directory and schema file. To write your own mappings and use the
shorthand notation in your own projects, refer to the Globus Service Build Tools
(http://gsbt.sourceforge.net/) website.

If everything works fine, the GAR file will be placed in$EXAMPLES_DIR. To be exact, the GAR file
generated for this example will be the following:

$EXAMPLES_DIR/org_globus_examples_services_core_first.gar

45

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

Step 5: Deploy the service into a Web Services container
The GAR file, as mentioned in the previous page, contains all the files and information the web server
needs to deploy the web service. Deployment is done with a GT4 tool that, using Ant, unpacks the GAR
file and copies the files within (WSDL, compiled stubs, compiled implementation, WSDD) into key
locations in the GT4 directory tree.

This deployment command must be run with a user that has write permission in
$GLOBUS_LOCATION.

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_core_first.gar

There is also a command toundeploya service:

globus-undeploy-gar org_globus_examples_services_core_first

Deployment is really as simple as that! That also concludes the five steps necessary to write and deploy a
WSRF Web service. However, although you’re probably beaming with pride because you’ve deployed
your first WSRF web service, you’ll certainly want to make sure that it works. We’ll try out our recently
deployed service using a very simple client application.

A simple client
We’re going to test our web service with a command-line client which will invoke both theadd and
subtract operations and will also retrieve theValue resource property using thegetValueRP

operation. This client expects one argument from the command line:

1. The service URI

The client class will be calledClient and we’ll place it in the
$EXAMPLES_DIR/org/globus/examples/clients/MathService_instance/Client.java file.
The full code for the client is the following:

package org.globus.examples.clients.MathService_instance;

import org.apache.axis.message.addressing.Address;
import org.apache.axis.message.addressing.EndpointReferenceType;

import org.globus.examples.stubs.MathService_instance.MathPortType;
import org.globus.examples.stubs.MathService_instance.GetValueRP;
import org.globus.examples.stubs.MathService_instance.service.MathServiceAddressingLocator;

public class Client {

public static void main(String[] args) {
MathServiceAddressingLocator locator = new MathServiceAddressingLocator();

try {

46

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

String serviceURI=args[0];

➊

EndpointReferenceType endpoint = new EndpointReferenceType();
endpoint.setAddress(new Address(serviceURI));

➋

MathPortType math = locator.getMathPortTypePort(endpoint);

➌

// Perform an addition
math.add(10);

// Perform another addition
math.add(5);

// Access value
System.out.println("Current value:" + math.getValue(new GetValueRP()));

// Perform a subtraction
math.subtract(5);

// Access value
System.out.println("Current value:" + math.getValue(new GetValueRP()));
} catch (Exception e) { ➍

e.printStackTrace();
}
}

}

➊ First, we create anEndpointReferenceType object representing the endpoint reference of this
service. Remember from that an endpoint reference is used to address a particular WS-Resource
(the pairing of a service and a resource). Since our service has a single resource, our endpoint
reference only needs the service’s URI.

➋ Next, we obtain a reference to the service’s portType. This is done with a stub class called
MathServiceAddressingLocator that, given the service’s endpoint, returns aMathPortType

object that will allow us to contact theMath portType.

➌ Once we have that reference, we can work with the web serviceas if it were a local object. For
example, to invoke theremoteadd operation, we simply have to use theadd method in the
MathPortType object.

➍ Finally, notice how all the code must be placed inside a try/catch block. We must always do this,
since all the remote operations can throwRemoteException s (for example, if there is a network
failure and we can’t contact the service).

We are now going to compile the client. Before running the compiler, make sure you run the following:

source $GLOBUS_LOCATION/etc/globus-devel-env.sh

47

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

Theglobus-devel-env.sh script takes care of putting all the Globus libraries into your
CLASSPATH. When compiling the service, Ant took care of this but, since we’re not using Ant to
compile the client, we need to run the script.

To compile the client, do the following:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/MathService_instance/Client.java

./build/classes is a directory generated by Ant were all the compiled stub classes are placed. We
need to include this directory in the CLASSPATH so our client can access generated stub classes such as
MathServiceAddressingLocator .

Now, before running the client, we need to to start up the standalone container. Otherwise, our web
service won’t be available, and the client will crash.

globus-start-container -nosec

Caution
We are running the Globus standalone container without any security (-nosec) to
avoid having to deal with all the messy security configuration at this point.
However, ’real’ Grid application will almost always require security. The tutorial
currently does not cover security (you will need to refer to the official Globus
documentation).

When the container starts up, you’ll see a list with the URIs of all the deployed services. One quick way
of checking if MathService has been correctly deployed is to check if the following line appears in the
list of services:

http://127.0.0.1:8080/wsrf/services/examples/core/first/MathService

Note: This is the service as it would appear in a default GT4 installation, with the standalone
container located in http://localhost:8080/wsrf/services . The URI might be different if you’ve
changed the location of the container.

If the service is correctly deployed, we can now run the client:

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.MathService_instance.Client \
http://127.0.0.1:8080/wsrf/services/examples/core/first/MathService

If all goes well, you should see the following:

Current value: 15
Current value: 10

48

Chapter 3. Writing Your First Stateful Web Service in 5 Simple Steps

Now, remember that our service is, at the same time, the resource itself. So, if we invoke the service
repeatedly, we will access the same stateful information. If you run the client a couple more times, you
should see the value increase with each run:

Current value: 25
Current value: 20

Current value: 35
Current value: 30

49

Chapter 4. Singleton resources
In the previous chapter, we saw how to implement a single-resource stateful web service. We did this the
simplest possible way: implementing the serviceand the resource in the same class. In this chapter,
although we will continue to have a single resource, we will learn more about the preferred way of
implementing web services in GT4: using a separate class for the service and the resource. To do this, we
will learn more aboutresource homes.

Splitting up the implementation

The resource, the home, and the service
In this chapter, we will split our implementation into three files. We will see that, for the most part, we
will simply take code from the previous chapter and divide it among the three files.

• The resource:
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/impl/MathResource.java

• The resource home:
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/impl/MathResourceHome.java

• The service itself:
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/impl/MathService.java

Before looking at the actual Java code, let’s make sure we understand how these three implementation
files are related.

Figure 4-1. Relationships between the Service, the Resource Home, and the Resource

50

Chapter 4. Singleton resources

• Theserviceis thestatelessfrontend (the client only interacts with this class, even if there are more
classes lurking around in the background). Remember from section that, since we’re following a
’resource approach’ to statefulness, the web service willalwaysbe stateless. However, we can give the
impression of being stateful by retrieving astateful resourcewhenever we want to access state
information.

• Theresourceis thestatefulclass were we keep all our information.

• Theresource homeis in charge ofmanagingthe resources. For example, the (stateless) service will
use the resource home to retrieve the (stateful) resource. In this chapter, the resource home will be
very simple since it will only deal with a single (orsingleton) resource. In the next chapter, we will see
how to set up a resource home that can manage several resources.

ServiceResourceHome: You might be wondering how this related to the example we saw in the
previous chapter. Even though we did not implement a resource home, there was a resource home
lurking around in the background. Remember the following line from the JNDI config file?

<resource name="home" type="org.globus.wsrf.impl.ServiceResourceHome">

We used a Globus-supplied resource home called ServiceResourceHome . As the following figure
shows, the ServiceResourceHome is a special type of resource home that always returns the service
object when asked for a resource. This allows us to implement our resource and service in the same
class.

For simplicity, we will use ServiceResourceHome in other examples in the tutorial, as it will spare us
a lot of code. However, remember that the preferred way of implementing services is by splitting up
the implementation, as we will do in this chapter. When you start writing your own services, you
should only use ServiceResourceHome for very simple services.

The WSDL file
In this chapter, we are only changing theimplementationof our service. The interface is still the same, so
there’s no need to modify the WSDL file. We can reuse the one from the previous chapter.

51

Chapter 4. Singleton resources

Note: The WSDL file is $EXAMPLES_DIR/schema/examples/MathService_instance/Math.wsdl

The QNames interface
Once again, the first bit of code we are going to write is the namespaces interface. Again, since we are
reusing the WSDL file from the previous chapter, there’s no big changes to theMathQNames interface,
except for the fact that we are now placing our Java classes in a new package.

package org.globus.examples.services.core.singleton.impl ;

import javax.xml.namespace.QName;

public interface MathQNames {
public static final String NS = "http://www.globus.org/namespaces/examples/core/MathService_instance";

public static final QName RP_VALUE = new QName(NS, "Value");

public static final QName RP_LASTOP = new QName(NS, "LastOp");

public static final QName RESOURCE_PROPERTIES = new QName(NS,
"MathResourceProperties");
}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/impl/MathQNames.java .

In the following chapters, we won’t see the complete code of each newMathQNames interface. As you
see, it is pretty straightforward to write it from the WSDL file. From now on, we will simply point you to
the location of the file in the examples bundle.

The resource resource
The first big class we will see in the resource implementation. You will be (pleasantly) surprised to see
that it is practically identical to theMathService class from the previous chapter. The only thing
missing is theadd , subtract , andgetValueRP methods, which we will now place in the service
implementation.

Also, notice how all the RP initialization code is no longer in the constructor, but in aninitialize

method.

package org.globus.examples.services.core.singleton.impl;

import org.globus.wsrf.Resource;
import org.globus.wsrf.ResourceProperties;
import org.globus.wsrf.ResourceProperty;

52

Chapter 4. Singleton resources

import org.globus.wsrf.ResourcePropertySet;
import org.globus.wsrf.impl.SimpleResourcePropertySet;
import org.globus.wsrf.impl.ReflectionResourceProperty;

public class MathResource implements Resource, ResourceProperties {

/* Resource Property set */
private ResourcePropertySet propSet;

/* Resource properties */
private int value;

private String lastOp;

/* Initializes RPs */
public void initialize() throws Exception {
this.propSet = new SimpleResourcePropertySet(
MathQNames.RESOURCE_PROPERTIES);

try {
ResourceProperty valueRP = new ReflectionResourceProperty(
MathQNames.RP_VALUE, "Value", this);
this.propSet.add(valueRP);
setValue(0);

ResourceProperty lastOpRP = new ReflectionResourceProperty(
MathQNames.RP_LASTOP, "LastOp", this);
this.propSet.add(lastOpRP);
setLastOp("NONE");
} catch (Exception e) {
throw new RuntimeException(e.getMessage());
}
}

/* Get/Setters for the RPs */
public int getValue() {
return value;
}

public void setValue(int value) {
this.value = value;
}

public String getLastOp() {
return lastOp;
}

public void setLastOp(String lastOp) {
this.lastOp = lastOp;
}

/* Required by interface ResourceProperties */
public ResourcePropertySet getResourcePropertySet() {

53

Chapter 4. Singleton resources

return this.propSet;
}
}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/impl/MathResource.java .

As you can see, this class contains all the code required to implement the resource and its resource
properties (Value andLastOp). Remember that this is thestatefulcomponent.

The service implementation
This class, on the other hand, will contain theadd , subtract , andgetValueRP methods the client will
interact with. However, we can’t reuse the code from the previous chapter. Remember, for example, how
we implemented theadd operation:

public AddResponse add(int a) throws RemoteException {
value += a;
lastOp = "ADDITION";

return new AddResponse();
}

Now that we’re splitting up the implementation, the stateful information is no longer in the service class
itself, so we don’t have avalue or lastOp variable we can interact with. Any operation that requires
working with stateful information will have to work with aMathResource object. So, ouradd method
will look something like this:

public AddResponse add(int a) throws RemoteException {
MathResource mathResource = getResource(); ➊

mathResource.setValue(mathResource.getValue() + a); ➋

mathResource.setLastOp("ADDITION"); ➌

return new AddResponse();
}

➊ First of all, we have to get a reference to the resource. ThegetResource method is described
shortly.

➋ Now that we have a hold of the resource, we can work with its stateful information. In this step, we
simply retrieve the value (using thegetValue method in theMathResource object), add
parametera, and set the new value withsetValue .

➌ Finally, we set the last operation to be "ADDITION".

ThegetResource method used above is a private method that retrieves this service’s singleton resource.
As you can see, this method simply usesResourceContext (a Globus class) to obtain the resource.

54

Chapter 4. Singleton resources

private MathResource getResource() throws RemoteException {
Object resource = null;
try {
resource = ResourceContext.getResourceContext().getResource();
} catch (Exception e) {
throw new RemoteException("", e);
}

MathResource mathResource = (MathResource) resource;
return mathResource;
}

The complete source code for the service implementation is:

package org.globus.examples.services.core.singleton.impl;

import java.rmi.RemoteException;

import org.globus.examples.services.core.singleton.impl.MathResource;
import org.globus.wsrf.ResourceContext;
import org.globus.examples.stubs.MathService_instance.AddResponse;
import org.globus.examples.stubs.MathService_instance.SubtractResponse;
import org.globus.examples.stubs.MathService_instance.GetValueRP;

public class MathService {

/*
* Private method that gets a reference to the resource specified in the
* endpoint reference.
*/

private MathResource getResource() throws RemoteException {
Object resource = null;
try {
resource = ResourceContext.getResourceContext().getResource();
} catch (Exception e) {
throw new RemoteException("Unable to access resource.", e);
}

MathResource mathResource = (MathResource) resource;
return mathResource;
}

/* Implementation of add, subtract, and getValue operations */

public AddResponse add(int a) throws RemoteException {
MathResource mathResource = getResource();
mathResource.setValue(mathResource.getValue() + a);
mathResource.setLastOp("ADDITION");

return new AddResponse();
}

public SubtractResponse subtract(int a) throws RemoteException {

55

Chapter 4. Singleton resources

MathResource mathResource = getResource();
mathResource.setValue(mathResource.getValue() - a);
mathResource.setLastOp("SUBTRACTION");

return new SubtractResponse();
}

public int getValueRP(GetValueRP params) throws RemoteException {
MathResource mathResource = getResource();

return mathResource.getValue();
}

}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/impl/MathService.java .

The resource home
The implementation of the resource home is extremely simple since we’re extending from an existing
class included in the toolkit,SingletonResourceHome . That base class provides practically all the
functionality our resource home needs to manage a single resource. The only thing we have to do is
implement thefindSingleton method, which is called internally by theResourceContext class
when we first request the resource. ThefindSingleton method creates a newMathResource object,
initializes it, and returns it. The base classSingletonResourceHome keeps a copy of that resource,
which is returned each time the resource is requested.

The complete source code would be:

package org.globus.examples.services.core.singleton.impl;

import org.globus.wsrf.Resource;
import org.globus.wsrf.impl.SingletonResourceHome;

public class MathResourceHome extends SingletonResourceHome {

public Resource findSingleton() {
try {
// Create a resource and initialize it.
MathResource mathResource = new MathResource();
mathResource.initialize();
return mathResource;
} catch (Exception e) {
e.printStackTrace();
return null;
}

56

Chapter 4. Singleton resources

}
}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/impl/MathResourceHome.java .

The usefulness of having a resource home might not be apparent in this simple case (when we have a
singleton resource). However, a resource home adds a lot of versatility to our implementation, specially
when we have to deal with multiple resources. For example, a resource home can be used to perform
special actions when a resource is created and later destroyed (adding an entry in a database, writing out
a log message, etc.). In the next chapter, we will see how we modify the implementation of the resource
home to accomodate multiple resources.

Build, deploy, and try it out... with the same client
After splitting up the implementation, we are now ready to build and deploy our new service. First off,
the WSDD file has only two small changes: a new service name, and a new service class name. Since we
are reusing the WSDL file from the previous chapter, we don’t have to change anything else in the
WSDD file.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<service name=" examples/core/singleton/MathService " provider="Handler" use="literal" style="document">
<parameter name="className" value=" org.globus.examples.services.core.singleton.impl.MathService "/>
<wsdlFile>share/schema/examples/MathService_instance/Math_service.wsdl</wsdlFile>
<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="providers" value="GetRPProvider"/>
<parameter name="loadOnStartup" value="true"/>

</service>

</deployment>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/deploy-server.wsdd .

Now, let’s take a closer look at the JNDI deployment file. In the previous chapter we asked you to please
take a leap of faith and accept that we needed this file "because we need it". Now, we can explain what
this file does. It is responsible for specifying what resource home our service has to use to get a hold of

57

Chapter 4. Singleton resources

resources. In this file we will also specify parameters related to how the resource home manages those
resources. However, since at this point we are only managing a single resource, our JNDI deployment
file will be pretty simple.

<?xml version="1.0" encoding="UTF-8"?>
<jndiConfig xmlns="http://wsrf.globus.org/jndi/config">

<service name=" examples/core/singleton/MathService ">
<resource name="home" type=" org.globus.examples.services.core.singleton.impl.MathResourceHome ">
<resourceParams>

<parameter>
<name>factory</name>
<value>org.globus.wsrf.jndi.BeanFactory</value>
</parameter>

</resourceParams>

</resource>
</service>

</jndiConfig>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/singleton/deploy-jndi-config.xml .

In a nutshell, the root elementjndiConfig of the file can contain severalservice elements (one for
each service we’re configuring... since we’re only configuring one service, we’ll have a singleservice

element). This element has aname attribute whose valuemust matchthe service name specified in the
WSDD file (this is basically the ’glue’ between the WSDD file and the JNDI file).

Theservice element contains aresource element which we’ll use to specify the resource home for
our service. Notice that we do so using thetype attribute. Theresource element can contain several
resource parameters. In this example we have a single parameter, which will be common to all the
services we deploy.

Note: If you look back on the JNDI deployment file from the previous chapter, you’ll see that it is the
same as the one shown above, except that the resource home we specify is ServiceResourceHome .

Now, we can build the service:

./globus-build-service.sh singleton

And deploy it:

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_core_singleton.gar

Note: You will need to restart the Globus standalone container for the deployment to take effect.

58

Chapter 4. Singleton resources

Finally, we’re going to make sure the service works. Another nice perk of reusing the WSDL file is that
we can also reuse the client described in the previous chapter. Remember that we’ve only changed the
implementation of the service; as long as we don’t change the WSDL interface, there’s no need to write a
new client.

So, remember you have to run the client like so:

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.MathService_instance.Client \
http://127.0.0.1:8080/wsrf/services/examples/core/singleton/MathService

If all goes well, you should see the following:

Current value: 15
Current value: 10

If you run the client another time, since our service is tied to a singleton resource, you should see the
value of increase with each run of the client.

Current value: 25
Current value: 20

Current value: 35
Current value: 30

59

Chapter 5. Multiple resources
In the previous two chapters we implemented a simple stateful web service that used a single resource to
keep stateful information. First, we used theServiceResourceHome so we could implement the
service and the resource in the same class, and then we split up the implementation into a service class, a
resource class, and a resource home class.

In this chapter we will learn how to write a service that, using a design pattern known as the
factory/instancepattern, will be able to managemultipleresources.

The WS-Resource factory pattern
The factory/instance patterns is a well-known design pattern in software design, and specially in
object-oriented languages. In this pattern, we are not allowed to create instances of objects directly, but
must do so through afactorythat will provide acreate operation.

When dealing with multiple resources, the WSRF specs recommend that we follow this pattern, having
one service in charge of creating the resources ("the factory service") and another one to actually access
the information contained in the resources ("the instance service").

Figure 5-1. The WS-Resource factory pattern

Figure 5-1summarizes the relationship between these two services, the resources, and the client.
Whenever the client wants to create a new resource, it will contact the factory service, who will take care
of creating and initializing a new resource. It is important to see that, in this case, the resource is also
assigneda unique key. Since we are no longer dealing with a single resource, we need some way of
telling each resource apart. The factory service will return anendpoint referenceto a WS-Resource
composed of the instance service and the recently created resource.

60

Chapter 5. Multiple resources

Note: Remember from that endpoint references are a part of the WS-Addressing specification.
Endpoint references (or EPR’s for short) allow us to uniquely address a single WS-Resource. Also,
remember that a WS-Resource is the pairing of a service with a particular resource. In our first
example client, our EPR included only the service’s URI (because we had a single resource). In this
chapter, our EPR’s will have both the service’s URI and the resource’s key.

Using the EPR returned by the factory, the client can now invoke the service’s operations through the
instance service. This service, in turn, will perform the operations using the recently created resource.

Implementing the WS-Resource factory pattern in GT4
Implementing this design pattern in GT4 is actually not too complicated. In fact, it is very similar to the
example seen in the previous chapter, with two main differences, highlighted inFigure 5-2(compare
with)

Figure 5-2. Relationships between the Factory Service, the Instance Service, the Resource Home,
and the Resource

• Factory service and instance service. To handle multiple resources, we will now need to deploy two
services: a factory service and an instance service. The factory service provides acreateResource

operation that returns an EPR to the new WS-Resource. The instance service provides the operations
we have been working with in the previous chapters:add , subtract , andgetValueRP .

• Non-trivial resource home. The resource home no longer deals with a single resource. In this case, it
must keep track of several resources at the same time. However, notice how we have a single resource

61

Chapter 5. Multiple resources

home, shared by the factory and instance services. The factory service will use the resource home to
createnew resources, while the instance service will use it tofind a resource with a given key.

So, for this example, we will have four Java classes (plus theMathQNames interface)

• The factory service:
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathFactoryService.java

• The instance service:
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathService.java

• The resource:
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathResource.java

• The resource home:
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathResourceHome.java

Before seeing the actual code, a good way of seeing what role each class plays is to see how they
interact. For now, don’t worry about all the deployment details. Just imagine that we actually have our
two services (factory and instance) up and ready to accept invocations from a client class, and that the
service class has access to the resource home and that the resource home, in turn, has access to a bunch
of resource objects. Let’s start with the creation of a new resource, shown inFigure 5-3.

Figure 5-3. Sequence diagram for resource creation

1. Our client only needs to know the URI of the factory service (MathFactoryService). With it, it
can invoke thecreateResource operation. This will return anendpoint referencecontaining the
URI of the instance service, along with the key of the recently created resource.

2. So, the factory service has to create a new resource. This necessarily has to be done through the
resource home, which is in charge of managing all the resources. However, we have to locate our

62

Chapter 5. Multiple resources

resource home first. Fortunately, this is quite easy since we can delegate this task on a
Globus-supplied class calledResourceContext . In the previous chapter, we used this class to
retrieve the service’s singleton resource. It can also be used to obtain a reference to the service’s
resource home.

3. Now that we have the resource home, we can ask it to create the new resource. The creation method
returns an object of typeResourceKey . This is the resource identifier which we need to create the
endpoint reference we’ll be returning to the client.

4. The resource home will take care of actually creating a newMathResource instance.

5. Next, the resource home will add the newMathResource instance to its internal list of resources.
This list will allow us to access any resource if we know that resource’s identifier.

Once thecreateResource call has finished, the client will have the WS-Resource’s endpoint reference.
In all future calls, this endpoint reference will be passed alongtransparentlyin all our invocations. In
other words, when we calladd or subtract , the service class will know what resource we’re referring
to. So, let’s take a close look at what happens when we invoke theadd operation, as shown inFigure 5-4.

Figure 5-4. Sequence diagram for WS-Resource invocation

6. The client invokes theadd operation in the instance service (MathService).

7. However, theadd operation is stateless. It needs to retrieve a resource to actually work. The
resource identifier is in the endpoint reference that is included in the invocation. Fortunately, the

63

Chapter 5. Multiple resources

ResourceContext helper class once again shields us from all the potential nastiness. It will be in
charge of reading the EPR and finding the resource it refers to.

8. However, it’s interesting to note that, internally,ResourceContextuses theResourceHometo find the
resource.

9. Once we have the resource, the instance service can access all its state information, such as the
"Value" and the "LastOp" resource properties. First of all, we will access the "Value" resource
property. As in the example seen in the previous chapter, our resource (MathResource) will allow
us to modify the RP’s using get/set methods (in this case, with a simplegetValue() method).

10.Once we’ve modified the value, we have to make sure we commit the change in the resource (in our
case, usingsetValue()). Otherwise, that bit of state information won’t be remembered.

11.Finally, we use thesetLastOp() method in the resource to modify theLastOp resource property
to equal"ADDITION" .

Don’t worry if you’re a bit confused. When we actually start coding all this, it’ll probably seem clearer
(even so, you might want to review these diagrams once we’ve coded the full example).

The factory service
We begin by implementing the factory service. The WSDL file for the factory service is very simple, as
we only have a single operationcreateResource with no parameters and that returns an endpoint
reference.

Note: you should be able to read the file and recognize that there is, indeed, a single operation
createResource with no parameters and returning an endpoint reference. If not, this might be a
good time to review .

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="FactoryService"

targetNamespace="http://www.globus.org/namespaces/examples/core/FactoryService" ➊

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.globus.org/namespaces/examples/core/FactoryService"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing" ➋

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--==

T Y P E S

==-->
<types>
<xsd:schema targetNamespace="http://www.globus.org/namespaces/examples/core/FactoryService"

xmlns:tns="http://www.globus.org/namespaces/examples/core/FactoryService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

64

Chapter 5. Multiple resources

➌

<xsd:import
namespace="http://schemas.xmlsoap.org/ws/2004/03/addressing"
schemaLocation="../../ws/addressing/WS-Addressing.xsd" />

<!-- REQUESTS AND RESPONSES -->

<xsd:element name="createResource">
<xsd:complexType/>
</xsd:element>
<xsd:element name="createResourceResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="wsa:EndpointReference"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

<!--==

M E S S A G E S

==-->
<message name="CreateResourceRequest">
<part name="request" element="tns:createResource"/>
</message>
<message name="CreateResourceResponse">
<part name="response" element="tns:createResourceResponse"/>
</message>

<!--==

P O R T T Y P E

==-->
➍

<portType name="FactoryPortType">

<operation name="createResource">
<input message="tns:CreateResourceRequest"/>
<output message="tns:CreateResourceResponse"/>
</operation>

</portType>

65

Chapter 5. Multiple resources

</definitions>

Note: This file is $EXAMPLES_DIR/schema/examples/FactoryService/Factory.wsdl .

➊ The factory service’s target namespace is
http://www.globus.org/namespaces/examples/core/FactoryService .

➋ The service’screateResource operation returns an endpoint reference, a structure that is part of
the WS-Addressing specification. We need to declare the WS-Addressing namespace.

➌ We also need to import the WS-Addressing Schema file, which contains the definition of the
endpoint reference structure (wsa:EndpointReference)

➍ Our portType,FactoryPortType , has a single operationcreateResource .

Since we have added a new interface, we need to map the new WSDL namespaces to Java packages (as
described in)

http\://www.globus.org/namespaces/examples/core/FactoryService=
org.globus.examples.stubs.Factory

http\://www.globus.org/namespaces/examples/core/FactoryService/bindings=
org.globus.examples.stubs.Factory.bindings

http\://www.globus.org/namespaces/examples/core/FactoryService/service=
org.globus.examples.stubs.Factory.service

Note: These three lines must be present in $EXAMPLES_DIR/namespace2package.properties .

Now, we have to write the Java implementation of the factory service. This will be a single Java class,
with a singlecreateResource method:

public class MathFactoryService {

/* Implementation of createResource Operation */
public CreateResourceResponse createResource(CreateResource request)
throws RemoteException {

}
}

Note: This is part of file
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathFactoryService.java .

Inside this method, we will perform three steps:

66

Chapter 5. Multiple resources

1. Retrieve the resource home.

2. Use the resource home to create a new resource.

3. Create the endpoint reference we will return to the client. This EPR must contain the instance
service’s URI and the new resource’s key.

In the following snippet of code we perform steps 1 and 2:

ResourceContext ctx = null;
MathResourceHome home = null;
ResourceKey key = null;
try {
ctx = ResourceContext.getResourceContext();
home = (MathResourceHome) ctx.getResourceHome();
key = home.create();
} catch (Exception e) {
throw new RemoteException("", e);
}

If we succeed in retrieving the resource home, then thekey variable will contain the resource’s identifier,
which we’ll use to construct the endpoint reference:

EndpointReferenceType epr = null;

try {
URL baseURL = ServiceHost.getBaseURL();
String instanceService = (String) MessageContext
.getCurrentContext().getService().getOption("instance");
String instanceURI = baseURL.toString() + instanceService;
// The endpoint reference includes the instance’s URI and the resource key
epr = AddressingUtils.createEndpointReference(instanceURI, key);
} catch (Exception e) {
throw new RemoteException("", e);
}

Notice how we have to create a new endpoint reference (of typeEndpointReferenceType) using the
instance server’s URI (instanceURI) and the resource’s identifier (key). Finally, the only thing left to
do is to ’box’ the EPR inside aCreateResourceResponse object and return it.

CreateResourceResponse response = new CreateResourceResponse();
response.setEndpointReference(epr);
return response;

Note: Remember from the information box in that whenever one of our operations returns a
complex type (such as an endpoint reference), it is ’boxed’ inside a stub class.

Note: Now is a good moment to review Figure 5-3.

67

Chapter 5. Multiple resources

The instance service
Implementing the instance service is going to be very simple, since we can reuse both the WSDL file and
practically all the Java implementation from the previous chapter (with only minor changes to the
resource class).

Note: The implementation of the instance service is
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathService.java .

But let’s not leave it at that: this is a good moment to ask ourselves: why exactly can we reuse both the
WSDL file and the Java implementation of the service and the resource? Well, take into account that
what we are doing in this chapter, in a sense, is ageneralizationof the singleton service. In the previous
chapter, we were interested in having a service with operationsadd , subtract , andgetValueRP that
interacted with a single (orsingleton) resource. Interacting withmultipleresources doesn’t
fundamentally affect the implementation of the service that will be accessing the resources; it only
affects those parts of our application that are in charge ofmanagingthe resource. We’ve added a new
factory service and, as we shall see right now, we have to modify the resource home. But the instance
service is unaffected because it doesn’t really care whether it has access to one or a million resources.

Even so, this doesn’t mean that there isn’t more stuff happening in the ’background’ in the instance
service. For example, in theadd operation:

public AddResponse add(int a) throws RemoteException {
MathResource mathResource = getResource() ;
mathResource.setValue(mathResource.getValue() + a);
mathResource.setLastOp("ADDITION");

return new AddResponse();
}

We are still calling thegetResource , which is still implemented as in the previous chapter:

private MathResource getResource() throws RemoteException {
Object resource = null;
try {
resource = ResourceContext.getResourceContext().getResource();

} catch (Exception e) {
throw new RemoteException("", e);
}

MathResource mathResource = (MathResource) resource;
return mathResource;
}

However, the Globus-suppliedResourceContext will do more than simply look up a singleton
resource. It will look inside the endpoint reference that is used to invokeadd , extract the resource key,
and lookup the corresponding resource through the resource home. One of the nice things about using
endpoint references, instead of plain URIs, is that the resource key is passed to the servicetransparently,

68

Chapter 5. Multiple resources

so our methods can be declared simply asadd(int a) , instead of something likeadd(int a, int

resourceID) .

Note: Now is a good moment to review Figure 5-4.

The resource
The resource implementation requires only minimal changes. Remember that each resource will now
have a unique key identifying it. We will need to reflect this in our resource by implementing the
ResourceIdentifierinterface:

public class MathResource implements Resource, ResourceIdentifier ,
ResourceProperties {

}

This interface requires us to implement agetIDmethod returning the resource’s identifier. Notice that the
identifier is of typeObject . In other words, our unique identifier can be of any type we wish, although
we will generally choose a key of typeInteger . Later on we will see that we will need to specify the
type of the resource identifier in the JNDI deployment file.

/* Resource key. This uniquely identifies this resource. */
private Object key;

/* Required by interface ResourceIdentifier */
public Object getID() {
return this.key;
}

The initialization of the resource identifier takes place in theinitialize method of the resource class.
The simplest key we can create is the resource’s hashCode (in Java, every object has an identifier which
can be retrieved by calling thehashCode method). Notice how theinitialize method now returns the
resource identifier.

/* Initializes RPs and returns a unique identifier for this resource */
public Object initialize() throws Exception {
this.key = new Integer(hashCode());

// Initialize the resource properties

return key;
}

Note: This is part of file
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathResource.java .

69

Chapter 5. Multiple resources

Warning
An object’s hashCode isn’t guaranteed to be unique. For the simple examples
included in the tutorial, this should not be a problem. However, using other unique
identifiers is prefered for more complex services, specially if our service will work
with persistent resources. For example, you can use the UUIDGen class included
with Apache Axis.

The resource home
The resource home has to be modified, but still remains relatively simple because, as in the previous
chapter, our resource class extends from a Globus-supplied class. In the previous chapter, we extended
from SingletonResourceHome , a Globus-supplied class that provided most of the functionality of a
resource home for a single resource. Now we will extend fromResourceHomeImpl , another
Globus-supplied class for resource homes that manage several resources.

The only method we have to implement is thecreate method, where we will create a new resource and
return its identifier. All the other methods we would expect in a resource home (such as afind method
to retrieve a resource given a certain key) are already implemented for us inResourceHomeImpl .

package org.globus.examples.services.core.factory.impl;

import org.globus.wsrf.ResourceKey;
import org.globus.wsrf.impl.ResourceHomeImpl;
import org.globus.wsrf.impl.SimpleResourceKey;

public class MathResourceHome extends ResourceHomeImpl {

public ResourceKey create() throws Exception {
// Create a resource and initialize it
MathResource mathResource = (MathResource) createNewInstance(); ➊

mathResource.initialize(); ➋

// Get key
ResourceKey key = new SimpleResourceKey(keyTypeName, mathResource
.getID()); ➌

// Add the resource to the list of resources in this home
add(key, mathResource); ➍

return key; ➎

}

}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/factory/impl/MathResourceHome.java .

70

Chapter 5. Multiple resources

➊ We create a new instance of the resource. Notice that thismustbe done using the protected
createNewInstance method,not by using thenew operator. Also, sincecreateNewInstance

returns aResource object, we must cast it to our specific resource type:MathResourceType

➋ We initialize the resource.

➌ We obtain the resource identifier using thegetID method implemented earlier, and use it to create a
SimpleResourceKey object. When creating theSimpleResourceKey , keyTypeName is a
protected attribute ofResourceHomeImpl containing the key’s type.

➍ We add the recently created resource and its key to the resource home’s internal list of resources.
add is a protected method ofResourceHomeImpl .

➎ Finally, we return the resource’s key.

Note: Now is another good moment to review Figure 5-3.

There’s more to the resource home that meets the eye...: The resource home shown above,
along with the one seen in the previous chapter, covers the simplest possible case of resources:
in-memory resources, or resources which reside in main memory while the container is running.
However, resource homes can also be used to manage persistent resources, or resources that are
stored in disk so they can survive container restarts. To do this, our resource must implement the
PersistenceCallback interface. More details are available in the official Globus documentation.

Another thing we can do to a resource home is to override its add and remove methods, to control
exactly what happens when a resource is added or removed from the resource home. For example,
we might want to write to a log, or register our resource with an index service.

Build and deploy

The deployment descriptor
The WSDD file must now reflect that we have two services: the factory service and the instance service.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

➊

<!-- Instance service -->
<service name="examples/core/factory/MathService" provider="Handler" use="literal" style="document">

<parameter name="className" value="org.globus.examples.services.core.factory.impl.MathService"/>
<wsdlFile>share/schema/examples/MathService_instance/Math_service.wsdl</wsdlFile>

71

Chapter 5. Multiple resources

<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="providers" value="GetRPProvider"/>

</service>

➋

<!-- Factory service -->
<service name="examples/core/factory/MathFactoryService" provider="Handler" use="literal" style="document">

<parameter name="className" value="org.globus.examples.services.core.factory.impl.MathFactoryService"/>
<wsdlFile>share/schema/examples/FactoryService/Factory_service.wsdl</wsdlFile>
<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="instance" value="examples/core/factory/MathService"/> ➌

</service>

</deployment>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/factory/deploy-server.wsdd .

➊ The parameters for the instance service are the same as the ones used in the previous chapter.

➋ The deployment parameters of the factory are pretty straightforward. We simply specify the factory
service’s class (MathFactoryService) and WSDL file.

➌ The only new parameter is theinstance parameter, which must be set to thename of the instance
service (as written in its<service> tag).

The JNDI deployment file
In the previous chapter we saw that this file specifies what resource home must be used by each service.
When managing just one resource, this file was very simple. Now, however, we will need to specify more
parameters to manage multiple resources. Furthermore, our JNDI deployment file must include two
<service> tags (one for the instance service, and one for the factory service).

<?xml version="1.0" encoding="UTF-8"?>
<jndiConfig xmlns="http://wsrf.globus.org/jndi/config">

<!-- Instance service -->
<service name=" examples/core/factory/MathService ">
<resource name="home" type=" org.globus.examples.services.core.factory.impl.MathResourceHome "> ➊

<resourceParams>

72

Chapter 5. Multiple resources

➋

<parameter>
<name>resourceClass</name>
<value>org.globus.examples.services.core.factory.impl.MathResource</value>
</parameter>

➌

<parameter>
<name>resourceKeyType</name>
<value>java.lang.Integer</value>
</parameter>

➍

<parameter>
<name>resourceKeyName</name>
<value>{http://www.globus.org/namespaces/examples/core/MathService_instance}MathResourceKey</value>
</parameter>

➎

<parameter>
<name>factory</name>
<value>org.globus.wsrf.jndi.BeanFactory</value>
</parameter>

</resourceParams>
</resource>
</service>

<!-- Factory service -->
<service name=" examples/core/factory/MathFactoryService ">
➏

<resourceLink name="home" target="java:comp/env/services/ examples/core/factory/MathService /home"/>
</service>

</jndiConfig>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/factory/deploy-jndi-config.xml .

➊ We use the<resource> tag to specify what resource home will be used by the instance service.

➋ TheresourceClass parameter specifies the type of our resources.

➌ The value we put in theresourceKeyType parameter must match the type used in the
implementation when creating the key. Remember that we used the resource’s hash code, which is of
type java.lang.Integer . Thus, we have to include that type in the JNDI configuration.

➍ TheresourceKeyName parameter must be a qualified name. Notice that we’re using a name that is
not mentioned in our WSDL file. This is Ok and, in fact, we could use any QName we wanted.
However, for clarity we should choose a QName that is in the same namespace as the service.

73

Chapter 5. Multiple resources

➎ Remember from the previous chapter that this is a common parameter which we will find in all our
JNDI deployment files. However, it is important to note that, even though this parameter is called
factory , it has nothing to do with the factory/instance pattern we are seeing in this chapter. It refers
to a completely different factory within the Globus code.

➏ The factory service usesthe same resource homeas the instance service. So, we do not need to
repeat all the parameters of the instance service. We simply have to include a<resourceLink> tag
linking to the previously specified resource home. Notice that we must do so using a special path.

Build and deploy
We are finally ready to build and deploy our service:

./globus-build-service.sh factory

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_core_factory.gar

A simple client
We will try out our service first with a simple client that creates a new resource and performs a couple
operations on it. This client expects only one argument from the command line, the factory service’s URI

package org.globus.examples.clients.FactoryService_Math;

import org.apache.axis.message.addressing.Address;
import org.apache.axis.message.addressing.EndpointReferenceType;

import org.globus.examples.stubs.MathService_instance.GetValueRP;
import org.globus.examples.stubs.MathService_instance.MathPortType;
import org.globus.examples.stubs.MathService_instance.service.MathServiceAddressingLocator;
import org.globus.examples.stubs.Factory.service.FactoryServiceAddressingLocator;
import org.globus.examples.stubs.Factory.FactoryPortType;
import org.globus.examples.stubs.Factory.CreateResource;
import org.globus.examples.stubs.Factory.CreateResourceResponse;

/* This client creates a new MathService instance through a FactoryService. This client
* expects one parameter: the factory URI.
*/

public class Client {

public static void main(String[] args) {
FactoryServiceAddressingLocator factoryLocator = new FactoryServiceAddressingLocator();
MathServiceAddressingLocator instanceLocator = new MathServiceAddressingLocator();

try {
String factoryURI = args[0];

74

Chapter 5. Multiple resources

EndpointReferenceType factoryEPR, instanceEPR;
FactoryPortType mathFactory;
MathPortType math;

➊

factoryEPR = new EndpointReferenceType();
factoryEPR.setAddress(new Address(factoryURI));
mathFactory = factoryLocator.getFactoryPortTypePort(factoryEPR);

➋

CreateResourceResponse createResponse = mathFactory
.createResource(new CreateResource());
instanceEPR = createResponse.getEndpointReference();

➌

math = instanceLocator.getMathPortTypePort(instanceEPR);

System.out.println("Created instance.");

➍

// Perform an addition
math.add(10);

// Perform another addition
math.add(5);

// Access value
System.out
.println("Current value:" + math.getValueRP(new GetValueRP()));

// Perform a subtraction
math.subtract(5);

// Access value
System.out
.println("Current value:" + math.getValueRP(new GetValueRP()));
} catch (Exception e) {
e.printStackTrace();
}
}

}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/clients/FactoryService_Math/Client.java .

➊ Here we obtain a reference to the factory’s portType. Notice how we only need the factory’s URI to
do this.

75

Chapter 5. Multiple resources

➋ Once we have the factory’s portType, we use it to invoke thecreateResource operation. This
operation returns an endpoint reference, ’boxed’ inside aCreateResourceResponse object. This
endpoint reference includes both the instance service’s URIand the new resource’s identifier. In the
next client we will take a peek inside the endpoint reference.

➌ Using the instance EPR, we obtain a reference to theMathPortType in the instance service.

➍ We now use theMathPortType to invokeadd , subtract , andgetValueRP .

Compile and run the client:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/FactoryService_Math/Client.java

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.FactoryService_Math.Client \
http://127.0.0.1:8080/wsrf/services/examples/core/factory/MathFactoryService

If all goes well, you should see the following:

Created instance.
Current value:15
Current value:10

If you run it again, you will get the exact same result. This is because we are creating a new resource
every time we run the client.

Created instance.
Current value:15
Current value:10

A slightly less simple client
We will now split the previous client into two client applications: a client in charge of creating the
resource, and a client in charge of invoking theadd operation in the instance service. The first client
writes the endpoint reference of the new resource to a file, which will later be read by the second client.

The creating client
The first client expects at least one parameter from the command line: the factory service’s URI. A
second parameter, with the name of the file where the EPR must be written to, can also be specified. If it
isn’t, then it will be saved to a file calledepr.txt .

package org.globus.examples.clients.FactoryService_Math;

import java.io.BufferedWriter;

76

Chapter 5. Multiple resources

import java.io.FileWriter;

import org.apache.axis.message.addressing.Address;
import org.apache.axis.message.addressing.EndpointReferenceType;
import org.globus.examples.services.core.factory.impl.MathQNames;

import org.globus.examples.stubs.MathService_instance.MathPortType;
import org.globus.examples.stubs.MathService_instance.service.MathServiceAddressingLocator;
import org.globus.examples.stubs.Factory.service.FactoryServiceAddressingLocator;
import org.globus.examples.stubs.Factory.FactoryPortType;
import org.globus.examples.stubs.Factory.CreateResource;
import org.globus.examples.stubs.Factory.CreateResourceResponse;
import org.globus.wsrf.encoding.ObjectSerializer;

public class ClientCreate {

static final String EPR_FILENAME = "epr.txt";

public static void main(String[] args) {
FactoryServiceAddressingLocator factoryLocator = new FactoryServiceAddressingLocator();
MathServiceAddressingLocator instanceLocator = new MathServiceAddressingLocator();

try {
String factoryURI = args[0];
String eprFilename;

if(args.length==2)
eprFilename=args[1];
else
eprFilename=EPR_FILENAME;

EndpointReferenceType factoryEPR, instanceEPR;
FactoryPortType mathFactory;
MathPortType math;

➊

factoryEPR = new EndpointReferenceType();
factoryEPR.setAddress(new Address(factoryURI));
mathFactory = factoryLocator.getFactoryPortTypePort(factoryEPR);

CreateResourceResponse createResponse = mathFactory
.createResource(new CreateResource());
instanceEPR = createResponse.getEndpointReference();

➋

String endpointString = ObjectSerializer.toString(instanceEPR,
MathQNames.RESOURCE_REFERENCE);
FileWriter fileWriter = new FileWriter(eprFilename);
BufferedWriter bfWriter = new BufferedWriter(fileWriter);
bfWriter.write(endpointString);
bfWriter.close();
System.out.println("Endpoint reference written to file "
+ eprFilename);

77

Chapter 5. Multiple resources

} catch (Exception e) {
e.printStackTrace();
}
}

}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/clients/FactoryService_Math/ClientCreate.java .

➊ As in the previous client, here we obtain a reference to the factory’s portType and use it to invoke the
createResource operation, that returns and endpoint reference to the new resource.

➋ This block of code writes the endpoint reference to a file. We use the Globus-supplied class
ObjectSerializer , which creates an XML representation of the EPR. Note that we need to
specify the QName of the root element of the XML file. We can choose any name we want but, for
clarity, it is best to choose a QName inside our service’s namespace. The QName we’re using is
declared in the MathQNames interface:

public static final QName RESOURCE_REFERENCE = new QName(NS,
"MathResourceReference");

Now compile the client:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/FactoryService_Math/ClientCreate.java

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.FactoryService_Math.ClientCreate \
http://127.0.0.1:8080/wsrf/services/examples/core/factory/MathFactoryService

If all goes well, you should see the following:

Endpoint reference written to file epr.txt

Let’s take a look inside theepr.txt file:

<ns1:MathResourceReference xsi:type="ns2:EndpointReferenceType"
xmlns:ns1="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns2="http://schemas.xmlsoap.org/ws/2004/03/addressing">

<ns2:Address xsi:type="ns2:AttributedURI">
http://127.0.0.1:8080/wsrf/services/examples/core/factory/MathService
</ns2:Address>

78

Chapter 5. Multiple resources

<ns2:ReferenceProperties xsi:type="ns2:ReferencePropertiesType">
<ns1:MathResourceKey>24156236</ns1:MathResourceKey>

</ns2:ReferenceProperties>

<ns2:ReferenceParameters xsi:type="ns2:ReferenceParametersType"/>

</ns1:MathResourceReference>

Notice how the endpoint reference does, in fact, include the instance service’s URI and the resource’s
key. Note that you will almost certainly get a different key in your resource.

The adding client
This client expects two arguments from the command line. The first argument is a service’s URI or the
name of a file containing and endpoint reference. The client is implemented to recognize both formats
since, in the next chapters, we will use this client again to interact with singleton services (where we only
need the service’s URI, without a resource key, to address the service). The second argument is the value
we wish to add.

package org.globus.examples.clients.MathService_instance;

import java.io.FileInputStream;

import org.apache.axis.message.addressing.Address;
import org.apache.axis.message.addressing.EndpointReferenceType;

import org.globus.examples.stubs.MathService_instance.GetValueRP;
import org.globus.examples.stubs.MathService_instance.MathPortType;
import org.globus.examples.stubs.MathService_instance.service.MathServiceAddressingLocator;
import org.globus.wsrf.encoding.ObjectDeserializer;
import org.xml.sax.InputSource;

public class ClientAdd {

public static void main(String[] args) {
MathServiceAddressingLocator instanceLocator = new MathServiceAddressingLocator();

try {
int value = Integer.parseInt(args[1]);
EndpointReferenceType instanceEPR;

if (args[0].startsWith("http")) {
➊

// First argument contains a URI
String serviceURI = args[0];
// Create endpoint reference to service
instanceEPR = new EndpointReferenceType();
instanceEPR.setAddress(new Address(serviceURI));
} else {
➋

79

Chapter 5. Multiple resources

// First argument contains an EPR file name
String eprFile = args[0];
// Get endpoint reference of WS-Resource from file
FileInputStream fis = new FileInputStream(eprFile);
instanceEPR = (EndpointReferenceType) ObjectDeserializer
.deserialize(new InputSource(fis),
EndpointReferenceType.class);
fis.close();
}

➌

// Get PortType
MathPortType math = instanceLocator
.getMathPortTypePort(instanceEPR);

// Perform addition
math.add(value);

// Access value
System.out
.println("Current value: " + math.getValueRP(new GetValueRP()));
} catch (Exception e) {
e.printStackTrace();
}
}
}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/clients/MathService_instance/ClientAdd.java .

➊ If the user specifies a URI, then we create the instance’s EPR simply by creating a new
EndpointReferenceType object and setting it’s URI to the one passed as a parameter.

➋ If the user specifies a file, then we create the instance’s EPR by reading the XML file using the
Globus-suppliedObjectDeserializer class.

➌ Finally, we use the instance EPR to obtain a reference to theMathPortType . We use this portType
to invoke theadd operation with the value specified in the second parameter of the client.

Now, compile and run the client:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/MathService_instance/ClientAdd.java

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.MathService_instance.ClientAdd \

80

Chapter 5. Multiple resources

epr.txt \
10

If all goes well, you should see the following:

Current value: 10

If you run the adder client several times using the same EPR file, you will be able to observe how the
value in the resource keeps getting bigger and bigger.

Current value: 20

Current value: 30

81

Chapter 6. Resource Properties
In the previous chapters we have seen how state information in the service is stored inside a resource
and, more specifically, inresource properties. However, our interaction with resource properties was
very limited: our service could modify their values, and we could only access one particular resource
property (Value) using theGetValueRP operation. In this chapter we will see all the some of the tools
that will allow us to work with resource properties.

A closer look at resource properties
Before we begin, we need to take a closer look at how resource properties are represented and handled
internally in our service. First of all, let’s recall how our resource properties are declared in all the
examples we’ve seen so far:

<types>
<xsd:schema targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"

xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- REQUESTS AND RESPONSES -->

<!-- ... -->

<!-- RESOURCE PROPERTIES -->

<xsd:element name="Value" type="xsd:int"/>
<xsd:element name="LastOp" type="xsd:string"/>

<xsd:element name="MathResourceProperties">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:Value" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:LastOp" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

Notice how we’re using XML Schema to declare an element namedMathResourceProperties that
must contain aValue element and aLastOp element. TheValue element, in turn, is declared to contain
an integer (xsd:int) and theLastOp element, a string (xsd:string).

In the previous examples, we have simply interpreted this as meaning "Our service has two resource
properties,Value of type integer andLastOp of type string". In our Java implementation of the

82

Chapter 6. Resource Properties

resource, this simply meant that our resource class had attributes representing each of the resource
properties, and that we used special Globus classes (ReflectionResourceProperty and
ResourcePropertySet) to manage those resource properties.

However, the reason why our resource properties are declared in XML Schema, and in that particular
way, is because even though they can be implemented internally different ways (not only in GT4, but in
other WSRF implementations), theymustbe exchanged with other entities (clients, other services, etc.)
as an XML document. This XML representation is called theresource property document. For example,
the following is an example of how our service’s RP document might look like at a given point:

<MathResourceProperties xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance">
<tns:Value>50</tns:Value>
<tns:LastOp>ADDITION</tns:LastOp>
</MathResourceProperties>

It is important to be familiar with this representation because many operations related with resource
properties are better explained in terms of how that operation modifies the RP document. For example,
let’s suppose our resource properties are declared the following way:

<!-- RESOURCE PROPERTIES -->

<xsd:element name="Value" type="xsd:int"/>
<xsd:element name="LastOp" type="xsd:string"/>

<xsd:element name="MathResourceProperties">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:Value" minOccurs="1" maxOccurs=" unbounded "/>
<xsd:element ref="tns:LastOp" minOccurs="1" maxOccurs=" unbounded "/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

Notice how we are allowingValue andLastOp to occur at least one time, with no other limit
(unbounded). Although internally this will be implemented as an array of integers and an array of
strings, the RP document could look like this at a given point:

<MathResourceProperties xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance">
<tns:Value>10</tns:Value>
<tns:Value>30</tns:Value>
<tns:Value>50</tns:Value>
<tns:Value>40</tns:Value>
<tns:LastOp>ADDITION</tns:LastOp>
<tns:LastOp>ADDITION</tns:LastOp>
<tns:LastOp>ADDITION</tns:LastOp>
<tns:LastOp>SUBTRACTION</tns:LastOp>
</MathResourceProperties>

Later on, for example, we will talk about "inserting a new resource propertyLastOp with value
ADDITION". This doesn’t mean that we aredeclaringa new RP but, rather, that we are inserting a new

83

Chapter 6. Resource Properties

elementLastOp inside our resource property document. Again, it is useful to be aware of how resource
properties are represented in XML.

Standard interfaces
An entire WSRF specification, WS-ResourceProperties, is devoted to RPs, RP documents, and to a set of
standard portTypes we can use to interact with a service’s RPs. Each of these four portTypes exposes a
single operation, with the same name as the portType. In this chapter’s example we will use all of these
portTypes.

GetResourceProperty

This portType allows us to access the value of any resource property given its QName. This portType
provides a general way of accessing RPs without the need of an individualget operation for each RP
(recall that, in previous chapters, we used theGetValueRP operation to access theValue resource
property).

GetMultipleResourceProperties

This portType allows us to access the value of several resource properties at once, given each of their
QNames.

SetResourceProperties

This portType allows us to request one or several modifications on a service’s RPs. In particular we can
perform the following operations:

• Update: Change the value of a RP with a new value.

• Insert: Add a new RP with a given value.

• Delete: Eliminate all occurrences of a certain RP.

Again, note that theSetResourceProperties portType has a single operation (not three separate
ones). We will use the parameters of theSetResourceProperties to specify what action (update,
insert, or delete) we want to carry out.

QueryResourceProperties

This portType allows us to perform complex queries on the RP document. Currently, the query language
used is XPath.

84

Chapter 6. Resource Properties

Accessing resource properties the right way
We will now write and deploy a new service that exposes all the WS-ResourceProperty portTypes. Our
client application will, in turn, make a call to some of these portTypes. For simplicity, our service will be
based on the example presented in (the example that usesServiceResourceHome to confine our
implementation to a single class). However, the steps described in this chapter are equally valid for the
other two types of implementations we have seen in the previous two chapters (singleton resource
homes, and factory/instance services).

The WSDL file
In the previous chapters, we were always able to reuse our original WSDL file because we were only
modifying implementation details (for example, changing the implementation from a singleton resource
home to a factory/service approach). However, in this chapter wedohave to use a new WSDL file
because we want to extend from new portTypes, which necessarily changes our service’s interface.
However, our changes will be minimal:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MathService"

targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance_rp" ➊

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl" ➋

xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

➌

<wsdl:import
namespace=
"http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

<-- ... -->

<portType name="MathPortType"
wsdlpp:extends="wsrpw:GetResourceProperty

wsrpw:GetMultipleResourceProperties
wsrpw:SetResourceProperties
wsrpw:QueryResourceProperties" ➍

wsrp:ResourceProperties="tns:MathResourceProperties">

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>
</operation>

<operation name="subtract">
<input message="tns:SubtractInputMessage"/>
<output message="tns:SubtractOutputMessage"/>

85

Chapter 6. Resource Properties

</operation>

➎

</portType>

</definitions>

Note: This is part of file
$EXAMPLES_DIR/schema/examples/MathService_instance_rp/Math.wsdl .

➊ Notice how we declare a new target namespace for our new WSDL interface.

➋ This namespace declaration (wsrpw) was already present in previous examples. In general, we
always need to declare the WS-ResourceProperties namespace if we want to use the portTypes
defines in that specification.

➌ Furthermore, we have to make sure we import the WS-ResourceProperties WSDL file, where the
portTypes are actually defined.

➍ Our example extends from the four WS-ResourceProperties portTypes. However, we strictly only
need to extend from those portTypes we need to use in our service.

➎ Finally, notice how we’ve eliminated theGetValueRP operation (although not shown above, the
WSDL file also lacks the correspondingGetValueRP messages and elements). Since we are now
going to use theGetResourceProperty portType, there is no need to expose an explicit
GetValueRP operation.

Since we have added a new interface, we need to map the new WSDL namespaces to Java packages (as
described in)

http\://www.globus.org/namespaces/examples/core/MathService_instance_rp=
org.globus.examples.stubs.MathService_instance_rp

http\://www.globus.org/namespaces/examples/core/MathService_instance_rp/bindings=
org.globus.examples.stubs.MathService_instance_rp.bindings

http\://www.globus.org/namespaces/examples/core/MathService_instance_rp/service=
org.globus.examples.stubs.MathService_instance_rp.service

Note: These three lines must be present in $EXAMPLES_DIR/namespace2package.mappings .

86

Chapter 6. Resource Properties

The Java files
The implementation files only require minimal changes. The only noteworthy change is that we no
longer need to implement thegetValueRP operation. In general, using the WS-ResourceProperties
portTypes doesn’t require that we add any extra code to our Java files.

Note: This QNames interface for this example is
$EXAMPLES_DIR/org/globus/examples/services/core/rp/impl/MathQNames.java .

Note: This service class for this example is
$EXAMPLES_DIR/org/globus/examples/services/core/rp/impl/MathService.java .

The deployment files
To be able to use the WS-ResourceProperties portTypes we need to modify our WSDD file to make sure
that our service relies on the Globus-supplied operation providers for those portTypes.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<service name="examples/core/rp/MathService" provider="Handler" use="literal" style="document">
<parameter name="className" value="org.globus.examples.services.core.rp.impl.MathService"/>
<wsdlFile>share/schema/examples/MathService_instance_rp/Math_service.wsdl</wsdlFile>
<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="providers" value=" GetRPProvider GetMRPProvider SetRPProvider QueryRPProvider "/>
<parameter name="loadOnStartup" value="true"/>

</service>

</deployment>

Note: This is file
$EXAMPLES_DIR/org/globus/examples/services/core/rp/deploy-server.wsdd .

Operation Providers: GT4 Core uses a design pattern called operation providers that will make our
lives as programmers much easier. To put it quite simply, an operation provider is a Java class,
providing a set of operations, that we can easily plug into our service. For example, remember that
the WSDL file we’ve used in the previous chapters included the following:

<portType name="MathPortType"

87

Chapter 6. Resource Properties

wsdlpp:extends="wsrpw:GetResourceProperty"
wsrp:ResourceProperties="tns:MathResourceProperties">

We used the wsdlpp:extends attribute to specify that our service would also implement a standard
WSRF portType: the GetResourceProperty portType. This means our service class would need to
implement a GetResourceProperty method (which we’ll see in more detail in the next chapter).
However, instead of having to implement it ourselves, we can rely on the operation providers
included with GT4 that provide an implementation of all the WSRF portTypes. To specify we wanted
to use an operation provider in our service, we simply added the following to our WSDD file:

<parameter name="providers" value="GetRPProvider"/>

In the following chapters, each time we want our service to provide standard functionality specified in
the WSRF specs, we will simply make our service extend from a standard WSRF portType and then
’plug in’ a Globus operation provider that implements that portType.

The JNDI deployment file, on the other hand, doesn’t require any changes.

Build and deploy
Build the service:

./globus-build-service.sh rp

And deploy it:

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_core_rp.gar

Client code
Our client application will make calls to some of the WS-ResourceProperties portTypes. The next
example will use more complex resource properties and then we will see how to invoke the rest of the
portTypes.

The code for this client is rather lengthy, so instead of seeing all the code all at once, we are going to run
the client first, and then take a close look at what happens at each moment.

Note: This source code for the client is
$EXAMPLES_DIR/org/globus/examples/clients/MathService_instance_rp/Client.java

Compile the client:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/MathService_instance_rp/Client.java

And run it:

88

Chapter 6. Resource Properties

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.MathService_instance_rp.Client \
http://127.0.0.1:8080/wsrf/services/examples/core/rp/MathService

The full output of the client should be the following:

Value RP: 0
LastOp RP: NONE
Value RP: 10
LastOp RP: ADDITION

Value RP: 100
LastOp RP: ADDITION

Value: 100
LastOp: ADDITION

Let’s take a close look at what happens in each of these three blocks.

Invoking getResourceProperty

Value RP: 0
LastOp RP: NONE
Value RP: 10
LastOp RP: ADDITION

The first block of code prints out the initial values of theValue andLastOp RP’s using the
getResourceProperty operation, performs an addition, and then prints out the RP’s again. All the
getResourceProperty code is placed inside aprintResourceProperties method.

printResourceProperties(math);
math.add(10);
printResourceProperties(math);

Let’s take a close look at what happens in theprintResourceProperties method:

/*
* This method prints out MathService’s resource properties by using the
* GetResourceProperty operation.
*/

private void printResourceProperties(MathPortType math) throws Exception {
GetResourcePropertyResponse valueRP, lastOpRP, lastLogRP;
String value, lastOp, lastLog;

➊

valueRP = math.getResourceProperty(MathQNames.RP_VALUE);
lastOpRP = math.getResourceProperty(MathQNames.RP_LASTOP);

➋

value = valueRP.get_any()[0].getValue();
lastOp = lastOpRP.get_any()[0].getValue();

89

Chapter 6. Resource Properties

➌

System.out.println("Value RP: " + value);
System.out.println("LastOp RP: " + lastOp);
}

➊ We first invoke thegetResourceProperty operation on our portType. Take into account that,
since ourMathPortType portTypeextendsfrom the standardGetResourceProperty portType,
our portType also includes agetResourceProperty operation. The only parameter we have to
include is the QName of the RP we want to retrieve. Notice how the return value is of type
GetResourcePropertyResponse , a Globus-supplied stub class.

➋ We must now extract the actual value of the RP’s from theGetResourcePropertyResponse

return value. This is when knowing about theresource property document(explained at the
beginning of the chapter) comes in really handy. TheGetResourcePropertyResponse object
will contain zero, one, or many RPs in XML format (i.e. the same way they are represented in the
RP document). To access these RPs, we need to use theget_any method, which returns an array of
elements(in the XML sense of the word). In our case, theGetResourcePropertyResponse from
requesting theValue RP will contain the following:

<ns1:Value xmlns:ns1="http://www.globus.org/namespaces/examples/core/MathService_instance_rp">0</ns1:Value>

To obtain the value0 contained in that element, we simply need to access the first position of the
array of elements (get_value()[0]) and get its value (getValue).

➌ Finally, we print out the values.

Invoking SetResourceProperties to update

Value RP: 100
LastOp RP: ADDITION

The second block of code updates the value of theValue RP using theSetResourceProperties

operation and requesting anUpdate action. All the update code is placed inside aupdateRP method.

updateRP(endpoint, MathQNames.RP_VALUE, "100");
printResourceProperties(math);

Now, let’s see how the update operation is actually carried out:

/*
* This method updates resource property "rpQName" in the WS-Resource
* pointed at by the endpoint reference "epr" with the new value "value".
*/

private void updateRP(EndpointReferenceType epr, QName rpQName, String value)
throws Exception {
➊

WSResourcePropertiesServiceAddressingLocator locator = new WSResourcePropertiesServiceAddressingLocator();
SetResourceProperties_PortType port = locator

90

Chapter 6. Resource Properties

.getSetResourcePropertiesPort(epr);

➋

UpdateType update = new UpdateType();
MessageElement msg = new MessageElement(rpQName, value);
update.set_any(new MessageElement[] { msg });

➌

SetResourceProperties_Element request = new SetResourceProperties_Element();
request.setUpdate(update);

➍

port.setResourceProperties(request);
}

➊ First of all, we obtain a reference to a genericSetResourceProperties portType. This approach
is different from the one used in the previous block of code, where we simply used our own
MathPortType . Take into account that wecoulduse ourMathPortType to invoke the
setResourceProperties operation. However, the approach followed here can come in handy
when all we want to access is the standard WSRF operations, without having to get a reference to
the full portType (in our case,MathPortType).

➋ Since we are going to perform an update action through theSetResourceProperties operation,
we first need to create anUpdateType object where we specify the update to carry out. Take into
account that anUpdateType object can containseveralupdate requests. We encapsulate each of
these requests inside aMessageElement object. Then, we create an array ofMessageElement s
and include that array in ourUpdateType object (using theset_any method).

➌ Now, we create aSetResourceProperties_Element object which will represent our
SetResourceProperties request. This object can contain insert, update, and delete actions. In
our case, we add the recently createdUpdateType object to the request using thesetUpdate

method.

➍ Finally, we invokeSetResourceProperties .

Invoking GetMultipleResourceProperties

Value: 100
LastOp: ADDITION

The third, and last, block of code prints out the values of theValue andLastOp RP’s using the
GetMultipleResourceProperties operation. All theGetMultipleResourceProperties code is
placed inside aprintMultipleResourceProperties method.

printMultipleResourceProperties(math);

/*
* This method prints out MathService’s resource properties by using the
* GetMultipleResourceProperties operation.

91

Chapter 6. Resource Properties

*/
private void printMultipleResourceProperties(MathPortType math)
throws Exception {
GetMultipleResourceProperties_Element request;
GetMultipleResourcePropertiesResponse response;

➊

QName[] resourceProperties = new QName[] { MathQNames.RP_VALUE,
MathQNames.RP_LASTOP };
request = new GetMultipleResourceProperties_Element(resourceProperties);

➋

response = math.getMultipleResourceProperties(request);

➌

for(int i=0; i<response.get_any().length;i++)
{
String name = response.get_any()[i].getLocalName();
String value = response.get_any()[i].getValue();
System.out.println(name +": " + value);
}
}

➊ First, we need to create aGetMultipleResourceProperties_Element object that represents
the request togetMultipleResourceProperties . The constructor expects an array of QNames.
In our case, we specify the QNames for theValue andLastOp RPs

➋ Next, we invoke thegetMultipleResourceProperties . Notice how the return value is of type
GetMultipleResourcePropertiesResponse .

➌ As in getResourceProperty , the return ofgetMultipleResourceProperties encapsulates
zero, one, or many RPs in XML format. In this case, the
GetMultipleResourcePropertiesResponse will contain the following:

<ns1:Value xmlns:ns1="http://www.globus.org/namespaces/examples/core/MathService_instance_rp">100</ns1:Value>
<ns2:LastOp xmlns:ns2="http://www.globus.org/namespaces/examples/core/MathService_instance_rp">ADDITION</ns2:LastOp>

To extract the value of the RPs, we once again rely on theget_any method, which returns an array
of elements. We simply have to iterate through this array, and write the value of each element using
thegetValue method. Here we are also printing out the name of the property using the
getLocalName method.

92

Chapter 7. Lifecycle Management
In this chapter we will see the two lifecycle management solutions offered by the WS-ResourceLifetime
specification. Since lifecycle management mainly makes sense when we have several resources, the
examples will focus on explaining what modifications are necessary to the example seen in (the
factory/instance example). The version of that example with the lifecycle modifications can be found in
directory$EXAMPLES_DIR/org/globus/examples/services/core/rl/

Immediate destruction
Immediate destruction is the simplest type of lifecycle management. It allows us to request that a
resource be destroyed immediately by invoking adestroy operation in theinstanceservice. Notice
how, even though thefactoryservice is responsible for creating the resources, destruction must be
requested to each individual resource through the instance service.

To add immediate destruction to our service, we simply need to extend from the standard WSRF
ImmediateResourceTermination portType. This portType adds adestroy operation to our
portType that will instruct the current resource to terminate itself immediately.

<portType name="MathPortType"
wsdlpp:extends="wsrpw:GetResourceProperty

wsrlw:ImmediateResourceTermination "
wsrp:ResourceProperties="tns:MathResourceProperties">

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>
</operation>

<operation name="subtract">
<input message="tns:SubtractInputMessage"/>
<output message="tns:SubtractOutputMessage"/>
</operation>

</portType>

To be able to do this, we must remember to declare the WS-ResourceLifetime namespace, and import its
WSDL file:

<definitions name="MathService"
targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance_rl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance_rl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsrlw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

93

Chapter 7. Lifecycle Management

<wsdl:import
namespace=
"http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl"
location="../../wsrf/lifetime/WS-ResourceLifetime.wsdl" />

Note: This is part of file
$EXAMPLES_DIR/schema/examples/MathService_instance_rl/Math.wsdl

Next, we need to add the Globus-suppliedDestroyProvider operation provider to the instance service.
This provider implements thedestroy operation mentioned above.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Instance service -->
<service name="examples/core/rl/MathService" provider="Handler" use="literal" style="document">

<parameter name="className" value="org.globus.examples.services.core.rl.impl.MathService"/>
<wsdlFile>share/schema/examples/MathService_instance_rl/Math_service.wsdl</wsdlFile>
<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="providers" value="GetRPProvider DestroyProvider "/>

</service>

<!-- Factory service -->
<service name="examples/core/rl/MathFactoryService" provider="Handler" use="literal" style="document">

<parameter name="className" value="org.globus.examples.services.core.rl.impl.MathFactoryService"/>
<wsdlFile>share/schema/examples/FactoryService/Factory_service.wsdl</wsdlFile>
<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="instance" value="examples/core/rl/MathService"/>

</service>

</deployment>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/rl/deploy-server.wsdd .

Now, we can compile the service:

./globus-build-service.sh rl

And deploy it:

94

Chapter 7. Lifecycle Management

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_core_rl.gar

To try out resource destruction, we will use a client that is identical to the simple client seen in . The only
difference is that, at the end of the client we will add a call to thedestroy operation.

package org.globus.examples.clients.FactoryService_Math_rl;

import org.apache.axis.message.addressing.Address;
import org.apache.axis.message.addressing.EndpointReferenceType;

import org.globus.examples.stubs.MathService_instance_rl.MathPortType;
import org.globus.examples.stubs.MathService_instance_rl.service.MathServiceAddressingLocator;
import org.globus.examples.stubs.Factory.service.FactoryServiceAddressingLocator;
import org.globus.examples.stubs.Factory.FactoryPortType;
import org.globus.examples.stubs.Factory.CreateResource;
import org.globus.examples.stubs.Factory.CreateResourceResponse;

import org.oasis.wsrf.lifetime.Destroy;

/* This client creates a new MathService instance through a FactoryService. This client
* expects one parameter: the factory URI.
*/

public class Client_immed {

public static void main(String[] args) {
FactoryServiceAddressingLocator factoryLocator = new FactoryServiceAddressingLocator();
MathServiceAddressingLocator instanceLocator = new MathServiceAddressingLocator();

try {
String factoryURI = args[0];
EndpointReferenceType factoryEPR, instanceEPR;
FactoryPortType mathFactory;
MathPortType math;

// Get factory portType
factoryEPR = new EndpointReferenceType();
factoryEPR.setAddress(new Address(factoryURI));
mathFactory = factoryLocator.getFactoryPortTypePort(factoryEPR);

// Create resource and get endpoint reference of WS-Resource.
// This resource is our "instance".
CreateResourceResponse createResponse = mathFactory
.createResource(new CreateResource());
instanceEPR = createResponse.getEndpointReference();

// Get instance PortType
math = instanceLocator.getMathPortTypePort(instanceEPR);

System.out.println("Created instance.");

// Perform an addition
math.add(10);

95

Chapter 7. Lifecycle Management

// Perform another addition
math.add(5);

// Perform a subtraction
math.subtract(5);

math.destroy(new Destroy());
System.out.println("Destroyed instance.");
} catch (Exception e) {
e.printStackTrace();
}
}

}

Note: This file is
$EXAMPLES_DIR/org/globus/examples/clients/FactoryService_Math_rl/Client_immed.java

Compile the client:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/FactoryService_Math_rl/Client_immed.java

And run it:

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.FactoryService_Math_rl.Client_immed \
http://127.0.0.1:8080/wsrf/services/examples/core/rl/MathFactoryService

If all goes well, you should see the following:

Created instance.
Destroyed instance.

Well, that wasn’t too exciting, was it? How do we really now that resource destruction is actually
happening? Well, there’s a simple way of testing it. Modify the last lines of the client so they will look
like so:

math.destroy(new Destroy());
System.out.println("Destroyed instance.");

// Perform another addition
math.add(5);

As you can see, we are going to try to invoke an operationafter destroying the resource that operation is
supposed to use. As you can probably imagine, no good will come of this. If you recompile the client and
run it again, you should again see the following:

Created instance.

96

Chapter 7. Lifecycle Management

Destroyed instance.

And, then, a really nasty error message where you should be able to make out the following:

java.rmi.RemoteException: ; nested exception is:
org.globus.wsrf.NoSuchResourceException

What has just happened is that theadd has been invoked as normal. However, the endpoint reference that
is being passed in the call refers to a resource that no longer exists. So, whenadd tries to retrieve the
resource, aNoSuchResourceException is thrown.

Scheduled destruction
Scheduled destruction is a more elaborate form of resource lifecycle management, as it allows us to
specify exactly when we want the resource to be destroyed. The main application of scheduled
destruction is to performlease-based lifecycle management, where we initially set the destruction time of
a resource some time in the future (for example, 5 minutes). This is called thelease. Our application
must periodicallyrenew the lease(setting the destruction time another 5 minutes in the future), or the
resource will eventually be destroyed. This will allow our application to purge resources that for some
reason (network failure, programmer errors, etc.) have become unavailable (and therefore can’t receive
the lease renewal).

Using scheduled destruction requires adding more code that immediate destruction because the standard
WSRF portType that provides scheduled destruction not only adds a new operation
(SetTerminationTime) but also two new resource properties:TerminationTime andCurrentTime .
TerminationTime specifies when the resource is set to be destroyed, and the value ofCurrentTime

must always be the time in the machine that hosts the resource. This means that, not only will we have to
modify the WSDL file, we will also have to make sure those two new resource properties are properly
implemented in our resource class.

The WSDL file
So, let’s start with the easy part. To use scheduled resource termination, our portType must extend from
theScheduledResourceTermination portType:

<portType name="MathPortType"
wsdlpp:extends="wsrpw:GetResourceProperty

wsrlw:ScheduledResourceTermination "
wsrp:ResourceProperties="tns:MathResourceProperties">

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>
</operation>

<operation name="subtract">
<input message="tns:SubtractInputMessage"/>
<output message="tns:SubtractOutputMessage"/>

97

Chapter 7. Lifecycle Management

</operation>

</portType>

Note: As seen in immediate destruction, we mustn’t forget to declare the WS-ResourceLifetime
namespace (wsrlw), and import its WSDL file.

The resource implementation
Next, we have to implement theResourceLifetime interface in our resource class. This interface
requires that we provide get/set methods for theTerminationTime andCurrentTime RPs.

public class MathResource implements Resource, ResourceIdentifier,
ResourceProperties, ResourceLifetime

So, we’ll start by adding aterminationTime attribute of typeCalendar to our class to represent the
resource’s termination time. We don’t need to add acurrentTime attribute because that RP’s get
method will always return the system’s time (which, as we’ll see, we can easily obtain using the Java
API).

/* Resource properties */
private int value;
private String lastOp;
private Calendar terminationTime;

Now, we have to make sure we add the two RPs to our resource’s RP set:

/* Initializes RPs and returns a unique identifier for this resource */
public Object initialize() throws Exception {
this.key = new Integer(hashCode());
this.propSet = new SimpleResourcePropertySet(
MathQNames.RESOURCE_PROPERTIES);

try {
ResourceProperty valueRP = new ReflectionResourceProperty(
MathQNames.RP_VALUE, "Value", this);
this.propSet.add(valueRP);
setValue(0);

ResourceProperty lastOpRP = new ReflectionResourceProperty(
MathQNames.RP_LASTOP, "LastOp", this);
this.propSet.add(lastOpRP);
setLastOp("NONE");

ResourceProperty termTimeRP = new ReflectionResourceProperty(
SimpleResourcePropertyMetaData.TERMINATION_TIME, this);
this.propSet.add(termTimeRP);

98

Chapter 7. Lifecycle Management

ResourceProperty currTimeRP = new ReflectionResourceProperty(
SimpleResourcePropertyMetaData.CURRENT_TIME, this);
this.propSet.add(currTimeRP);

} catch (Exception e) {
throw new RuntimeException(e.getMessage());
}

return key;
}

Notice we use a Globus-suppliedSimpleResourcePropertyMetaData class which includes
information on theTerminationTime andCurrentTime RPs. We must make sure we import this
class:

import org.globus.wsrf.impl.SimpleResourcePropertyMetaData;

Finally, the last thing needed in the resource implementation is to add aget andset method for the
TerminationTime RP, and aget method for theCurrentTime RP (we can’t ’set’ the current time).
Notice how we return the current time using an instance of the JavaCalendar class.

/* Required by interface ResourceLifetime */
public Calendar getCurrentTime() {
return Calendar.getInstance();
}

public Calendar getTerminationTime() {
return this.terminationTime;
}

public void setTerminationTime(Calendar terminationTime) {
this.terminationTime=terminationTime;
}

Note: This is part of file
$EXAMPLES_DIR/org/globus/examples/services/core/rl/impl/MathResource.java

Deployment
As we did in immediate destruction, we need to add a Globus-supplied operation provider,
SetTerminationTimeProvider , to the instance service. This provider implements the
setTerminationTime operation that will allow us to set the resource’s termination time. Note that we
cannotset the termination time by directly modifying theTerminationTime RP (using, for example,
theSetResourceProperties operation). We must use thesetTerminationTime operation (this
operation, as implemented in the Globus-supplied operation provider, does more than just update the RP).

<parameter name="providers" value="GetRPProvider SetTerminationTimeProvider "/>

99

Chapter 7. Lifecycle Management

Note: This is part of file
$EXAMPLES_DIR/org/globus/examples/services/core/rl/deploy-server.wsdd .

We can also modify the JNDI deploy file to control how often the container will check if a resource is
past its termination time. This is done with thesweeperDelay parameter, specified in milliseconds. The
default value is to check every one minute (60000 milliseconds). We will change this value to one second
(1000 milliseconds) so our client will be able to observe how the resource does, in fact, expire.

<parameter>
<name>sweeperDelay</name>
<value>1000</value>
</parameter>

Note: This is part of file
$EXAMPLES_DIR/org/globus/examples/services/core/rl/deploy-jndi-config.xml .

Finally, build and deploy:

./globus-build-service.sh rl

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_core_rl.gar

The client
We will test our service by creating a new resource, setting its termination 10 seconds in the future, and
then checking every second to see if the resource is still ’alive’. When the resource is terminated, any call
to the resource will produce an exception. Like the immediate destruction client, this client is similar to
the simple client seen in . The following is the code that we will run after the resource has been created:

➊

Calendar termination = Calendar.getInstance();
termination.add(Calendar.SECOND, 10);

➋

SetTerminationTime request;
SetTerminationTimeResponse response;
request = new SetTerminationTime(termination);
response = math.setTerminationTime(request);

➌

System.out.println("Current time "
+ response.getCurrentTime().getTime());
System.out.println("Requested termination time "
+ termination.getTime());
System.out.println("Scheduled termination time "
+ response.getNewTerminationTime().getTime());

100

Chapter 7. Lifecycle Management

boolean terminated = false;
int seconds = 0;
while (!terminated) { ➍

try {
System.out.println("Second " + seconds);
math.add(10);
Thread.sleep(1000);
seconds++;
} catch (RemoteException e) {
System.out.println("Resource has been destroyed");
terminated = true;
}
}

Note: This is part of file
$EXAMPLES_DIR/org/globus/examples/clients/FactoryService_Math_rl/Client_sched.java

➊ We get an instance of theCalendar class, which contains the current time. We add 10 seconds to it.
This will be the termination time of our resource.

➋ We make a call to theSetTerminationTime operation, sending the new termination time.

➌ The response from theSetTerminationTime operation returns interesting information: the
resource’s current time and thescheduledtermination, which might differ from the requested
termination time (in simple scenarios like the one we are trying out now, this will not happen).

➍ Finally, this loop makes a call to theadd operation every second. When the resource is finally
destroyed, and an exception is thrown, we exit the loop.

Compile and run the client:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/FactoryService_Math_rl/Client_sched.java

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.FactoryService_Math_rl.Client_sched \
http://127.0.0.1:8080/wsrf/services/examples/core/rl/MathFactoryService

If all goes well, you should see the following:

Created instance.
Current time Sun Apr 03 00:54:29 CST 2005
Requested termination time Sun Apr 03 00:54:39 CST 2005
Scheduled termination time Sun Apr 03 00:54:39 CST 2005
Second 0
Second 1

101

Chapter 7. Lifecycle Management

Second 2
Second 3
Second 4
Second 5
Second 6
Second 7
Second 8
Second 9
Second 10
Resource has been destroyed

102

Chapter 8. Notifications
In this chapter we will introduce the concepts ofnotification , a common design pattern that allows
clients to be notified when interesting events happen in a server. In particular, we will focus on
WS-Notifications, a family of specification that allow us to use this design pattern with Web Services.
Then, we will see two examples of how we can use notifications in our services.

What are notifications?
Notifications are nothing new. It’s a very popular software design pattern, although you might know it
with a different name such as Observer/Observable. Let’s suppose that our software had several distinct
parts (e.g. a GUI and the application logic, a client and a server, etc.) and that one of the parts of the
software needs to be aware of the changes that happen in one of the other parts. For example, the GUI
might need to know when a value is changed in a database, so that the new value is immediately
displayed to the user. Taking this to the client/server world is easy: suppose a client needs to know when
the server reaches a certain state, so the client can perform a certain action.

The most crude approach to keep the client informed is apolling approach. The client periodicallypolls
the server (asks if there are any changes). For example, let’s suppose a client applications wants to know
when the load of a server drops below 50%. The server is called theproducerof events (in this case, the
event is a drop in the server load). The client, on the other hand, is called theconsumerof events. The
polling approach would go like this:

Figure 8-1. Keeping track of changes using polling

103

Chapter 8. Notifications

1. The consumer asks the producer if there are any changes. The producer replies "No", so the
consumer waits a while before making another call.

2. Once again, the consumer asks the producer if there are any changes. The producer replies "No", so
the consumer waits a while before making another call.

3. As you can see, this step can be repeatedad nauseamuntil the server finally replies that there has
been a change.

This approach isn’t very efficient, specially if you consider the following:

• If the time between calls is very small, the amount of network traffic and CPU use increases.

• There can be more than one consumer. If we have dozens of consumers, waiting for an event to
happen, then the producer could get saturated with calls asking it if there are any changes.

The answer to this problem is actually terribly simple (and common sense). Instead of periodically
asking the producer if there are any changes, we make an initial call asking the producer tonotify the
consumer whenever a certain event occurs. This is thenotificationapproach.

Figure 8-2. Keeping track of changes using notifications

1. The consumer asks the producer to notify him as soon as the server load drops below 50%. The
producer keeps a list of all its registered consumers. This step is normally called thesubscriptionor
registrationstep.

2. The consumer and the producer go about their business until the server load drops below 50%.

104

Chapter 8. Notifications

3. Once the server load drops below 50%, the producernotifiesall its consumers (remember, there can
be more than one) of that event.

As you can see, this approach is much more efficient (in this simple example, network traffic has been
sliced in half with respect to the polling approach).

WS-Notifications
The WS-Notifications family of specifications, although not a part of WSRF, has strong ties to it. It
provides a set of standard interfaces to use the notification design pattern with Web Services.
WS-Notifications is divided into three specifications: WS-Topics, WS-BaseNotification, and
WS-BrokeredNotification.

WS-Topics
First of all, we havetopics, which are used by the other two specifications in WS-Notifications to present
a set of "items of interest for subscription". As we will see next, a service can publish a set of topics that
clients can subscribe to, and receive a notification whenever the topic changes. Topics are very versatile,
as they even allow us to createtopic trees, where a topic can have a set ofchild topics. By subscribing to
a topic, a client automatically receives notifications from all the descendant topics (without having to
manually subscribe to each of them).

WS-BaseNotification
This specification defines the standard interfaces of notification consumers and producers. In a nutshell,
notification producers have to expose asubscribeoperation that notification consumers can use to
request a subscription. Consumers, in turn, have to expose anotifyoperation that producers can use to
deliver the notification. Furthermore, the client actually requesting the subscription need not necessarily
be the consumer of those notifications. In other words, clients can perform subscriptions "on behalf of
other notification consumers".

105

Chapter 8. Notifications

Figure 8-3. A typical WS-Notification interaction

Figure 8-3shows an example interaction between a notification consumer and producer, in the simple
case when the subscriber and consumer are the same entity. In this example we have a single notification
consumer, and a single notification producer that publishes two topics:SystemLoadHigh and
SystemFault .

1. First of all, the notification consumer subscribes himself to theSystemLoadHigh topic. It is
interesting to note that, internally, aSubscription resource is created with information regarding
the subscription (not shown in the figure).

2. Next, at some point in time, something happens in the notification producer that must trigger a
notification from theSystemLoadHigh topic. For example, we might have implemented our service
to send out a notification every time the system load passes from "more than 50%" to "less than
50%".

3. The notification producer delivers the notification to the consumer by invoking thenotify

operation in the consumer. As shown in the figure, this notification delivery is tied to the topic that
triggered the notification.

Figure 8-4. A WS-Notification interaction where the subscriber and the consumer are different

106

Chapter 8. Notifications

entities

Figure 8-4, on the other hand, shows how the subscriber and the consumer need not be the same entity. In
the figure, the subscriber requests the producer that Service A be subscribed to theSystemLoadHigh

topic. When a notification is triggered, the notification is sent to Service A (the consumer) not to the
subscriber.

WS-BrokeredNotification
In brokered notifications we consider the case when notifications are delivered from the producer to the
consumer through an intermediate entity called thebroker. The WS-BrokeredNotification defines the
standard interfaces for the notification broker.

As shown inFigure 8-5, in the presence of a notification broker, the producer must register with the
broker and publish its topics there. The subscriber (separate from the consumer in this case), must also
subscribe through the broker, not directly with the producer. Finally, when a notification is produced, it is
delivered to the consumer through the broker.

Figure 8-5. A typical brokered WS-Notification interaction

107

Chapter 8. Notifications

Notifications in GT4
GT4 currently doesn’t implement the WS-Notifications family of specifications completely. For
example, no support for brokered notification is included. However, GT4 does allow us to perform
effective topic-based notification. One of the more interesting parts of the GT4 implementation of
WS-Notifications is that it will allow us to effortlessly expose a resource property as a topic, triggering a
notification each time the value of the RP changes. We will also be able to define our own topics, which
need not trigger a notification every single time the value of an RP changes. In the remainder of the
chapter, we will see how we can add both types of topics to our service.

Notifying changes in a resource property
We will see how we can add notifications to a service so clients can be notified each time a certain RP is
modified. As we did in and , our example will be based, for simplicity, on theServiceResourceHome

resource home.

The WSDL file
Our portType will need to extend from a standard WS-Notifications portType called
NotificationProducer , which exposes aSubscribe operation that consumers can use to subscribe
themselves to a particular topic. Since this examples takes an existing resource property and exposes it as
a topic, no additional WSDL code is required beyond extending theNotificationProducer portType.

First of all, we need to declare the WS-Notifications namespace, and import its WSDL file.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MathService"

targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance_notif"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance_notif"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
xmlns:wsntw="http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
namespace=
"http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

<wsdl:import
namespace=
"http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl"
location="../../wsrf/notification/WS-BaseN.wsdl"/>

<!-- ... -->

108

Chapter 8. Notifications

</definitions>

Then, we need to extend from theNotificationProducer portType.

<portType name="MathPortType"
wsdlpp:extends="wsrpw:GetResourceProperty wsntw:NotificationProducer "
wsrp:ResourceProperties="tns:MathResourceProperties">

<!-- <operation>s -->
</portType>

Note: This is part of file
$EXAMPLES_DIR/schema/examples/MathService_instance_notif/Math.wsdl .

Finally, since these modifications create a new interface, we need to map the new WSDL namespaces to
Java packages.

http\://www.globus.org/namespaces/examples/core/MathService_instance_notif=
org.globus.examples.stubs.MathService_instance_notif

http\://www.globus.org/namespaces/examples/core/MathService_instance_notif/bindings=
org.globus.examples.stubs.MathService_instance_notif.bindings

http\://www.globus.org/namespaces/examples/core/MathService_instance_notif/service=
org.globus.examples.stubs.MathService_instance_notif.service

Note: These three lines must be present in $EXAMPLES_DIR/namespace2package.mappings .

The resource implementation

SimpleResourceProperty

In all the previous chapters, we used a special Globus-supplied class called
ReflectionResourceProperty to implement our RPs. This class had a number of benefits, described
in , the main one being that it greatly simplified our implementation since we could use the RPs as if they
were normal Java variables.

In this chapter, however, we will use a different Globus-supplied class to represent our RPs:
SimpleResourceProperty . Although we could also useReflectionResourceProperty , this is a
good chance to take a look atSimpleResourceProperty . Although this class makes the
implementation a little bit more complicated, it shouldn’t be too hard to understand now that we know
what theresource property documentis.

Note: Now is a good moment to review .

109

Chapter 8. Notifications

First of all, remember how in all the previous examples, our RPs were implemented simply as two
attributes in the resource class:

private int value;
private String lastOp;

Now, this will be replaced by the following:

/* Resource properties */
private ResourceProperty valueRP;
private ResourceProperty lastOpRP;

Note: ResourceProperty is a Globus-supplied interface that all resource properties must implement.
Both ReflectionResourceProperty and SimpleResourceProperty , for example, implement it.

Furthermore, we are notrequiredto implement get/set methods for the RPs, as we did when using
ReflectionResourceProperty . However, as will be explained later on, it will nonetheless be
convenient to do so, as it will make working with the RPs easier, specially if we split our implementation
into a service, a resource, and a resource home.

Next, we need to initialize the resource properties. In our example, this is done in the constructor:

public MathService() throws RemoteException {
this.propSet = new SimpleResourcePropertySet(
MathQNames.RESOURCE_PROPERTIES);➊

try {
valueRP = new SimpleResourceProperty(MathQNames.RP_VALUE); ➋

valueRP.add(new Integer(0)); ➌

➍

lastOpRP = new SimpleResourceProperty(MathQNames.RP_LASTOP);
lastOpRP.add("NONE");
} catch (Exception e) {
throw new RuntimeException(e.getMessage());
}

➎

this.propSet.add(valueRP);
this.propSet.add(lastOpRP);
}

➊ First, we create the RP set. This, in effect, creates an empty RP document. In our case, this would be
something like this:

<MathResourceProperties xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance_notif">
</MathResourceProperties>

110

Chapter 8. Notifications

➋ Next, we create aSimpleResourceProperty . If you compare with the previous examples, you’ll
notice that the constructor forSimpleResourceProperty only requires the QName of the RP
(whereasReflectionResourceProperty required more parameters).

➌ Now, we set the initial value of the RP. When usingReflectionResourceProperty , we simply
had to modify thevalue attribute. Now, however, we have to useSimpleResourceProperty ’s
add method to do this. By addingnew Integer(0) , we are creating a newValue RP with value 0:

<tns:Value>0</tns:Value>

Note that, if the RP were unbounded, we could keep on invokingvalueRP.add to create more
Value RPs:

<tns:Value>0</tns:Value>
<tns:Value>0</tns:Value>
<tns:Value>0</tns:Value>

However, we cannot do this becauseValue is declared to occur once (and only once) in the RP
document.

➍ We perform the previous two steps again to add a newLastOp RP.

➎ Finally, we add the RPs to the RP set. Now, our RP document will look something like this:

<MathResourceProperties xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_notif">
<tns:Value>0</tns:Value>
<tns:LastOp>NONE</tns:LastOp>
</MathResourceProperties>

Publishing our RPs as topics with ResourcePropertyTopic

Now that our resource properties are implemented using theSimpleResourceProperty class,
publishing those RPs as topics is very simple. We will use a Globus-supplied class called
ResourcePropertyTopic which is both a resource propertyanda topic (more precisely, it implements
both theResourceProperty andTopic interfaces). As we will see, the only thing we need to to is
create newResourcePropertyTopic objects and "wrap them around" our
SimpleResourceProperty objects. Then, theResourcePropertyTopic objects are added both to
the resource’s list of RPs (the RP set) and the list of topics.

First of all, our resource class must implement theTopicListAccessor interface, which requires that
we implement agetTopicList method returning aTopicList . A TopicList attribute must therefore
be added to our resource class to keep track of all the topics published by our resource.

import org.globus.wsrf.TopicListAccessor;

public class MathService implements Resource, ResourceProperties,
TopicListAccessor {

private TopicList topicList;

111

Chapter 8. Notifications

// ...

/* Required by interface TopicListAccessor */
public TopicList getTopicList() {
return topicList;
}
}

Next, we initialize the topic list, create theResourcePropertyTopic objects, and add the to the RP set
and the topic list:

public MathService() throws RemoteException {
/* Create RP set */
this.propSet = new SimpleResourcePropertySet(
MathQNames.RESOURCE_PROPERTIES);

/* Initialize the RP’s */
try {
valueRP = new SimpleResourceProperty(MathQNames.RP_VALUE);
valueRP.add(new Integer(0));

lastOpRP = new SimpleResourceProperty(MathQNames.RP_LASTOP);
lastOpRP.add("NONE");
} catch (Exception e) {
throw new RuntimeException(e.getMessage());
}

➊

this.topicList = new SimpleTopicList(this);

➋

valueRP = new ResourcePropertyTopic(valueRP);
((ResourcePropertyTopic) valueRP).setSendOldValue(true);

lastOpRP = new ResourcePropertyTopic(lastOpRP);
((ResourcePropertyTopic) lastOpRP).setSendOldValue(true);

➌

this.topicList.addTopic((Topic) valueRP);
this.topicList.addTopic((Topic) lastOpRP);

this.propSet.add(valueRP);
this.propSet.add(lastOpRP);
}

➊ We initialize the topic list using the Globus-suppliedSimpleTopicList class.

➋ We take the previously createdSimpleResourceProperty objects and put them "inside"
ResourcePropertyTopic objects. Notice how thevalueRP andlastOpRP attributes (of type
ResourceProperty) are set to theResourcePropertyTopic objects,not the original
SimpleResourceProperty objects.

Next, we will activate a nice feature included inResourcePropertyTopic s. We can ask that the
notification include not only the new value (whenever an RP is modified), but also the old value.

112

Chapter 8. Notifications

➌ Finally, we add theResourcePropertyTopic objects to the topic list.

Note: The code shown above is part of
$EXAMPLES_DIR/org/globus/examples/services/core/notifications/impl/MathService.java .

The service implementation
We need to modify the implementation of theadd andsubtract methods because we are now using
SimpleResourceProperty objects to represent our RPs. However, take into account that none of the
following changes are directly related to the fact that we’re using notifications. When using
ResourcePropertyTopic s, the notification is sent outautomaticallywhenever we modify the value of
an RP. We do not need to add any code to trigger the notification.

As mentioned earlier, usingSimpleResourceProperty objects is going to make our interaction with
the RP’s a bit hairier. When usingReflectionResourceProperty , ouradd method was as simple as
this:

public AddResponse add(int a) throws RemoteException {
value += a;
lastOp = "ADDITION";

return new AddResponse();
}

Now, however, the code will look something like this:

public AddResponse add(int a) throws RemoteException {
Integer value = (Integer) valueRP.get(0); ➊

value = new Integer(value.intValue()+a); ➋

valueRP.set(0, value); ➌

lastOpRP.set(0,"ADDITION"); ➍

return new AddResponse();
}

Note: The code shown above is part of
$EXAMPLES_DIR/org/globus/examples/services/core/notifications/impl/MathService.java .

➊ We retrieve the current value of theValue RP. Since this RP can have one (and only one) value, we
have to access the value in position0 using theget method. Sinceget returns anObject , we need
to cast this into anInteger object.

113

Chapter 8. Notifications

➋ Next, we perform the actual addition.

➌ Next, we modify the value of theValue RP using theset method. Again, since this RP can hold a
single value, the new value is placed in the first position of the RP (position 0).

➍ Finally, we modify the value of theLastOp RP using, once again, theset method.

Accessing the RPs if we split up the implementation: Remember that, in this example, we are
using the ServiceResourceHome which allows us to implement the service and the resource in the
same class. This means that our add and subtract methods have direct access to the
ResourceProperty objects representing our RPs.

However, this will not be so if we split up the implementation as seen in and . In these cases, we will
need to use our resource’s ResourceProperties interface to access the RP set and then the RP’s
themselves. This means that our code could end up looking something like this:

public AddResponse add(int a) throws RemoteException {
MathResource mathResource = getResource();

ResourceProperty valueRP = mathResource.propSet.get(MathQNames.RP_VALUE);
Integer value = (Integer) valueRP.get(0);
value = new Integer(value.intValue()+a);
valueRP.set(0, value);

ResourceProperty lastOpRP = mathResource.propSet.get(MathQNames.RP_LASTOP);
lastOpRP.set(0,"ADDITION");

return new AddResponse();
}

Of course, this doesn’t make things any nicer. This is why it is usually a good idea to include get/set
methods for our RPs in the resource implementation, even if they are not required by
SimpleResourceProperty . In other words, we could add the following to our resource:

public int getValue() {
Integer value_obj = (Integer) valueRP.get(0);
return value_obj.intValue();
}

public void setValue(int value) {
Integer value_obj = new Integer(value);
valueRP.set(0, value_obj);
}

public String getLastOp() {
String lastOp_obj = (String) lastOpRP.get(0);
return lastOp_obj;
}

public void setLastOp(String lastOp) {
lastOpRP.set(0, lastOp);
}

With these get/set methods, our add method could be implemented like this:

114

Chapter 8. Notifications

public AddResponse add(int a) throws RemoteException {
MathResource mathResource = getResource();

mathResource.setValue(mathResource.getValue() + a);
mathResource.setLastOp("ADDITION");

return new AddResponse();
}

This, of course, looks much nicer. In fact, it is very similar to the way we were able to implement add

and subtract in and .

Deployment Descriptor
To be able to use the WS-Notifications portTypes we need to modify our WSDD file to make sure that
our service relies on the Globus-supplied operation providers for those portTypes.

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<service name="examples/core/notifications/MathService" provider="Handler" use="literal" style="document">
<parameter name="className" value="org.globus.examples.services.core.notifications.impl.MathService"/>
<wsdlFile>share/schema/examples/MathService_instance_notif/Math_service.wsdl</wsdlFile>
<parameter name="allowedMethods" value="*"/>
<parameter name="handlerClass" value="org.globus.axis.providers.RPCProvider"/>
<parameter name="scope" value="Application"/>
<parameter name="providers" value="GetRPProvider SubscribeProvider GetCurrentMessageProvider "/>
<parameter name="loadOnStartup" value="true"/>

</service>

</deployment>

Note: This file is
$EXAMPLES_DIR/org/globus/examples/services/core/notifications/deploy-server.wsdd .

Compile and deploy
Let’s build the service:

./globus-build-service.sh notifications

And deploy it:

115

Chapter 8. Notifications

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_core_notifications.gar

Client code
To try out this service, we will need two clients. The first client will be in charge oflisteningfor
notifications, and includes a lot of new code. The second client is a very simple client that invokes the
add operation. This will allow us to test if a change in theValue RP (triggered by theadd operation) is
indeed notified to the listener client.

Listener client

This client is composed of two important parts:

1. Subscription: This block of code will be in charge of setting up the subscription with theValue RP
(which, remember, is also published as a topic). Once the subscription is set up, this block of code
simply loops indefinitely.

2. Delivery: Once the subscription has been set up, and the main thread of the program is looping
indefinitely, the delivery code gets invoked any time a notification arrives at the client. In fact, the
listener must implement theNotifyCallback interface, which requires that we implement a
deliver method that will be in charge of handling incoming notifications.

public class ValueListener implements NotifyCallback {

}

First off, let’s take a look at the code that sets up the subscription. This code is inside a method called
run that expects the notification producer’s URI as its only parameter.

public void run(String serviceURI) {
try {
➊

NotificationConsumerManager consumer;

➋

consumer = NotificationConsumerManager.getInstance();
consumer.startListening();
EndpointReferenceType consumerEPR = consumer
.createNotificationConsumer(this);

➌

Subscribe request = new Subscribe();
request.setUseNotify(Boolean.TRUE);
request.setConsumerReference(consumerEPR);

➍

TopicExpressionType topicExpression = new TopicExpressionType();
topicExpression.setDialect(WSNConstants.SIMPLE_TOPIC_DIALECT);

116

Chapter 8. Notifications

topicExpression.setValue(MathQNames.RP_VALUE);
request.setTopicExpression(topicExpression);

➎

WSBaseNotificationServiceAddressingLocator notifLocator =
new WSBaseNotificationServiceAddressingLocator();
EndpointReferenceType endpoint = new EndpointReferenceType();
endpoint.setAddress(new Address(serviceURI));
NotificationProducer producerPort = notifLocator
.getNotificationProducerPort(endpoint);

➏

producerPort.subscribe(request);

➐

System.out.println("Waiting for notification. Ctrl-C to end.");
while (true) {
try {
Thread.sleep(30000);
} catch (Exception e) {
System.out.println("Interrupted while sleeping.");
}
}
} catch (Exception e) {
e.printStackTrace();
}
}

➊ Our client is going to act as a notification consumer. This means that our client will have to expose a
Notify operation that will be invoked by the notification producer. For this to happen, our client has
to act as both a client and a server. Fortunately, thanks to a Globus-supplied class called
NotificationConsumerManager , we are shielded from all the potential nastiness involved in
doing this is.

➋ Once we invoke thestartListening method in theNotificationConsumerManager , our
client becomes a server hosting a service that implements the standardNotificationConsumer

portType. As such, this service will have an endpoint reference. We need to keep track of this EPR,
since it will be used by theNotificationProducer to deliver the notifications.

➌ We create the request to the remoteSubscribe call. There are two properties we must set: whether
the producer must use the standardNotify operation to deliver notifications (in general, we will
always want this to be true), and the consumer’s EPR.

➍ Next, we create aTopicExpressionType object representing the topic we want to subscribe to.
Notice how we’re subscribing to theValue RP.

➎ A this point, theSubscribe request is ready to be sent to the notification producer. To do this, we
need to obtain a reference to the standardNotificationProducer portType in the remote service.

➏ We are finally ready to send the subscription request.

➐ Finally, we let out program loop indefinitely. Notice that we instruct the client’s thread to sleep
during the loop. This doesn’t affect the client’s ability to receive notifications, as it will be woken up
whenever a notification is delivered.

117

Chapter 8. Notifications

Now, let’s take a look at the code that handles incoming notifications. Remember that thedelivery is
required by theNotifyCallback interface. If we do not implement it, our client will be unable to
receive notifications.

public void deliver(List topicPath, EndpointReferenceType producer, ➊

Object message) {
ResourcePropertyValueChangeNotificationElementType notif_elem;
ResourcePropertyValueChangeNotificationType notif;

➋

notif_elem = (ResourcePropertyValueChangeNotificationElementType) message;
notif = notif_elem.getResourcePropertyValueChangeNotification();

if (notif != null) {
System.out.println("A notification has been delivered");

➌

System.out.print("Old value: ");
System.out.println(notif.getOldValue().get_any()[0].getValue());
System.out.print("New value: ");
System.out.println(notif.getNewValue().get_any()[0].getValue());
}
}

➊ Thedeliver method has three parameters:

1. topicPath : the topic that produced the notification.

2. producer : the EPR of the notification producer.

3. message : the actual notification. Notice how it is of typeObject , so we will need to cast it to a
more useful type.

➋ When usingResourcePropertyTopic s to notify changes in RPs, the notification message is of
typeResourcePropertyValueChangeNotificationElementType . This type, in turn, contains
an object of typeResourcePropertyValueChangeNotificationType . This object is the one
that contains the new value of the RP. Remember that, in this example, we’ve also asked that the
notification include the old value too.

➌ Finally, we print out the old and new values of the RP.

Note: The code shown above is part of
$EXAMPLES_DIR/org/globus/examples/clients/MathService_instance_notif/ValueListener.java

118

Chapter 8. Notifications

Adding client

The adding client requires no explanation, as it is identical to the ones seen in previous chapters.

Note: The source code for the adding client is
$EXAMPLES_DIR/org/globus/examples/clients/MathService_instance_notif/ClientAdd.java

If you’re not sure about how the client works, this might be a good time to review .

Compile and run

First of all, let’s compile the listener client:

javac \
-classpath $CLASSPATH:build/stubs/classes/ \
org/globus/examples/clients/MathService_instance_notif/ValueListener.java

Since we are going to use two clients, you should run the listener in a separate console.

java \
-DGLOBUS_LOCATION=$GLOBUS_LOCATION\
-classpath $CLASSPATH:build/stubs/classes/ \
org/globus/examples/clients/MathService_instance_notif/ValueListener \
http://127.0.0.1:8080/wsrf/services/examples/core/notifications/MathService

Note: Notice how we have to define a property called GLOBUS_LOCATION. This should be set to the
directory where GT4 is installed. We need to define this property because, as mentioned earlier, our
client is also going to act as a server. Therefore, it needs to know where all the Globus files are
located (some of which are necessary for it to work as a server).

If all goes well, you should see the following:

Waiting for notification. Ctrl-C to end.

Now, let’s compile the adder client:

javac \
-classpath $CLASSPATH:build/stubs/classes/ \
org/globus/examples/clients/MathService_instance_notif/ClientAdd.java

And run it:

java \
-classpath $CLASSPATH:build/stubs/classes/ \
org/globus/examples/clients/MathService_instance_notif/ClientAdd \
http://127.0.0.1:8080/wsrf/services/examples/core/notifications/MathService \
10

If all goes well, you should see the following:

119

Chapter 8. Notifications

Value RP: 10
LastOp RP: ADDITION

Now, if you check the console where the listener client is running, you should see the following:

A notification has been delivered
Old value:0
New value:10

You can try to run the adder client once more:

Value RP: 20
LastOp RP: ADDITION

And the following will be output by the listener.

A notification has been delivered
Old value:10
New value:20

120

III. GT4 Security
Before reading this part of the tutorial...

First of all, if you’ve been reading the tutorial from the beginning, and have successfully tried out all the
examples, then it’s time to sit back for a second and give yourself a pat on the back!

Ready to continue? We are now entering the next major part of this tutorial:GT4 Security. This part of
the tutorial assumes that the reader knows his way around GT4 Java WS Core and all the fundamental
concepts (how to compile a service, how to deploy it, etc.). This means some explanations won’t be as
detailed (to avoid being repetitious). One of the first things you’ll notice is that, since the examples are
starting to be quite long, complete code listings will be less frequent. Instead, relevant code sections will
be described. Therefore, you’ll need to download the complete code of the examples from the tutorial
website (http://gdp.globus.org/gt4-tutorial/) to try out the services by yourself.

Chapter 9. Fundamental Security Concepts
Working with the security components of GT4 requires, of course, a basic knowledge of certain
fundamental computer security concepts. If you are already familiar with concepts such as
authentication, authorization, public key cryptography, and certificate authorities, then you can safely
skip this chapter. If you’ve never dealt with secure communications, or feel your knowledge of these
concepts might be a bit rusty, then you should definitely read this chapter. However, take into account
that this chapter is meant as anoverviewof these concepts. Some readers, specially complete
newcomers, should consider reading some material that deals specifically with computer security:

• Practical Cryptography. Bruce Schneier. John Wiley & Sons, 2003.
http://www.schneier.com/book-practical.html.

• Applied Cryptography. Bruce Schneier. John Wiley & Sons, 1996.
http://www.schneier.com/book-applied.html.

What is a secure communication?
The first thing we have to ask ourselves is: Well, just whatis a secure communication? Newcomers to the
field of computer security tend to think that a ’secure communication’ is simply any communication
where data is encrypted. However, security encompasses much more than simply encrypting and
decrypting data.

The Three Pillars of a Secure Communication
Most authors consider the three pillars of a secure communication (or ’secure conversation’) to be
privacy, integrity, andauthentication. Ideally, a secure conversation should feature all three pillars, but
this is not always so (sometimes it might not even be desirable). Different security scenarios might
require different combination of features (e.g. "only privacy", "privacy and integrity, but no
authentication", "only integrity", etc.).

Note: You might stumble upon books and URLs which also talk about ’non-repudiation’, a feature
which some authors consider the ’fourth pillar’ of secure conversations. Since non-repudiation never
comes up in Globus literature, and because most authors tend to simply consider it a part of
’authentication’, we’ve chosen not to include it in this chapter.

Privacy

A secure conversation should beprivate. In other words, only the sender and the receiver should be able
to understand the conversation. If someone eavesdrops on the communication, the eavesdropper should
be unable to make any sense out of it. This is generally achieved by encryption/decryption algorithms.

For example, imagine we want to transmit the message "INVOKE METHOD ADD", and we want to
make sure that, if a third party intercepts that message (e.g. using a network sniffer), they won’t be able
to understand that message. We could use a trivial encryption algorithm which simply changes each

122

Chapter 9. Fundamental Security Concepts

letter for the next one in the alphabet. The encrypted message would be "JOWPLFANFUIPEABEE"
(let’s suppose ’A’ comes after the whitespace character). Unless the third party knew the encryption
algorithm we’re using, the message would sound like complete gibberish. On the other hand, the
receiving end would know the decryption algorithm beforehand (change each letter for thepreviousone
in the alphabet) and would therefore be able to understand the message. Of course, this method is trivial,
and encryption algorithms nowadays are much more sophisticated. We’ll look at some of those
algorithms in the next section.

Integrity

A secure communication should ensure theintegrityof the transmitted message. This means that the
receiving end must be able to knowfor surethat the message he is receiving is exactly the one that the
transmitting end sent him. Take into account that a malicious user could intercept a communication with
the intent of modifying its contents, not with the intent of eavesdropping.

’Traditional’ encryption algorithms don’t protect against these kind of attacks. For example, consider the
simple algorithm we’ve just seen. If a third party used a network sniffer to change the encrypted message
to "JAMJAMJAMJAMJAMJA", the receiving end would apply the decryption algorithm and think the
message is "I LI LI LI LI LI ". Although the malicious third party might have no idea what the message
contains, he is nonetheless able to modify it (this is relatively easy to do with certain network sniffing
tools). This confuses the receiving end, which would think there has been an error in the communication.
Public-key encryption algorithms (which we’ll see shortly)doprotect against this kind of attacks (the
receiving end has a way of knowing if the message it received is, in fact, the one the transmitting end
sent and, therefore, not modified).

Authentication

A secure communication should ensure that the parties involved in the communication are who they
claim to be. In other words, we should be protected from malicious users who try toimpersonateone of
the parties in the secure conversation. Again, this is relatively easy to do with some network sniffing
tools. However, modern encryption algorithms also protect against this kind of attacks.

Authorization
Another important concept in computer security, although not generally considered a ’pillar’ of secure
communications, is the concept ofauthorization. Simply put, authorization refers to mechanisms that
decide when a user isauthorizedto perform a certain task. Authorization is related to authentication
because we generally need to make sure that a user is who he claims to be (authentication) before we can
make a decision on whether he can (or cannot) perform a certain task (authorization).

For example, once we’ve ascertained that a user is a member of the Mathematics Department, we would
then allow him to access all the MathServices. However, we might deny him access to other services that
are not related to his department (BiologyService, ChemistryService, etc.)

Authorization vs. Authentication: It is very easy to confuse authentication and authorization, not
so much because they are related (you generally need to perform authentication on a user to make

123

Chapter 9. Fundamental Security Concepts

authorization decisions on that user), but because they sound alike! ("auth...ation") This is somewhat
aggravated by the fact that many people tend to shorten both words as "auth" (especially in
programming code). At this point, you might be saying to yourself: "That’s pretty silly, they’re different
concepts... I’m not going to confuse them just because they sound alike!" Well, believe me, it
happens, and quite a lot :-) When in doubt, remember that authentication refers to finding out if
someone’s identity is authentic (if they really are who they claim to be) and that authorization refers
to finding out is someone is authorized to perform a certain task.

Introduction to cryptography
Cryptography is "the art of writing in secret characters".Encryptingis the act of translating a ’normal
message’ to a message written with ’secret characters’ (also known as theencrypted message).
Decrypting is the act of translating a message written with ’secret characters’ into a readable message
(theunencrypted message). It is, by far, one of the most important areas in computer security, since
modern encryption algorithms can ensure all three pillars of a secure conversation: privacy, integrity, and
authentication.

Key-based algorithms
In the previous page we saw a rather simple encryption algorithm which simply substituted each letter in
a message by the next one in the alphabet. The decryption algorithm was, of course, substituting each
letter in the encrypted message with thepreviousletter in the alphabet. These kind of algorithms, based
on thesubstitutionof letters, are easily broken. Most modern algorithms, however, arekey-based.

A key-based algorithmuses anencryption keyto encrypt the message. This means that the encrypted
message is generated using not only the message, but also using a ’key’:

124

Chapter 9. Fundamental Security Concepts

Figure 9-1. Key-based encryption

The receiver can then use adecryption keyto decrypt the message. Again, this means that the decryption
algorithm doesn’t rely only on the encrypted message. It also needs a ’key’:

Figure 9-2. Key-based decryption

Some algorithms use the same key to encrypt and decrypt, and some do not. However, we’ll look into
this in more detail in the next page.

Let’s take a look at a simple example. To make things simpler, let’s suppose we’re not transmitting
alphanumerical characters, only numerical characters. For example, we might be interested in
transmitting the following message:

125

Chapter 9. Fundamental Security Concepts

1 2 3 4 5 6 5 4 3 2 1

We will now choose a key which will be used to encrypt the message. Let’s suppose the key is "4232".
To encrypt the message, we’ll repeat the key as many times as necessary to ’cover’ the whole message:

1 2 3 4 5 6 5 4 3 2 1

4 2 3 2 4 2 3 2 4 2 3

Now, we arrive at the encrypted message by adding both numbers:

1 2 3 4 5 6 5 4 3 2 1

+ 4 2 3 2 4 2 3 2 4 2 3

5 4 6 6 9 8 8 6 7 4 4

The resulting message (54669886744) is the encrypted message. We can decrypt following the inverse
process: Repeating the key as many time as necessary to cover the message, and thensubtractthe key
character by character:

5 4 6 6 9 8 8 6 7 4 4

- 4 2 3 2 4 2 3 2 4 2 3

1 2 3 4 5 6 5 4 3 2 1

Voilà! We’re back at the unencrypted message! Notice how it is absolutely necessary to have the
decryption key (in this case, the same as the encryption key) to be able to decrypt the message. This
means that a malicious user would need both the messageand the key to eavesdrop on our conversation.

Please note that this is a very trivial example. Current key-based algorithms aremuch moresophisticated
(for starters, keys are much longer, and the encryption process is not as simple as ’adding the message
and the key’). However, these complex algorithmsare basedon the same basic principle shown in our
example: a key is needed to encrypt/decrypt message.

Symmetric and asymmetric key-based algorithms
The example algorithm we’ve just seen falls into the category ofsymmetric algorithms. These type of
algorithm usesthe same keyfor encryption and decryption:

126

Chapter 9. Fundamental Security Concepts

Figure 9-3. Key-based symmetric algorithm

Although this type of algorithms are generally very fast and simple to implement, they also have several
drawbacks. The main drawback is that they only guarantee privacy (integrity and authentication would
have the be done some other way). Another drawback is that both the sender and the receiver need to
agree on the key they will use throughout the secure conversation (this is not a trivial problem).

Secure systems nowadays tend to useasymmetric algorithms, where a different key is used to encrypt
and decrypt the message.Public-key algorithms, which are introduced in the next section, are the most
commonly used type of asymmetric algorithms.

Public key cryptography
Public-key algorithms areasymmetricalgorithms and, therefore, are based on the use of two different
keys, instead of just one. In public-key cryptography, the two keys are called theprivate keyand the
public key

• Private key: This key must be knowonlyby its owner.

• Public key: This key is known to everyone (it ispublic)

• Relation between both keys: What one key encrypts, the other one decrypts, and vice versa. That
means that if you encrypt something with my public key (which you would know, because it’s public
:-), I would need my private key to decrypt the message.

A secure conversation using public-key cryptography
In a basic secure conversation using public-key cryptography, the sender encrypts the message using the

127

Chapter 9. Fundamental Security Concepts

receiver’spublickey. Remember that this key is known to everyone. The encrypted message is sent to the
receiving end, who will decrypt the message with hisprivatekey. Only the receiver can decrypt the
message because no one else has the private key. Also, notice how the encryption algorithm is the same
at both ends: what is encrypted with one key is decrypted with the other key using the same algorithm.

Figure 9-4. Key-based asymmetric algorithm

Pros and cons of public-key systems
Public-key systems have a clear advantage over symmetric algorithms: there is no need to agree on a
common key for both the sender and the receiver. As seen in the previous example, if someone wants to
receive an encrypted message, the sender only needs to know the receiver’s public key (which the
receiver will provide; publishing thepublickey in no way compromises the secure transmission). As
long as the receiver keeps the private key secret, no one but the receiver will be able to decrypt the
messages encrypted with the corresponding public key. This is due to the fact that, in public-key systems,
it is relatively easy to compute the public key from the private key, butvery hardto compute the private
key from the public key (which is the one everyone knows). In fact, some algorithms need several
months(and even years) of constant computation to obtain the private key from the public key.

128

Chapter 9. Fundamental Security Concepts

Figure 9-5. Public key generation

Another important advantage is that, unlike symmetric algorithms, public-key systems can guarantee
integrity and authentication, not only privacy. The basic communication seen above only guarantees
privacy. We will shortly see how integrity and authentication fit into public-key systems.

The main disadvantage of using public-key systems is that they are not as fast as symmetric algorithms.

Digital signatures: Integrity in public-key systems
Integrity is guaranteed in public-key systems by usingdigital signatures. A digital signature is a piece of
data which is attached to a message and which can be used to find out if the message was tampered with
during the conversation (e.g. through the intervention of a malicious user)

129

Chapter 9. Fundamental Security Concepts

Figure 9-6. Digital signatures

The digital signature for a message is generated in two steps:

1. A message digestis generated. A message digest is a ’summary’ of the message we are going to
transmit, and has two important properties: (1) It is always smaller than the message itself and (2)
Even the slightest change in the message produces a different digest. The message digest is
generated using a set of hashing algorithms.

2. The message digest is encrypted using the sender’sprivatekey. The resulting encrypted message
digest is thedigital signature.

130

Chapter 9. Fundamental Security Concepts

The digital signature is attached to the message, and sent to the receiver. The receiver then does the
following:

1. Using the sender’s public key, decrypts the digital signature to obtain the message digest generated
by the sender.

2. Uses the same message digest algorithm used by the sender to generate a message digest of the
received message.

3. Compares both message digests (the one sent by the sender as a digital signature, and the one
generated by the receiver). If they are notexactly the same, the message has been tampered with by a
third party. We can be sure that the digital signature was sent by the sender (and not by a malicious
user) becauseonly the sender’s public key can decrypt the digital signature (which was encrypted by
the sender’s private key; remember that what one key encrypts, the other one decrypts, and vice
versa). If decrypting using the public key renders a faulty message digest, this means that either the
message or the message digest are not exactly what the sender sent.

Using public-key cryptography in this manner ensures integrity, because we have a way of knowing if
the message we received is exactly what was sent by the sender. However, notice how the above example
guaranteesonly integrity. The message itself is sent unencrypted. This is not necessarily a bad thing: in
some cases we might not be interested in keeping the data private, we simply want to make sure it isn’t
tampered with. To add privacy to this conversation, we would simply need to encrypt the message as
explained in the first diagram.

Authentication in public-key systems
The above example does guarantee, to a certain extent, the authenticity of the sender. Sinceonly the
sender’s public key can decrypt the digital signature (encrypted with the sender’sprivatekey). However,
the only thing this guarantees is that whoever sent the message has the private key corresponding to the
public key we used to decrypt the digital signature. Although this public key might have been advertised
as belonging to the sender, how can we be absolutely certain? Maybe the sender isn’t really who he
claims to be, but just someone impersonating the sender.

Some security scenarios might consider that the ’weak authentication’ shown in the previous example is
sufficient. However, other scenarios might require that there is absolutely no doubt about a user’s
identity. This is achieved withdigital certificates, which are explained in the next page.

Certificates and certificate authorities
A digital certificateis a digital document thatcertifiesthat a certain public key is owned by a particular
user. This document is signed by a third party called thecertificate authority(or CA). Figure 9-7might
help you get an idea of what a digital certificate is.

131

Chapter 9. Fundamental Security Concepts

Figure 9-7. A digital certificate

Of course, the certificate is encoded in a digital format (no, you don’t get a paper diploma so you can
brag to your pals that "you really are who you claim to be" :-) The important thing to remember is that
the certificate issignedby a third party (the certificate authority) which does not itself take place in the
secure conversation. The signature is actually a digital signature generated with the CA’s private key.
Therefore, we can verify the integrity of the certificate using the CA’s public key.

It’s all about trust
Having a certificate to prove to everyone else that your public key is really, truly, honestly yours allows
us to conquer the third pillar of a secure conversation: authentication. If you digitally sign your message
with your private key, and send the receiver a copy of your certificate, he can know for sure that the
message was sent byyou(because only your public key can decrypt the digital signature... and the
certificate assures that the public key the receiver uses is yours and no one else’s)

However, all this is true supposing youtrust the certificate. To be more exact, you have totrust the CA
that signs the certificate. Believe it or not, there are no fancy algorithms to decide when a CA is
trustworthy... you must decide by yourself whether you trust or don’t trust a CA. This means that the
public-key system you use will generally have a list of ’trusted CAs’, which includes the digital
certificates of those CAs you will trust (each of these certificates, in turn, include the CA’s public key, so
you can verify digital signatures).

You have to decide which CAs make it into the list. Some CAs are so well known that they are included
by default in many public-key systems (for example, web browsers usually include VeriSign
(http://www.verisign.com) and GlobalSign (http://www.globalsign.com) certificates, because many
websites use certificates issued by those companies to authenticate themselves to web browsers). Of
course, you can add other CAs to the ’trusted list’. For example, if your department sets up a CA, and
you trust that the department’s CA will only issue certificates to trustworthy people, then you could add
it to the list.

132

Chapter 9. Fundamental Security Concepts

X.509 certificate format
Now that we’ve gone through the basics, let’s take a look at the format in which digital certificates are
encoded: the X.509 certificate format. An X.509 certificate is a plain text file which includes a lot of
information in a very specific syntax. That syntax is beyond the scope of this document, and we’ll simply
mention the four most important things we can find in an X.509 certificate:

• Subject: This is the ’name’ of the user. It is encoded as adistinguished name(the format for
distinguished names will be explained next)

• Subject’s public key: This includes not only the key itself, but information such as the algorithm used
to generate the public key.

• Issuer’s Subject: CA’s distinguished name.

• Digital signature: The certificate includes a digital signature of all the information in the certificate.
This digital signature is generated using the CA’s private key. To verify the digital signature, we need
the CA’s public key (which can be found in the CA’s certificate).

As you can see, the information we can find in an X.509 certificate is the same which was shown in the
illustration at the beginning of this page (name, CA’s name, public key, CA’s signature). Notice how the
certificate, however, doesnot include the private key, which must be kept separate from the public key.
Remember that the certificate is a public document we want to be able to distribute to other users so they
can verify our identity, so we don’t want to include the private key (which must be known only by the
owner of the certificate). When we are in possesion of both a certificate and its associated private key,
these two items are generally refered to as the user’scredentials .

Distinguished names

Names in X.509 certificates are not encoded simply as ’common names’, such as "Borja Sotomayor",
"Lisa Childers", "Certificate Authority XYZ", or "Systems Administrator". They are encoded as
distinguished names, which are a comma-separated list of name-value pairs. For example, the following
could be our distinguished names:

O=University of Chicago, OU=Department of Computer Science, CN=Borja Sotomayor

O=Argonne National Laboratory, OU=Mathematics and Computer Science Division, CN=Lisa Childers

So what do "O", "OU", and "CN" mean? A distinguished name can have several different attributes, and
the most common are the following:

• O : Organization

• OU : Organizational Unit

• CN : Common Name (generally, the user’s name)

• C : Country

133

Chapter 9. Fundamental Security Concepts

CA hierarchies
We mentioned earlier that your ’trusted CA list’ includes the certificates of all the CAs you decided to
trust. At that point, you might have asked yourself: And who signs the CA’s certificate? The answer is
very simple: Another CA! This allows for hierarchies of CAs to be created, in such a way that although
you might not explicitly trust a CA (because it’s not in your list), you might trust the higher-level CA that
signed its certificate (which makes the lower-level CA trustworthy).Figure 9-8might make things a bit
clearer.

134

Chapter 9. Fundamental Security Concepts

Figure 9-8. Digital certificate chain of verification

135

Chapter 9. Fundamental Security Concepts

In the illustration, Borja’s certificate is signed by Certificate Authority FOO. Certificate Authority FOO’s
certificate is, in turn, signed by Certificate Authority BAR. Finally, BAR’s certificate is signed by itself
(we’ll get to this in a second).

If you receive Borja’s certificate, and don’t explicitly trust CA FOO (the issuer of my certificate), this
doesn’t automatically mean the certificate isn’t trustworthy. You might check to see if CA FOO’s
certificate was issued by a CA youdo trust. If it turns out that CA BAR is in your ’trusted list’, then that
means that Borja’s certificate is trustworthy.

However, notice that the higher-level CA (BAR) has signed its own certificate. This is not uncommon,
and is called aself-signed certificate. A CA with a self-signed certificate is called aroot CA, because
there’s ’no one above it’. To trust a certificate signed by this CA, it must necessarily be in your ’trusted
CA list’.

136

Chapter 10. GSI: Grid Security Infrastructure
This chapter introduces the Grid Security Infrastructure, the basis for GT4’s Security layer. A working
knowledge of fundamental security concepts is assumed in this chapter. If you’ve read the previous
chapter, you should be fine. If you haven’t, but you know how public-key cryptography, certificates, and
certificate authorities work, then you should also be fine.

Introduction to GSI
If you’re familiar with Grid Computing, you probably know that security is one of the most important
parts of a Grid application. Since a grid implies crossing organizational boundaries, resources are going
to be accessed by a lot of different organizations. This poses a lot of challenges:

• We have to make sure that only certain organizations can access our resources, and that we’re 100%
sure that those organizations are really who they claim to be. In other words, we have to make sure
that everyone in our grid application is properlyauthenticated.

• We’re going to bump into some pretty interesting scenarios. For example, suppose organization
AliceOrg asks BobOrg to perform a certain task. BobOrg, on the other hand, realizes that the task
should bedelegatedto organization CharlieOrg. However, let’s suppose CharlieOrg only trusts
AliceOrg (and not BobOrg). Should CharlieOrg turn down the request because it comes from BobOrg,
or accept it since the ’original’ requestor is AliceOrg?

• Depending on our application, we may also be interested in assuring dataintegrityandprivacy,
although in a grid application this is generally not as important as authentication.

The Globus Toolkit 4 allows us to overcome the security challenges posed by grid applications through
theGrid Security Infrastructure(or GSI). GSI is composed of a set of command-line tools to manage
certificates, and a set of Java classes to easily integrate security into our web services. GSI offers
programmers the following features, which we will discuss in the next sections:

• Transport-level and message-level security

• Authentication through X.509 digital certificates

• Several authorization schemes

• Credential delegation and single sign-on

• Different levels of security: container, service, and resource

Transport-level and message-level security
GSI allows us to enable security at two levels: thetransportlevel or themessagelevel. To explain the
difference between these two levels, let’s suppose we want our communication to be private. If we use
transport-level security, as shown inFigure 10-1, then the complete communication (all the information
exchanged between the client and the server) would be encrypted. If we use message-level security, as

137

Chapter 10. GSI: Grid Security Infrastructure

shown inFigure 10-2, then only thecontentof the SOAP message is encrypted, while the rest of the
SOAP message is left unencrypted.

Figure 10-1. Transport-level security

Figure 10-2. Message-level security

Both transport-level and message-level security in GSI are based on public-key cryptography and,
therefore, can guarantee privacy, integrity, and authentication. However, not all communications need to
have those three features all at once. In general, a GSI secure conversation mustat leastbe authenticated.
Integrity is usually desirable, but can be disabled. Encryption can also be activated to ensure privacy. As
soon as we start programming secure services, we’ll see how using these features is as easy as adding a
few lines in the client indicating that (for example) we want to use integrity, but not encryption during
the communication.

Message-level vs. Transport-level performance: Transport-level security has been around for a
long time and, in fact, chances are that you’ve already used it when browsing the Web, since secure
websites rely on transport-level security. Message-level security in Web Services is relatively new
and, although it offers more features than transport-level security (e.g. a better integration with Web
Services standards), its performance still leaves a bit to be desired. So, even though we would
ideally like to use message-level security for everything (because of its feature-rich goodness), we
will sometimes have to consider using transport-level security if performance is an issue. In fact,
transport-level security is used by default in the Globus Toolkit.

GSI offers two message-level protection schemes, and one transport-level scheme. The differences
between these three schemes are highlighted inTable 10-1.

• GSI Secure Message: Provides message-level security and is based on the proposed WS-Security
standard.

• GSI Secure Conversation: Provides message-level security and is based on the
WS-SecureConversation specification. When this method is chosen, asecure contextis first

138

Chapter 10. GSI: Grid Security Infrastructure

established between the client and the server. After an initial exchange of messages to establish the
context, all the following messages can reuse that context, resulting in a better performance than GSI
Secure Message (if the overhead of setting up the context is acceptable). Furthermore, GSI Secure
Conversation is the only scheme that supports credential delegation (explained further on).

• GSI Transport : Provides transport-level security by using TLS (formerly known as SSL). It provides
the best performance and is used by default in GT4.

These schemes arenot mutually exclusive. For example, we might choose to use GSI Secure
Conversation because our application requires delegation, and then add GSI Transport on top of that
because we want to encrypt the complete communication (not just a part of the SOAP message). Note
that this doesn’t result in any redundancy, since we could configure GSI Transport to use encryption and
GSI Secure Conversation tonot use encryption.

Table 10-1. Comparison of transport-level and message-level security

GSI Secure Conversation GSI Secure Message GSI Transport

Technology WS-SecureConversation WS-Security TLS

Privacy (Encrypted) YES YES YES

Integrity (Signed) YES YES YES

Anonymous authentication YES NO YES

Delegation YES NO NO

Performance Good if sending many messages Good if sending few messages Best

Authentication
GSI supports three authentication methods:

• X.509 certificates: All three protection schemes seen above can be used along with X.509 certificated
to provide strong authentication (as seen in).

• Username and password: A more rudimentary form of authentication, using usernames and
passwords, can also be used. However, when using usernames and password, we will not be able to
use features like privacy, integrity, and delegation. This form of authentication is not covered in the
tutorial (you can refer to the official Globus documentation for more details on how to use it).

• Anonymous authentication: We can request that a communication be anonymous, or
unauthenticated. Anonymous generally makes sense when we are using more than one security
scheme. For example, we can use GSI Secure Conversation (authenticated with X.509 certificates) and
anonymous GSI Transport, so that we don’t perform an additional (redundant) authentication.

Note: Since unauthenticated communications are not commonly used, the Globus literature
generally uses the term authentication methods to refer directly to GSI Secure Conversation, GSI
Secure Message, and GSI Transport. We will follow this same convention throughout the rest of the
tutorial.

139

Chapter 10. GSI: Grid Security Infrastructure

Authorization
Although authorization is not one of the ’fundamental pillars’ of a secure conversation, it is nonetheless
an important part of GSI. Authorization refers to who isauthorizedto perform a certain task. In a Web
services context, we will generally need to know who is authorized to use a certain web service.

GSI supports authorization in both the server-side and the client-side. Several authorization mechanisms
are already included with the toolkit, but we will also be able to implement our own authorization
mechanisms.

Server-side authorization
The server has six possible authorization modes. Depending on the authorization mode we choose, the
server will decide if it accepts or declines an incoming request.

• None: This is the simplest type of authorization. No authorization will be performed.

• Self: A client will be allowed to use a service if the client’s identity is the same as the service’s identity.

• Gridmap : A gridmap is a list of ’authorized users’ akin to an ACL (Access Control List). . When this
type of authorization is used, only the users that are listed in the service’s gridmap may invoke it.

• Identity authorization : A client will be allowed to access a service if the client’s identity matches a
specified identity. In a sense, this is like having a one-user gridmap (except that identity authorization
is configured programmatically, whereas the gridmap is represented as a file in our system).

• Host authorization: A client will be allowed to access a service if it presents a host credential that
matches a specified hostname. In other words, we will only allow requests coming from one particular
host.

• SAML Callout authorization : We can delegate the authorization decision to an OGSA
Authorization-compliant authorization service. OGSA-Authz
(http://forge.gridforum.org/projects/ogsa-authz) is a GGF working group whose goal is to specify
standard authorization components. One of the main technologies used in these components is SAML
(Security Assertion Markup Language).

Client-side authorization
This allows the client to figure out when it will allow a service to be invoked. This might seem like an
odd type of authorization, since authorization is generally seen from the server’s perspective ("Do I allow
client FOO to connect to grid service BAR?"). However, in GSI, clients have every right to be picky
about the services they can access.

• None: No authorization will be performed.

• Self: The client will authorize an invocation if the service’s identity is the same as the client.

• Identity authorization : As described above, the client will only allow requests to be sent to services
with a specified identity.

• Host: The client will authorize an invocation if the service has a host credential. Furthermore, the
client must be able to resolve the address of the host to the hostname specified in the host credential.

140

Chapter 10. GSI: Grid Security Infrastructure

Note that this is different from server-side host authorization, where we check if the hostname in the
credential is equal to a host specified by us.

Custom authorization
GSI provides an infrastructure to easily plug in our own authorization mechanisms. For example, our
organization might be using a legacy authorization service that can’t work out-of-the-box with the
authorization methods provided by the toolkit. In this case, we can create a new authorization method
that will allow GSI to make authorization decisions based on our organization’s legacy service.

Delegation and single sign-on (proxy certificates)
Credential delegation and single sign-on are one of the most interesting features of GSI, and are possible
thanks to something calledproxy certificates. Before looking into these concepts in detail, let’s first take
a look at the problem they solve.

The problem
When introducing GSI, an interesting scenario was described, as shown inFigure 10-3

Figure 10-3. A scenario where delegation is necessary

AliceOrg asks BobOrg to perform a task. Since BobOrg trusts AliceOrg, it accepts to perform the task.
But let’s suppose that task Z is very complex, and that one of its subtasks (Y) must be performed by a
third organization: CharlieOrg. In this case, BobOrg will ask CharlieOrg to perform subtask Y but, alas!,
CharlieOrg only trusts AliceOrg. What should CharlieOrg do? It has two options:

• Turn down BobOrg’s request. CharlieOrg doesn’t trust BobOrg, and that’s that.

141

Chapter 10. GSI: Grid Security Infrastructure

• Accept BobOrg’s request. The ’original’ requester is AliceOrg so, although CharlieOrg is answering
a request from BobOrg, it will actually be carrying out a job for AliceOrg.

In this situation, it seems logical that CharlieOrg shouldacceptBobOrg’s request. However, CharlieOrg
has to know that BobOrg’s request is performed on behalf of AliceOrg, as shown inFigure 10-4.

Figure 10-4. Delegation

Of course, this is not a very secure solution, sinceanyonecould claim to be acting on AliceOrg’s behalf!
One possible solution would be for CharlieOrg to contact AliceOrg every time it receives a request on
AliceOrg’s behalf. However, this could be a bit of a nuisance. Imagine that task Z is composed of 20
different subtasks, and that each subtask is dispatched to a different organization by BobOrg. AliceOrg
would be flooded with messages saying "BobOrg just asked me to perform a task on your behalf... can
you confirm that this is correct?". In response, AliceOrg would have to authenticate itself with all those
organizations and give a confirmation.

A more elegant solution would be to somehow make CharlieOrg believe that BobOrgis AliceOrg. In
other words, it would interesting to find a legitimate way for BobOrg to demonstrate that it is, in fact,
acting on AliceOrg’s behalf. One way of doing this would be for AliceOrg to ’lend’ its public and private
key pair to BobOrg. However, this is absolutely out of the question. Remember, the private key has to
remainsecret, and sending it to another organization (no matter how much you trust them) is abig
breach in security. What we really need is a special type of certificate like the one shown inFigure 10-5.

142

Chapter 10. GSI: Grid Security Infrastructure

Figure 10-5. A proxy certificate

The solution: proxy certificates
The certificate shown inFigure 10-5is aproxy certificate. Webster’s Dictionary defines ’proxy’ as "The
instrument by which a person is empowered to transact the affairs of another". As you can see in the
picture, the proxy certificate allows the holder of the certificate to act on A’s behalf. In fact, it’s very
similar to the X.509 digital certificates seen in , except that it’s not signed by a Certificate Authority; it’s
signed by an end user. We can be sure that the certificate is authentic by checking its signature
(Organization A digitally signs the certificate, as described in).

But, what about the proxy certificate’s public key? Whose public key is it? Organization A’s?
Organization B’? The answer is ’neither’. A proxy certificate has a private-public key pair generated
specifically for the proxy certificate. This private-public key pair is mutually agreed upon by both parties
(in this case, A and B), and Organization A will only allow the holder ofthat private-public key pair to
act on its behalf (in this case, B). The exact mechanism by which the proxy certificate is generated by A
and B will be explained later on.

There is, however, something missing from the picture. Allowing someone to actunconditionallyon
your behalf is a risky affair. Sure, you might trust them now, for the particular task you want to do, but
someone from Organization B might use the proxy certificate in the future to carry out some mischievous
deeds on your behalf. Therefore, the lifetime of the certificate is usually very limited (for example, to 12
hours). This means that, if the proxy certificate is compromised, the attacker won’t be able to make much
use of it. Furthermore, proxy certificates extend ordinary X.509 certificates with extra security features to
limit their functionality even more (for example, by specifying that a proxy certificate can only be used
for certain tasks). Summing up, a more correct representation of a proxy certificate would be the one
shown inFigure 10-6.

143

Chapter 10. GSI: Grid Security Infrastructure

Figure 10-6. A proxy certificate with a limited lifetime

What the solution achieves: Delegation and single sign-on
(and more)
A proxy certificate allows a user to act on another user’s behalf. This is more properly calledcredential
delegation, since proxy certificates allow a user to effectivelydelegatea set of credentials (the user’s
identity) to another user. This solves the problem originally posed, since B could use a proxy certificate
(signed by A, of course) to prove that it is acting on A’s behalf. Organization C would then accept B’s
request.

By using proxy certificates we also get another desirable feature:single sign-on. Without proxy
certificates, Organization A would have to authenticate itself with all the organizations that receive
requests ’on behalf of A’. In practice, this mean that the user in Organization A with permission to read
the private key would have to access the key each time a mutual authentication is needed. Since private
keys are usually protected by a password, this means that the user would have tosign on(provide the
password) to access the key and perform authentication. Using proxy certificates, the user only has to
sign inonceto create the proxy certificate. The proxy certificate is then used for all subsequent
authentications.

Finally, although we’ve centered on the advantages of proxy certificates for delegation, these certificates
have other features that make them interesting for other purposes. For example, they can be used locally:
generating a proxy certificate that authorizes myself to act on my behalf. This might sound silly, but is
actually very useful since I can use the proxy certificate for all my secure conversations, instead of using
my public-private key pair directly. This reduces the risk of having my conversations compromised

144

Chapter 10. GSI: Grid Security Infrastructure

because an attacker would only have a chance to crack the proxy’s key pair, and not my personal one
(which would only be used to generate the proxy certificate).

The specifics
At this point, you might be truly impressed at how masterfully proxy certificates allow us to delegate
credentials in a completely secure manner. Then again, maybe not :-) If you are not willing to take a leap
of faith when we say "Proxy certificates are really nifty!", and are not totally convinced that they are
secure, this section gives a much more detailed look at the process of creation and validation of a proxy
certificate. You can safely skip it unless you really really really need a more detailed explanation.

How a proxy certificate is generated

We’ve said that a proxy certificate can be used to delegate a user’s credentials to another, different user.
How is this achieved in a secure manner? For example, let’s suppose that (as shown inFigure 10-3) B
needs A’s credentials so it can make a request to C. B, therefore, needs a proxy certificate signed by A.
Let’s take a close look at the process used to generate that certificate.

1. B generates a public/private key pair for the proxy certificate.

2. B uses the key pair to generate a certificate request, which will be sent to A using a secure channel.
This certificate request includes the proxy’s public key, butnot the private key.

3. Supposing A agrees to delegate its credentials to B, Organization A will use its private key to
digitally sign the certificate request.

4. A sends the signed certificate back to B using a secure channel.

5. B can now use the proxy certificate to act on A’s behalf.

Notice how the proxy’s private key is never transmitted between A and B. This is also true of A’s private
key.

Validation of a proxy certificate

Now let’s take a look at C. When B sends a request ’on behalf of A’, and sends C the proxy certificate,
how can C validate the proxy certificate? In other words, how can C be absolutely sure that Bis acting on
A’s behalf?

The process of validating a proxy certificate is practically identical to the process of validating an
ordinary certificate, as described in . The main difference is that the proxy certificate is not signed by a
Certificate Authority, it’s signed by a user. In our example, the proxy certificate is signed by A, which
means that we need A’s public key to test its authenticity. Since C is unlikely to have A’s certificate, a
request that uses a proxy certificate generally also sends the delegator’s certificate, so the proxy
certificate can be validated. Since the delegator’s certificate will be signed by a Certificate Authority, the
only step left is to validate the Certificate Authority’s signature.Figure 10-7shows the chain of
signatures that we could find in a proxy certificate.

145

Chapter 10. GSI: Grid Security Infrastructure

Figure 10-7. Validation of a proxy certificate

146

Chapter 10. GSI: Grid Security Infrastructure

More on proxy certificates

There’s a lot more to proxy certificates than what has been explained in this chapter. For example, you
can use proxy certificates to sign other proxy certificates. However, for the purposes of this tutorial , the
material covered here should be enough. If you want to take a closer look at proxy certificates, and
everything that can be done with them, we highly recommend reading RFC 3820, Internet X.509 Public
Key Infrastructure Proxy Certificate Profile, available at http://www.ietf.org/rfc/rfc3820.txt.

Container, service, and resource security
Finally, it should be noted that many of the features described in this chapter can be specified at three
levels: container, service, and resource level. Of special interest is the fact that we can configure security
at the resource level. For example, we can set different authorization mechanisms for a service and its
resources, so that stateless operations can be performed without authorization, but stateful operations do
require an authorized user.

Throughout the following chapters, we will see exactly what can be configured at each of the three levels.

147

Chapter 11. Writing a Secure Math Service
In this chapter we will add security to our MathService example. We will see that, once we have
configured GSI, adding basic security to a service is very simple. The example in this chapter will
highlight the changes necessary to make a service secure. In particular, the code will be similar to the
singleton example seen in . In the following chapters, we will continue to build on this example as we
take a closer look at more elaborate security scenarios.

Note: This chapter assumes that you have set up security in GT4 as explained in the official
installation guide (http://globus.org/toolkit/docs/4.0/admin/docbook/). In particular, to work through all
the following examples, you will need to make sure you have two separate users: a special globus

account and a normal user account which we will call globus4user (this can be your normal user
account). The user account must have a valid digital certificate.

A secure service

The service interface
Adding security to a service doesnot affect the service interface. However, for the purposes of this
example, and the following examples, we will be using a new MathService interface with 4 operations
(add , subtract , multiply , anddivide). We are simply doing this because, further on, it will allow
us to configure each operation with a different security configuration (and four simply happens to be a
convenient number of operations).

Note: The WSDL file for this example can be found here:
$EXAMPLES_DIR/schema/examples/MathService_instance_4op/Math.wsdl

The service implementation
At this point, we don’t have to modify the service implementation either, since we will be able to add
security simply by modifying the WSDD file. However, wewill be adding a private method
logSecurityInfo to the service class to print out certain security information.

Note: The code for the service can be found in
$EXAMPLES_DIR/org/globus/examples/services/security/first/impl/MathService.java

The code for the resource can be found in
$EXAMPLES_DIR/org/globus/examples/services/security/first/impl/MathResource.java

The code for the resource home can be found in
$EXAMPLES_DIR/org/globus/examples/services/security/first/impl/MathResourceHome.java

148

Chapter 11. Writing a Secure Math Service

First, let’s take a look at thelogSecurityInfo method. This method will print out a lot of security
information. At this point, we are only interested in a snippet of code that prints out the client’s identity.
This will allow us to verify that authentication is taking place and that the service correctly receives the
client’s credentials. In the following chapters, we will see what the rest oflogSecurityInfo prints out,
and what that information means.

private void logSecurityInfo(String methodName)
{
Subject subject;
logger.info("SECURITY INFO FOR METHOD ’" + methodName + "’");

// Print out the caller
String identity = SecurityManager.getManager().getCaller();
logger.info("The caller is:" + identity);

// Print out more security information
}

Next, the implementation of the remote operations is exactly the same as in a non-secure service. The
only difference is that we will be calling thelogSecurityInfo method in each of them. For example,
theadd method looks like this:

public AddResponse add(int a) throws RemoteException {
logSecurityInfo("add");

MathResource mathResource = getResource();
mathResource.setValue(mathResource.getValue() + a);
mathResource.setLastOp("ADDITION");

return new AddResponse();
}

Finally, remember that, strictly speaking, we are not modifying the Java files at all. We are simply adding
some logging code to keep track of what’s happening in the service. At this point, adding security will
affect only the deployment files. Later on, more complicated security scenarios will require that we
modify the service implementation.

The security descriptor
The heart of a secure service is itssecurity descriptor. This file specifies the security configuration for a
service. One of the really neat things about the security descriptor is that it centralizes practically all the
security configuration for a service. So, if we decide to modify some security aspects of a service, we
will only need to modify the security descriptor,not the Java files.

In the next chapter, we will take a much closer look at this special file and its syntax. For now, we will be
using the following security descriptor:

<securityConfig xmlns="http://www.globus.org">

149

Chapter 11. Writing a Secure Math Service

<authz value="none"/>

</securityConfig>

Note: This is file
$EXAMPLES_DIR/org/globus/examples/services/security/first/etc/security-config-first.xml

This security descriptor simply specifies that we will not be performing any authorization (none). As we
will see in the next chapter, the fact that we have not specified anything else basically means that the
client will be free to use any type of security it wants. For example, we will be configuring our client to
use GSI Secure Conversation.

Of course, we’ll need to tell our service that we want it to use that security descriptor. To do this, we have
to add the following parameter to the WSDD file. Notice that the path to the security descriptor is relative
to $GLOBUS_LOCATION.

<parameter name="securityDescriptor"
value="etc/org_globus_examples_services_security_first/security-config-first.xml"/>

Note: The WSDD file for this service is
$EXAMPLES_DIR/org/globus/examples/services/security/first/deploy.wsdd

Our service’s name is "examples/security/first/MathService" .

A secure client
The client used to invoke the secure service will be almost identical to all the clients seen so far. The only
difference is that we will be instructing the client to use GSI Secure Conversation with encryption and no
client-side authorization. Believe it or not, this requires two simple lines of code:

➊

((Stub)math)._setProperty(Constants.GSI_SEC_CONV,Constants.ENCRYPTION);
➋

((Stub)math)._setProperty(Constants.AUTHORIZATION,NoAuthorization.getInstance());

➊ We’re telling the stub to use GSI Secure Conversation with encryption.

➋ We’re telling the stub to use noclient-sideauthorization. Remember that there is a difference in GSI
between client-side and server-side authorization. Take a look at the .

Besides those two lines, the rest of the client is practically identical to the ones we’ve already seen. The
only difference is that we will be putting the calls to the remote operations insidetry...catch blocks
to observe how certain exceptions are raised in certain circumstances (we’ll see this in the following
chapters).

150

Chapter 11. Writing a Secure Math Service

package org.globus.examples.clients.MathService_instance_4op;

import javax.xml.rpc.Stub;

import org.apache.axis.message.addressing.Address;
import org.apache.axis.message.addressing.EndpointReferenceType;

import org.globus.axis.util.Util;
import org.globus.examples.services.security.first.impl.MathQNames;
import org.globus.examples.stubs.MathService_instance_4op.MathPortType;
import org.globus.examples.stubs.MathService_instance_4op.service.MathServiceAddressingLocator;
import org.globus.wsrf.impl.security.authorization.NoAuthorization;
import org.globus.wsrf.security.Constants;
import org.oasis.wsrf.properties.GetResourcePropertyResponse;

public class Client_GSISecConv_Encrypt {

public static void main(String[] args) {
MathServiceAddressingLocator locator = new MathServiceAddressingLocator();
GetResourcePropertyResponse valueRP;
String value;

try {
String serviceURI = args[0];

// Create endpoint reference to service
EndpointReferenceType endpoint = new EndpointReferenceType();
endpoint.setAddress(new Address(serviceURI));
MathPortType math = locator.getMathPortTypePort(endpoint);

// Get PortType
math = locator.getMathPortTypePort(endpoint);

// Setup security options
((Stub)math)._setProperty(Constants.GSI_SEC_CONV,Constants.ENCRYPTION);
((Stub)math)._setProperty(Constants.AUTHORIZATION,NoAuthorization.getInstance());

// Perform an addition
try {
math.add(60);
System.out.println("Addition was successful");
} catch (Exception e) {
System.out.println("[add] ERROR: " + e.getMessage());
}

/* Similar calls to subtract(), multiply(), divide(), and getResourceProperty */

} catch (Exception e) {
e.printStackTrace();
}
}
}

151

Chapter 11. Writing a Secure Math Service

Note: This file is
$EXAMPLES_DIR/org/globus/examples/clients/MathService_instance_4op/Client_GSISecConv_Encrypt.java

Trying it out
We are now ready to give this secure service a try.

Compile and deploy
First of all, we’ll need to build the service:

./globus-build-service.sh sec_first

Now, we have to deploy it. Remember that you have to do this from theglobus account:

globus-deploy-gar $EXAMPLES_DIR/org_globus_examples_services_security_first.gar

Starting the container
At this point you might be thinking that we will now be running the containerwithout the-nosec flag
we’ve been using so far to "deactivate security". Well, you thought wrong! :-)

globus-start-container -nosec

At this point, we can clarify what the-nosec flag does. It only deactivatestransport-levelsecurity, but
not message-level security. So, we can still use GSI Secure Conversation and GSI Secure Message. The
reason why we’re not using transport-level security (yet) is because, as part of our test of this service, we
will be using a tool included with the Globus Toolkit that can intercept the SOAP messages. However,
this tool won’t work if we use transport-level security, so you should use the-nosec flag if you want to
participate in our little experiment. In the following chapters, on the other hand, you can use the-nosec

flag at your discretion (unless otherwise noted).

Compiling the client
Let’s compile the client:

javac \
-classpath ./build/stubs/classes/:$CLASSPATH \
org/globus/examples/clients/MathService_instance_4op/Client_GSISecConv_Encrypt.java

152

Chapter 11. Writing a Secure Math Service

Running the client
Before running the client, we will need to create a proxy certificate for our user account. We have to do
this because the default behavior in the client-side is to use a proxy certificate for authentication. In the
next chapter we will see how we can configure a client to use a specific set of credentials, instead of
using a proxy certificate.

To create a proxy certificate, run the following from your user account:

grid-proxy-init

You will see the following:

Your identity: /O=Globus/OU=GT4 Examples/CN=Globus 4 User
Enter GRID pass phrase for this identity:

The password you must enter is the one you entered when creating your user certificate (as described in
the official installation guide (http://globus.org/toolkit/docs/4.0/admin/docbook/)). Once you’ve entered
the password, you will see the following:

Creating proxy .. Done
Your proxy is valid until: Sun Apr 24 04:28:26 2005

Warning
Globus proxy certificates expire by default in 12 hours. If you get a "proxy expired"
or "no valid credentials found" error message later on, this probably means that
your proxy certificate has expired. Simply create a new one using
grid-proxy-init .

Now, run the client:

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.MathService_instance_4op.Client_GSISecConv_Encrypt \
http://127.0.0.1:8080/wsrf/services/examples/security/first/MathService

If all goes well, you should see this in the client side:

Addition was successful
Subtraction was successful
Multiplication was successful
Division was successful
Current value: 20

And the following on the server side:

SECURITY INFO FOR METHOD ’add’
The caller is: /O=Globus/OU=GT4 Examples/CN=Globus 4 User

... other security information ...

153

Chapter 11. Writing a Secure Math Service

Note: Remember that the logSecurityInfo will also print out a lot of other information. Don’t worry
about that information right now. It will be explained later on.

Notice how the service has correctly authenticated the client, and prints out its distinguished name:
/O=Globus/OU=GT4 Examples/CN=Globus 4 User .

Does this really work?
After all the work we’ve gone through to setup security, you might be a bit disappointed. After all, we’ve
gone through all the trouble of setting up a CA and some certificates to end up writing a MathService
client that behaves just like all the other MathService clients we’ve already seen in the tutorial. Ho hum.
You’re probably asking yourself: "Yeah, but is this really doing all that encryption thingy?"

To empirically prove that it is doing the ’encryption thingy’, we are going to use an Apache Axis tool
called TCPMonitor that is included with the toolkit. This tool allows us to intercept the data that is sent
from the client to the server (and vice versa). We will see how the information is, in fact, encrypted.

To start TCPMonitor, run this:

java org.apache.axis.utils.tcpmon 8081 localhost 8080

This starts an instance of the TCPMonitor (Figure 11-1). What the monitor will do is listen on port 8081
and redirect all the traffic it receives on that port to port 8080 (which is where our container is listening).
This means that TCPMonitor acts like a proxy, not like a sniffer, so we’ll have to tell our client to make
the invocation on port 8081 to be able to see what kind of data is being sent.

154

Chapter 11. Writing a Secure Math Service

Figure 11-1. TCPMonitor interface (1)

Note: Make sure you check the "XML Format" box in TCPMonitor. This will make reading the
messages much easier.

155

Chapter 11. Writing a Secure Math Service

Let’s run the client again. Make sure to change ’8080’ for ’8081’ so that the invocation will go through
the TCPMonitor. Otherwise, we won’t be able to see it.

java \
-classpath ./build/stubs/classes/:$CLASSPATH \
org.globus.examples.clients.MathService_instance_4op.Client_GSISecConv_Encrypt \
http://127.0.0.1: 8081 /wsrf/services/examples/security/first/MathService

Once you’ve invoked the service, the TCPMonitor will reflect that it has intercepted some connections on
port 8081 (Figure 11-2). The top list shows a list of the connections. You can select any of them to see
what was sent to the server (top text area) and what the server replied to the client (bottom text area).

156

Chapter 11. Writing a Secure Math Service

Figure 11-2. TCPMonitor interface (2)

Five calls and eight connections... huh?: TCPMonitor should show 8 connections. This might
seem a bit odd considering that our client only makes five calls to MathService (add , subtract ,
multiply , divide , and getResourceProperty). However, remember that we’re using GSI Secure
Conversation.

157

Chapter 11. Writing a Secure Math Service

As described in the previous chapter, GSI Secure Conversation involves the creation of a security
context before the client and server can actually communicate. This accounts for the first three
connections. The client and server are agreeing on the details of the secure context. Once the
context is created, the calls can proceed as normal.

Let’s take a look at the fourth connection, corresponding to theadd invocation:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing" xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
<wsse:Security

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
soapenv:mustUnderstand="1">

<wsc:SecurityContextToken xmlns:wsc="http://schemas.xmlsoap.org/ws/2004/04/sc"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="SecurityContextToken-15021407">

<wsc:Identifier>8439eb60-b079-11d9-bf45-98ad001497de</wsc:Identifier>
</wsc:SecurityContextToken>
<xenc:ReferenceList>

<xenc:DataReference URI="#EncDataId-749304"></xenc:DataReference>
</xenc:ReferenceList>

</wsse:Security>
<wsa:MessageID soapenv:mustUnderstand="0">uuid:837bf290-b079-11d9-a882-a1d8507fabe7</wsa:MessageID>
<wsa:To soapenv:mustUnderstand="0">

http://127.0.0.1:8081/wsrf/services/examples/security/first/MathService
</wsa:To>
<wsa:Action soapenv:mustUnderstand="0">

http://www.globus.org/namespaces/examples/core/MathService_instance_4op/MathPortType/addRequest
</wsa:Action>
<wsa:From soapenv:mustUnderstand="0">

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous</wsa:Address>
</wsa:From>

</soapenv:Header>

<soapenv:Body>
<xenc:EncryptedData Id="EncDataId-749304" Type="http://www.w3.org/2001/04/xmlenc#Content">

<xenc:EncryptionMethod Algorithm="http://www.globus.org/2002/04/xmlenc#gssapi-enc"></xenc:EncryptionMethod>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<wsse:SecurityTokenReference
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

<wsse:Reference URI="#SecurityContextToken-15021407"></wsse:Reference>
</wsse:SecurityTokenReference>

</ds:KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>
FwMAAYCNYHoPTT6WgG096yj0NPONpNXp3u8tVPbPBjZzqzFtx03Yh1tMEI6ebObR1Rvr8ihBk+EtBsCAUNuVXN7QAP/FrMIZJ
zacALBaLpie0A1BfO8QjjDNGvv6KsDrydY2qywSuaZvqclUus2eAnPjW3ewanPqemntYfSHKW0X81wkIDI4oUx5WOOkYbKLl6
Yg/R4osS2PR+/aqAwAb8vdZtzDdBkpyIDfCsMrQnZA1sarFbdZPT7buNIPRJ8vja3/icV5yB4WZg8sobm7K7yrYkFT6g1nLHh
gznsJj0pf67BcowXO+swp0uSAnjczNEyDRafk6HaIPeeMpZWLGNL11BrfHM1pDGs0foDCvbFApfFJGz5v70DdAGQWz5xsR6YQ
0Bp8gc0hlB+hrsc6Wyf8RiQ/kxBfMYZ3hKY8fah4oRaq39/sJvA8pXnfxvp1EKonQKhOh/yYYGkuzMI4whD0KsLAiEwjX3uOh

158

Chapter 11. Writing a Secure Math Service

UdAF1zwwqyPK4zYBHsz1Qe0I8lD2OmTjQw=
</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

</soapenv:Body>

</soapenv:Envelope>

Holy gibberish, Batman! :-)

Notice how only certain parts of the message are encrypted, not thewholemessage. Remember that this
is because GSI Secure Conversation is a form ofmessage-levelsecurity (explained in). This means that
we only encrypt the contents of the message, but not the whole message. Notice how the message still
reveals what the service URI is, along with the operation name, but the actual call itself is encrypted. If
we wanted the whole message to be encrypted we would need to usetransport-levelsecurity (GSI
Transport).

159

IV. GT4 Information Services
[Coming soon]

Work in progress!
Although the tutorial will eventually include chapters on GT4 Information Services, work on these
chapters hasn’t begun yet. If you need information on this subject, check out the official documentation
(http://www.globus.org/toolkit/docs/4.0/info/).

If you want to know when these chapters will see the light of day, check out the TODO page
(http://gdp.globus.org/gt4-tutorial/TODO.html), which includes a roadmap of future versions. Also, if
you’d like to help out with the development of these chapters, please don’t hesitate to contact me
(http://gdp.globus.org/gt4-tutorial/contact.html).

clxi

V. GT4 Execution Management
[Coming later]

Work in progress!
Although the tutorial will eventually include chapters on GT4 Execution Management, work on these
chapters hasn’t begun yet. If you need information on this subject, check out the official documentation
(http://www.globus.org/toolkit/docs/4.0/execution/).

If you want to know when these chapters will see the light of day, check out the TODO page
(http://gdp.globus.org/gt4-tutorial/TODO.html), which includes a roadmap of future versions. Also, if
you’d like to help out with the development of these chapters, please don’t hesitate to contact me
(http://gdp.globus.org/gt4-tutorial/contact.html).

clxiii

VI. GT4 Data Management [Coming
even later]

Work in progress!
Although the tutorial will eventually include chapters on GT4 Data Management, work on these chapters
hasn’t begun yet. If you need information on this subject, check out the official documentation
(http://www.globus.org/toolkit/docs/4.0/data/).

If you want to know when these chapters will see the light of day, check out the TODO page
(http://gdp.globus.org/gt4-tutorial/TODO.html), which includes a roadmap of future versions. Also, if
you’d like to help out with the development of these chapters, please don’t hesitate to contact me
(http://gdp.globus.org/gt4-tutorial/contact.html).

clxv

VII. Appendices

Appendix A. How to...

...write a WSDL description of your WSRF stateful Web
service

This HOWTO shows you how to write a simple WSDL description of a portType in a step-by-step
fashion. Although it should be easy to follow those same steps to create other simple WSDL files, this is
not meant as an exhaustive WSDL guide. Anyone seeking to write more complex portTypes (for
example, passing complex classes instead of primitive types -int. string, etc.- as parameters or return
values) should definitely consider learning WSDL and XML Schema. A couple of references are
provided at the end of the appendix in case you want to learn more.

That said, let’s start writing WSDL! We are going to write the WSDL description corresponding to the
following Java interface:

public interface Math
{

public void add(int a);

public void subtract(int a);

public int getValueRP();
}

Furthermore, our portType will have two resource properties: "value" of type integer and "lastOp" of
type string. This is the interface used in many of the tutorial’s examples.

The bare bones of our WSDL file
First of all, we have to write the root element of the WSDL file, which is <definitions>.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MathService"

targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

</definitions>

This tag has two important attributes:

• name: The ’name’ of the WSDL file. Not related with the name of the portType.

167

Appendix A. How to...

• targetNamespace: The target namespace of the WSDL file. This means that all the PortTypes and
operations defined in this WSDL file will belong to this namespace.

XML Namespaces: XML namespaces are basically a way of grouping similar ’things’ together.
We’re using the somewhat vague term ’things’ because XML Namespaces are used not only in
WSDL, but in many XML languages, so just about anything can be grouped into an XML Namespace
(not only portTypes and operations, which are specific to WSDL). The XML Namespace has to be a
valid URI, but it doesn’t necessarily have to be real (in fact, if you try to point your web browser to the
URI we’re using, you’ll get a Page Not Found error).

The root element is also used to declare all the namespaces we are going to use. Notice how thetns

namespace is the Target NameSpace. The rest of the namespace declarations should be copied verbatim.

Next up, we need to import a WSDL file with definitions we’ll need later on.

<wsdl:import
namespace=
"http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

Note: In general, we will import the WSDL file of every WSRF specification (such as
WS-ResourceProperties) we intend to use in our service. As we’ll see later on, we will need to import
other WSDL files as we start looking at other parts of the WSRF specification.

The Port Type
Now we’re going to define our portType, using the<portType> tag:

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >

<portType name="MathPortType"
wsdlpp:extends="wsrpw:GetResourceProperty"
wsrp:ResourceProperties="tns:MathResourceProperties">

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>
</operation>

<operation name="subtract">
<input message="tns:SubtractInputMessage"/>
<output message="tns:SubtractOutputMessage"/>
</operation>

168

Appendix A. How to...

<operation name="getValueRP">
<input message="tns:GetValueRPInputMessage"/>
<output message="tns:GetValueRPOutputMessage"/>
</operation>

</portType>

</definitions>

The <portType> tag has three important attributes:

• name: Name of the PortType.

• wsdlpp:extends: This is not a standard part of WSDL, but part of theWSDLPreprocessor

namespace provided by Globus (notice how we declaredwsdlpp in the namespace declarations). If
we were writing strict WSDL, the only way of including operations and portTypes from WSRF
specifications would be to actually copy and paste those definitions from the spec’s WSDL file into
our own WSDL file. This, of course, is very error-prone. For our convenience, Globus provides a
WSDL Preprocessor that does that automatically for us. By using thewsdlpp:extends attribute, we
are telling the WSDL Preprocessor to include theGetResourceProperty portType from the
WS-ResourceProperties WSDL file. This portType is first used in .

• wsrp:ResourceProperties: This attribute specifies what the service’s resource properties are. The
meaning of this attribute is explained further on.

Warning
Make sure you read the warning regarding the WSDL Preprocessor in .

Inside the<portType> we have an<operation> tag for the three operations exposed in our web
service:add , subtract , andgetValueRP . They are all very similar, so let’s just take a closer look at
add ’s <operation> tag:

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>

</operation>

The<operation> tag has an<input> tag and an<output> . These two tags have amessage attribute,
which specifies what message should be passed along when the operation is invoked (input message) and
when it returns successfully (output message). So, we’ll need to define the messages of our operations.

The messages
The following are the messages for theadd operation. The messages for thesubtract and
getValueRP operations are identical.

<?xml version="1.0" encoding="UTF-8"?>

169

Appendix A. How to...

<definitions ... >

<message name="AddInputMessage">
<part name="parameters" element="tns:add"/>
</message>
<message name="AddOutputMessage">
<part name="parameters" element="tns:addResponse"/>
</message>

<!-- PortType -->

</definitions>

Notice how the name of each message has to be the same as the one written in the message attribute of
the<input> and<output> tags. However, it turns out messages are composed of<part> s! Our
messages will only have one part, in which a single XML element is passed along. For example, the
AddOutputMessage will contain the addResponse element (notice how it is part of thetns namespace,
the target namespace).

The response and request types
The definition of these elements is done using XML Schema inside a new tag: the<types> tag. The
following would be the definition of theadd andaddResponse elements:

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >

<types>
<xsd:schema targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"

xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- REQUESTS AND RESPONSES -->

<xsd:element name="add" type="xsd:int"/>
<xsd:element name="addResponse">
<xsd:complexType/>
</xsd:element>

<!-- more type definitions -->

</xsd:schema>
</types>

<!-- Messages -->

<!-- PortType -->

</definitions>

170

Appendix A. How to...

The<types> tag contains an<xsd:schema> tag. The attributes of the<xsd:schema> should be
copied verbatim, except thetargetNamespace , which should be the same as the target namespace of
the WSDL document.

Theadd element (which, remember, is part of theinput message of theadd operation) represents the
single input parameter of our add operation, and thus has an attribute specifying its type (notice how the
type attribute is equal toxsd:int , the integer type in XML Schema).

If we had wanted our add operation to receive two parameters, we would have to declare theadd element
like this:

<xsd:element name="add">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="a1" type="xsd:int"/>
<xsd:element name="a2" type="xsd:int"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

In this case we’re saying that the add operation has two parameters (a1 and a2) of type integer. Notice
that to specify multiple parameters we need to use the XML SchemacomplexType tag.

As for theaddResponse element (part of the output message of the add operation, i.e. the return value),
it contains an emptycomplexType , since the add operation doesn’t return anything.

The type definitions for thesubtract andgetValueRP operation are defined similarly.

Declaring the resource properties
We are very nearly done. There is only one thing left to do: declare our service’s resource properties.
This is also done in the<types> part of the WSDL document, inside the<schema> tag along with all
the declarations we have just seen.

First of all, let’s take another quick look at our portType:

<portType name="MathPortType"
wsdlpp:extends="wsrpw:GetResourceProperty"
wsrp:ResourceProperties="tns:MathResourceProperties" >

<!-- operations --">

</portType>

Thewsrp:ResourceProperties attribute specifies what the service’s resource properties are. In our
case, the resource properties are contained in an element calledMathResourceProperties which we
must declare in the<types> part of the WSDL document.

<types>
<xsd:schema targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"

xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

171

Appendix A. How to...

<!-- Requests and responses declarations-->

<xsd:element name="Value" type="xsd:int"/>
<xsd:element name="LastOp" type="xsd:string"/>

<xsd:element name="MathResourceProperties">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:Value" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:LastOp" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

This declaration specifies thatMathResourceProperties contains two resource properties,Value

andLastOp , each of which appear only once (we could specify array resource properties by changing
the values ofmaxOccurs).

Summing up...
The whole WSDL file would be:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MathService"

targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"
xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
namespace=
"http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"
location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

<!==

T Y P E S

172

Appendix A. How to...

==>
<types>
<xsd:schema targetNamespace="http://www.globus.org/namespaces/examples/core/MathService_instance"

xmlns:tns="http://www.globus.org/namespaces/examples/core/MathService_instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- REQUESTS AND RESPONSES -->

<xsd:element name="add" type="xsd:int"/>
<xsd:element name="addResponse">
<xsd:complexType/>
</xsd:element>

<xsd:element name="subtract" type="xsd:int"/>
<xsd:element name="subtractResponse">
<xsd:complexType/>
</xsd:element>

<xsd:element name="getValueRP">
<xsd:complexType/>
</xsd:element>
<xsd:element name="getValueRPResponse" type="xsd:int"/>

<!-- RESOURCE PROPERTIES -->

<xsd:element name="Value" type="xsd:int"/>
<xsd:element name="LastOp" type="xsd:string"/>

<xsd:element name="MathResourceProperties">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:Value" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:LastOp" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

<!==

M E S S A G E S

==>
<message name="AddInputMessage">
<part name="parameters" element="tns:add"/>
</message>
<message name="AddOutputMessage">
<part name="parameters" element="tns:addResponse"/>

173

Appendix A. How to...

</message>

<message name="SubtractInputMessage">
<part name="parameters" element="tns:subtract"/>
</message>
<message name="SubtractOutputMessage">
<part name="parameters" element="tns:subtractResponse"/>
</message>

<message name="GetValueRPInputMessage">
<part name="parameters" element="tns:getValueRP"/>
</message>
<message name="GetValueRPOutputMessage">
<part name="parameters" element="tns:getValueRPResponse"/>
</message>

<!==

P O R T T Y P E

==>
<portType name="MathPortType"

wsdlpp:extends="wsrpw:GetResourceProperty"
wsrp:ResourceProperties="tns:MathResourceProperties">

<operation name="add">
<input message="tns:AddInputMessage"/>
<output message="tns:AddOutputMessage"/>
</operation>

<operation name="subtract">
<input message="tns:SubtractInputMessage"/>
<output message="tns:SubtractOutputMessage"/>
</operation>

<operation name="getValueRP">
<input message="tns:GetValueRPInputMessage"/>
<output message="tns:GetValueRPOutputMessage"/>
</operation>

</portType>

</definitions>

Summing up, the basic steps involved in writing a WSDL file for a WSRF web service would be the
following:

1. Write the root element<definitions>

2. Write the<portType>

174

Appendix A. How to...

3. Write an input and output<message> for each operation in the PortType.

4. Write the<types> . This includes declaring the request and response elements, along with the
resource properties.

As any experienced WSDL writer should be able to tell you, there are many ways of writing WSDL
(ways that allow you to write more compact WSDL). However, this is the most step-by-step method,
which is probably best for beginners. Furthermore, remember this is just a very brief guide on how to
write very basic WSDL. You should have no trouble adding basic operations such as void multiply(int a),
but more complex portTypes will require more advanced knowledge of WSDL and XML Schema.

...use the tutorial’s build script
The build script used in the tutorial is a part of the Globus Service Build Tools
(http://gsbt.sourceforge.net/) project. The GSBT website includes information on how you can use the
build script for your own projects. Also, you can run./globus-build-service.sh -h to see all the
different options supported by the script.

175

Appendix B. Tutorial directory structure
The tutorial follows a very specific directory structure which clearly separates the interface files
(WSDL), the service implementation files (Java and WSDD), and the client implementation files (Java).
This directory structure must be preserved if you want the examples to compile out-of-the-box with the
provided Ant build file and build script. This appendix describes the directory structure used throughout
the tutorial.

Brief overview
The following is a diagram that shows where the three main types of files (build, WSDL, service, and
client files) are located. The details of each type of file can be found below.

$EXAMPLES_DIR
|
|-- schema/
| |
| |-- examples/ -----> WSDL files
|
|-- org/

|
|-- globus/

|
|-- examples/

|
|-- services/ -----> Service implementation files
|
|-- clients/ -----> Client implementation files

Build files
All the files needed to build the examples are included in the root of$EXAMPLES_DIR:

• Ant build file

• Build script

• Namespace mappings file

176

Appendix B. Tutorial directory structure

WSDL files
The$EXAMPLES_DIR/schema/examples/ directory contains one subdirectory for each different
service interface described in the tutorial. These subdirectories contain the WSDL file and any
supporting XML Schema files.

Implementation files
The implementation classes of the services in the tutorial can be found in the following package:

org.globus.examples.services

Inside this package there is a subpackage for each part of the tutorial (currently only core and security).
Then, inside each of these subpackages there is one sub-sub-package for each example in that part of the
tutorial. For example, let’s take the very first example in the tutorial. Since that particular example is the
"first" service in the "GT4 Core" part of the tutorial, the implementation classes are placed inside this
package:

org.globus.examples.services .core.first

This will be thebase packagefor this example. In general, the base package will have the following
format:

org.globus.examples.services. <part>.<example>

For example, the base package for the "resource properties" example of the "GT4 Core" part is
org.globus.examples.service.core.rp The directory corresponding to that base package would be:

$EXAMPLES_DIR/org/globus/examples/services/ <part> / <example> /

This is the directory where we’ll place all the service’s files:

Base package directory
|
|-- server-deploy.wsdd -----> Deployment descriptor file
|
|-- impl/ -----> Implementation classes
|
|-- config/ -----> Security configuration files

Client code
The $EXAMPLES_DIR/org/globus/examples/clients/ directory contains one subdirectory with clients
for each different service interface described in the tutorial. For example, the client for the service
interface in $EXAMPLES_DIR/schema/examples/MathService_instance/ can be found in
$EXAMPLES_DIR/org/globus/examples/clients/MathService_instance/

177

