
Predicting Job Start Times on Clusters

Hui Li ∗† David Groep†
∗ Leiden Institute of Advanced Computer

Science, Leiden University
The Netherlands

{hli,llexx}@liacs.nl

Jeff Templon† Lex Wolters∗
† National Institute for Nuclear and High

Energy Physics (NIKHEF)
The Netherlands

{davidg,templon}@nikhef.nl

Abstract

In a Computational Grid which consists of many com-
puter clusters, job start time predictions are useful to guide
resource selections and balance the workload distribution.
However, the basic Grid middleware available today either
has no means of expressing the time that a site will take be-
fore starting a job or uses a simple linear scale. In this pa-
per, we introduce a system for predicting job start times on
clusters. Our predictions are based on statistical analysis
of historical job traces and simulation of site schedulers.
We have deployed the system on the EDG (European Data-
Grid) production cluster at NIKHEF. The experimental re-
sults show that acceptable prediction accuracy is achieved
to reflect real site states and site-specific scheduling poli-
cies. We find that the average error of our job start time pre-
dictions is 18.9 percent of the average job queue wait time
and this is around 20 times smaller than the average pre-
diction error using the EDG solution.

1. Introduction

Job start time predictions are useful for resource se-
lections in the Grid, provided that acceptable accuracy is
achieved to reflect real site states. However, the basic Grid
middleware available today either has no means of express-
ing the time that a site will take before starting a job or uses
a simple linear scale. In the European DataGrid [1], for in-
stance, every computing resource (corresponding to a batch
queue) publishes one single job start time, which is based
on the user specified wall clock times and the number of
queued jobs. This seems to be a reasonable approach, ex-
cept that experience shows that it cannot deliver acceptable
accuracy for theresource broker[2] to make proper deci-
sions. Several limitations are found in this approach. Firstly,
the user specified wall clock times are generally much larger
than the actual job run times, which results in large pre-
diction errors. Secondly, it assumes that FCFS (First Come

First Serve) scheduling is used at all sites. This is not valid
since sites have different scheduling systems and they are
generally more sophisticated than FCFS. Thirdly, every site
has its own set of scheduling policies and jobs from differ-
ent Virtual Organizations (VOs) would most likely have dif-
ferent job start times. Therefore publishing single job start
time estimates in the Grid Information Service [3] is not suf-
ficient and we need more sophisticated and detailed job start
time predictors.

In this paper, we present a job start time prediction sys-
tem for clusters. Our system is based on statistical predic-
tions of job run times and simulations of schedulers. We ob-
tain job start time predictions via a chain of steps: 1) histori-
cal job information is used to predict execution times of jobs
currently running and queued at the site; 2) a scheduler sim-
ulation is performed, along with the predicted job run times,
to determine how long it will take before a newly-submitted
job will start execution; 3) predicted job start times are pub-
lished to the Grid Information Service in accordance to the
scheduling policies defined at the site. We have deployed
the system on the NIKHEF EDG production cluster. We
find that the average error of our job start time predictions
is 18.9 percent of the average queue wait time and it signif-
icantly improves the originally implemented EDG solution.
We also evaluated our job run time prediction technique on
clusters subject to a more diverse workload. The average
prediction errors range from 13 to 35 percent of the aver-
age job run times.

The rest of the paper is organized as follows: Section 2
describes our technique to predict job run times and it
is evaluated using workload traces recorded on three se-
lected clusters. Section 3 describes how we simulate the site
scheduling system and our technique to improve the simu-
lation performance. Section 4 describes the system design,
the idea of incorporating site scheduling policies and exper-
imental results when deploying the system on the NIKHEF
EDG cluster. In Section 5 conclusions are presented and fu-
ture work is discussed.

1

Cluster Location OS LRMS CPUs Period Job entries
EDG production NIKHEF Linux PBS 20 01/2003 - 04/2003 11537
DAS-2 VU Linux PBS 144 01/2003 - 04/2003 40096
DAS-2 UvA Linux PBS 64 01/2003 - 04/2003 5857

Table 1. Characteristics of clusters and job traces (LRMS - Local Resource Management System).

2. Predicting job run times

The first step of obtaining job start time predictions is to
predict job run times. This part of work is based on statisti-
cal techniques [4, 5, 6], in which predictions are generated
by applying statistical methods on historical job traces.

2.1. Related work

In [4, 6], jobs in historical traces are categorized accord-
ing to their attributes (user name, executable name, etc). The
templates, which are defined as a set of job attributes, gen-
erate categories to which jobs can be assigned. Jobs that fall
into the same category are considered similar and statisti-
cal methods such asmeanor linear regressionare applied
to generate run time predictions. Various approaches differ
in the set of job attributes used and their template defini-
tions. A comparison of these techniques is available in [6].

Compared with previous approaches, we go one step fur-
ther towards prediction generation. In [6], among all es-
timates produced by the set of chosen templates and esti-
mators, the one with the smallest confidence interval is se-
lected as the prediction. In our approach, we evaluate differ-
ent techniques to select estimates. These techniques include
choosing an estimate based on previous prediction errors,
or combining the estimates to produce new predictions. Fi-
nally, the technique with the smallest average prediction er-
ror is selected to implement the job run time predictor.

Our experiments are mainly based on the NIKHEF
EDG [7] production cluster. For comparative studies,
we also use traces on DAS-2 [8] clusters at UvA (Uni-
versiteit van Amsterdam) and VU (Vrije Universiteit
Amsterdam). Characteristics of these clusters and work-
load traces are given in Table 1.

2.2. Template definition and evaluation

The first step of our approach is to define a suitable set
of templates and evaluate them quantitatively using histori-
cal traces. For our traces, we find thatgroup name(G), user
name(U), queue name(Q), executable name(E) andnum-
ber of CPUs allocated(N) are key job attributes that can be
used for job categorization. With these attributes we can the-
oretically define 32 (25) different templates. Genetic algo-
rithms can be applied to search for templates with the small-
est prediction errors, as is investigated in [6]. In our case we

define the template space by heuristics, which can be ob-
tained from the statistical properties of the historical traces.
This results in the following templates, which forms a repre-
sentative job classification and categorizes jobs from coarse
to fine granularity:

[G], [G, U], [G, U, Q],
[G, U, E], [G, U, E, N], [G, U, Q, E, N].

We also selected two candidate statistical estimators for
quantitative evaluation. They are:

WM(n) An AR(n) (Auto Regressive) model with all coeffi-
cients set to 1/n. This predicts the next sequence value
to be the average of previousn values, a simpleWin-
dowed Mean. AR is one of the Time Series Analysis
models, which are investigated extensively in Dinda’s
work for host load prediction [9].

LR(n) Linear Regression[10, 11], wheren is the number
of previous values used for estimation.

We conduct the quantitative evaluation by actually pre-
dicting execution times of historical jobs using traces given
in Table 1. Results are shown in Figure 1, 2 and 3.

Firstly we evaluate the results on the NIKHEF EDG pro-
duction cluster. As can be seen in Figure 1, average predic-
tion errors become smaller as the number of previous val-
ues used (n) decreases, both for LR and WM estimators.
We select two estimators with the smallest prediction errors,
which are WM(1) and LR(5). With respect to templates, we
eliminate those with the same number or more attributes but
produce no better results and keep [G], [G, U] and [G, U,
Q] as our templates for generating predictions. This result
is consistent with the statistical properties of NIKHEF EDG
traces, where attribute E (Executable name) and N (Number
of CPUs allocated) provide no extra information for catego-
rization. Template [G] and [G, U] should be kept since they
can provide estimations in case that no dedicated historical
data is available in finer grain templates (e.g. [G, U, Q]). For
the NIKHEF EDG cluster, the predictors are combinations
of the selected templates and the selected estimators:{[G,
U, Q], LR(5)}, {[G, U, Q], WM(1)}, {[G, U], LR(5)}, {[G,
U], WM(1)}, {[G], LR(5)}, and{[G], WM(1)}. It should be
noticed that the number of predictors should be kept small
to achieve acceptable performance. A maximum predictor
number of 8 would be appropriate in practice.

DAS-2 clusters have a wide variety of users and differ-
ent kinds of applications. In contrast to the EDG cluster, ex-

2

1 2 3 4 5 6
0

10

20

30

40

Templates

A
ve

ra
ge

 e
rr

or
 /

A
ve

ra
ge

 r
un

tim
e

(%
)

LR (n)

1 2 3 4 5 6
0

10

20

30

40

Templates

A
ve

ra
ge

 e
rr

or
 /

A
ve

ra
ge

 r
un

tim
e

(%
)

WM (n)

n=15
n=10
n=5

n=10
n=5
n=1

Figure 1. Quantitative analysis of templates and estimators for workload traces on the NIKHEF EDG
production cluster. The average prediction error is defined as Average |estimated runtime - actual
runtime |. The average job run time is 4672 seconds. Template labels are: 1 - [G] 2 - [G, U] 3 - [G, U, E]
4 - [G, U, Q] 5 - [G, U, E, N] 6 - [G, U, Q, E, N]

ecutable name (E) and number of processors allocated (N)
prove to be useful information for categorizing jobs (see
Figure 2 and 3). We conduct the same evaluation process as
on the EDG cluster and find a suitable set of predictors on
the DAS-2 clusters:{[G, U, E, N], LR(5)}, {[G, U, E, N],
WM(1)}, {[G, U, E], LR(5)}, {[G, U, E], WM(1)}, {[G,
U], LR(5)}, {[G, U], WM(1)}, {[G], LR(5)}, and {[G],
WM(1)}.

2.3. Prediction generation

Instead of simply choosing the predictor with the small-
est prediction error from the quantitative evaluation, namely
{[G, U, Q], WM(1)} on the EDG cluster or{[G, U, E,
N], WM(1)} on DAS-2 clusters, we introduce several tech-
niques to generate predictions and compare their accuracy
as well as performance.

The first technique we devise (referred as “LSTERR”)
is to dynamically select the predictor based on the previ-
ous prediction errors. We useLeast-Mean-Square(LMS) to
measure previous prediction errors

ξj = E[e2
j(n)] =

∑n
i=1(Pj(i) − Dj(i))2

n
, (1)

wherePj(i) is theith estimated job run time of predictorj,
Dj(i) is theith actual job run time of predictorj, andn is
the number of previous job entries used.ξj measures the av-
erage squared error of previousn predictions for predictor

j. The predictorδ with the smallestξ is selected to predict
the run time of newly-submitted job

P (n + 1) = Pδ(n + 1), min(ξj) | j=δ, j ∈ [1,m], (2)

wherem is the number of selected predictors.
The second technique (referred as “AVER”) is to set the

average of estimations produced by the selected predictors
as the job run time prediction

P (n) = E[Pj(n)] =

∑m
j=1 Pj(n)

m
, (3)

wherem is the number of selected predictors.
We compare these two techniques with the predic-

tor with the smallest prediction error (referred as “TEMP-
EST”) in the quantitative evaluation ({[G, U, Q], WM(1)}
on the EDG cluster and{[G, U, E, N], WM(1)} on DAS-2
clusters). As can be seen in Figure 4, AVER has the small-
est average prediction error and TEMP-EST performs the
best on all three clusters. Since the performance of job
run time predictions is not critical compared to the sched-
uler simulation in our system (to be discussed in Section 3),
we take AVER as the overall best job run time predic-
tor.

The basic algorithm of our job run time prediction tech-
nique is summarized as follows:

1. Define a set of templates and estimators based on the
statistical properties of workload traces on the site.

3

1 2 3 4 5 6
0

40

80

120

Templates

A
ve

ra
ge

 e
rr

or
 /

A
ve

ra
ge

 r
un

tim
e

(%
)

LR (n)

1 2 3 4 5 6
0

40

80

120

Templates

A
ve

ra
ge

 e
rr

or
 /

A
ve

ra
ge

 r
un

tim
e

(%
)

WM (n)

n=15
n=10
n=5

n=10
n=5
n=1

Figure 2. Quantitative analysis of templates and estimators for workload traces on the DAS-2 cluster
at VU. The average prediction error is defined as Average |estimated runtime - actual runtime |. The
average job run time is 524.2 seconds. Template labels are: 1 - [G] 2 - [G, U] 3 - [G, U, E] 4 - [G, U, Q]
5 - [G, U, E, N] 6 - [G, U, Q, E, N]

1 2 3 4 5 6
0

40

80

120

Templates

A
ve

ra
ge

 e
rr

or
 /

A
ve

ra
ge

 r
un

tim
e

(%
)

LR (n)

1 2 3 4 5 6
0

40

80

120

WM (n)

Templates

A
ve

ra
ge

 e
rr

or
 /

A
ve

ra
ge

 r
un

tim
e

(%
)

n=15
n=10
n=5

n=10
n=5
n=1

Figure 3. Quantitative analysis of templates and models for workload traces on the DAS-2 cluster at
UvA. The average prediction error is defined as Average |estimated runtime - actual runtime |. The
average job run time is 471.3 seconds. Template labels are: 1 - [G] 2 - [G, U] 3 - [G, U, E] 4 - [G, U, Q]
5 - [G, U, E, N] 6 - [G, U, Q, E, N]

4

1 2 3
0

20

40

60

80

Cluster label

A
ve

ra
ge

 e
rr

or
 /

 A
ve

ra
ge

 r
un

tim
e

(%
)

Prediction accuracy of
different techniques on our clusters

LSTERR
AVER
TEMP−EST

1 2 3
0

100

200

300

400

500

600

700

Cluster label

E
xe

cu
tio

n
tim

e
pe

r
pr

ed
ic

tio
n

(m
s)

Prediction performance of
different techniques on our clusters

LSTERR
AVER
TEMP−EST

Figure 4. Comparison of three prediction generation techniques on our clusters. Average prediction
error is defined as Average |estimated runtime - actual runtime |. The cluster labels are: 1 - NIKHEF
EDG production cluster, 2 - DAS-2 cluster at VU, 3 - DAS-2 cluster at UvA (Execution times are mea-
sured on a 1 GHZ Intel PIII PC with 1 Gbyte internal memory).

Clusters Average error of user spec-
ified wall clock times (s)

Average error of our
predictions-AVER (s)

Average job
run times (s)

Average error of our predic-
tions/Average job run times(%)

NIKHEF EDG 150100 644.7 4672 13.8
DAS-2 VU 11960 170.4 524.2 32.5
DAS-2 UvA 3318 166.4 471.3 35.3

Table 2. Comparison of predictions based on user specified wall clock times versus our predictions.

2. Quantitatively evaluate the templates and estimators
using historical traces and select a proper set of pre-
dictors (a predictor is an estimator combined with a
template).

3. Evaluate different techniques (LSTERR, AVER and
TEMP-EST) for prediction generation and choose the
one with the smallest prediction error to implement the
job run time predictor.

Table 2 shows the quantitative comparison of predictions
based on user specified wall clock times versus our predic-
tions. We can see that our predictions significantly reduce
the average errors (up to magnitude of 2). The reason why
predictions based on user specified wall clock times have
such large errors is that users usually make very generous
requests of wall clock times or simply do not specify them,
in which case default wall clock times are applied. Our tech-

nique performs well, with average errors of 13.8, 32.5 and
35.3 percent of average job run times on the NIKHEF EDG
cluster, the DAS-2 cluster at VU and at UvA, respectively.

3. Simulating the scheduling system

The second step to obtain job start times is via simula-
tion. We snapshot the queue status on the site and simulate
how the scheduler will schedule jobs. Since the actual exe-
cution times of running and queued jobs are unknown, we
use our job run time predictions in the simulation.

In [12], Smith simulates First-Come First-Serve schedul-
ing to predict job start times on clusters. This is a reasonable
solution on one targeted site or sites with the same schedul-
ing systems. However, in a Grid environment, different sites
have different scheduling systems as well as site-specific
policies. The simulator should be able to incorporate most

5

of the popular scheduling algorithms and be easy to cus-
tomize. Moreover, the simulation should achieve accept-
able performance to fulfill a close-to-real time requirement.
In this section we describe our approach towards scheduler
simulation.

3.1. Maui simulation engine

The Maui scheduler [13] is apolicy enginefor clus-
ters. It supports a variety of scheduling algorithms (FCFS,
backfilling ,etc) and allows sites to implement various poli-
cies, partition resources and make reservations. Most EDG
sites adopt Maui as scheduler, therefore simulating Maui
becomes one of our main issues. Moreover, Maui is a su-
per set of existing scheduling algorithms and we could eas-
ily mimic the behavior of other schedulers by customizing
Maui. This makes our scheduler simulation more general
and easily deployable to other clusters, even if they use dif-
ferent kind of schedulers.

Maui has a simulation mode for testing what the sched-
uler is capable of. It takes a resource file and a workload
trace file and simulates how the scheduler will schedule jobs
according to the Maui configuration file, in which site poli-
cies are defined. We could use this mode as our engine for
simulation, but its performance becomes a major issue since
it is not event-driven. On the NIKHEF EDG cluster, for in-
stance, the simulation time versus the real time is roughly 1
: 90. Given this performance, if there are hundreds of jobs
in the queue which take several days to finish, the simula-
tion will run for hours. Therefore it is necessary to improve
the simulation performance if we want to use this simula-
tion mode for close-to-real time predictions.

3.2. Improving the simulation performance

The original Maui simulation mode has not been made
event-driven because of the complexity that arises from dy-
namic policies. Our way to improve performance is to make
the Maui simulation event-driven by controlling it outside.
We also assume that the targeted sites do not employ dy-
namic policies such as dynamic prioritization, time based
reservation, usage based throttling policies, etc.

The basic idea of our approach is to make the simula-
tion “jump” from event to event instead of going through
the whole simulation time. We take the basic events such as
job start and end into account. With our job run time predic-
tions we have the estimates when the running jobs will fin-
ish and we put their IDs as well as remaining run times into
a run event list. We also maintain a queue event list for all
queued jobs with the corresponding IDs and run time es-
timates in it. Firstly the run event list is examined and the
smallest remaining run time is deducted from all jobs in the
list. This makes the job with the earliest estimated finish

time will terminate for sure next time when the simulation
starts. We then construct a new workload trace file with jobs
in both lists, start the Maui simulator with it, and advance
the simulation for one interval (interval is a predefined value
in seconds, each time we advance the simulation one inter-
val, we advance the simulation clock this many seconds).
Job(s) end and new jobs may be started. We remove fin-
ished jobs from the run event list, move newly started jobs
from queue event list to the run event list and then stop the
Maui simulator. We keep repeating the above steps until all
jobs are finished. Through this process we speed the sim-
ulation up by making it event-driven outside the simulator
engine. For details about the algorithm and implementation
we refer to [15].

Cluster Period Average
Maui simula-
tion time(s)

Average event
driven simula-
tion time (s)

NIKHEF
EDG

05-
06/2003

1078 33

Table 3. Performance comparison of original
and event driven Maui simulation.

Table 3 shows the performance comparison of original
Maui simulation versus our event driven simulation on the
NIKHEF EDG cluster. We can see that by making the Maui
simulation event driven we improve the simulation perfor-
mance to fulfill a close-to-real time requirement. This per-
formance is sufficient, given the characteristic update time
of 120 seconds in the EDG Information Service.

4. Start time prediction

The output of scheduler simulation is the start time pre-
dictions for queued jobs. However, these results are not di-
rectly usable and we have to publish the predictions in a
way that a generic resource broker can make use of them.
Our way of publishing predictions is based on site schedul-
ing policies, which is discussed in this section. System de-
sign and experimental results are also presented.

4.1. Policy-based publishing

The output of scheduler simulation can be interpreted in
different ways. We can publish the latest job finish time,
job start times by queue or job start times by users. To in-
corporate site-specific scheduling information, we decide to
publish start time predictions for groups (VOs) and/or users
with policies defined. In practice, multiple predictions can
be obtained within one simulation run. This is achieved by

6

injecting probe jobs of targeted groups and/or users at the
end of the current queue before starting the simulation. As
soon as one of the probe jobs is actually scheduled, this
event is recorded as the job start time prediction for the
group/user it represents. When all probe jobs are success-
fully scheduled, we have the predictions for those entities
with policies defined.

The NIKHEF EDG cluster can serve as an example to il-
lustrate policy-based publishing. The policies for EDG jobs
at NIKHEF are implemented as fair shares and limits, which
can be specified in the Maui configuration file. Sample poli-
cies are:

GROUPCFG[default] PRIORITY=100
GROUPCFG[atlas] PRIORITY=300 MAXPROC=4
GROUPCFG[alice] PRIORITY=500 MAXPROC=6
USERCFG[svens] PRIORITY=100 MAXPROC=2

Policies can be defined for groups and/or users. For in-
stance, the priority of jobs from groupatlas is set to “300”
and the maximum processors that can be used by this group
is “4”. Because of these different policies, different groups
and users would most likely have different job start times.
Here is a snapshot of site queue status:

ACTIVE JOBS--------------------
JID USER STATE PROC REMAIN STARTTIME
31717 svens Running 1 2:20:30:28 ...
31718 svens Running 1 3:14:37:09 ...
31815 atlas001 Running 1 3:22:00:10 ...

4 Active Jobs, 4 of 20 CPUs Active(20%)
IDLE JOBS---------------------
JID USER STATE PROC REMAIN STARTTIME
31820 svens Idle 1 4:00:00:00 ...
31821 svens Idle 1 4:00:00:00 ...
31823 svens Idle 1 4:00:00:00 ...
31832 svens Idle 1 4:59:59 ...

Total Jobs: 8 Active: 4 Idle: 4

We can see that although there are many free processors
available at the site, jobs from usersvensstill have to wait
in the queue since policies restrict the maximum number
of processors that can be used by him is 2. At that time,
jobs fromsvenswill surely have larger start times than other
groups and users. The results of our job start time predic-
tions are:

default: 0 (Mon May 12 15:20:28 2003)
atlas: 0 (Mon May 12 15:20:28 2003)
alice: 0 (Mon May 12 15:20:28 2003)
svens: 82605 (Tue May 13 14:16:58 2003)

It shows that different groups and users do have different
job start times, according to the site policies defined. The

resource broker can match appropriate job start time pre-
dictions to decide where to submit jobs.

4.2. System design

The design of the job start time prediction system is il-
lustrated in Figure 5. The system consists of four main com-
ponents:a historical database, a queue monitor, a job run
time predictorand a start time predictor. The historical
database stores the categorized historical job entries, which
are used for job run time predictions. The queue monitor
gets the real-time queue information on the site and pro-
vides it to other components. In the start time predictor, the
controller controls the Maui simulation engine to perform
event-driven simulations. Job run times used in the simula-
tion are obtained through the job run time predictor in real
time. The start time predictor publishes the prediction re-
sults according to the scheduling policies defined at the site.

Historical Database Queue Monitor

Job Run Time Predictor

Maui Simulation Engine

Start Time Predictor

Controller

Figure 5. Design of the start time prediction
system

Currently the system runs on sites with PBS [14] as batch
system and Maui as scheduler. For implementation details
we refer to [15].

4.3. Experimental results

We have deployed the job start time prediction system on
the NIKHEF EDG production cluster. As is shown in Ta-
ble 4, the average error of our predictions is 18.9 percent
of the average queue wait time and it is around 20 times
smaller than the average error of the EDG solution. We also
studied start time predictions for different VOs and users.

7

Cluster Period Average error of
EDG predictions (s)

Average error of
our predictions (s)

Average queue
wait time (s)

Average error of our predictions
/Average queue wait time (%)

NIKHEF
EDG

05-
06/2003

325144 15276 81061 18.9

Table 4. Comparison of EDG start time predictions versus our start time predictions

The average prediction errors vary from 8 to 200 percent of
the average queue wait times [15]. Some users always sub-
mit similar jobs (e.g., a group of physicists who are ana-
lyzing data from a large High Energy Physics experiment).
They have very predictable job run times and the average
start time prediction error is small. Some users (e.g., soft-
ware testers and integration team) submit jobs which vary
a lot in execution times and they have relatively large pre-
diction errors. Generally speaking, our job start time pre-
dictions significantly improve the originally implemented
EDG solution.

5. Conclusions and future work

In this paper we present a job start time prediction sys-
tem for computer clusters. Job start time predictions can be
used by middleware component such as a resource broker
to balance the workload distribution. It can also be used to
compute “resource price” in a grid accounting system [16].
In our system, we use historical information and statisti-
cal techniques to predict job run times, and make scheduler
simulation to obtain job start times. We publish job start
times by group and/or user according to the site policies.
We have deployed the system on NIKHEF EDG production
cluster and find that our predictions achieve acceptable ac-
curacy to reflect the real site states.

Our system has its limitations as well. It runs slower than
the EDG solution because of the statistical predictions and
simulations involved. Although we have made the simula-
tion event-driven, the simulation time grows linearly as the
number of queued jobs increases. Also, the system assumes
that the site does not employ dynamic scheduling policies.

In future work, we aim to further improve the system per-
formance (e.g. by extrapolating from jobs in the same cat-
egory that are already queued). Proper schema will be cre-
ated in order to publish multiple job start time predictions to
the Grid Information Service. We also take interest in fur-
ther studying statistical properties of EDG workloads and
evaluate more estimators for run time predictions.

6. Acknowledgments

The EU DataGrid project is funded by the European
Commission under contract IST-2000-25182. This work is
part of the research program ofFoundation for Fundamen-
tal Research on Matter(FOM) , which is financially sup-

ported byNetherlands Organization for Scientific Research
(NWO). We want to express our gratitude to Warren Smith
(NASA Ames), Thomas Roblitz (ZIB) and Rosario Piro
(INFN) for their insightful discussions and valuable sugges-
tions. We’d also like to thank our colleagues at NIKHEF:
Martijn Steenbakkers, Oscar Koeroo and Kors Bos.

References

[1] European Union DataGrid. http://www.eu-datagrid.org/.
[2] Definition of architecture, technical plan and evaluation cri-

teria for scheduling, resource management, security and job
description, DataGrid-01-D1.2-0112-0-3, 2001.

[3] Information and monitoring service architecture, DataGrid
WP3 draft document, 2003. http://hepunx.rl.ac.uk/edg/wp3/.

[4] Richard Gibbons. A Historical Application Profiler for Use
by Parallel Schedulers.Lecture Notes on Computer Science,
Vol. 1297, pages 58-75, 1997.

[5] Allen B. Downey. Predicting Queue Times on Space-Sharing
Parallel Computers. InProceedings of the 11th International
Parallel Processing Symposium, pages 209-218, 1997.

[6] Warren Smith, Ian Foster and Valerie Taylor. Predicting Ap-
plication Run Times Using Historical Information.Lecture
Notes on Computer Science, Vol. 1459, pages 122-142, 1998.

[7] NIKHEF EDG testbed. http://www.nikhef.nl/grid.
[8] DAS-2: the Distributed ASCI Supercomputer - 2. http://ww-

w.cs.vu.nl/das2/.
[9] P.A. Dinda and D. O’Hallaron. An evaluation of linear mod-

els for host load prediction. InProceedings of the 8th IEEE
International Symposium on High Performance Distributed
Computing(HPDC’99), 1999.

[10] Erwin Kreyszig. Introductory Mathematical Statistics - Prin-
ciples and Methods. John Wiley and Sons, Inc. ISBN 471
50730 X, 1970.

[11] N.R. Draper and H. Smith. Applied Regression Analysis,
2nd Edition. John Wiley and Sons, Inc. ISBN 0-471-02995-
5, 1981.

[12] Warren Smith and Parkson Wong. Resource Selection Us-
ing Execution and Queue Wait Time Predictions. Tech. Rep.
NAS-02-003, NASA Ames Research Center, July 2002.

[13] Maui scheduler. http://www.supercluster.org.
[14] Portable Batch System (PBS). http://www.openpbs.org.
[15] Hui Li. Master’s Thesis.Predicting Job Start Times on Clus-

ters. Internal Report 03-11, Leiden Institute of Advanced
Computer Science, Leiden University, 2003.

[16] DataGrid Accounting System. http://www.to.infn.it/grid/ ac-
counting/.

8

