ecee B

nablingl rids Information Society
for E-scienc Infrastructurcs

EGEE

EGEE Middleware Architecture

AND PLANNING (RELEASE 2)

EU Deliverable DJRA1.4

Document identifier: EGEE-DJRA1.1-594698-v1.0

Date: July 15, 2005

Activity: JRAL: Middleware Engineering and
Integration

Lead Partner: CERN

Document status: FINAL

Document link: https://fedms.cern.ch/document/594698/

Abstract: This document describes the Service-Oriented Architecture of the EGEE project’s gLite middle-
ware. Itis a revision of DJRAL.1 (https://edms.cern.ch/document/476451/1.0 taking into account the ex-
periences and feedback received on DJRAL.1 and the subsequent releases of the middleware. The JRA1
work plan (https://edms.cern.ch/document/573493/), which presents the detailed plans of how these ser-
vices will be implemented in the course of the second year of the EGEE project, augments this document.
Note, that what is described in this document goes beyond what realistically can be released by the end
of the project and as such also presents a road-map for further developments.

INFSO-RI-508833 PUBLIC 1/95

https://edms.cern.ch/document/476451/1.0
https://edms.cern.ch/document/573493/

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Delivery Slip

Name Partner Date Signature
From JRA1 Design Team CERN, CCLRC/RAL, INFN
DATAMAT, CESNET, NESC,
NIKHEF, KTH/PDC, 31/05/2005
Univ. of Chicago

Univ. of Wisconsin-Madison

Reviewed by | PTF
Massimo Lamanna CERN

Marc-Elian Begin | CERN 27/06/2005
Zdenek Sekera CERN
Sara Collins UEDIN

Approved by | PEB 14/07/2005

Document Change Log

Issue | Date Comment Author

0.2 07/07/2005| Implemented changes requested fro@RAL Design Team
reviewers

1.0 15/07/2005| Update document status for deliveryerwin Laure
to EU

Document Change Record

| Issue | Item | Reason for Change

Copyright ©Members of the EGEE Collaboration. 2004. See http://eu-egee.org/partners for de-
tails on the copyright holders.

EGEE (“Enabling Grids for E-science in Europe”) is a project funded by the European Union. For
more information on the project, its partners and contributors please see http://www.eu-egee.org.

You are permitted to copy and distribute verbatim copies of this document containing this copy-
right notice, but modifying this document is not allowed. You are permitted to copy this document
in whole or in part into other documents if you attach the following reference to the copied ele-
ments: “Copyright (©2004. Members of the EGEE Collaboration. http://www.eu-egee.org”

The information contained in this document represents the views of EGEE as of the date they are

published. EGEE does not guarantee that any information contained herein is error-free, or up to
date.

EGEE MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING
THIS DOCUMENT.

INFSO-RI-508833 PUBLIC 2/95

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

nabling Grids EGEE MIDDLEWARE ARCHITECTURE
for E-scienc Date July 15, 2005
CONTENTS
1 INTRODUCTION 7
1.1 PURPOSEOFTHEDOCUMENT e 7
1.2 APPLICATION AREA e e 7
1.3 MAINCHANGES TODJRALL. e e e 7
1.4 DOCUMENT AMENDMENTPROCEDURE 8
1.5 TERMINOLOGY e e e e s 8
2 EXECUTIVE SUMMARY 11
3 REQUIREMENTS 16
4 SERVICE ORIENTED ARCHITECTURE 17
4.1 SERVICES e e e 18
4.2 MESSAGES e 18
4.3 POLICIES. e e 18
4.4 STATE. . . . o e 19
5 SECURITY SERVICES 19
5.1 AUTHENTICATION e e e e 19
511 TRUSTDOMAINS 20
5.1.2 REVOCATION. 21
5.1.3 CREDENTIALSTORAGE 21
5.1.4 PRIVACY PRESERVATION 21
5.1.5 SECURITY CONSIDERATIONS o oo 22
5.2 AUTHORIZATION e e e e e e e e e 22
521 SOURCES OF AUTHORIZATION. o oo 22
5.2.2 POLICY COMBINATION AND EVALUATION 23
5.2.3 MUTUAL AUTHORIZATION e 24
524 OTHERSERVICESUSED. 24
5.25 SECURITY CONSIDERATIONS o o oo 25
5.3 DELEGATION e 25
5.4 SANDBOXING. 25
5.5 DYNAMIC CONNECTIVITYSERVICE oo 26
5.6 AUDITING 26
5.6.1 SERVICES. 26
56.2 OTHERSERVICESUSED., 27
5.6.3 SECURITY CONSIDERATIONS o oo 27
6 GRID ACCESS 27

INFSO-RI-508833 PUBLIC 3/95

e e@ Doc. Identifier

mabling Grids EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0
for E-scienc Date July 15, 2005
7 INFORMATION AND MONITORING SERVICES 27
7.1 BASIC INFORMATION AND MONITORING SERVICES v o v oo .. 27
7.1.1 OTHERSERVICESUSED. s ' s oo e e, 29
7.1.2 PRODUCER SERVICES. o e e s e s, 29
7.1.3 CONSUMERSERVICE. o o e e, 30
7.1.4 REGISTRY AND SCHEMA SERVICES. s o v o i e, 30
7.1.5 BOOTSTRAPPING o o oo e s s, 30
7.1.6 SECURITY. . . o ot e e 31

7.2 JOBMONITORING . . .\ oo e e e e e s s s 31
721 OTHERSERVICESUSED. v\ s oo s, 31
7.2.2 SERVICES. . . . o o e 31
7.2.3 SECURITY. . o o ot e e 31

7.3 SERVICEDISCOVERY . . . o o v o e e e e s s, 31
7.3.1 OTHERSERVICESUSED. s\ v o e s s, 32
7.3.2 SERVICES. o e 32
7.3.3 SECURITY. . . o o oo e 32

7.4 NETWORK PERFORMANCE MONITORING v v o e i i 32
7.4.1 INTERFACE TO NETWORK MONITORING FRAMEWORKS. 33
7.42 NPMMEDIATOR . . . o o o e e s 33
7.4.3 NPMPUBLISHER ARCHITECTURE. . . .« v v o o i e i i 35

8 JOB MANAGEMENT SERVICES 36
8.1 ACCOUNTING. . . o\ v o e e e e s, 37
8.1.1 RESOURCEMETERING. s o s s, 37
8.1.2 ACCOUNTING SERVICE o v o e e s s s, 39
8.1.3 COSTCOMPUTATIONAND BILLING v o oo, 40

8.2 COMPUTING ELEMENT . . . o v v e e e e e s s, 41
8.2.1 JOB MANAGEMENT FUNCTIONALITY o\ v o e, 42
8.2.2 OTHERFUNCTIONALITY . . .\ v o e e s s, 43
8.2.3 INTERNAL CEARCHITECTURE. o v e, 43
8.2.4 POLICY DEFINITION AND ENFORCEMENT. o v v v vt .. 45

8.3 WORKLOAD MANAGEMENT o o e e e e e 45
8.3.1 FUNCTIONALITY . . o\ v e e s s, 45
8.3.2 SCHEDULING POLICIES v v o oo e e s s s, 46
8.3.3 THE INFORMATION SUPERMARKET. s v o i, 46
8.3.4 THETASKQUEUE. o\ vt e s e 46
8.3.5 JOBLOGGING ANDBOOKKEEPING v o o, 46
8.3.6 THE OVERALL ARCHITECTURE.« v v oo e, 47

8.4 JOBPROVENANCE. v ot o s s 48
8.4.1 PURPOSE, EXPECTED USAGE, AND LIMITATIONS 48

INFSO-RI-508833 PUBLIC 4/95

e e@ Doc. Identifier

mabling Grids EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0
for E-scienc Date July 15, 2005
8.4.2 ENCOMPASSED DATAAND THEIRSOURCES v o .o .. 48
8.4.3 SERVICE COMPONENTS. v v o e s s, 49
8.4.4 SECURITY. . . o o e 50

8.5 PACKAGE MANAGER o o o s 51
8.5.1 OTHERSERVICESUSED. v\ v o e s, 52
8.5.2 SECURITY. . . o o oo e 52

9 DATA SERVICES 52
9.1 DATANAMING . . . ot e e 52
9.1.1 LOGICALFILENAME o\ o s, 54
9.1.2 DIRECTORIES ot o e e s, 55
9.1.3 SYMBOLICLINKS . . .\ o o oo e s s, 55
9.1.4 GUID . . . o ot e e 55
9.1.5 MOTIVATION . . . oot e e e e s, 56

9.2 STORAGE ELEMENT. . . .\ o o e e e e e s s s 56
9.2.1 STORAGE SPACETYPES. o v o e s, 58
9.2.2 STORAGE RESOURCE MANAGEMENT INTERFACE. 59
9.2.3 SERVICES.\ oo 59
9.2.4 GRIDFILEO. o 60
9.25 GRIDFILETRANSFER . . . o\ o e s s, 62
9.26 OTHERSERVICESUSED. s ' v oo s, 62
9.2.7 SECURITY. . . o o oo e 62

9.3 CATALOGS. . . . o oo e 62
9.3.1 METADATA . . . o o e e e 64
9.3.2 SCALABILITY AND CONSISTENCY. . . . o o e e 64
9.3.3 BULKOPERATIONS\ o o e e s, 65
9.3.4 OTHERSERVICESUSED. s\ v oo s s, 66
9.3.5 SECURITY. . . o oo e 66
9.3.6 ADDITIONAL CONCEPTS. o oo e s s, 66

9.4 DATAMOVEMENT o ot e e e s s 67
9.4.1 DATASCHEDULER.\ o ot e e s, 68
9.4.2 FILE TRANSFER AND PLACEMENTSERVICE v v v v oot .. 69
9.43 FILETRANSFERQUEUE. v vt 69
9.4.4 FILETRANSFERAGENT o v e s, 70
9.45 TRANSFER CHANNELS.t ot o s s, 71
9.4.6 ADDITIONAL HIGHERLEVELSERVICES v v i i it 71

9.5 SECURITY IN DATAMANAGEMENT o o o oo e s, 72
9.5.1 FILE OWNERSHIP AND AUTHORIZATIONDETAILS 73
9.5.2 USER AND SERVICE CERTIFICATEUSAGE. v v .. 75

INFSO-RI-508833 PUBLIC 5/95

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

nabling Grids EGEE MIDDLEWARE ARCHITECTURE

for E-scienc Date July 15, 2005
10 HELPER SERVICES 76
10.1 BANDWIDTH ALLOCATION AND RESERVATION 76
10.1.1 BARARCHITECTUREOVERVIEW 77

10.1.2 WEB SERVICES AND THEIRINTERFACES 78

10.1.3 SECURITY. o e 79

10.2 AGREEMENT SERVICE 79
10.2.1 RESERVATION AND ALLOCATION SERVICE PROVIDER 79

10.2.2 AGREEMENT SERVICE. e 80

10.2.3 AGREEMENT INITIATOR e e 82

10.3 CONFIGURATION AND INSTRUMENTATION. 82
10.3.1 OVERVIEW 82

10.3.2 CONFIGURATIONSERVICE o oo 82

10.3.3 CONFIGURATION CLIENTS o e 83

10.3.4 INSTRUMENTATION INTERFACES 83

10.3.5 SERVICE CONTAINERS. o o 84

10.3.6 CONFIGURATION AND INSTRUMENTATION PROXIES 84

10.3.7 IMPLEMENTATION CONSIDERATIONS. 84

10.3.8 OTHER SERVICESUSED. i e 85

11 ISSUES 85
11.1 STANDARDS. e 85
11.1.1 SERVICE COORDINATION o e e 85

11.1.2 ADDRESSING. e 86

11.1.3 WSRFRESOQURCES. e e e e e 86

11.1.4 WEB SERVICE INTEROPERABILITYWS-I. 86

11.1.5 NOTIFICATIONS e e e e e 86

11.1.6 JOB SUBMISSION RELATED STANDARDS 87

11.2 DATABASE ACCESS e e e s 87
11.3 VIRTUALIZATION . . . o e e e e s e 87
11.4 RELIABLE MESSAGE PASSING o e 88

12 IMPLEMENTATION CONSIDERATIONS 89
13 CONCLUSIONS 90

INFSO-RI-508833 PUBLIC 6/95

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

This document describes the middleware architecture of the EGEE middleware gtatéethy means of

a service oriented architecture. It is a revision of DJRAtip$://edms.cern.ch/document/476451/1.0

taking into account the experiences and feedback received on DJRA1.1 and the subsequent releases of the
middleware. Itis a living document and we expect modifications of the proposed architecture as we gain
experience with practical implementations, feedback from our users, and evolution of the requirements.

The detailed specification of these services will be described in a separate design document (Deliverable
DJRA1.5) which will be a revision of the original document DJRAIhZps://edms.cern.ch/document/
487871/).

In the remainder of this paper we discuss some key requirements for our Grid architecture in $ection
followed by a brief introduction to the principles of service oriented architectures in Setti@ec-
tions5-10 present the gLite Grid services in detail.

Open issues, in particular the relationship of our architecture to emerging standards, are covered in
Sectionll. The document concludes with a brief summary after having discussed a few implementation
considerations in Sectidt?.

1.2 APPLICATION AREA

This document applies to the implementation of the gLite middleware within the scope of the EGEE
project and the JRA1 and JRA3 activity mandate. It is also applicable to other activities within EGEE,
in particular SA1, JRA4, NA3, and NA4.

1.3 MAaAIN CHANGES TO DJRA1.1

The main changes to the previous version of this document, DIRAttds:{edms.cern.ch/file/476451/
1.0) can be summarized as follows:

1. Section5 — Security Services has been augmented with a discussion Diytieemic Connectivity
Servicewhich replaces the old Section 11.1 — Site Proxy.

2. The discussion on API and Grid Access Service in Sediitias been changed to a generic de-
scription of the APIs and CLIs offered by the gLite Services. The inclusion of a Grid Access
Service is not planned in the current version of this architecture.

3. Section7 — Information and Monitoring Services has been augmented with a discusssemate
Discovery

4. Section9 — Data Services has been significantly revised taking into account the feedback on the
previous architecture and the experiences gained in developing the first release of these services.

5. A new Section on Agreement Service (Sectidh?) has been added.
6. A new Section on Configuration and Instrumentation (Secti®d has been added.

7. The original Section 10 — Use Cases has been removed from the document.

INFSO-RI-508833 PUBLIC 7/95

https://edms.cern.ch/document/476451/1.0
 https://edms.cern.ch/document/487871/
 https://edms.cern.ch/document/487871/
https://edms.cern.ch/file/476451/1.0
https://edms.cern.ch/file/476451/1.0

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

8. Sectionll — Issues now contains an updated discussion on related standards, in particular for
service coordination, addressing, WSRF, WS-, natification, and job submission. This combines
and updates previous discussions in the original Section 11 — Issues. A discussion on virtualization
has been added as well.

9. The discussion of the Network Element (originally in Section 11 — Issues) has been elaborated
and split into discussions on Network Performance Monitoring in Sectidrand Bandwidth
Allocation and Reservation in Sectidf.1

10. Section12 — Implementation Considerations has been augmented with a discussion on typical
deployment scenarios.

1.4 DOCUMENT AMENDMENT PROCEDURE

This document can be amended by the EGEE JRA1 design team. The document shall be maintained
using the tools provided by the CERN EDMS system.

1.5 TERMINOLOGY

AA Attribute Authority

AC Attribute Certificate

ACL Access Control List

AFS Andrew File System

API Application Programming Interface

AuthN Authentication
AuthZ Authorization

BT Bulk Transfer

CA Certification Authority

CAS Community Authorization Service

CE Computing Element

CEA Computing Element Acceptance

CLI Command Line Interface

DGAS DataGrid Accounting System

DNS Domain Name System

DRMAA Distributed Resource Management Architecture API
EDG European DataGrid

EGEE Enabling Grids for E-Science in Europe
FC File Catalog

FPS File Placement Service

FS File System

FTP File Transfer Protocol

FTS File Transfer Service

GAS Grid Access Service

GGF Global Grid Forum

GN2 The GEANT2 Project

GOC Grid Operations Centre
GRAM Grid Resource Access Manager

GSl Grid Security Infrastructure
GUID Global Unique Identifier
GSM Grid Storage Management
GUI Graphical User Interface

INFSO-RI-508833 PUBLIC 8/95

ecee

nabling CGrids
for E-scienc

EGEE MIDDLEWARE ARCHITECTURE

Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

Date July 15, 2005

HEP High Energy Physics
HLM Higher Level Middleware
HTTP Hypertext Transfer Protocol
ISM Information Super Market
/0 Input / Output
JC Job Controller
JDL Job Description Language
JP Job Provenance Service
L&B Logging and Bookkeeping Service
LCG LHC Computing Grid
LFN Logical File Name
LHC Large Hadron Collider
L-NSAP Local Network Service Access Point
LRMS Local Resource Management System
NAT Network Address Translation
NE Network Element
NOC Network Operations Centre
NPM Network Performance Monitoring
NM-WG GGF’s Network Monitoring Working Group
NREN National Research and Education Network
NSAP Network Service Access Point
NTFS (Microsoft) NT File System
OCSP Online Certificate Status Protocol
OGSA Open Grid Services Architecture
PAT Policy Administration Tool
PCI Policy Communication Interface
PDP Policy Decision Point
PEP Policy Enforcement Point
PKI Public Key Infrastructure
PM Package Management
POSIX Portable Operating System Interface (X)
PR Policy Repository
QoS Quality of Service
RADIUS Remote Authentication Dial In User Service
RC Replica Catalog
RDMS Relational DataBase Management System
RLS Replica Location Service
SAML Security Assertion Markup Language
SE Storage Element
SIPS Site Integrated Proxy Service
SLA Service Level Agreement
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
SRM Storage Resource Manager
SURL Site URL
TQ Task Queue
uc User Context
INFSO-RI-508833 PUBLIC 9/95

Doc. Identifier
c;;abmgefi EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

URL Uniform Resource Locator
uuIiD Universal Unique Identifier
VDT Virtual Data Toolkit

VLL Virtual Leased Line

VO Virtual Organisation

VOMS Virtual Organisation Membership Service
WM Workload Manager

WMS Workload Management System

WS Web Services

WS-A Web Services Addressing

WS-E Web Services Eventing

WS-| Web Services Interoperability

WS-N Web Services Notification

WSRF Web Services Resource Framework
XACML eXtensible Access Control Markup Language

INFSO-RI-508833 PUBLIC 1005

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

2 EXECUTIVE SUMMARY

Grid systems and applications aim to integrate, virtualise, and manage resources and services within
distributed, heterogeneous, dynarkictual Organisationsacross traditional administrative and organi-
sational domainsr¢al organisation¥[81].

A Virtual Organisation (VO) comprises a set of individuals and/or institutions having direct access to
computers, software, data, and other resources for collaborative problem-solving or other purposes. Vir-
tual Organisations are a concept that supplies a context for operation of the Grid that can be used to
associate users, their requests, and a set of resources. The sharing of resources in a VO is necessar-
ily highly controlled, with resource providers and consumers defining clearly and carefully just what is
shared, who is allowed to share, and the conditions under which sharing ogdurs [

This resource sharing is facilitated and controlled by a set of services that allow resources to be discov-
ered, accessed, allocated, monitored and accounted for, regardless of their physical location. Since these
services provide a layer between physical resources and applications, they are often referfddo as
Middleware

The Grid system needs to integrate Grid services and resources even when provided by different vendors
and/or operated by different organisations. The key to achieve this goal is standardisation. This is
currently being pursued in the framewaork of the Global Grid Forum (GGF) and other standards bodies.

In this document we present the revised architecture of the EGEE Grid Middleware (gailed. It is
influenced by the requirements of Grid applications (cf. Se@)othe ongoing work in the Global Grid

Forum (GGF) on the Open Grid Services Architecture (OG$4), [the feedback and experiences with

the first version of this document and the subsequent releases of the gLite middleware, as well as pre-
vious experience from other Grid projects such as the EU DataGrid (EBXG)p (//www.edg.org),

the LHC Computing Grid (LCG) Http://cern.ch/lcg), AlEn (http://alien.cern.ch), the

Virtual Data Toolkit VDT (ttp://www.cs.wisc.edu/vdt/), including among others Globus
(http://www.globus.org) and Condor Kttp://www.cs.wisc.edu/condor), and NorduGrid
(http://www.nordugrid.org).

ThegLite Grid services (cf. Sectiors9) follow a Service Oriented Architectufef. Sectiond) which

will facilitate interoperability among Grid services and allow easier compliance with upcoming stan-
dards, such as OGSA, that are also based on these principles. The architecture constituted by this set of
services is not bound to specific implementations of the services and although the services are expected
to work together in a concerted way in order to achieve the goals of the end-user they can be deployed
and used independently, allowing their exploitation in different contexts.

The gLite service decomposition has been largely influenced by the work performed in the LCG project
(the requirements and technical assessment group on an “architectural roadmap for distributed analysis”
(ARDA) [7]). Figurel depicts the high level services, which can thematically be grouped into 5 service
groups plus associated APIs and CLlIs.

These services (which might internally be split in further services as described in SegtiOhsre
characterised by the scopes and enforcement of their policies as shown inlTalle distinguish
betweeruser, site, VO, andglobal (i.e. multi-VO) scope where combinations are possible (authorization
policies may for instance be enforced by the VO and the site).

This taxonomy goes inline with recent discussions on resource virtualization (a short discussion of this
issue is included in Sectiohl.3. The physical resourcebe it computing, storage, or networking re-
source, is typically managed by a set of services under the control of the resource owner. These services
need to provide the resource owner with enough capabilities for managing the resource, in particular
allowing or denying access, quota management, and accounting and auditing. These physical resources

1other categorisations (e.g. a layered architecture as discussef))iare possible as well.

INFSO-RI-508833 PUBLIC 1105

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Configuration &
Instrumentation
Service
Bandwith Allocation Gri
- rid Access
Agreement & Reservation
Service Service

Helper Services

Information & Job
Monitoring Monitoring
L . Network Service

Authorization Auditing Monitoring Discovery
5 _ Information &
Authentication ynamic Monitoring Services

Connectivity
Security Services

Accounting
Metadata File & Replica Job Package
Catalog Catalog Provenance Manager
Storage Data Computing Workload
Element Movement Element Management
Data Services Job Management Services

Figure 1: gLite Services

arevirtualizedby additional services providing the user with a virtual environment for using the physical
resources. These virtual environments are typically tailored towards the needs of a user community, in
our context a VO.

The whole area of virtualization is a relatively new field and the boundaries and relationships between
physical and virtual environments is not yet fully specified. We try to take this issue into account in our
following discussions of compute and storage elements, however, expect changes as the understanding
of the field evolves.

Although most services are managed by a VO, there is no requirement of having independent service
instances per VO; for performance and scalability reasons service instances will in most cases serve
multiple VOs.

Security services encompass the Authentication, Authorization, and Auditing services which enable
the identification of entities (users, systems, and services), allow or deny access to services and resources,
and provide information for post-mortem analysis of security related events. It also provides functionality
for data confidentiality and a dynamic connectivity service, i.e. a means for a site to control network
access patterns of applications and Grid services utilising its resources.

Information and Monitoring Services provide a mechanism to publish and consume information and
to use it for monitoring purposes. The information and monitoring system can be used directly to publish,
for example, information concerning the resources on the Grid.

INFSO-RI-508833 PUBLIC 1295

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Service Scope

global | user| VO | site |
Accounting vV
Auditing
Authentication v
Authorization
Agreement Service
Bandwith Allocation and Reservation
Computing Element
Configuration and Instrumentation
Data Movement: Data Scheduler
Data Movement: Data Transfer
Dynamic connectivity

File and Replica Catalog
Information & Monitoring Vv
Job Monitoring
Job Provenance
Metadata Catalog
Network Monitoring V
Package Manager
Service Discovery V
Storage Element: SRM
Storage Element: Data Access
Workload Management

RN A A AU A

<<

AN

N S S S S S S =

Table 1: glLite Services and their Scope

More specialised services, such as the Job Monitoring Service and Network Performance Monitoring
services, can be built on top. The underlying information service will be able to cope with streams of
data and the merging and republishing of those streams. The system relies upon registering the location
of publishers of information and what subset of the total information they are publishing. This allows
consumers to issue queries to the information system while not having to know where the information
was published.

However all published information carries with it the time and date when it was first published (i.e. when
the “measurement” was made) as well as the identity of the publisher and from where it was published.
This information is not modifiable even if data are republished. In fact no data can be modified in the
system thus avoiding any inconsistencies when data are republished. There are of course mechanisms to
clean out old data (under the control of the publisher of that data).

Finally there is a fine-grained, rule-based, authorization scheme to ensure that people can only read or
write within their authority.

Job Management Services The main services related to job management/execution are the comput-
ing element, the workload management, accounting, job provenance, and package manager services.
Although primarily related to the job management services, accounting is a special case as it will even-
tually take into account not only computing, but also storage and network resources.

These services communicate with each other as the job request progresses through the system, so that a
consistent view of the status of the job is maintained.

INFSO-RI-508833 PUBLIC 1305

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

When this communication needs to occur during execution on the computing nodes (notably in the cases
of communication to the job provenance service, to the package manager service, and to any network
service that provides “interactive” services such as the bridging and buffering of standard streams, or
signalling to running jobs), the usual technique of wrapping the executable content into “wrapper” scripts
will be used. This technique, while not constituting a “service” as defined in Settican be used at

various levels in the architecture, as different parties, such as the submitting user and the workload
management service itself, require the output of procedures that are inserted in the wrapper. When job
wrapping requires services to be created or accessed by the submit/user interface node (before the service
port for job submission is contacted), tools will be provided to make this operation transparent to the user.

Data Services The three main service groups that relate to data and file access are: Storage Element,
Catalog Services and Data Movement. Closely related to the data services are the security-related ser-
vices and the Package Manager.

In all of the data management services described below the granularity of the data is on the file level
However, the services are generic enough to be extended to other levels of granularity. Data sets or col-
lections are a very common extension where the information about which files belong to a dataset may
be kept in an application metadata catalog. The usual possibility to group files by virtue of directories
is provided. Most application data is expected to be located in files (as opposed to relational database
systems for example). For application metadata we don't make this assumption. In a distributed en-
vironment, there will be many replicas (managed copies) of the user’s files stored at different physical
locations. To the user this may be totally transparent, the middleware will provide the capabilities for
replica management. The Data Movement services will expose all nontrivial interfaces to the user for
data placement in a distributed environment.

We expect the applications to specify the files they intend to access during their jobs either by name or by
metadata query. The Metadata Catalog is application (and VO) specific, so the exploitation of existing
legacy catalogs and their data needs to be supported. It is this mechanism that enables the concept of
virtual datasets as well.

To the user of the EGEE data services the abstraction that is being presented is that of a global file
system. A client user application may look like a Unix shell (as in AliEn) which can seamlessly navigate
this virtual file system, listing files, changing directories, etc.

The data in the files can be accessed through the Storage Element (SE). The access to the files is con-
trolled by Access Control Lists (ACL).

The detailed semantics of file access will be different depending upon what kind of storage back-end is
being used beneath an SE; there may be substantial latencies for reads and a large number of possible
failure modes for write.

Helper Services In addition to the services described above, a Grid infrastructure may provide a set of
helper serviceshat aim at providing a higher level abstraction (like for instance Workflow services or
market mechanisms), better quality of service (like for instance reservation and allocation services), or
better manageability of the infrastructure (like for instance configuration services).

In our current architecture we include three examples of such helper services, nant@bnflgration
and Instrumentation Serviceéhe Bandwidth Allocation and Reservation Serviead theAgreement
Service

The Configuration and Instrumentation Service provides a common, standard-based configuration and
instrumentation functionality to the gLite services. In particular, the configuration part is concerned with

2The issue of database access is briefly discussed in Sédtian

INFSO-RI-508833 PUBLIC 1495

Doc. Identifier
C;;ab”n?ﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

dynamic changes in the configuration of a Grid service while the instrumentation part is concerned with
obtaining the state of a Grid service.

The Bandwidth Allocation and Reservation Service provides mechanisms to control and balance the
usage of the network and to categorise and prioritise traffic flows so that users and the layers of Grid
middleware receive the required level of service from the network.

Finally, the Agreement Service allows the dynamic establishment of Service Level Agreements between
agreement initiators (the service requestor) and the service providers.

Note, that the gLite architecture does not in general impose specific deployment scenarios (i.e. how many
instances of a certain service are available to a user, if a service is replicated or distributed, etc.) unless
specifically pointed out in Sectiois10.3 Most importantly, service instances may serve multiple VOs
which will facilitate the scalability and performance of the Grid system although a VO may require its
own instance as well.

INFSO-RI-508833 PUBLIC 1505

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

3 REQUIREMENTS

Due to the heterogeneous nature of Grid environments and Grid applications, a Grid architecture needs
to cope with a large set of (sometimes conflicting) requirements. The OGSA doc8tiegives a good
overview on the nature of these requirements which are summarised below.

Heterogeneous Environment Support In general, Grid environments tend to be heterogeneous and
distributed, encompassing a variety of operating systems, hosting environments, and devices. Moreover,
many functions required in distributed environments may already be implemented by stable and reliable
existing legacy applications which thus need to be integrated into the Grid. In order to support these
requirements, resource discovery, resource interrogation, and life-cycle management of hosting environ-
ments are essential tools.

Resource Sharing Across Organisations One of the main purposes of Grid technology is to utilise
resources transparently across administrative domains. Virtual Organisations provide the context to as-
sociate users, requests, resources, policies, and agreements without being limited by barriers such as
existing sites or organisations. The Grid architecture needs to provide appropriate VO management, VO
security, and accounting tools.

Resource Utilisation Grid environments must cater to chaotic usage patterns, making an optimal plan-
ning for resource utilisation virtually impossible. Nonetheless statistical and local optimisation of re-
source utilisation are still important; therefore tools for reservation, metering, monitoring, and logging
are required so that system administrators can manage resources effectively.

Job Execution The Grid environment must enable submitted jobs to have coordinated access to VO
resources and provide functions (such as job monitoring, analysis and projection of resource usage,
dynamic adjustments) so that jobs can receive their desired quality of service (QoS). This requires tools
for scheduling, job life-cycle management, work-flow management, and service-level agreement (SLA)
management.

Data Services An ever-larger number of fields in science and technology require efficient processing of
huge quantities of data. In addition, data sharing is important, for example to enable sharing information
stored in databases which are managed and administered independently. A Grid architecture needs to
provide services for data access, integration, provisioning, and cataloguing.

Security Safe administration requires controlling access to services and resources through robust se-
curity protocols and according to security policies. Thus, mechanisms for authentication, authorization,
and auditing are required. Moreover, the Grid architecture should work across firewalls as well as allow
for network isolation, delegation, and cross-organisational policy exchange and management.

Administrative Cost The complexity of administration of large-scale, distributed, heterogeneous sys-
tems increases administration costs and risks of human errors. Support for administration tasks should
thus be automated, in particular for provisioning, deployment and configuration, application manage-
ment, and problem determination.

Scalability Many Grid applications are concerned with scalability and performance, in particular
through distributed supercomputing and high-throughput computing applications.

INFSO-RI-508833 PUBLIC 16/95

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Availability Virtual Organisations enable transparent sharing of alternative resources across organi-
sations as well as within organisations, and thus can be used as one building block to realise stable,
highly-reliable execution environments. This requires mechanisms for disaster recovery and fault man-
agement.

Application Specific Requirements Apart from these generic requirements, Grid applications may
have specific requirements that a Grid architecture needs to fulfil. In the context of EGEE the needs of
two pilot user communities must be satisfied: High Energy Physics (HEP) and Biomedical communities.

The detailed requirements, which are mostly specialisations of the generic requirements presented above,
can be found in several documents:

e Common use cases for HE®] [
e Common Use Cases for a HEP Common Application Layer for Analy€ls [
¢ Joint list of use cases from HEP, Biomedical, and Earth Observatign |

e Biomedical requirementgi]].

EGEE Requirements The EGEE project has established a common repository for collecting, review-
ing, and reviewing requirements from EGEE applications and operations. This repository can be found
at https://savannah.cern.ch/support/?group=egeeptf.

This repository constitutes the main requirements that the architecture, design, and implementation work
of gLite is planned against.

4 SERVICE ORIENTED ARCHITECTURE

Traditionally, applications have been built for a single computational entity, by integrating local system
services like file systems and device drivers. Since everything is under local control, this model is very
flexible in providing access to a rich set of development resources and provides precise control over how
the application behaves. At the same time, this is bound to a single operating system and architecture,
which can be error prone and costly, especially for upgrades. For distributed communities, it is not
always possible to work in this mode with a single supercomputer as the computing entity.

A more modern approach is to construct complex distributed applications by integrating existing appli-
cations and services across the network, adding data entities, fAeadkbusiness logic. The aim is

to reduce development time and increase productivity and software quality. This architectural model is
powerful in the sense that it is very flexible and extensible, providing added functionality to the users.
However, subsequent modification and architectural reuse of the components may be problematic as it
may have complex repercussions on services built on top of them.

The term Service Oriented Architecture (SOA) is increasingly used to refer to a discipline for building
reliable distributed systems that deliver application functionality as services with the additional emphasis
on loose coupling between interacting servicés B]. Tight coupling makes it hard for applications to
adapt to changing requirements, as each modification to one application may force developers to make
changes in other connected applications.

SProvide a unified interface to a set of interfaces in a subsystem. A facade defines a higher-level interface that makes the
subsystem easier to us&6]

INFSO-RI-508833 PUBLIC 1705

https://savannah.cern.ch/support/?group=egeeptf

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

A SOA significantly increases the abstraction level for code re-use, allowing applications to bind to ser-
vices that evolve and improve over time without requiring modification to the applications that consume
them. Services provide a clean model to integrate software systems both inside the organisation and
across organisational boundaries. This model is clearly very suitable for Grid middleware, which has to
deal with Virtual Organisations and Site policies.

The services communicate with each other through well-defined interfaces and protocols, which can
involve simple data passing or some coordination of activities.

4.1 SERVICES

If a service-oriented architecture is to be effective, we need a clear understanding of the term service. A
service is a function that is well-defined, self-contained, and does not depend on the context or state of
other services. A Web service is an application that exposes its features programmatically using standard
Internet protocols.

In more detail, services are discrete units or modules of application logic that expose message-based
interfaces suitable for access across a network. Typically, services provide both the semantics and the
state management relevant to the problem they address. When designing services, the goal is to effec-
tively abstract and encapsulate the logic and data associated with real-world processes, making intelligent
choices about what to include and what to implement as separate services. Well-written services expose
a semantically simple logic to the application that binds to them, with clean failure modes.

In a distributed environment, services tend to be oriented toward use over a network by other services,
though this is not an absolute requirement. Communicating in a distributed system is intrinsically slower
and less reliable than when operating in the same processing environment. This has important architec-
tural implications because distributed systems require that developers (of infrastructure and applications)
consider the unpredictable latency of remote access, concurrency issues, possibility of partial failure, and
inaccessibility of certain services.

4.2 MESSAGES

Services interact by exchanging messages. Ultimately, every service is defined purely by the messages
it will accept and produce, and what happens on failures. The routing of messages between services is a
complex process that is best handled by a common messaging infrastructure.

Messages are sent in a platform-neutral, standardised format defined by the service interfaces. Service-
to-service communication follows the interface contract; by making this contract explicit it is possible

to change one service implementation without compromising the interaction. The internal structure of
a service, including features such as its implementation language are, by design, abstracted away in the
SOA.

For Web services, the Simple Object Access Protocol (SOAP) stangidris jused to specify how the
messages are being passed between services, and the Web Service Definition Language (WSDL) is used
to specify the interface a service exposes. From a WSDL document a client or application will know
how to bind to a service. Many semantic details are only defined as part of the internal logic and cannot
be programmatically exposed; these details must be thoroughly documented.

4.3 POLICIES

All services are also governed by policies. Policies are less static than business rules and may be regional,
organisational or user-specific. Policies are usually applied at run-time.

INFSO-RI-508833 PUBLIC 1895

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Policies may represent security, quality-of-service, management, and application concerns. Services
negotiate using policies. Services must comply with one another’s policy requirements in order to inter-
operate.

In a Grid the responsibilities for the management of the service policies is shared between many organi-
sations and sites. Policies are typically managed by the Virtual Organisations (VO) using the service and
the site administrators of the site where the service is actually deployed.

The breadth of the policy management rules needs to be considered at the design phase of the project as
later changes to the system are difficult. If the policy-enforcement infrastructure is well-integrated, it al-
lows setting, changing, and evolving the run-time rules that govern communication and service behaviour
easily.

4.4 STATE

Services manage state, ensuring through their logic that the state is kept consistent and accurate. State
manipulation is governed by the internal semantics of the service, also called business rules. These are
relatively stable algorithms and are typically implemented as part of the service application logic.

Almost all services manage durable state; that is, state that is stored on some durable medium such as a
file system or in a database. The services receive a request from another service, retrieve some state from
that durable medium, and build a response or update the state. This durable state is important; services
may be brought down and when they are brought up again, the durable state is still there and they can
continue as if nothing has happened. Services do their best to keep that durable state consistent; they
would like to keep their application state in memory consistent as well, but if something happens, they
can just abort the processing, forget their memory state, and set up again using the durable state.

So in summary, a complete definition of services might be: Services are network-capable units of soft-
ware that implement logic, manage state, communicate via messages, and are governed by policy.

5 SECURITY SERVICES

Security services encompass the Authentication, Authorization, and Auditing services which enable the
identification of entities (users, systems, and services), allow or deny access to services and resources,
and provide information for post-mortem analysis of security related events. The following section
provides an overview of these services; They are described in more detail in EGEE deliverables DJRAS3.3
(Global Security Architecturef] and DJRA3.2 (Site Access ControB]].

5.1 AUTHENTICATION

Authentication is concerned with identifying entities (users, systems, and services) when establishing a

context for message exchange between actors: that is, it is the mechanism that enables you to know who
you talk to. Such information is used in many policies for resource access and data protection, as well as

for auditing and incident response purposes.

One of the key aims for Grid authentication is enabling single sign-on for the user, that is to provide an
identity credential with “universal” value that works for more than one purpose, across many different
infrastructures, communities, virtual organisations, and projects. Here, particular attention must be paid
to the fact that the same identity is also to be used for accessing non-grid resources such as*ratdiorks
web resources. In fact, some regional deployments use their Grid credentials for secure (signed and/or
encrypted) email as well.

4see Sectior0.1for a discussion on networks and the Grid

INFSO-RI-508833 PUBLIC 1905

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

In our architecture, identities can be issued by grid identity providers, by independent non-grid entities
(like governments or other national agencies), and by users’ home organisations (major institutions and
laboratories). Authentication (identity) assertions are independent of any authorization assertions and
policies — there is no implied right-of-access associated with an identity.

The most used model for Grid security to date is based on each end-entity (user) holding unique authen-
tication credentials. This system is based on Public Key Infrastructure (PKI), which uses a concept of
trusted third parties (Certification Authorities or CAs) that issue the identity credentials. The set of CAs
that we use for the EGEE deployment defines our trust domain: the pros and cons of this setup is further
discussed in Sectiors 1.1through5.1.4 Single sign-on capabilities can be obtained by generating a
proxy of the user’s credential that is not protected by further activation data. That proxy credential may
be based on a long-term credential held by the entity that should be protected by activation data. The
proxy should be able to contain any assertions that are needed for establishing the security context when
required by the session establishment protocol.

Thus a PKI based authentication system with proxy credentials 4@ yill be the starting point for
developing the authentication services. The user will be presenting his or her own identity credential
proxies to the services, including any attribute assertions and relevant policies, and whenever actions are
taken on the user’s behalf these credentials will be transferred to the service invoked in order to retain
secure traceability. Services that act, directly or indirectly, on behalf of, or as a result of, action by the
user, shall hold credentials that are derived from the credentials of the original user.

Our chosen model allows for straightforward credential mobility, external (governmental) identity
providers, and single sign-on capability over multiple domains even in the absence of any direct trust
relationship between those domains.

Proper management of PKI credentials is too difficult and too complex for the average end-user to handle.
Therefore, arecommended deployment is where the end-user have a specific identity and the capability to
obtain credentials, but they are either kept on behalf of the user by some other entity (typically the user’s
home organisation using e.g. a hardened deployment of MyProxy) or implicitly in the user’s infrastruc-
ture. Site-integrated credential services (SRC8p services that generate (short-lived) user credentials
without the user holding any long-term credentials. Several SICS implementations exist (such as Ker-
berized Certification Authority, kCA[(], and the Virtual Smart Card projec2§]) and are described
extensively elsewhere.

It should be noted that while our chosen model, where the user, at least theoretically, owns the credentials
has most leverage in current grid-security implementations, this is by no means the only option available.
In many systems, the user may attempt to access a service directly, and if authentication is required a
security exchange will be initiated. Moreover, such a model allows for implicit privacy preservation: if
authentication is not required that step may be omitted and the security context will then be established
based solely on authorization data.

It should also be noted that the VO is not the appropriate guardian for the user’s credentials, because
this implies a proliferation of those credentials to many different entities (with the associated risks of
compromising those credentials). Moreover, it entails the risk that this binding to the VO inadvertently
leads to identities and authentication tokens being linked to a single VO, thus mixing authentication and
authorization.

5.1.1 TRUST DOMAINS

The use of a PKI implies the existence of third parties (Authorities) that are considered “trusted” by
all participants of the infrastructure. Traditionally implemented by a hierarchical structure, the absence
of a single global root of trust for X.500 compels the use of a different structure. For the European

5This was previously referred to as Site-integrated proxy services, SIPS.

INFSO-RI-508833 PUBLIC 2095

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

(and related world-wide) scientific Grid communities, a single trust domain has been established based
on a policy defining a common set of minimum requirements. A policy management authority (the
EUGridPMAJ30]) has been established to coordinate this trust domain.

The trust anchors pertaining to the domain must be accessible to the services that validate authentication
data in a secure, non-tamperable location (e.g. a local disk, modifiable only by the administrator).

5.1.2 REVOCATION

Timely revocation of identity is needed to prevent exploitation of credentials that have been compro-
mised. The allowed response time as specified by resource providers is in the region of 10-60 minutes.
Based on experience, we have concluded that this constraint cannot be satisfied by the periodic distribu-
tion of validity/revocation lists on a large scale.

Any software component that validated authentication must be able to check the validity of the credentials
in real-time, using a suitably-sized mesh of status responders. The protocol for validating authentication
credentials will be the Online Certificate Status Protocol, OGSP As a backup mechanism in case of
network partitioning, revocation lists should be distributed periodically (4-6 times per day) and retrieved
by all relying parties (users and service providers).

5.1.3 CREDENTIAL STORAGE

The usage pattern for credentials by users and services is slightly different. Services will keep credentials
stored locally with the service but typically without activation data. Those services that are created on-
demand (or on behalf of a user or process on a remote system) should use delegated credentials from
either the originating system or the user responsible. Such a store of delegated credentials is to be
managed as a collection of resources (delegation is described in the next section).

On the other hand, users are mobile and their credentials are not only more exposed but also much more
“powerful” and attractive to exploit. Thus, long-term credentials held by the user must be stored securely
and be protected by a passphrase. Several alternatives are to be provided: another trusted organisation
may hold the credentials on the user’s behalf, the credential may be stored on a smart card, or the user
may not actually possess a long-term credential, instead short-lived credentials are created on-demand.
Storing credentials on a local file system should be supported for backwards compatibility reasons, but
implies a significant security risk and is not recommended.

In either case, the credentials must be issued by a trusted party close to the user (a certification authority,
or the user’'s home organisation) and valuable credentials held in a secure storage under the user’s control.

The user will likely have different ways of obtaining credentials, and may have more than one credential
at the same time. Thus, a “credential wallet” function should be provided (e.g. MyProxy). As mentioned
earlier, this credential wallet is valuable to the user and may contain sensitive personal data. It must be
located where the user can trust the store (e.g. with the user’s home organisation).

At all times, the proliferation of long-term authentication credentials should be traceable, so that all
copies of the credential can be disabled or revoked when the credential is compromised.

5.1.4 PRIVACY PRESERVATION

One of the basic security requirements in the Grid is traceability of actions across domains. However,
linking those actions to actual identities or to long-term reusable credentials exposes a significant amount
of personal data that could violate privacy requirements. Moreover, by monitoring the very actions
themselves may reveal commercially valuable information that should have remained hidden.

INFSO-RI-508833 PUBLIC 2105

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Due to the openness of Grids, privacy issues can only partially be addressed. In order to “raise the bar”
a bit at least, we introduce pseudonym providers. Such pseudonym providers issue identity tokens in
the same format as CAs in the common trust domain, but do require that they have CA “status” in order
to function seamlessly. The related policy work for that to happen is currently underway in the EU
GridPMA.

The pseudonym provider must keep a secure, hon-tamperable and private account of the associations be-
tween issued pseudonyms and the original identities, which may be used for traceability and auditability
of actions but only in a controlled fashion and for a well motivated reason (e.g. court order).

5.1.5 SECURITY CONSIDERATIONS

Credential stores, such as MyProxy, are high-value targets for directed attacks when used by many users.
Hosting such services requires a trusted computing environment with dedicated machines, active fire-
walls, and minimal services. Moreover, these services should be compartmentalised so as not to store
too many valuable credentials at the same time. Thus, the credential store must never be run as a common
service by a VO, since a successful attack on the credential store will disable the entire VO for a long
period of time. Hosting this service with the user's home organisation will both increase the trust level

of the user in this service, as well as limit any damage by compromise to that single organisation.

5.2 AUTHORIZATION

Authorization (AuthZ) is concerned with allowing or denying access to services based on policies. The
core problem with authorization in a Grid setting is how to handle the overlay of policies and other
assertions from multiple administrative domains (user policy, VO specific policy, operational procedures,
site-local policy), and how to combine them. Where relevant, both the service as well as the client should
be able to take and enforce such decisions (mutual authorization). These issues are addressed in more
detail in the sections below.

There are three basic authorization modél,[classified aggent pushandpull. In thepushmodel, an
authorization service issues tokens. The user collects the tokens and presents these to the resource where
access is requested. While putting additional burden on the client, the resource does not need to know
ahead of time about the user’s privileges.

In theagentmodel, the user only interacts with the AuthZ server, which in turn forwards service-specific
parts of the request to the underlying resources. While being a centric approach, network bandwidth
or connectivity provisioning is best done in this mode, since access to the network in the end must be
transparent.

In the pull model, the resource asks the AuthZ service on a need-to-know basis. This puts the burden on
the resource, as it needs to know up-front all authoritative parties in the system, and how to contact them.
Cellular phone roaming, and various RADIUS-bas2@ hetwork access services use this model.

Thepushmodel has been identified as the model that best suits dynamic, distributed and loosely coupled
systems such as Grids.

5.2.1 SOURCES OF AUTHORIZATION

There are two kinds of AuthZ sources: attribute authorities (AA), which associate a user with a set
of attributes in a trusted manner to a relying party, by way of digitally signed assertions. The relying
party (the resource) evaluates the attribute assertions (e.g. role and group membership information) and
include it as “evidence” when evaluating an access request against local policy.

INFSO-RI-508833 PUBLIC 2295

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

The other kind of AuthZ source deals with policy assertions: here, the resources consolidate some of
the policy definition to a trusted third party. The policy assertion service will issue claims that gives a
user (or set of users) the explicit privilege to perform an action (or a set of actions) on a certain resource
(or set of resources). The resource owners in turn may or may not decide to comply with these claims,
pending the evaluation of conflicting local policy.

In our architecture, we foresee the need for both the AA and policy statement AuthZ services, and the use
of primarily the push model. Initially, an AA service will provide coarse-grained division of users into
different groups, which can then be handled by the resources through local configuration. However, with
an increasing number of VOs using the EGEE resources, such configuration becomes unmanageable and
we therefore will need a consolidation of VO policy that can be provisioned to the resources, e.g. on a
need-to-know basis via the client requests.

The services and functionality are provided by

¢ the VO Membership Service (VOMSJ], which is an attributes issuing service which allows high-
level group and capability management and extraction of attributes based on the user’s identity.
VOMS attributes are typically embedded in the user’'s proxy certificate, enabling the client to
authenticate as well as to provide VO membership and other evidence in a single operation.

e e.g. the Community Authorization Service (CASJ], a policy statement service, which issues
its statements encoded in SAMEY].

Note: we do not consider the VO policy server component to be a crucial piece of the core architecture,
but we mention it anyhow at this point as it is on the future road-map.

5.2.2 PoLICY COMBINATION AND EVALUATION

When making an AuthZ decision, we must be able to combine information from a number of distinct
sources. Besides Grid-wide or VO-wide attribute and policy assertions, potentially provided to a service
as part of the client request, we also need to include domain specific policy such as POSIX ACLs for
file access, or a (sub-)set of VOs that are allowed access to a particular computational resource. Finally,
but most importantly, we must also take any locally defined site policy into consideration when making
a unified, context specific AuthZ decision on an individual request basis.

In order to be able to combine information from multiple sources in this manner, we must have a way
to convert any domain specific access control language into a common language with strong support
for combining policies. One such candidate language is XACML (eXtended Access Control Markup
Language)%9].

Figure 2 shows the architecture of a general framework that is able to fulfil the requirements set out
above. It allows the definition and enforcement of local, VO and Grid wide policies.Pohey Ad-
ministration Tool(PAT) allows the local administrator to specify, remove, modify policies, and accept or
refuse policies proposed by an external entity (for example policies defined at the Grid level or set by
the VO administrators). Thieolicy Communication InterfaddCl) is used to handle the communication
between different “entities”, for example to send VO-level policies to the various CEs. The set of active
(and past) policies, possibly described in the combined form using standard languages such as XACML,
is held in thePolicy Repositor{PR). In this architecture tholicy Enforcement PoirPEP) is used by

the client (e.g., the Web Service) to make the policy evaluation of a request. The PEP assembles the
necessargvidence(asserted attributes, and other contextual data), and then forwards the request to a
Policy Decision Poin{PDP) which evaluates the request according to the active policies.

We note that for performance reasons, the PEP and PDP will in most cases be merged into a single
component that is embedded in the request handling flow of the service container, rather than being
exposed as separate, standalone Web Services.

INFSO-RI-508833 PUBLIC 2395

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

= Biiia Ciide EGEE MIDDLEWARE ARCHITECTURE
for E-scienc Date July 15, 2005
Policy repository Policy
(PR) Administration
Tool
(PAT)
. - Policy
Pol |cyp(l)3i s,‘c sion Communication
Interface
(PDP) FCl)
Policy
Enforcement VO Policies
(PEP) Grid Policies
Client

Figure 2: Architecture of the policy combination and authorization framework.

A typical use case of how the policy combination and authorization framework is used is consulting
VOMS attributes and a local grid-mapfile, i.e. attribute assertions and policy from two authorities (the VO
and the local resource owner) that need to be combined into a final authorization decision. In addition to
this, operational policies that states things such as max allowed credential lifetimes, needs to considered
as well.

5.2.3 MUTUAL AUTHORIZATION

There are Use Cases where a client wants to authorize a service as well as the service authorizing the
client access: for instance, a client wanting to store sensitive data might first ensure that the SE has
been approved to service such storage requests. Instead of building this tightly into every service (for
instance, by having services authenticate with proxy certificates with embedded authorization informa-
tion), optional means (e.g. portType) must be provided by the services to interrogate the service about
such authorization information.

5.2.4 OTHER SERVICES USED

While it is possible to provide anonymous AuthZ tokens (such as tickets to a ball game), attribute asser-
tions and policy statements are usually tied to a globally known identity for convenience, traceability and
ease of management. Therefore, the AuthZ services will have a strong dependency on the Authentication
infrastructure which provides the necessary unigue identifiers and the cryptographic methods with which
the entity-identity association can be challenged and proved.

Whenever a policy statement or an attribute assertion is created or used as evidence, a trace of this action

INFSO-RI-508833 PUBLIC 2495

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

must be found in the system. Thus, AuthZ services and policy evaluation engines will depend on and
make use of available audit and logging services.

5.2.5 SECURITY CONSIDERATIONS

Itis vital that all components of the AuthZ infrastructure are as securely managed and operated as the cor-
responding parts of the authentication infrastructure. For instance, the repository containing the trusted

signatures of the AAs need to be as protected against infiltration as the repository of trusted CAs, e.g. by

distributing these so-called trust anchors via an authenticated web site, possibly cross-checked against
widely available public media.

5.3 DELEGATION

Itis often the case that Grid users need to delegate some subset of their privileges to another (dynamically
created) entity on relatively short notice, and only for a brief amount of time. For example, a user needing
to move a dataset in order to use it in a computation may want to grant to a file transfer service the
necessary rights to access the dataset and storage so that the service can perform a set of file transfers on
the user’s behalf. Since such actions may be difficult to predict, having to arrange delegation ahead of
time is prohibitive.

An important security aspect in regards to delegation is the principle of least privilege: you only want to
delegate the privileges that are necessary to successfully perform the intended operation, and no more.
This is hard to accomplish in reality, but our architecture must support some simple provisioning and
enforcement of restricted delegation. It is also often very useful to separate the privilege to delegate from
the privilege itself.

A number of existing mechanisms could satisfy the delegation use case mentioned above. The use of
Proxy Certificates{8] has been the mechanism most widely adopted by the Grid community to date, as
the technology needs no additional infrastructure services, and at the same time it also solves the single
sign-on and dynamic entity identification problems. Besides providing some coarse-grained controls
(such as describing whether all or none of a user’s privileges are implied in the delegation, and the right
to delegate further), there is also a placeholder for adding arbitrary, typically application-specific, policy
restrictions.

5.4 SANDBOXING

Many of the applications using the grid today &rgacyapplicationsj.e. applications that are designed

and implemented for running by a local, trusted user on a single administrative domain. When running
these essentially ‘arbitrary’ applications on remote resources, both users and resource owners need isola-
tion of those applications. On the one hand, that enables resource administrators to control the behaviour
of these unknown applications, and on the other hand it protects to some extent the different applications
running on a shared resource from each other. The choice of isolation technology made at the resource
level, should however be transparent for the higher-level authentication and authorization modules, the
middleware components initiating this application, and as far as possible also for the applications them-
selves.

Theoretically, complete virtualisation of resources provides the best possible way of isolating appli-
cations. Such virtualisation of the resource is common in some hosting environments like Java. For
traditional applications, the same or a similar level of isolation can be obtained by using host virtuali-
sation techniques. In practice, much of the legacy application isolation is accomplished by exploiting
traditional Unix-level security mechanisms like a separate user account per ‘grid-user’ or per job via
credential mapping techniques. All information relevant to the mapping of credentials, the credentials

INFSO-RI-508833 PUBLIC 25005

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

created or linked, and the associated attributes will be recorded by a Job Repository. Details can be found
in DJRAS3.2 (Site Access Control2{].

5.5 DyNAMIC CONNECTIVITY SERVICE

As discussed in Sectidn 2.2 our design must recognise and respect policies defined by the local sites.
Such policies may affect connectivity as resources (storage, worker nodes) may be on a private network,
NAT devices or firewalls may block incoming and/or outgoing connections, or certain port intervals may
be blocked. %4].

In order to tackle the problems that arise when connectivity is restricted by the resource owner, provision
for a Dynamic Connectivity Servig®CS) component was identified early in the design process. First,

it was envisaged that a DCS would act as a virtual endpoint for service-level translation device/routing
of messages between the Internet and the actual endpoint on a local/private/shielded network.

However, such as service would effectively override/bypass local policy, which is not in line with the
overall security design philosophy. Furthermore, most of the middleware services communicate over
standard protocols for which proven solutions already exist.

Therefore, our initial approach is not to build a DCS ourselves. Instead, we will ensure that our service
container(s) and services themselves can be configured such that the local resource owner can control
how the services communicate:

e Only using ephemeral (dynamically allocated) ports in a certain port range

e Advertise endpoint URLs with hostname/port numbers different than the physical local addresses
and logical hostname

e Route all SOAP over HTTP(S) traffic via a SOCKS server, provided by the resource owner.

For the longer term, we will investigate alternative solutions to this problem. One could also envision a
DCS as a front-end service to the local network access policy, with the capability to authorise and trace
network access by modifying that policy dynamically. For example, before initiating a data transfer, the
application would need to request for the creation of a network path on which it can send or receive. The
DCS would then alter the firewall (or port filtering application) configurations to allow traffic through,

and log the event for auditing purposes. It has also been suggested that other transport protocols such as
BEEP [p4] are investigated.

5.6 AUDITING

Auditing is a very general term: here, we primarily mean the system security aspects of auditing, such
as monitoring and providing for post-mortem analysis of security related events.

In computational Grids, auditing goes hand in hand with accounting, as they share the base requirements
on the system’s logging capabilitiesho did what, where, and whéand in the case of accountinfgr
how long, or for how muagh [42]

Auditing is not only meant for emergency use, such as a system breach, but is also useful for the valida-
tion of continuous operations, verifying that components behave as expected.
5.6.1 SERVICES

The auditing process in itself does not require a separate service. Rather, it imposes a set of common
principles and practices on all system components, e.g. to log correct, complete and relevant information.

INFSO-RI-508833 PUBLIC 26/95

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

The audit information should itself be traceable and verifiable throughout its lifetime and throughout ser-
vice invocations, so that any anomalies in the audit trail can be traced to identifiable service components.

Creating a “real” audit service would clearly have benefits in terms of enforcing uniformity of informa-
tion, providing secure remote access to the information, easing the process of merging and combining the
information from different services. No specific architecture for such a component in currently pursued
due to doubts about load, scalability and, not the least, the handling of site-internal information outside
the site perimeter.

5.6.2 OTHER SERVICES USED

In a (provisional) auditing scenario, we will make use of whatever information sources we have at hand
(system logs, L&B services, ...), and attempt to make sure the other middleware components log the
necessary information.

5.6.3 SECURITY CONSIDERATIONS

Ideally, for a system to have a “proper” auditability according to recognised standards, we would need
to invest heavily in detailed documentation of processes and methodologies used, as well as employ
additional technology (for example tamper-proof logs). This is more than we can consider in this project.

The audit information stored anywhere in the system should be self-contained and interpretable even if
the original source of the audit information is later compromised. Moreover, the information should be
clear and concise even if it is to be interpreted without access to the originating service.

6 GRID ACCESS

All of the gLite services are accessible via APIs and CLIs. The move towards web services enables the
automatic generation of APIs in multiple programming languages. This is however a tedious and error
prone task due to the lack of appropriate tooling. Hence pre-generated APls are provided as well. These
APIs can also offer higher-level functionality than the service WSDL itself.

CLlIs are provided for the most common service interactions.

7 INFORMATION AND MONITORING SERVICES

7.1 BASIC INFORMATION AND MONITORING SERVICES

The information services are a vital low-level component of any grid; most services will publish or con-
sume information. The information service should create the appearance of a single federated database
covering all available information. This implies a query language that supports ad-hoc correlations be-
tween information in different services. A candidate for the model is the relational model with SQL

as the query language. This is not to suggest that end users need to construct complex SQL queries
themselves as it is more common to have front ends to automate the generation of SQL.

Any information can be monitored provided it carries a time-stamp. The mechanisms to move the infor-
mation around are the same. What makes monitoring systems distinctive is normally the GUIs that are
provided to visualise time-sequenced data and to highlight problems. These GUIs are simply clients of
the information services.

Each VO is assigned a number of name-spaces corresponding to a Virtual Database (VDB). Each VDB
is associated with a registry and a schema. The schema holds the definitions of the tables and the registry

INFSO-RI-508833 PUBLIC 27R5

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

lists the available sources of information (producers) and the consumers. A registry contains a list, for
each table, of Producers who have offered to publish for the table. A Consumer runs an SQL query
against a table, and the registry selects the best Producers to answer the query in a process called medi-
ation. The Consumer then contacts each Producer directly, combines the information, and returns a set
of tuples. The mediation process is hidden from the user. Note that there is no central repository holding
the contents of the virtual table; it is in this sense that the database is virtual as it holds virtual tables.
Some of these components are show in Figure

Secondary Producer

Primary Producer On-demand Producer

Table 1, Producer P1 details

Table 2
Table 2, Producer P1 details
Table 1, Column defs Table 2, Producer P2 details
Table 2, Column defs \ Table 2, Producer P3 details
Table 3, Column defs ’ aile
virtual tables Table 3, Producer P2 details
wples Table 3, Producer P4 details

Registry
\ g
Consumer Consumer

Figure 3: R-GMA and the VDB

Schema

Note that there is no global information. Each schema has an owner who controls who can publish what
and can read what. If a deployment wishes to simulate some global information a VDB would need to

be created. Service providers may choose to publish information to VDBs of the VOs they serve or they
may publish to “service provider VDBs”. This is a deployment issue.

The contents of the scheme are not an architectural issue, however we will maintain the relational map-
ping of the GLUE schema.

A Consumer can pose queries against multiple VDBs using a syntax to indicate that the union of the
tables of the specified VDBs should be used.

The registry and schema are vital components of the system though most of the time users just make
direct use of the producer and consumer services. The schema is accessed directly to define new tables
and to attach authorization information to a table.

Some information of interest changes rapidly and some much more slowly. However, even with the
slowly changing information, it is often necessary to know quickly if it does change. Publishing infor-
mation that is only changing infrequently, along with rapidly changing information is inefficient. This
requires thought when designing schemas. It is better to treat the information as two or more entities
with one to one relationships between them at any one time, rather than trying to bundle together slowly
and rapidly changing quantities.

The Services to be provided are:
e Producers (Primary, Secondary and On Demand)
e Consumer
e Registry

e Schema

INFSO-RI-508833 PUBLIC 2895

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

7.1.1 OTHER SERVICES USED

VOMS is able to augment a user’s certificate with information about groups and roles within a VO. The
use of VOMS, or a similar service, facilitates the expression of rules to specify the desired granularity of
access.

7.1.2 PRODUCER SERVICES

The Producer services are used to publish information. There are three types of Producer:

e Primary
e Secondary

e On-demand

All behave in different ways, as described below, but have some common features.

Users of Producers declare tables to advertise the type of information that will be made available. The
user can also specify a predicate (S@IERE clause) that defines the precise subset of the global table
that will be published. In a Grid environment it is not common for all information contributing to one
table to be published from a single source.

Each table has a number of system defined columns which are readable by the user, and a time-stamp
column which may also be written by the user to override the automatic time-stamping of the tuples.

The user introduces new data into the information system by inserting it into a Primary Producer. Primary
Producers are the initial source of the data. They may be thought of as having two internal stores, one
for latest queries and one for other queries.

Producers may be implemented using different persistency technologies to store and organise their in-
ternal stores according to need. These include memory for speed and RDBMS to support both system
recovery and efficient joins.

Primary Producers transmit tuples to all listening Consumers, including those within Secondary Produc-
ers. A Secondary Producer is used to aggregate streams of data and often at the same time make them
persistent. They do this by setting up a Consumer to retrieve data for each declared table and republishing
the data. Secondary Producers are created by specifying a predicate which defines the subset of a table to
be collected and republished along with the persistency attributes associated with the republished data.
As the user cannot directly publish new data using a Secondary Producer, it has no insert operation. The
Secondary Producer has several uses:

1. It collects and maintains information in one place. This avoids querying Producers individually or
accessing remote information sources.

2. It can be set up to record historical data and thereby act as an archiver of information.

3. By moving information to one place it allows joins to be performed over tuples which were origi-
nally scattered..

An On Demand Producer interacts with a user-supplied plug-in that returns data in response to an SQL
guery. It is used when the cost of publishing all the data would be too high compared to retrieving data
only when it is requested by a Consumer. The plug-in can be rather complex to construct, and some
limitations on the SQL it can accept may be imposed.

INFSO-RI-508833 PUBLIC 2995

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

7.1.3 CONSUMER SERVICE

The Consumer Service is used to obtain data published by one of the Producer services. A Consumer
handles a single query, expressed as an SQL SELECT statement. If you want to use a new query you
must create a new Consumer. The Consumer also identifies how the query is executed, referred to as
the query type. Depending upon this query type, the Consumer will run its query in one of two ways.
The first is called a Continuous query and the second is referred to as a One-Time query. Continuous
gueries stream data from Producers. When a new tuple is published, the tuple is copied to all interested
Consumers. This approach allows a Consumer to keep up-to-date with all Producer events. Conversely,
one-time queries involve a single request/response for the Consumer to get information from a Producer.
One time queries may in turn be either Historical or Latest; a Historical query has access to all the
information and the Latest query only considers tuples with the most recent time-stamp for a table’s
primary (but without time-stamp) key. For all query types, the user can specify how far back in time to
start. In addition there are a pair of retention periods to consider. One retention period is associated with
history and continuous queries and is a property of the producer of that table. This is necessary to control
the amount of historical data stored by a producer. The latest retention period is associated with the tuple
and is not changed as data flows through the system. Latest queries never return tuples which are older
than their latest retention period.

For all queries, retrieved tuples are stored within a Consumer buffer, managed by the Consumer service.
The user can extract buffered data by invoking the various pop operations available in the Consumer
API. There is no callback mechanism. The user must poll the Consumer to obtain the data transferred
asynchronously to the Consumer buffer.

Normally the Consumer uses mediator functionality within the Registry, to find the set of Producers to
answer a query, however a user may direct a Consumer to a particular set of Producers, if so desired.

7.1.4 REGISTRY AND SCHEMA SERVICES

The registry and schema between them define a “virtual database” (VDB) i.e. a separate namespace. A
VO may have more than one VDB to manage. The registry and schema are both distributed and replicated
to provide scaling, resilience and performance. The replication algorithms are slightly different because
of the different behaviour required of the two services. The registry is of little direct interest to the end
user however the schema is used to create and destroy tables and to associate authorization rules with a
table.

7.1.5 BOOTSTRAPPING

The various R-GMA services will publish their availability for discovery as describ&d3nThis is fine

when the system is running, but how do we install a new machine or a new VO? An R-GMA client will
simply use the services on the local R-GMA server. The local server will run a proxy for the registry and
schema if it does not have one locally. An R-GMA server will periodically use the Service Discovery
(without caching) to locate all the services available and combine the results with the previous known set
of services and save the results in a file or files. R-GMA is resilient against missing services so we can
afford to keep a few dead services rather than risk losing the last known service from the list. A VO must
set up its first machine or machines manually. It is then a deployment issue for other machines to get the
initial set of R-GMA services and store them in the startup file. The VO could post them on a web site or
e-mail them to site administrators. Provided that this list contains a functioning instance of one of each
kind of service for that VDB, the system will then bootstrap itself.

INFSO-RI-508833 PUBLIC 3005

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

7.1.6 SECURITY

Authorization rules, which are local to a VDB, will define what actions an individual (certificate holder)
may carry out. This includes the ability to publish information (via a Producer), to query (via a Con-
sumer) or to discover what Producers exist. The authorization rules are passed to the createTable method.
This holds a set of rules, each one a pair: (View : AllowedCredentials). Each View defines a view on a
table in the form of a SELECT statement. If you match the allowed credentials you will have read access
to the data defined in that view. It is possible that your credentials match two rules in which case you
will be able to see the union of the two views. If you issue a query to see data you are not allowed to see,
you will only be returned results derived from the data you are allowed to view. Both the View and the
AllowedCredentials are parameterised in terms of VOMS attributes.

7.2 JoB MONITORING

Within a Java application, the natural way for a job to publish information about its progress is to use
the Java logging service or log8ff]. This makes use of components knowregapenderdo handle the

log messages. Following the success of log4j, facilities supporting applications in other languages have
been developed and now we see a new Logging Ser@8eativity within Apache whicH'is intended

to provide cross-language logging services for purposes of application debugging and auditiog!,
ChainsawB3], is also part of the Apache logging service project. This is able to pick up logs and visualise
them.

From an application point of view, unstructured messages are published using the normal logging API,
which makes use of an R-GMA appender to publish the data via the information system. The set of
attributes which can be published will follow the log4j specification. As indicated, log4j messages are
unstructured. If structure is required then the information and monitoring service should be used directly.

Facilities to make the data available to Chainsaw (or equivalent) will also be provided for visualisation.

7.2.1 OTHER SERVICES USED

Information and Monitoring will be used to publish the logging information.

7.2.2 SERVICES

This is not a separate service but rather an APl making use of an R-GMA appender.

7.2.3 SECURITY

The underlying information system must protect job information from those not permitted to access it.
The Authorization cannot be specified via the API as it is not part of the existing logging APIs, so instead
the information will be passed directly to the component publishing the information into the Grid.

7.3 SERVICE DISCOVERY

Service Discovery is a facility offered to both end users and to other services to locate suitable services.
Itis a front end to some kind of directory system. We will support multiple pluggable backends. Initially
this facility will be offered as a client library and not as a service as it is more efficient and avoids the
problem of discovering the service discovery service. It is intended to be lightweight and simple to use.

INFSO-RI-508833 PUBLIC 3105

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

The backends can make use of the (R-GMA) information and monitoring service, bdll, file, and UDDI.
The selection of information service backend or backends will be by static configuration, under program
control or by interrogation of an environment variable.

Initially we will assume that the necessary information is published by the services. A mechanism,
similar to the service discovery one, needs to be defined for service registration as well.

In addition there will be an optional caching mechanism to provide resilience. Results of successful
queries are saved in the cache but willy be used if the information and monitoring system should be
unavailable. This caching mechanism is independent of the backend, though it would not be useful with
a file based backend. This cache may be either written to for each lookup or periodically the complete
service information could be looked up and stored in a file or files available to the client. Both approaches
have their advantages.

The API will allow any of the properties of the service to be used to select a list of suitable services.
They will be returned in a pseudo-random order to avoid the tendency to keep using the same service.

7.3.1 OTHER SERVICES USED

This will make use of the Information and Monitoring services, using producers to publish available
services and consumers to look up services.

7.3.2 SERVICES

Initially service discovery will be offered as a client library. In future it may also be offered as an explicit
service.

7.3.3 SECURITY

Itis not yet clear whether or not the existence of services should be hidden. We assume that there is such
a requirement.

The information and monitoring services provide an authorization mechanism which can be used easily
for the underlying information and monitoring implementation.

The difficulty comes with the caching layer. The caching must of course be on the client. It could be
made read only (at the file system level) by the user who obtains the information.

7.4 NETWORK PERFORMANCE MONITORING

Within EGEE the users of network performance data are NOCs/GOCs and the gLite middleware. This
data is used by NOCs/GOCs to maintain smooth operation of the Grid, and is used by gLite to inform
the decisions made by components of the middleware.

Network performance data is made available through monitoring frameworks running on the network.
Most of these frameworks expose their data through mutually incompatible interfaces. It is the aim of
NPM to define a standard interface to such frameworks. By doing this, and by providing intermediary
services, NPM clients can access network performance data without needing to be aware of the type and
location of monitoring frameworks generating network performance data.

The usefulness of network monitoring services depends on the amount of the EGEE network covered by
network monitoring frameworks. Monitoring data on EGEE is currently exposed to the NPM services
by two different monitoring frameworks: WP7/R-GMAY] and Perfmonit16]. WP7/R-GMA was de-
veloped during EDG and gathers end-site to end-site data. Perfmonit is a prototype network monitoring

INFSO-RI-508833 PUBLIC 3295

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

framework developed by GNZAY] to gather backbone data. It should be noted that other monitoring
frameworks are free to implement this interface and so provide their network data to the network moni-
toring services.

Two network monitoring architectures have been defined:

e NPM Mediator, for use by GOCs/NOCs; and

e NPM Publisher, for use by gLite components.

These are described in subsequent sections.

7.4.1 INTERFACE TO NETWORK MONITORING FRAMEWORKS

NPM defines a standard interface to network monitoring frameworks based on schema created by the
GGFs Network Measurements Working Group (NM-WGY][The NM-WG schema provides a stan-
dard mechanism to describe and publish network performance data to the Grid.

The monitoring framework interface consists of one method: a request for historical network monitoring
data. This method takes an NM-WG request and returns and NM-WG response (or error).

Within EGEE, this interface must be implemented as a web service providing access to data generated
by the underlying monitoring framework.

7.4.2 NPM MEDIATOR

Overview NOCs and GOCs must diagnose network problems that occur on the network. For this they
need access to current and historical network performance data from end-sites and from the backbone
network. The NPM Mediator provides access to this data.

The NPM Mediator takes a request for network monitoring data and returns the result from the network
monitoring point (either end-site or backbone) capable of answering the request. Each of these network
monitoring points exposes a web service that implements a single known interface.

For data from the backbone network, if no single backbone site can satisfy a request the NPM Mediator
will attempt to aggregate data from a number of suitable backbone sites.

Though the NPM Mediator provides information on the network, NOCs/GOCs must perform post
processing to analyse this data. As such a diagnostic tool will also be provided to help bridge the gap
between network monitoring data and analysis of such data.

The architecture of the NPM Mediator is shown in Figdrand is described in the following sections.

NPM Mediator Web Service Interface The NPM Mediator web service interface provides access to
the functionality exposed by the NPM Mediator.

Aggregator The aggregator forms the heart of the NPM Mediator. It deals with all requests from the
NPM Mediator web service and coordinates subsequent activity within the NPM Mediator.

On receipt of a performance monitoring request, the aggregator will check if a response to the request
already exists within the response cache. If such a response exists it will be returned. If such a response
does not exist, the aggregator will use the discoverer to locate the network monitoring point web service
that can satisfy the request. The aggregator will then contact the network monitoring point web service
to obtain the requested data.

INFSO-RI-508833 PUBLIC 3305

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

‘ Client Application ‘

l

Discoverer *\\\

Aggregator
Response | _—1
Cache
NPM Mediator
Network Network
Monitoring Monitoring l:l Web Service Interface
Point Point

Figure 4: NPM Mediator Architecture

It may be the case that a request for network performance data between two points cannot be satisfied
because an explicit measurement has not been made between these points. On the backbone it is possible
to calculate such measurements by aggregating explicit measurements between hops that make up the
route between the requested points. In this situation the discoverer will return more than one service.
The aggregator will gather the results from each service and then aggregate them into a single result
which satisfies the request. It should be noted that such aggregation is not possible for end-site network
monitoring data.

The feasibility of aggregation of network data is a research topic within the network community. The
inclusion of such functionality in the NPM Mediator is intended to allow our network partners to experi-
ment with aggregation and feed into their discussions. As such, this is low priority functionality and may
not be present in the delivered solution.

Once a result has been obtained (either directly or through aggregation), it will be added to the cache and
then returned to the NPM Mediator web service interface.

Discoverer The discoverer is responsible for locating a network monitoring web service that can satisfy
a particular network monitoring request. For backbone sites, it may be that no single network monitoring
site can answer the request: for example with a cross backbone domain request, it may be that each
backbone monitoring site only gathers data for the ingress and egress points of the domain. In this case
it would be necessary to build up data from that provided by each domain. For such cases the discoverer
will return a list of the network monitoring web services that must be aggregated to resolve the request.

It is possible that the Discoverer will use the EGEE Service Discovery component described in Sec-
tion 7.3

Response Cache The response cache provides a limited local repository of network performance data

to enable timely access to responses for common requests. The cache will be space-limited, and will
have policies that keep responses to common requests within the cache, while discarding responses to
infrequently made requests. Entries within the cache will also be time limited, so that the cache does
not contain stale information. The exact lifetime allotted to cache entries will be determined empirically
when the cache is implemented.

INFSO-RI-508833 PUBLIC 3495

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

nabling CGrids
for E-scienc

EGEE MIDDLEWARE ARCHITECTURE

Date July 15, 2005

Security Figure5 shows the overall security architecture for the NPM Mediator. The entities involved,
their certificates, and the information stored pertaining to authorisation are shown.

> Diagnostic >

Qe L ‘ MyProxy

Diagnaostic

Client q

VOMS

Uzer-group,role

mappings Key
L &= o <
MW Host
NPM Mediator Certificate
oo User
Certificate
Interface
NMWG NMWG Compeonent
NMP Backbone NMP End Site
Permirred roles Permitted roles

Figure 5: NPM Mediator Security Architecture

Security is required at the following levels:

e Between the Diagnostic Client and the Mediator, to ensure no-one can alter or intercept the data,
and to ensure that only authorised users can make use of the Mediator

e Between the Mediator and the Network Monitoring Points (NMPs), to ensure no-one can alter or
intercept the data

e Between the Diagnostic Client and the NMPs (via the Mediator), to ensure only authorised users
can make use of the NMP facilities

e Between the Diagnostic Client and MyProxy to ensure only authorised users can add their certifi-
cates, and authorised users can only receive back proxies for their own certificates

e Between the Diagnostic Client and VOMS to ensure authorised users only receive attribute certifi-
cates for permitted attributes

7.4.3 NPM PUBLISHER ARCHITECTURE

Overview gLite requires information on the state of the network in order to inform decisions on where
to place jobs on the Grid and from where to retrieve data on the Grid. To ensure the performance
of the middleware such network monitoring information must be available quickly. As such, gLite is
expected to retrieve network performance data from a Grid Information System (GIS) owned and run
by gLite. The NPM architecture will publish network monitoring data into this GIS. The data published
into the GIS will allow gLite to easily retrieve any end-to-end measurement it requires. A GIS is used
as an intermediary between gLite and the NPM publisher for efficiency reasons: GIS are designed to
efficiently handle a high volume of queries.

The main component in this architecture is the NPM Publisher. This component has knowledge of the
end-to-end measurements required by gLite. At regular intervals the NPM Publisher will use the NPM

INFSO-RI-508833 PUBLIC 3505

Doc. Identifier
C;;ab”n?ﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Mediator to request these measurements and publish them into the GIS. Initially, the location of the NPM
Mediator service instance will be well known to the NPM Publisher. In the future the service registration
and discovery features discussed in Sectid@will be used.

The architecture of the NPM Publisher is shown in Figéirand is described in following sections.

Grid
Information
System
./
Data
Manager —
MPM Publishe NPM
Mediator
_—
— N
End Site End Site
Metworlk o Metwork]: Wb Service Interface
Monitoring Monitoring R o8 Inlerlace
Paint Point

Figure 6: NPM Publisher Architecture

Data Manager The data manager is responsible for collecting network monitoring data from the end-
sites and publishing these data to gLite’s GIS.

At regular intervals the data manager will contact the NPM Mediator to retrieve end-site data and publish
it to the GIS.

Errors encountered by the data manager while accessing the network monitoring web services or the GIS
will be logged in a file at the site hosting the NPM Publisher. This will allow administrative staff at that
site to diagnose problems that may occur during normal operation of the NPM Publisher.

Security Figure7 shows the overall security architecture for the NPM Publisher. The entities involved,
their certificates, and the information stored pertaining to authorisation are shown.

Security is required at the following levels:
¢ Between the Publisher and the GIS to provide reliable and secure information to the GIS

e Between the NMPs and the Publisher so that only NMPs that wish to publish information to the
GIS will do so

e Between the Publisher’s Registry of NMPs and the NMPs so that only valid NMPs can be regis-
tered to provide information to the GIS. Currently, the Publisher's Registry is a static list of sites
and the mechanism for dynamic registration has not been determined, so this document revision
does not consider this security level.

8 JoB MANAGEMENT SERVICES

In this section the job management services are presented.

INFSO-RI-508833 PUBLIC 3695

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Grid Info Sys

GIS

Key

Host
Certificate

Interface

NPM Publisher

Component

NMWG

NMP End Site
Permitted roles

NMP Backbone
Permitted roles

Figure 7: NPM Publisher Security Architecture

Subsect8.1discusses about the accounting service, responsible to collect, manage and present informa-
tion about the usage of Grid resources by the users or by groups of users. SBil2gegorts about the
Computing Element (CE) service, which represents a computing resource where user jobs get executed.
In Subsect8.3 the Workload Management System (WMS) is presented: it encompasses a set of com-
ponents responsible for the distribution and management of tasks across the available Grid resources.
In Subsect8.4 the Job Provenance service (JP) service, responsible to keep track of the definition and
execution conditions of the submitted jobs, is presented. Sulsgatvhich discusses about the Package
Management (PM) Service (able to automate the installation, upgrading, configuration, and removing of
software packages on a Grid site) concludes this section.

8.1 ACCOUNTING

The accounting service accumulates information about the usage of Grid resources by the users and by
groups of users, including Virtual Organisations as groups of users.

This information allows preparation of statistical reports, to track resource usage for individual users, to
discover abuses and to help avoid them. Accounting information could be used to charge users for the
Grid resources they have utilised.

The information available from the accounting service can also be used to implement submission policies

based on user quotas or on resource usage (fair share). In principle it also allows the creation of a real
exchange market for the Grid resources and services. The subsequent economic competition should
result in market equilibrium, thereby promoting load balancing on the Grid.

Among the services from other Grid projects that can be compared with the EGEE Accounting Service
it is worth mentioning Nimrod-G4] and the EDG DGAS§7].

8.1.1 RESOURCE METERING

Figure 8 represents the actors involved in the “Grid accounting” schema. The key elements are the
Grid resources and the Grid services. In order for an accounting system to work it is necessary to have
reliable information about the Grid resource usage, thus each Grid resource or Grid service needs to be
instrumented with dedicated sensors in order to measure the usage of the resource or service. This step of
the process is the “resource metering” activity. The number of different type of resources is, in principle,
very high. It is therefore necessary to foresee many different types of base metering sensors, that in the
figure are shown as “Dedicated resource metering”. Each type of resource will have its dedicated sensor.
For example, different types of Local Resource Management Systems (LRMS) in a CE need different

INFSO-RI-508833 PUBLIC 375

ecee

nabling CGrids
for E-scienc

EGEE MIDDLEWARE ARCHITECTURE

Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

Date July 15, 2005

Grid User

PRICING POLICIES |‘ - —

e e — Cost Compueation |- |_ - Cost computation polices
& Biing
4 A
r \'.
H
.= " '
' AN ACCOUNTING D% i igage repens
L] 1
:)
L]
' RESOURCE VALUE
H ABSTRACTICN LAYER wsage reconds
: ‘F‘
L]
:. S METERING
: | T, ABSTRACTION LAYER
L}
: ~ A
i rd e
' | ™~ -
] ~ /
ra
: | 7~
L] ‘.-'
I-I raw usage-reconds T
[] _I':I-
H Rescurces and Grid Sarvices K
H #
: | £
1
H Dedicated
) PESGUNCE MeNEring
H
¥
"
1]
L]

[
"
i
[l
El

&t f
4 o >
s 7 Resource Dwaar -
%, STORAGE ELEMEMT at L COMPUTING ELENENT &
“l ."'. “-""'-.. = ’
'.llbb‘ J'...I .-I-"1_|_‘-._-l-----"rr_-'_

Figure 8: Fundamental actors in the provision of an accounting service.

INFSO-RI-508833

PUBLIC

385

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

sensors and the metering infrastructure will also be different for a disk based Storage Element than for a
tape library. It can also happen that there will be different implementations of a metering info provider
for the same resource type, to preserve the freedom of the resource owner to choose one of the many
available implementations, or to create a new one.

To allow the operation of the accounting layer, any distributed metering system has to report a basic set
of information:

e A globally unique identifier of the user job or service request.

A globally unigue identifier of the user himself.

A globally unique identifier of the Grid resource or service requested.

User Accounting coordinates (see below).

Resource Accounting coordinates (see below).

The purpose of this set is to identify the actors involved in the transaction: the user, the resource, the job
and the accounting services responsible for archiving the information.

The metrics collected are not covered in this list since it is not mandatory for an accounting system to
collect usage metrics. For example a resource owner may want to charge the user on a Pay Per Access
basis, instead of Pay Per Usage. In that case usage metrics are not necesary for charging purpose.

In order for the accounting system to deal with these varied sources of information a “metering abstrac-
tion layer” service is needed. Its purpose is to translate the various Usage Records reporting protocols
used by the metering sensors into an appropriate Usage Records format that the accounting system can
understand. It is infact important to decouple the information providers layer from the accounting ser-
vice layer. This ensures that the server layer not needs to be able to understand the many different raw
metrics collected on the resources. Moreover a well defined abstraction layer enables other developers
to implement their own sensors and use them to sen metrics to the accounting service.

8.1.2 ACCOUNTING SERVICE

Once the raw usage records coming from the many different info providers are translated, they can be for-
warded to the Grid Accounting system. The accounting system is responsible for archiving these Usage
Records and providing querying functionalities. We identify the following basic query functionality:

e Report aggregate or detailed Usage Records for a User.
e Report aggregate or detailed Usage Records for a resource.

e Report aggregate or detailed Usage Records for a group of users (including VOS).

As for every Grid service, it is important for the accounting to be scalable, so its architecture must be
distributed. Many local accounting infrastructures are based upon a central database where the Usage
Records for each user are kept: this is clearly not feasible in a Grid environment.

To satisfy this requirement, many independent accounting servers are foreseen. Both Grid users and
resources have an “account” on one of these servers and all the information concerning their resource
usage is kept on that server. There is no limit on the number of the servers. Upon each Grid service
request, the user specifies his accounting coordinates (very close in concept to banking coordinates).
Each Grid service or resource also specifies its accounting coordinates (these should be published on the
resource information provider as well). Then, on completion of a job, or service request, the relevant

INFSO-RI-508833 PUBLIC 3995

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

usage records are pushed to both the user and the resource accounting servers. Practically we require the
user to specify accounting coordinates as a parameter when submitting a job. This parameter then needs
to be propagated upon each subsequent Grid service request originating from the job.

Concerning the reliability and fault tollerance of the system a few aspects need to be stressed:

All the communication of the usage metrics to the HLR services are asyncronous. The clients that push
information to the servers have a persistent cache of information. If a network or service failure should
happen the client retries the communication until it succeeds. This ensures that no Usage Record loss or
permanent failures can happen.

DGAS servers are provided with an High Availability Service that continously monitors that the listener
of the server is up and running. Thus, in case the service should die, it is automatically restarted in a few
seconds.

User jobs alraedy running or scheduled do not encounter any problem due to HLR services being down
or unreachable nor any metric loss happens.

If it is requested that WMS checks the user account balance as a mandatory condition for a job to
be accepted, then it will be necessary for the HLR to be up and running. Only in this scenario the
HLR becomes a key service in the job submission phase, just like NS or LB are. Common databases
replication thecniques should be used to have secondary instances of the user HLR servers if needed,
thus minimising the risk of long service unavailability.

A practical example of how to partition users over the accounting servers is to have one accounting server
per VO (or more for large VOs). In this way the accounting coordinates specified by the user will identify
the VO related account that the user intends to charge for a given job.

8.1.3 COST COMPUTATION AND BILLING

The next layer in a general purpose accounting system is the “billing” for resource usage. The infrastruc-
ture described so far is absolutely independent from the billing infrastructure and can, in principle, be
used stand-alone.

When billing is needed, resources need to be priced, so that a cost can be assigned to the users’ activities.

The price for a Grid resource should be assigned according to its real value, that is, according to the
overall performance it offers to the users. The information used to estimate the resource value may
change depending upon the resource purpose. The information needed for pricing a computing element
is intrinsically different from that of a tape library.

Pricing information may also come from providers in different formats, so another abstraction layer can
be introduced to translate such information into a format that the upper pricing layer can understand.

Once the relevant information about the resources is available, a service responsible for assigning the
prices uses it, along with a set of predefined pricing policies to calculate the resource prices. It is im-
portant for the resources owners to be able to interact with the price calculation by defining the pricing
policies. In practice it is the resource owner who decides the algorithm used to compute the price, even
if some type of limitations can be imposed at an upper (“Grid” or “VO” management) level.

From an architectural point of view the pricing service has the same requirements of scalability as the
accounting service, so it is expected that Grid resources will register themselves with a pricing service
and publish the service address.

The last step is the computation of the cost for a user job, or service request, according to the resource
price, the amount of resources used (reported by the accounting service as Usage Records) and the cost
computation policies.

The cost computation policies are a set of rules imposed by each resource owner that specify how to
compute the cost that has to be billed to the user. Usually it will be a formula that computes the job cost

INFSO-RI-508833 PUBLIC 4095

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

starting from the resource price and the job usage records. As an example the usage of a Grid service can
be billed on a per-transaction basis instead of usage metering. In this scenario the service owner will bill

a fixed amount of credits for the service usage: this can be represented at the cost computation policy
level. Another possible scenario is a resource owner who wants to sell resources at a discounted rate (or
offer them free) to a group of users, but wants a standard rate to be applied to the other users. Resources
prices should be publicly available in order for users to choose where to submit jobs. Additional pricing
policies such as discounts arranged with a particular VO could be confidential. Such policies are specified
at resource level.

It has to be stressed that even if the resource is free of charge, or users pay for the usage on a per-
transaction basis, it is important for users to preserve the ability to retrieve the Usage Records cor-
responding to their work in order for them to check, for example with a properly instrumented work
request, whether the metering infrastructure is reliable.

Once the amount to be charged is decided, it is communicated to the accounting level where a bank
service implements the virtual payment between the user Grid bank service and the resource one. lItis
the accounting layer itself that manages the economic accounts for users and resources.

A design aspect that needs to be stressed is that the security of the communication involving accounting
information is essential. The Usage Records treated by the accounting system can be used by the Grid
site managers and service providers to charge the user for their resource usage or, simply, to track abuses.
This implies that this information must be trustworthy and it must be impossible for the Grid user to re-
pudiate it. A practical way to achieve this goal is to mutually authenticate every network communication
involving accounting information: the user authenticates to both the service provider and the accounting
system. The Monitoring System sends the Usage Records to the accounting on behalf of the user, for
example using delegated credentials. At the same time the user requires the remote peer to authenticate
itself, so that he can be sure that his Usage Records are sent to the desired Accounting service and not
to a malicious one. Another key aspect of accounting information is confidentiality. It is clear that the
accounting service treats sensitive information, and users (or the law) may require such information not
to be public. Communications should therefore be encrypted. Also, for confidentiality reasons, a proper
authorization policy must be enforced for access to the accounting database. The Accounting records
should be accessible only by the owner or by trusted administrators. A typical ACL would allow users

to access their own records but not those of other users, while allowing VO administrators to access the
records belonging to users of that VO.

8.2 COMPUTING ELEMENT

The Computing Element (CE) is the service representing a computing resource. Its main functionality is
job management (job submission, job control, etc.), but it must also provide other capabilities, such as
the provision of information about its characteristics and status. Comparable services from other Grid
projects include: the EDG CE, the Alien CE and the Globus GRAM.

The CE, exposing a Web Service interface, may be used by a generic client: an end-user interacting
directly with the Computing Element, or the Workload Manager, which submits a given job to an appro-
priate CE found by a matchmaking process (see Se8tig)n

A CE refers to a set, ocluster of computational resources, managed by a LRMS. This cluster can
encompass resources that are heterogeneous in their hardware and software configuration. When a CE
encompasses heterogeneous resources, it is not sufficient to let the underlying LRMS dispatch jobs to
any worker nodes. Instead, when a job has been submitted to a CE, the underlying resource management
system must be instructed to submit the job to a resource matching the requirements specified by the
user.

The interface with the underlying LRMS must be very well specified (possibly according to existing

INFSO-RI-508833 PUBLIC 4195

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

standards), to ease the integration of new resource management systems (even by third party entities) as
needed. The definition and provision of common interfaces to different resource management systems
is still an open issue. In fact only recommendations (such as the Distributed Resource Management
Architecture API, DRMAA, currently discussed within the GGF) but not consolidated standards exist
now in this area.

8.2.1 JOB MANAGEMENT FUNCTIONALITY

The main functionality that the Computing Element has to provide (as recommended in all requirement
specifications, as in9), is job management. It must provide facilities:

e To run jobs (which includes also the staging of all the required files).
Characteristics and requirements of jobs that must be executed are specified relying on a subset of
the Job Description Language (JDI6, used within the whole Workload Management System.

e To get an assessment of the foreseen “quality of service” for a given job to be submitted. This
reports, first of all, if there are resources matching the requirements and available according to the
local policies. It then might provide an estimation of the local queue traversal time, that is the time
elapsed since the job entered the queue of the LRMS until it starts execution.

e To cancel previously submitted jobs.
e To send signals to jobs.

e To get the status of some specified jobs, or of all the active jobs “belonging” to the user issuing the
request.

For job submission, the CE will be able to workpall model(where the job dispatching is initiated by
the CE itself), opush mode(where this is triggered by other services, in particular by the Workload
Management Service).

When a job is pushed to a CE, it gets accepted only if there are resources matching the requirements
specified by the user, and which are usable according to the local policies set by the local administrator.
The jobs gets then dispatched to a worker node matching all these constraints.

In the pull model, instead, when a CE is willing to receive a job (according to policies specified by the
local administrator, e.g. when the CE local queue is empty or it is getting empty) it requests a job from

a known Workload Management Service. If the CE local queue is assigned to run jobs belonging to
the users of a specific VO, the request will be done to a WMS assigned to that VO. This notification
request must include the characteristics and the policies applied to the available resources, so that this
information can be used by the Workload Management Service to select a suitable job to be executed on
the considered resource.

Various scheduling mechanisms can be considered when a CE willing to receive a job for execution, has
to refer to multiple Workload Management Services. Possible mechanisms include:

e The CE requests a job from all known Workload Management Services. If two or more Workload
Management Services offer a job, only the first one to arrive is accepted by the CE, while the
others are refused.

INFSO-RI-508833 PUBLIC 4295

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

e The CE requests a job from just one Workload Management Service. The CE then gets ready to
accept a job from this Workload Management Service. If the contacted Workload Management
Service has no job to offer within a certain time frame, another Workload Management Service is
notified. Such a mechanism would allow supporting priorities on resource usage: a CE belonging
to a certain VO would contact first a Workload Management Service referring to that VO, and
only if it does not have jobs to be executed, the Workload Management Services of other VOs are
notified, according to policies defined by the owner of the resource.

8.2.2 OTHER FUNCTIONALITY

Besides job management capabilities, a CE must also provide information describing itself.

In the push model this information is published in the information Service, and it is used by the match-
making engine (see Secti@d) which matches available resources to queued jobs. In the pull model the

CE information is embedded in the “CE availability” message, which is sent by the CE to a Workload
Management Service. The matchmaker then uses this information to find a suitable job for the CE.

The information that each CE should provide will include:

¢ the characteristics of the CE (e.g. the types and numbers of existing resources, their hardware and
software configurations, etc.);

¢ the status of the CE (e.g. the number of in use and available resources, the number of running and
pending jobs, etc.);

¢ the policies enforced on the CE resources (e.g. the list of users and/or VOs authorized to run jobs
on the resources of the CE, etc.).

As described in SectioB.1, each CE is also responsible for tlid accounting resource metering

that is, it must measure user activities on the CE resources, providing resource usage information. This
information, after having been properly translated in an appropriate format, is then forwarded to the Grid
Accounting System.

8.2.3 INTERNAL CE ARCHITECTURE

Figure9 represents the architecture of the Computing Element.

Considering a job submission, t@®mputing Element Acceptan@EA) service, exposing a Web Ser-
vice interface, represents the entry point for submitting jobs to the resources of the CE.

The CEA includes the functionality of Site Gatekeeperesponsible for the mapping between Grid
users and local users, and for checking if the job can be accepted according to the configuration options
that could have been set to limit the load caused by job processing: this is implementekuthZa
Auditingbox, which also takes care of logging the required auditing information.

The job is then forwarded todnb Mgmtbox, responsible to deal with the actual submission and execu-
tion of the job. After having checked that the considered job can be executed in the CE (that is there are
resources matching the constraints specified in the job JDL expression and which can be used according
to the local policies), the job must be submitted to the resource management system. This task is encom-
passed by a specific software module, which “hides” and abstracts the underlying resource management
system.

The CE Monitor (CEMon) service deals with notifications. It can be customized in particular to:

INFSO-RI-508833 PUBLIC 4395

ecGee
nabling CGrids

Doc. Identifier
EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0
for E-scienc

Date July 15, 2005

Notifications

Job requests
Client

jobSubmit
jobAssess
jobKill
jobGetStatus
jobSignal
Listjobs

Mgmt of subcriptions

CEA | CEMon |

AuthZ
Auditing

Job
Mgmt

LRMS
Abstr. layer

LRMS

Worker
Nodes

Figure 9: Architecture of the Computing Element.

INFSO-RI-508833 PUBLIC 4495

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

e asynchronously notify users on job status events, according to policies specified by users (e.g.
when a job changes its status, when a job reaches a certain status, etc.).

¢ notify about the CE characteristics and status. In particular, for a CE working in pull mode, this
service is used to request jobs to the Workload Management Service.

This architecture is compliant with the recent discussions (introduced in S@gtommcerning resource
virtualization: theCEMonand theJob Mgmtservices in fact can provide virtual environments which
can be customized and tailored towards the needs of specific user communities, BRMB&bstrac-
tion Layervirtualizes the actual LRMS. TheEA, the Authorization/Auditing and theLRMSservices,
instead, represent and guard the physical resources.

8.2.4 POLICY DEFINITION AND ENFORCEMENT

As already mentioned, the resources belonging to Computing Elements must be used according to some
specified policies, set by the administrators of these resources. Examples of policies include the list of
users or VOs allowed to use the resources of the CE, the share of the CE resources available to the users
belonging to a certain VO, etc.

All the defined policies have to be taken into account when choosing the CE where to submit user
jobs, and when selecting the computational resources within a single CE to dispatch jobs to (in case the
computational resources within a single CE are managed by different policies).

In order to accomplish this task, the CE will make use of the policy combination and authorization
framework described in Sectidn2.2

8.3 WORKLOAD MANAGEMENT

The Workload Management System (WMS) comprises a set of Grid middleware components responsible
for the distribution and management of tasks across Grid resources, in such a way that applications are
conveniently, efficiently and effectively executed.

The specific kind of tasks that request computation are usually referred to as “jobs”. In the WMS, the
scope of tasks needs to be broadened to take into account other kinds of resources, such as storage
or network capacity. This change of definition is mainly due to the move from batch-like activity to
applications with more demanding requirements in areas like data access or interactivity, both with the
user and with other tasks. The WMS will broaden its scope accordingly.

8.3.1 FUNCTIONALITY

The core component of the Workload Management System is the Workload Manager (WM), whose pur-
pose is to accept and satisfy requests for job management coming from its clients. The other fundamental
component is the Job Logging and Bookkeeping Service, which is the subject of S&tion

For a computation job there are two main types of request: submission and cancellation (the status
request is managed by the Logging and Bookkeeping Service).

In particular the meaning of the submission request is to pass the responsibility of the job to the WM.
The WM will then pass the job to an appropriate CE for execution, taking into account the requirements
and the preferences expressed in the job description. The decision of which resource should be used
is the outcome of anatchmakingprocess between submission requests and available resources. The
availability of resources for a particular task depends not only on the state of the resources, but also
on the utilization policies that the resource administrators and/or the administrator of the VO the user
belongs to have put in place (see SecBan 4.

INFSO-RI-508833 PUBLIC 45095

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

8.3.2 SCHEDULING PoLICIES

A WM can adopt different policies to schedule a job. At one extreme, eager scheduling dictates that a job

is bound to a resource as soon as possible and, once the decision has been taken, the job is passed to the
selected resource for execution, where, very likely, it will end up in a queue. At the other extreme, lazy
scheduling foresees that the job is held by the WM until a resource becomes available, at which point
that resource is matched against the submitted jobs and the job that fits better is passed to the resource
for immediate execution. Intermediate approaches are of course possible.

At match-making level the main difference between the two extremes is that eager scheduling implies
matching a job against multiple resources, whereas lazy scheduling implies matching a resource against
multiple jobs.

The WM internal architecture will accomodate the contemporary application of the different policies,
implemented as easily interchangeable plugins, depending first of all on the requirements and prefer-
ences expressed in the job description, but also on the overall state of the Grid, according to appropriate
euristics. Such knowledge can only come from proper investigation (including the evaluation of relevant
metrics, covering both resource utilization and user satisfaction), with the purpose to understand merits
and weaknesses of the different scheduling policies in different scenarios.

8.3.3 THE INFORMATION SUPERMARKET

The mechanism that allows the flexible application of different policies is the decoupling between the
collection of information concerning resources and its use. The component that implements this mecha-
nism is namednformation SupermarkgtSM) and represents one the most notable improvements in the
WM as inherited from the EU DataGrid (EDG) project.

The ISM basically consists of a repository of resource information that is readily available in read only
mode to the matchmaking engine and whose update is the result of either the arrival of notifications
or active polling of resources or some arbitrary combination of the two. Moreover the ISM can be
configured so that certain notifications can trigger the matchmaking engine. These functionalities will not
only improve the modularity of the software, but will also support the implementation of lazy scheduling
policies.

8.3.4 THE TASK QUEUE

The second most notable improvement in the WM internal design is the possibility to keep a submission
request for a while if no resources are immediately available that match the job requirements. This tech-
nique is used, among others, by the AliEn and Condor systems. Non-matching requests will be retried
either periodically (in an eager scheduling approach) or as soon as notifications of available resources
appear in the ISM (in a lazy scheduling approach). Alternatively such situations could only lead to an
immediate abort of the job for lack of a matching resource.

The component that implements this feature is naifek QueudTQ) and, as for the ISM, provides a
necessary mechanism for the support of lazy scheduling policies.

8.3.5 JoB LOGGING AND BOOKKEEPING

The Logging and Bookkeeping service (L&B for short) tracks jobs in ternevehts—important points

of job life, e.g. submission, finding a matching CE, starting execution etc.—gathered from various WMS
components as well as CE’s (all those have to be instrumented with L&B calls). The events are passed
to a physically close component of the L&B infrastructure (&eallogge in order to avoid any sort

INFSO-RI-508833 PUBLIC 4695

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

nabling Crids EGEE MIDDLEWARE ARCHITECTURE
for E-scienc Date July 15, 2005
@ submit Jab Data
— @| Task .| Malch Submission Management
Queue Maker & Monitoring
1 |
Logging
Information ISM & Bookkeeping
Supermarket Updater
5 Access
notify Policies
availability Management
job request
Information
Computing Element System

: Web Service Interface

Figure 10: Internal architecture of the Workload Manager.

of network problems. This component stores them in a local disk file and takes over the responsibility to
deliver them further.

The destination of an event is one lodokkeeping server@ssigned statically to a job upon its sub-
mission). The server processes the incoming events to give a higher level view on the job states (e.g.
Submitted, Running, Dohevhich also contain various recorded attributes (e.g. JDL, destination CE
name, job exit code, etc.). Retrieval of both job states and raw events is available via legacy (EDG) and
WS querying interfaces.

Besides querying for the job state actively, the user may also register for receiving notifications on partic-
ular job state changes (e.g. when a job terminates). The notifications are delivered using an appropriate
infrastructure.

8.3.6 THE OVERALL ARCHITECTURE

Figure 10 shows the overall architecture of the Workload Manager, together with the interactions with
external entities. Among these the most coupled with the WM is the Logging and Bookkeeping Service,
which keeps events generated by different components as a job traverses them. Such events contribute to
the generation of the status of a job. Other entities are the Information System (see Becisad, for
example, to fill the Information Supermarket, the Data Management services (see Sgctissisting

the WM when the scheduling involves knowledge concerning location of data on the Grid, the Access
Policies infrastructure (see Secti6r?.4).

Both the WM and the other services are expected to offer a Web Service interface.

INFSO-RI-508833 PUBLIC 4795

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

8.4 JoB PROVENANCE
8.4.1 PURPOSE, EXPECTED USAGE, AND LIMITATIONS

The purpose of the Job Provenance service (JP) is keeping track of the definition of submitted jobs,
execution conditions and environment, and important points of the job life cycle for a long period (months
to years). Those data can be used for debugging, post-mortem analysis, comparison of job execution
within an evolving environment, as well as assisted re-execution of jobs. Only data of completed (either
successful or failed) jobs are handled; tracking jobs during their active life is the task of L&B and Job
Monitoring services described in Secti6r8.5and Sectiory.2, respectively.

In general, gathered data are stored (i.e. copied) within the JP storage in order to really conserve a partial
shapshot of the Grid environment when the job was executed, independently of changes of other Grid
services. Obviously there are practical limitations of the extent to which it is feasible to record the entire
job execution environment. (In the ideal case this would encompass a snapshot of the entire Grid!)
We restrict the recorded data to those that are processed or somehow affect processing of the Workload
Management and Computing Element services. On the other hand, snapshots of the state of other Grid
services are not done, namely queries to the Data Catalog and their results are not stored, neither are the
contents of data files downloaded from and uploaded to Storage Elements—only references to those are
recorded if required.

8.4.2 ENCOMPASSED DATA AND THEIR SOURCES

Data required by the Job Provenance service are gathered by various Grid middleware components.
Depending on the design of a particular component the data are either “pulled” by the JP from the
component, or the component has to be instrumented to “push” the data towards JP.

Certain minimal records of a job (see the job life log below) are always stored in order not to lose the
job completely. However, the complete JP data may grow rather large, and it strongly depends on the
specific context whether it makes sense to gather the complete data or only a subset. In general, policies
at several levels (at least WM and CE) define which data should and could be gathered, i.e. enforce what
is mandatory and what is prohibited, allowing the user to specify preferences within those bounds. In
general, those policies are specified by “owners” of the resources (WM, CE).

The following data are gathered:

Job life log taken over from the L&B database (see Sé&cR.5 after job completion. Among other
information useful mainly for debugging and detailed analysis of job execution it contains the
complete definition of the job (in terms of the submitted JDL), various timestamps (e.g. when the
job was submitted, matched for a particular CE, started and finished execution), information on the
chosen CE (or more of them, if the job was resubmitted), various ID’s assigned to the job (Condor,
Globus, LRMS, . ..), and the result of execution including the return code.

Another important information available in L&B are the user-defined annotations (“tags”) which
can be specified either statically upon job submission, during its execution, or even overridden
after the job terminates.

All the information is copied out from L&B and can be purged eventually.
Executable file(s) are provided by the user upon submission. In the case of high-throughput jobs the

executable is the same for many (thousands or more) jobs. Therefore for efficient storage of the
executable, JP has to allow sharing a stored executable among multiple jobs.

The executable is managed by the submission interface (aka Network Server) of the Workload
Management service. This service has to be instrumented to cooperate with the JP storage.

INFSO-RI-508833 PUBLIC 48/95

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Input/Output sandbox The input sandbox of a job contains miscellaneous files required for execution,
and the output sandbox may contain various output files, e.g. debug logs, or even a core file in the
case of crash.

By default only the input sandbox is stored—the output is assumed to be reproducible by the job.
The user (or a WM/CE policy) may trigger storing the output sandbox as well. For both input and
output, either the whole sandbox or enumerated files only may be stored.

The sandbox files to be stored by JP are specified upon job submission. By default, JP should
store sandbox files specified as local ones on the user-interface machine (hence transferred to WM
sandbox area)—these are assumed to be volatile. Other sandbox file (accessed via http, ftp etc.)
may be copied to JP on explicit request (via JDL).

Staging the sandboxes in and out is managed by the Network Server too. Therefore the same
instrumentation applies.

Input/output files In contrast to the files contained in the sandboxes these are downloaded from and up-
loaded to Storage Elements or accessed via glite-10. JP does not copy those files but it is desirable
to record references to them, i.e. GUID and optionally LFN(s) or URL valid at the time of job
execution.

Execution environment comprises of operating system and installed software versions, and specific
configuration information (including setting of environment variables) of the particular worker
node of the CE where the job has been executed.

We assume that the primary source of the most up-to-date information of this type is the worker
node itself. Therefore the script which wraps the invocation of the job executable will be instru-

mented to log the required information. However, certain information can be also retrieved from
CE configuration management service.

The potential extent of information in this category is huge, with varying meaningfulness for par-
ticular purpose. Therefore a rigid generic approach is inappropriate. Instead we let the user (or
policy) choose what should be recorded. JP provides a predefined set of typical data items to gather
(e.g. output of “rpm -ga”, enumerated environment variables, . ..), as well as the facility to execute
a custom plugin script to collect specific data.

Custom data may be provided by the user upon submission, gathered during job execution (via plugin
script called by the job wrapper), or even after the job termination.

The described items form a complete set of data that can be gathered by the JP service. However,
depending on conditions and requirements which could not be estimated at the design time, some of
those data may be irrelevant for a certain type of jobs. As this can result in wasting considerable storage
resources we allow restricting the complete set by setting user preferences and/or applying site policy of
a particular instance of the JP service.

8.4.3 SERVICE COMPONENTS

Primary storage servers keep the JP data in the most compact and economic form. The access key to
the data is job ID, JP relies on its uniqueness, hence collisions are not resolved but reported as
an error. All the data related to a single job fornd@ Recordcontaining the input and output
sandboxes, executable (or a reference to it), and the L&B job dump.

In order to allow access to Job Records without the explicit knowledge of job ID’s, certain basic
metadata are managed by the primary storage. The exact set of attributes has to be clarified, we
are considering job owner DN, submission time, and virtual organisation.

INFSO-RI-508833 PUBLIC 49/95

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Primary storage provides public interfaces for data storing, retrieval based on basic metadata, and
registration of Index servers for incremental feed (see below).

Index servers provide a limited data mining capability on the JP data. Each index server is configured
by its administrator to support a set glieryable attributechosen from various L&B system
attributes like job submission, start, and termination time, CE name, exit code (more or less the set
supported by indices of the L&B server), arbitrary L&B user tags, as well as non-L&B attributes
related to the other JP data (E.g. input/output sandbox file names, environment variable settings.
For the sake of coherent processing those are transformed, solely for the purpose of indexing, into
L&B-like pseudo events.).

A result of a query is the set of matching job IDs and corresponding URLSiftp://, 1fn://,
...) according to which the data from the JP storage can be retrieved.

There are two modes of feeding data into the index server:

e batch—the server is populated from scratch with data retrieved from the JP storage, typically
jobs submitted in a given time interval.

e incremental—~whenever data on a new job are stored to the JP storage server, those have to
be propagated to the index server as well so that further queries are able to find this job.

In general, the relationship between the index and storage JP servers is many-to-many; several
index servers (of different index configuration) can be populated with data from a single storage,
the data may even cover different time intervals. On the other hand, a single index server may
combine data from multiple JP storage servers.

In contrast to the permanent primary storage the index servers are volatile. They may be created,
populated with data, and destroyed independently of the primary storage.

The querying interface will be exposed as a web-service. The index server will be also interfaced
to the information infrastructure (R-GMA) as an on-demand producer, thus allowing complex
distributed queries to be performed over multiple JP index servers.

Analysis support tools Besides the public WS interface to both the primary storage and index server JP
provides tools for managing the index servers, e.g. purging and populating them with data coming
from the primary storage, as well as manipulating the set of queryable attributes of a particular
index server.

Job resubmission support toolsJP data contain enough information to re-create the execution envi-
ronment of a particular job. However, the user may require varying fidelity of the environment
reproduction, e.g. preserving the same environment settings but using an upgraded version of a
particular library. Therefore support for fine-tuning the specification of the resubmitted job has to
be provided. However, this is foreseen as a specific support in existing user interfaces, using the
JP service in turn.

8.4.4 SECURITY

Authentication All the communication involved in JP is authenticated using appropriate user or service
credentials.

Encryption A lot of the gathered data may be considered sensitive, hence encryption of data transfers
should be considered. However, this may generate a considerable overhead in the case of bulk
file transfers, therefore fine grain control is required (e.g. encrypt input/output sandboxes but not
executables).

INFSO-RI-508833 PUBLIC 5005

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Authorization e Storing to primary storagé done by L&B, WM (sandbox management part) and
CE eventually. Only credentials of configured trusted services are permitted.

e Read acces® both primary storage and index servers. ACLs (including both user identities
and VOMS groups) are inherited from L&B upon creation of the Job Record.
If the primary storage back-end (SE service) allows, its access control mechanisms are ex-
ploited as well.

e Modification of Job Recordg.o be defined later if required. Also ACL manipulation will be
considered.

e Feeding data into index serveMutual trust between primary storage and index server is
required. This is based on both primary storage and index servers’ configurations.

8.5 PACKAGE MANAGER

A Package Management (PM) Service is a helper service that automates the process of installing, up-
grading, configuring, and removing software packages from a shared area (software cache) on a grid site.
This service represents an extension of a traditional package management system to a Grid and it should
use one of the established package management systems as a back-end. Some well-known examples of
such systems include:

e RPM, Red Hat's package manager, used not only by Red Hat Linux but by several other Linux
distributions.

dpkg/APT (used originally by Debian GNU/Linux, now ported to other systems).

Portage, used by Gentoo Linux and inspired by the BSD ports system.
The “ports tree” system used by FreeBSD, NetBSD,OpenBSD and the like.

Pacman, package manager developed at Boston University and used by several Grid projects (In-
ternational Virtual Data Toolkit - iVDGL, Grid3)

The software is distributed in packages, usually encapsulated into a single file. The file, as well as the
software itself, contains metadata that describes the package’s details, including its name, checksums,
and dependencies on any other packages that it needs to work. It may also include information on how
to configure the package for use and how to remove the package cleanly when it is no longer required.
The package manager then uses this information to install, configure, and remove packages as requested
by the user.

The PM Service is used by other services running in a resource provider environment (Computing El-
ement and Job Wrapper) in order to construct the list of packages that are required to execute a job
specified by the JDL. The information returned is an LFN or SURL. Based on that, the application (CE
or JW) can retrieve the required files, install them in the package directory and make them available on
the WN.

The PM Service operates in the context of a VO and understands and resolves possible dependencies
between the package versions provided by the VO administrator. This service is not responsible for the
maintenance and deployment of middleware or system software components.

The VO package administrator maintains the package cache at VO level consisting of a tarball and a
metadata file per package. The tar file can contain the precompiled binaries for a given platform or
the source files that can be compiled to produce executables. The associated package metadata file
contains the build instructions for the source files, possible dependencies on other packages as well as
the instructions on how to setup the runtime execution environment.

INFSO-RI-508833 PUBLIC 5105

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

In a typical scenario, the VO package administrator creates the binary package caches for one or more
computing platforms, verifies and possibly digitally signs them. These caches are then published and
made available for download via the PM Service. On the execution site, a local instance of the PM
Service will, on request from a CE or JW, fetch and install binary packages into the local package cache.
This local package cache should reside on a file system managed by the PM Service assuring that unused
old packages are removed if disk space is needed to install newer versions.

However, should the VO decide to manage only the source caches, the packages can be built by the local
PM Service, using the build instructions contained in package metadata and installed in the local package
cache. In addition, the existence of binaries can be advertised, thus minimising download of packages
from multiple locations. In this way, the PM Service could maintain the hierarchy of package caches to
assure scalability and provide a fail-over capability.

8.5.1 OTHER SERVICES USED

The PM will use the authentication, authorization, and file catalog components.

8.5.2 SECURITY

Access to VO packages should be controlled and possibly restricted and audited. The easiest way to
achieve that is to treat the packages as any other File Catalog entry and to apply common Authentication,
Authorization and Auditing mechanisms. The integrity of individual packages should be verified by
appropriate checksums. The package metadata information (including checksum information) should be
retrieved from a trusted and certified VO site, independently from the package itself.

9 DATA SERVICES

In this section we describe the EGEE Data Services. For the EGEE data management service stack we
make the assumption that the lowest granularity of the data is on the file level. We deal mostly with files

if it comes to application data as opposed to e.g. data sets, data objects or tables in a relational database.
The reason for this arguably very restrictive assumption is twofold: Most importantly, the initial two
application groups to work with EGEE’s gLite implementation are the High Energy Physics and Bio-
medical communities, for whom data are stored mostly in files. The second reason is that the semantics
of files are very well understood by everyone, both on the service provider and application side. This is
not the case for generic data objects for example, where every application group has their own definition.
For EGEE to solve a generic problem we felt it safe to start with a semantically well-understood system,
hence our choice to start solving the Grid data management problem for files, building on the work of
previous projects, most notably the EU DataGrid and AliEn.

The data services can be put into three basic categories: storage, catalogs and movemenLl Figure
gives an overview of the service interfaces and some basic internals. All of the details are given in this
section. Note that all Figures displaying service components in this section are color- (and shape-) coded:
Components that are managed by the VO are displayed as green circles, services managed by the site are
displayed as blue rectangles and service managed by both VO and site are coloured in a greenish blue
and their shape is rectangular with rounded edges.

9.1 DATA NAMING

In the Grid the user identifies files by logical file names (LFNs). The LFN namespace is hierarchical,
just like a conventional filesystem. The semantics of the LFN namespace is also almost exactly like that

INFSO-RI-508833 PUBLIC 5295

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Data Movement
- Transfer

Data Scheduler | Agent

File Transfer
File Placement

File Transfer Queue

Look up, Register, Trigger and monitor Transfer
Authorize

_— 3
Data Catalogs Data Storage
¥ Grid I/O
File Catalog SR
Grid I/O
Replica Catalog

Look up, Register,
Native /O
Metadata Catalog Authorize
SRM
File Authorization

Storage Index Catalog Persistent Store File Transfer Interface
GridFTP

Storage Element

Figure 11: Overview of the EGEE Data Management services.

of a Unix filesystem. The LFN is not the only name/identifier that is associated with a file in the Grid,
although the average user may never use any other flename and is given the benefit of a single global
namespace. To maintain this view, the Grid data management middleware has to keep track of logical to
physical file instance mappings in a scalable manner (see Section on C&t&8jogs

In this section we introduce and explain each concept in detalil.

Symlink) / SURL

|

| .

| Replica Catalog Interface
|

|

File Catalog Interface SRM Interface

Figure 12: The File Catalog interface manages the 1:1 LFN-GUID mapping and the symbolic links
to the LFNs. The Replica Catalog Interface manages the GUID-SURL mapping, and the
SRM interface provides the SURL-TURL mappings.

We have the following names identifying data in the Grid (see Figdye

LFN Logical File Name: A logical (human readable) identifier for a file. LFNs are unique but mutable,

INFSO-RI-508833 PUBLIC 5305

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

i.e. they can be changed by the user (the files can be renamed). The namespace of the LFNs is
a global hierarchical namespace, which is how file-based data is organized on any computerized
system today. The same tools and semantics may be provided to the user on the logical namespace
of the Grid as on any local filesystem. Each Virtual Organisation can have its own namespace if
everyone agrees to use a convention.

GUID Global Unique Identifier: A logical identifier, which guarantees its uniqueness by construction
(based on the UUID mechanisr(]). Each LFN also has a GUID (1:1 relationship). GUIDs
are immutable, i.e. they cannot be changed by the user. Once a file acquires a GUID it must not
be changed otherwise consistency cannot be assured. GUIDs are being used by Grid applications
as immutable pointers between files. If these should change, the application may suddenly point
to a wrong file. In the filesystem analogy, GUIDs would be the unique inode number of the file.
The 1:1 relation means that we do not allow hard links in this virtual filesystem — experience tells
that implementing a globally distributed filesystem with hard links is very difficult and introduces
unnecessary complexities (especially for tetetemethod).

Logical Symlinks The logical namespace also provides the concept of symbolic links. Symbolic links
always point to an LFN. There may be many Symlinks to an LFN (N:1 relation). If an LFN is re-
moved or renamed, the Symlinks are left dangling, in analogy with the usual filesystem semantics.

SURL The Site URL specifies a physical instance (replica) of a file. In other projects the SURL is
also referred to as the Physical File Name (PFN). A file may have many replicas, so the mapping
between GUIDs and SURLSs is a one-to-many mapping. Each file replica has its own unique SURL.
In gLite, SURLs are always fully qualified SRM names, accepted by the Storage Element's SRM
interface (see Sectiah2). An example SURL is

srm://castorgrid.cern.ch:8443/srm/managervl1?SFN=/castor/cern.ch/filel

The SRM endpoint is implicitly given by the part of the SURL that comes befera. Usually,

users are not directly exposed to SURLSs, but only to the logical namespace defined by LFNs. (The
Storage URL StURL is another term used by the SRM specification, for the actual file name inside
the storage system. To the Storage, the Site URL is a logical name and the StURL is the real
location of the file on disk.)

TURL Transport URL. Itis a URL that can be used to actually transfer a file using any standard transport
protocol. The TURL is a fully qualified URL starting with the protocol to be used for transfer or
direct file access through some native I/O mechanism.

9.1.1 LocIcAL FILE NAME

The LFN is the name of a file in the VO-internal logical namespace, organised in a hierarchical directory
structure. A valid LFN might be a string like

/glite/myV0.org/production/run/07/123456/calibration/cal/cal-tablel00

The LFN has to be unique. In our architecture, the Grid interface that is used to manage the LFNs and
their namespace is the File Catalog interface. The gLite Fireman catalog implements this interface. It is
responsible for assuring the uniqueness of the LFN.

If the same catalog is to be shared among several Virtual Organisations, then the LFN unigueness has
to be assured across VOs. In order to be able to share the catalog the VOs have to agree on a naming
convention for the logical hierarchy. This can be simply achieved by creating two branches in the hierar-
chical logical namespace for each VO. Then each VO only has to assure LFN uniqueness within its own

INFSO-RI-508833 PUBLIC 5495

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

branch. The VOs are thus also able to manage their namespaces and administrative domains indepen-
dently. This kind of logical branching is the same mechanism as is used in other distributed filesystems
like AFS where data is always prepended by the AFS cell nadfe [

Exposing the VO name so prominently in the LFN hierarchy has as a consequence that the VO names
themselves have to be unique, just like AFS cells are. It is therefore probably good practice to have VO

names that are actually valid DNS entries, even if the VO does not intend to share its catalogs with other
VOs.

9.1.2 DIRECTORIES

We define the concept of a directory in the LFN namespace. The directory may be manipulated just
as in a normal file system. It can be listed in the same manner, new entries may be added to it or
existing ones renamed and removed. The LFN contains the fully qualified directory hierarchy that can

be navigated using the directories. The HEPCAL DataSet concept may be mapped to a directory in the
logical namespace. In the previous example LFN, one of the directories is

/glite/myV0.org/production/run/07/123456/calibration/

A user can also copy logical files from other logical directories into their own direcioye: We do

not support symbolic links on logical directories, due to the difficulty to traverse symbolic directories
across a set of distributed namespaces and catalogs. This is added complexity which we decided not to
introduce.

9.1.3 SyMBOLIC LINKS

The File Catalog allows symbolic links to be set to LFNs, their semantics being analogous to those in
the Unix file system. Similarly to symbolic links in Unix, LFNs may have a many of symbolic links
pointing to it. Symbolic links have to be specified using absolute paths. They have the same semantics
as the Unix filesystem symbolic links, i.e. their consistency is weak and they might point to non-existing
LFNs. Any operation on the target LFN does nothing to update the link.

As mentioned above, we explicitly do not support symbolic links on logical directories. The reason
is that in order to support a distributed logical namespace, it would be very difficult to track directory
traversal across many catalogs residing at different locations on the wide area network and to resolve
symlink loops. This makes it possible for us to be sure that there are no cycles in the links either. We
also restrict symbolic links to point to LFNs only, i.e. not to other symbolic links since there is no reason
why a symlink would need to point to another link and not to the LFN directly. This again reduces the
complexity of the naming scheme.

9.1.4 GUID

As mentioned earlier, the LFN and GUID are both unique but with the important difference that the LFN
is human-readable and mutable, whereas the GUID is neither. Also, the LFNs come with a hierarchical
structure whereas the GUIDs expose no structure at all. Some VOs may enforce the policy of immutable
LFNs in which case there is no semantic difference except for the logical namespace hierarcy. The use
of LFNs is not mandatory, VOs may decide to use only the GUIDs to identify their files.

The internal GUID does not need to be known by the users who will usually only see the human readable
LFN. Nevertheless, it is possible that a Grid file has no LFN reference at all, only a GUID. In that case
the user has tinowthe GUID when contacting the Grid catalogs to resolve its location.

INFSO-RI-508833 PUBLIC 55005

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

9.1.5 MOTIVATION

At first glance (looking at Figuré?) all these names and their relation seem overly complex and maybe
even unnecessary. The Globus RUS3][works with a simple N:M mapping model between LFNs and
SURLSs, why is that not workable for EGEE? What's the reason to have the GUID at all? Or to have the
LFNs and Symlinks separated like this? There are several reasons to motivate GUIDs and the fact that
there are no hard links, all of which have an influence on the semantics of the operations on the files the
Grid end-user sees. These are summarized below.

GUID Motivation The introduction of the GUID is necessary to allow us to distribute the catalog con-
tent across the wide area. By keeping the GUID immutable, the distributed catalog can detect
accidental duplication of LFNs should they occur. An example where this might occur is when a
batch farm producing some output is disconnected from the wide area network and registers a new
file (and a new LFN) in its local File Catalog. Upon reconnection, the local File Catalog instance
tries to re-sync with the rest of the world, and finds the LFN already registered. The clash can be
dealt with by some configurable policy, the easiest of which would be to mail an administrator.
The GUID provides the Grid user with a guaranteed unique name that also administrators can use
to reference the file while dealing with clash resolution. If the mapping is simply an N:M mapping
between LFNs and SURLs, the system would not be able to distinguish between a clash and a
regular registration, and we would end up with a situation where different files are registered as
replicas to the same set of LFNs. If we do have GUIDs to track clashes, the typical resolution
would be to assign a different LFN to the file. In general, the application should take reasonable
steps to ensure that the LFN is unigue; the process above is only for clash resolution and error
recovery purposes.

No Hard link Motivation Having introduced the GUID, one might simply allow more than one LFN
to be linked to the same GUID (this was the model in the EU DataGrid). This is like supporting
the concept of a hard link on the filesystem, where more than one file is linked to the same inode.
However, in a distributed system providing hard links, the delete operation becomes very difficult
to manage and its semantics become highly nontrivial. In the local file system the operating system
takes care of reference counting; deleting a hard link will not free the inode if it has other hard
links pointing to it. In the distributed scenario, every time the delete method is called, the Grid
services would need to find all other links to the given file through reverse GUID-LFN lookup over
the wide area before allowing the file to be deleted. The user would see long delays, deadlocks etc.
In the EU DataGrid project this problem could not be addressed properly.

Therefore we decided to keep the LFN-GUID mapping as a 1:1 mapping and provide symlinks to
the LFN. Symbolic link semantics are easy for everyone to understand since they are well-known
to the user community, and hard links are rarely used. In addition, if the symlinks were pointing to
the GUID and not to a unique LFN, the classical filesystem listing semantics would not be easily
supported; the user would see its symlink pointing to a GUID while performing a list operation
on a logical directory, thus exposing arternal quantity (as if the filesysterns would show the

inode number). If there is a unique LFN to which the symlinks can point, the users will see the
usual semantics and there is no need to expose the GUIDs.

9.2 STORAGE ELEMENT

Next to computing and networking resources, data storage resources are the basic building blocks of a
distributed computing infrastructure. Any kind of data is ultimately stored on a data storage resource.
There are many kinds of storage resources today, ranging from a memory stick to a multi-petabyte tape
silo. Different storage resources offer different levels of Quality of Service, and have different semantics
for data access, both for reading and writing.

INFSO-RI-508833 PUBLIC 5695

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

In a Grid environment the data and its availability is managed by the Grid middleware. The middleware
interfaces to storage need to be rich enough to be able to take into account the possible semantic prop-
erties of the underlying storage resource hardware. At the same time its usage should be simple enough
so that clients of the storage resource don't need to be experts in the handling of it. The interface to
data storage needs to abstract out the commonalities of data stores while allowing the usage of specific
features that may be available only on a small subset of storage resources.

Storage is tightly coupled to all other aspects of the Grid architecture. Every data access and data move-
ment needs to take the data resource availabilities into account.

Storage is also tightly coupled to Grid scheduling. Grid Schedulers need to be able to take the data
requirements of a job into account. In order to be able to do so, the storage resources need to expose
appropriate interfaces as well. If data resources provide means of storage scheduling and reservation,
these need to be exposed accordingly as well.

Finally, like any other resource, storage resources also need to be monitored, audited and its usage has to
be accountable.

In order to achieve the promise of ubiquitousness, the Grid middleware has to provide the same ease of
use as if it was an integrated operating system to the application. The application should be able to access
its data independent of the actual location of the CPU it’s being executed on. We know that the Grid sites
are usually PC farms running a batch system. To set up the same batch system everywhere or to run
a world-wide distributed file system everywhere like AFS is not a workable solution for a lightweight
middleware solution, i.e. one that is not intrusive. The EGEE middleware has to work with the locally
available hardware and software. In order to do so, it needs to interface to every storage system available
at a given site. The local storage system may be anything from a file system to a high-capacity mass
storage device.

In order to not to have to deal with the peculiarities of each individual storage, we require all Grid-aware
storage to implement the Storage Resource Manager (SRM) interface which provides us with most of the
functionality we need. We work together with the most important storage providers of our initial two user
communities to assure that an SRM interface over their storage solution exists and is well-supported. The
SRM interface itself is being standardized through the Global Grid Forum’s Grid Storage Management
Working Group (GSM-WG)43).

The set of services that are needed to provide file access and storage makes up what we call a Storage
Element (SE):

e Storage back-end with all the associated hardware and drivers

SRM service implementation on the given storage

Transfer service for a (set of) transfer protocol(s) but at least GridFTP

Native file access service exposing a POSIX-like I/O interface

Auxiliary security, optional logging and accounting services

In essence, the Storage Element is the Grid service responsible for saving/retrieving files to/from some
data store which can provide a wide range of quality of service to the user.

The SE provides the following set of capabilities which will all be explained in detail in this section:

Storage space for files.In an SE there is a certain amount of space available to store file-based data.

Storage Resource Management interfaceThe SE has a standardised interface to manage the under-
lying storage resource. Currently this is mainly for staging files from and to disk from other media
residing in a Hierarchical Storage Management system (HSM).

INFSO-RI-508833 PUBLIC 5705

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Storage space managemenfThe SE may provide a means to manage the available space through
mechanisms such as quotas, file lifetime management, pinning, space reservation, etc. We do not
oblige each SE to provide such functionality, but if the functionality is available the middleware
should be able to make use of it. The SRM interface is being extended to provide this capability in
a standardised manner. SRM interface version 1 does not provide such capabilities, but interface
version 2 does. We expect everyone to provide at least version 1. The EGEE middleware will have
to be able to use the capabilities of later versions as well.

POSIX-like I/O access to files. The SE provides an interface that can be used to access the files directly
through some supported protocol.

File Transfer requests. Each SE has to support a file transfer protocol. For EGEE we expect every
storage resource to support GridF T2

On top of each SE, the middleware provides a Grid /0O and a Grid File Transfer Service (see Figure
13). The end-user application only needs to use the Grid I/O API in order to access its data - the storage
resource, the SRM and security services are contacted by this service on the user’s behalf. The detailed
semantics of file access will be different depending on what kind of storage back-end is being used
beneath an SE; there may be substantial latencies for reads and many more failure modes for write. The
list of errors and messages is longer than for a conventional file system.

The Grid 1/0 server component of the EGEE Grid middleware (of which gLite has an implementation:
gLite I/O) is making use of the catalog services to authorize access, resolve GUIDs and LFNs to SURLs
and to check authorization for the files. The services needed to do this resolution may be deployed next
to the SE or at another site. If the deployment is such that these servicelpsato the SE, this will
minimise the probability of the files being inaccessible due to catalog unavailability.

9.2.1 STORAGE SPACE TYPES

Storage Elements represent a resource that may have very different quality of service (QoS) characteris-
tics between different instances, depending on the actual storage technology being used. Storage Element
middleware running on a tape archiver is considerably more complex than a thin layer of logic on top

of a local hard-disk in user-space. In-between these two extremes there is anything from disk-arrays to
DVD racks.

The “Qo0S” in terms of data storage refers to how strong the commitment is on the side of the SE to
actually keep the user’s data safe. Some SEs may be unable to give any guarantee to the user that the
data will be still available the next minute because of the properties of the underlying technology. Other
SEs have a Mass Storage System (MSS) backend, with proper backups and tape migration policies, being
able to guarantee the storage and availability of the data. Of course the semantics of such systems need
to be exposed to the user to some extent. We differentiate between the following SE semantics:

Volatile or Temporary Space. Data stores that provide temporary space semantics make little guaran-
tee for the data in storage. These are also sometimes called opportunistic stores or scratch spaces.
Data stored in temporary space may disappear anytime. Such spaces are usually much easier to
provide and also to use than permanent storage spaces. The security considerations of volatile
space may also be much more relaxed, although the data stored in volatile space may also be
well secured through proper authorization and authentication. Obviously, data stored in temporary
space should not include master or primary copies of the data or important pieces of data that must
not be lost. Such data stores may be used also to provide data caches. The concept of volatile
space is not to be confused with data lifetime management; this is a property of the storage space,
not of the data. Some stores may however combine the two concepts and provide volatile space
based on data lifetime policies.

INFSO-RI-508833 PUBLIC 58005

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Permanent Space.Data stores may provide storage space where the data can be kept permanently or
if in addition data lifetime management is provided, up to the guaranteed lifetime of the data.
Permanent storage does make guarantees when accepting the storage of data: it takes the necessary
precautions that the data is not lost for the lifetime of the data. Some storage may provide ‘infinite’
lifetime semantics, in which case the storage takes care of migration to new technologies, etc. Of
course the more guarantees are taken, the more expensive will the management of the data become,
so the usage of permanent stores is usually more expensive than the usage of volatile space. For
important data and for primary and master copies, permanent storage should be used.

Durable Space. The concept of durable space is introduced to describe a very specific use case: When
important, not to be lost data is being produced at a site where no permanent storage is available,
the data must not be lost before it is transferred off-site to its final, permanent location. Durable
Space provides these semantics. So it will guarantee the safeguarding of a file until it has been
moved to another 'safe’ place. Of course this guarantee has its limits, but it is better than pure
temporary space. Users may have no choice to take the risk and use temporary space, but durable
space, if available, is much preferred. The durable concept is similar to the concept of a safe write-
ahead cache. Durable space is not as ‘cheap’ as temporary space since important data that has
not been migrated yet must not be lost. Durable data semantics supersede lifetime management
semantics: durable data may not be removed even if its lifetime has expired if it has not been
migrated to permanent store yet.

The three types of storage space described above need to be taken into account for all operations and
their semantics need to be available to all users of data storage resources.

9.2.2 STORAGE RESOURCE MANAGEMENT INTERFACE

The SRM interface that we adopt is described in great detail in the documents available through the GGF
Grid Storage Management Working Group (GSM-WG) webpad@éls We foresee the evolution of the
SRM implementations according to these specifications.

This management API is intended to be used mostly by administrators, the job submission system, and
as an internal API between the Grid Services and the SE itself, as shown in the pRt@#ecourse the
users may access the SRM directly if the authorization scheme supports it (details in Segtion

The EGEE SE middleware relies on the SRM to abstract the peculiarities of the underlying SE imple-
mentation. gLite does not provide its own SRM implementation or its own MSS backend. The actual
middleware implementations for the SE will come from other projects, such as dCaastof, SRE,

ADS®, Condor NeST, LCG Disk Pool Manadéretc.

9.2.3 SERVICES

We expect that a Storage Element (SE) has at least three interfaces (sed Biglihe Storage Resource
Management (SRM) interface allows the client to manage the storage space - to allocate space for jobs,
to prepare data to be retrieved through a certain protocol, etc. The second interface that is expected to
be available on a SE is a native POSIX-like file I/O API. And finally, the SE is expected to provide a
transfer protocol interface, where we expect at least GridFTP to be supported.

6Developed at Deutsches Elektronen Synchrotron DESY

"Developed at CERN

8The San Diego Supercomputing Center’s Storage Resource Broker
9Rutherford Appleton Laboratory’s Atlas Data Store

10Also developed at CERN in the context of the LHC Computing Grid project

INFSO-RI-508833 PUBLIC 5905

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Storage Element

Native 1/O Interface

EREE rfio chirp

. ¥io nfs
Grid I/O Interface dCache DPM

CASTOR

SRM Interface NesT gpg
disk

Grid Transfer
Interface

File Transfer Interface Storage Back-End
GridFTP

Figure 13: The Storage Element. The SE has three external interfaces: GridFTP, SRM and a native
POSIX-like file I/O interface. Depending on the underlying storage system, the SE may
support more than one protocol to access the files. The list of examples for storage and
I/O in the picture is non-exhaustive. For EGEE we expect each storage to support at
least GridFTP as a common transfer protocol, of course also other protocols may be
supported. The two interfaces on the left are the Grid interfaces to storage: a Grid /10
and a Grid Transfer interface.

The Grid interfaces will interact with the available storage and protocol components. It exposes a uniform
interface to the Grid clients and abstracts away local peculiarities (like the locally available native 1/0

protocol). The two Grid interfaces are a Grid I/0 and a Grid File Transfer interface. In EGEE these are
provided by the gLite I/O (see Secti®.4 and the File Transfer Service components (see Se8t®n

9.2.4 GRID FILE I/O

The interaction with the storage element should be transparent to the user through a POSIX-like file
I/0 API. The EGEE implementation, gLite 1/O, provides a minimal subset of truly POSIX-compliant
methods as well as a set of custom methods which may be better suitable for some operations in the
Grid.

Figure14 shows how the I/O works in detail. The I/O client library accepts either LFN or GUID as an
input to the API (see sectiod®.3 for an explanation of what the catalogs contain and what GUIDs and
LFNs are). The LFN or GUID is presented to the I/O server. Then the actual operation is authorized
through the File Authorization Service, i.e. whether the user is allowed to access the file in the given way.
Resolving the GUID or LFN into the SURL is the next step, which is then used to access the file through
the local SRM. Since the SRM is only a management interface and not an actual protocol, there is a step
when the I/O server invokes the native 1/0O protocol of the underlying storage. (The gLite implementation
makes it possible to combine steps 2 and 3 since the FAS and Catalog interfaces are implemented by the
same service.) After having received requests through the SRM or native 1/0O, the SE checks with the
Local Authentication and Mapping services whether the given user is allowed access at the local site at
all (see section.5).

The service implementing the FAS and Catalog interfaces may be co-located with the I/O server and
the SE on the same site in order to assure locality of reference (this being the main reason to provide
distributed catalogs, sé23.2 Of course this is a deployment choice as the catalog may be on a remote
site as well. However, if the FAS is on a remote site which is not accessible, none of the local files can
be read due to authorization failure. So this situation should be avoided if possible.

There is a lot of room for customisation since all components should be modular on the Grid I/O server

INFSO-RI-508833 PUBLIC 60095

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

5 7. Local User Authorisat Local Authentication,
/.o Loca ser Authorization . .
» Authorization and
SE [srm Mapping
| Native /O 4, SRM resolution
(SURL to TURL)
Worler Node, Ul 6. Native 10
Access
3 . _ . File
vogh's Client 1. Access using LFN or GUID Grid 2. Access ..
Application i > 1/O Server izati Autherization
. through secure Grid I/0 Authorization Service
3. Mapping resoclution (LFN,GUID to SURL)
Catalogs

Figure 14: The Grid I/O server interactions. The client's POSIX I/O request is received in step 1.
Step 2 is the file access authorization (Grid ACL enforcement) and step 3 returns the
actual SURL. Steps 4 and 6 are the SE interactions through the SRM and native I/O
protocols. The SE makes sure the client is authenticated and authorized locally in steps
5and 7.

side following the SOA paradigm. The EGEE implementation allows pluggable components, i.e. in
order to support another SRM with another native protocaol, it is enough to provide a plugin to the gLite
I/O server.

File Creation Creating a new file in the SE is mostly done using the Data Scheduler and File Placement
Service (see Sectidh4), i.e. an existing file is copied into an SE and registered in the catalog (or if the
file was already on the SE, only the registration and security domain update are necessary).

If a new file is created through the gLite I/&@en () command, it has to be declared what kind of file

the system is supposed to create (see discussion about file access patterns below). A new GUID will
be allocated by the system (in order to avoid inconsistencies). Associated file metadata may have to be
added as well. Such a creation is not as efficient as the first method. However, it is also possible to create
the file locally outside of the Grid efficiently, and to move it into the Grid through the gLite 1/O CLI.
There is aglite-put andglite-get utility available in order to do so; this way gLite also supports
applications that cannot simply link with the gLite I/O libraries.

File Access Patterns We differentiate between several different file access patterns:

e Write once, read many. These files are read-only, they may not be written, so write methods will
not work. They can be replicated safely.

e Rare append only updates, only one owneiThese files are updateable for writes (appends), and
we do not expect concurrency issues, so also such files are replicateable, although detection of
conflicts has to be built into the system.

e Frequently updated, one sourceThese files are like parameter files, that may change often, but
change only at a single location from where all other replicas are updated. The replicas may be
checking whether there is a new version available and pull in the latest version if needed.

INFSO-RI-508833 PUBLIC 6105

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

e Frequent updates, many users, many sitesSuch a pattern is too difficult to be managed in
general by the grid and is not supported. Itis also a rare pattern according to the user requirements
so far. Databases provide a much better technology for this usage pattern anyway, so we suggest
to store such data in databases, not in files. Even so, multi-master distributed database technology
is expensive and error-prone and should be used only if it cannot be avoided.

The I/O methods will exhibit different semantics for each supported pattern. For example the write()
method will return an error for write-once read many files.

9.2.5 GRID FILE TRANSFER

The second Grid interface to storage is a File Transfer interface (see Bigur&he transfer services
and their relation to storage are explained in sectidn

9.2.6 OTHER SERVICES USED

As mentioned above, the Storage Element is making use of the catalog services to resolve GUIDs and
LFNs to SURLs and to check authorization for the files. The services needed to do this resolution should
be deployed next to the SE. This minimises the probability of the SE files being inaccessible due to

unavailability of the catalog.

The SE also makes use of the monitoring services to publish its state information, and of the security
services for the purpose of authorization and accounting.

The client of the Grid I/O (on the left-hand side of Figd4) will have to have a Grid certificate, signed
by his VOMS server. In addition, the client will have to find the proper I/O server to talk to through the
Service Discovery services.

9.2.7 SECURITY

Security throughout the data management subsystem is explained in detail in 8€gtion

9.3 CATALOGS

In the EGEE architecture, the data catalogs store information about the data and metadata that is being
operated on in the Grid. The Grid Catalogs are used to manage the Grid file namespaces and the lo-
cation of the files (see also Sectiérl and Figurel?2), to store and retrieve metadata and to keep data
authorization information.

We decompose the catalogs into catalog feature sets which are represented by catalog interfaces (see
Figurelb5). These interfaces expose a well-defined set of operations to the client:

Authorization Base The basic authorization interface offers methods to set and get permissions on one
or more catalog entries. The permissions are represented as a set of ACLs. The ACLs that the
gLite implementation provides are read, write, execute, remove, list, set permission, set metadata
and get metadata.

Metadata Base The methods of the base metadata interface deal with setting, querying, listing and
removing metadata attributes to one or more catalog entries.

Metadata SchemaThe schema interface allows the definition attributes and group them into schemas.
Attributes may be added and removed from existing schemata. These attributes are then available
to be filled with values through the Metadata Base interface.

INFSO-RI-508833 PUBLIC 6295

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Replica Catalog The Replica Catalog exposes operations concerning the replication aspect of the grid
files. Operations are for example to list, add and remove replicas to a file identified by its GUID.

File Catalog The File Catalog allows for operations on the logical file namespace that it manages. The
File Catalog operations are for example making directories, renaming logical file entries and man-
aging symbolic links.

File Authorization The methods needed to implement a standalone authorization service are in this
interface, which are basically the ability to add and remove permission entries.

Metadata Catalog In order to implement a standalone metadata catalog, methods are needed to add and
remove entries.

Combined Catalog It usually makes sense to provide catalogs that implement the File and Replica
interfaces. The combined catalog interface defines a set of convenience methods which in principle
could be implemented on the client side by calling the File and Replica Catalog interfaces in
sequence. If this interface is implemented by a catalog service, it either also implements File,
Replica and Base Authorization interfaces or calls upon an external catalog in order to do so.
If the implementation is not in the same place, the Combined Catalog implementation needs to
maintain a persistent state of all operations it performs across catalogs in order to make sure that
the operations only occur in a synchronised manner and that the method semantics are preserved.

Storagelndex The Storage Index interface is tightly coupled to the File and Replica catalog function-
ality. It offers methods to return the list of Storage Elements where a given file (identified by its
LFN or GUID) has a stored replica.

All catalog interfaces expose bulk operations as part of the interface. They increase performance and
optimise interaction with the Grid services.

Storage Index Combined Catalog Metadata Catalog File Authorization

File Catalog

Replica Catalog

Metadata Schema

Metadata Base

Authorization Base

glLite Storage gLite Fireman glLite Metadata ngte. FII?
; 5 H N Authorization
Index Service Catalog Service Catalog Service Service

Figure 15: Catalog Interfaces with the gLite services implementing them.

The reason for this interface decomposition is to have service interfaces with well-defined semantics
which may be implemented by many parties. In this model, a possible scenario is that more than one
interface is implemented by the same service. In Fidifréne interfaces are grouped such as to show
which gLite service provides what implementation. These are

INFSO-RI-508833 PUBLIC 63095

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

gLite Fireman The gLite Flle and REplica MANager called the Fireman catalog implements all file
management interfaces.

gLite Storagelndex The Storage Index service is provided also by the Fireman implementation, but is
offered as a separate porttype.

gLite Metadata The standalone gLite Metadata Catalog implementation offers a full metadata catalog
solution.

gLite FAS The File Authorization Service can be deployed as a simple authorization enforcement ser-
vice for file access.

Of course another implementation may choose to implement the interfaces in a different manner, to even
further extend the possibilities for deployment of the services. In the following we discuss some details
of the catalog interfaces and semantics.

9.3.1 METADATA

All metadata is application specific. Therefore a generic middleware layer can only provide generic,
non-specialized metadata capabilities which can only be used optimally to a limited extent.

In EGEE we also provide an implementation of the metadata interface through the Fireman catalog in
addition to a standalone metadata catalog implementation. In the Fireman catalog we consider metadata
only in the context of file-based metadata, i.e. metadata that is related to the files stored in the Grid, with
the LFN or the GUID as the key binding the metadata and the File and Replica Catalog contexts together.
File-based metadata has therefore more specific semantics than generic application metadata.

In the Fireman catalog we restrict the set of attributes, i.e.stiemaof the metadata to be the same

for the logical directories, i.e. all files within a directory have to have the same set of attributes. Of
course many directories may have an identical metadata schema, in which case metadata searches may
be performed over many directories (see Figlége

Actually the Fireman metadata catalog can be also interpreted as a metadata catalog where the entries
have a hierarchical structure.

The standalone metadata catalog has no such concept as a hierarchical namespace for the items that it
associates metadata catalog with, so for any arbitrary existing metadata catalog it should be possible to
interface it to the Grid by implementing the gLite metadata catalog interface.

Generic metadata service interface can be offered through a generic Grid Database service that makes
data accessible through the Grid. Such services have been tested in previous projects, like project Spitfire
as part of the EU DataGrid project and the OGSA-DAI project of UK e-Science.

9.3.2 SCALABILITY AND CONSISTENCY

The File Catalogs that have been deployed to date are all deployed centrally and therefore are a single
point of failure. The central catalog model has obviously excellent consistency properties (concurrent
writes are always managed at the same place) but it does not scale to many dozens of sites. There are
three possibilities to solve this issue:

e Database Partitioning. The data in the database is kept at different sites. For some applications
where datasets are unlikely to move, partitioning on data location (and mapping this implicitly into
the logical namespace) may be a good approach, solving the scalability problem.

INFSO-RI-508833 PUBLIC 6495

ecee

nabling Grids EGEE MIDDLEWARE ARCHITECTURE

for E-scienc

Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

Date July 15, 2005

fgridimyvo.org/home/data/

dirl/
FileQO1
FileOD3
FileQO7

Schema 51

Attributes:int
AttributeB:float
AttributeC:string

dir7/
FileDo2
FileD04
FileD05

Schema 52

AttributeX:float
Attributey string
attributeZ:string

runld/f
Datadlz
Datadlz
Datadzl

Schema 53

Attributed:int
AttributeP:int
AttributeR:int

Figure 16: In the file hierarchy, each file in a directory shares the same metadata schema. In the
picture, /grid/MyV0/home/data/setl and/grid/MyV0/home/data/set2 both have
the schema S1, ie. all files in these two directories may have AttributeA, AttributeB
and AttributeC set. Queries on metadata may be scoped on either the schema or the
directory, returning files from either only a set of directories or for all files sharing the

same schema. A directory may have more than one schema table.

e Database Replication. The underlying database is replicated using native database replication
techniques. This may mean a lock-in to a vendor-specific solution. Currently commercial database
vendors like Oracle provide multi-master database replication options which may be exploited for

such a purpose.

e Lazy database synchronisation exploiting the specific semantics of the catalogs using messaging
to propagate the updates. Reliable messaging technologies are available commercially (just like
replication for database technologies) and there are some solutions also in the open source domain.
The File and Replica Catalog semantics are rather simple and very specific for catalog write op-
erations, so that every time a local write operation occurs, it can be distributed through a message
gueue to all known and available remote catalogs.

The EGEE middleware will be able to accommodate all solutions by design. Consistency might be
broken in the second and third model i.e. it is possible to register the same LFN in two remote catalogs
at the same time such that a conflict will occur. The reconciliation techniques apply in both cases. In the
third case we can be specific to the semantics of the system and exploit the uniqueness of the GUIDs to

detect consistency problems and to notify the users asynchronously.

9.3.3 BuULK OPERATIONS

The whole data management design is optimised for bulk operations as opposed to single-shot opera-
tions. The reason is that in the stateless web service model in the SOA of gLite, there is a considerable

INFSO-RI-508833

6505

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

performance hit when the connection between client and server is established and the security context
is built. If this connection has to be rebuilt for each operation, the client-server interaction will be very
inefficient.

For this reason, all catalog operations have bulk operations as part of the interface wherever it is rea-
sonable. Using them to bundle similar tasks as a single operation increases performance considerably,
optimising the interaction with the Grid services. So whenever possible, the bulk interface should be
used instead of sending single requests to the catalogs.

9.3.4 OTHER SERVICES USED

The catalogs rely on being passed in VOMS proxies to be able to perform the full fine-grained authoriza-
tion based on ACLs.

9.3.5 SECURITY

By imposing ACLs on the filesystem the security semantics are straightforward. This should also help in
avoiding concurrency issues when writing into the catalog since each user will have only limited access
rights in the LFN namespace and there should be only a finite set of administrators per VO who have full
access rights for all of their LFN namespace. The probability of two users with the same access rights to
write into the catalog in the same directory in a distributed system is therefore low.

The Replica Catalog interface exposes the operations on the file ACLs. There are two possibilities of
how ACLs may be implemented.

e POSIX-like ACL The POSIX semantics follow the Unix filesystem semantics. In order to check
whether the user is eligible to perform the requested operation, all of the parent ACLs need also
be parsed.

e NTFS-like ACL The Microsoft Windows semantics are simpler, i.e. the ACLs are stored with the
file and the branch has no effect on the ACL. These are “leaf” ACLs, only operating on the file
itself.

In a distributed environment, the NTFS-like semantics are simpler to track and are probably more effi-

cient. The Authorization Base interface exposes all operations that deal with querying and setting of the
file ACLs. It acts as the authorization authority for file access and is called by other services such as the
File Placement Service to enforce ACL security. See Se&ibfor more details.

9.3.6 ADDITIONAL CONCEPTS

The Master Replica Currently we do not expect the files to be updated. In a distributed system to keep
track of all replicas in a consistent manner is a nontrivial task that the middleware should not need to deal
with from the start. However, a placeholder is needed to enable such functionality. The master replica
flag for a SURL as present in the File Catalog may be used to flag a SURL as the only replica where
update operations are allowed. This may then also be the only source for replications. If the master
replica is lost, it might be recovered from other replicas or not, based on VO policies. A master replica
should always be kept on a reliable SE providing high QoS (permanent space semantics).

Datasets The functionality of having a dataset as described in the high energy physics requirement
document 9] is not explicitly supported by this set of services since the catalogs described here are
purely file-based. However, for applications having files as the data granularity most of the functionality

INFSO-RI-508833 PUBLIC 66/95

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

is available by using the logical namespace mechanisms for directory and virtual directory, covering a
large fraction of the Use Cases. The added metadata support for the file hierarchy may also be used to
provide the semantics needed by the applications. These are the possible mechanisms:

e A directory is an explicit dataset by inclusion. Files may be added, removed by the usual mecha-
nisms.

e Datasets by reference may be a directory containing symbolic links to other files.
e A directory may have “real” files as well as symbolic links.

e Avirtual directory is a dataset which is created from a metadata query (see below).

Datasets that are more complex, containing object references and metadata as well as references to files
are usually application specific and we expect them to be managed by a higher-level service or through
the metadata associated with the directories. VOs may provide a specialised metadata service to manage
complex datasets and nontrivial operations on datasets or they may use the metadata capabilities of the
EGEE implementation. VO dataset tools and dataset catalogs may also make use of the EGEE catalog
interfaces internally if they choose to do so, hiding the complexity from the user.

Virtual Directories A virtual directory is a special directory created from a metadata query. A user
defines a metadata query whose output is a set of logical files that are then made accessible through the
virtual directory as symbolic links. The virtual directory contains a list of files, all of which are symbolic
links to the files returned by the user’'s query. Only a limited set of operations are available in such
directories. The result of a query may be stored back in the File Catalog, so whenever the user issues the
list command, the same stored results are retrieved. In order to refresh the contents of the directory, a
virtual directory refresh would have to be issued explicitly. The advantage is that the user has to explicitly
invoke remote catalog calls, they are not invoked “accidentally”. Also, since the actual data may change,
the user has the possibility to see how a query evolves over time.

Of course only files sharing the same metadata schemas can be used to create virtual directories, since
otherwise there is no way to formulate the metadata query.

9.4 DATA MOVEMENT

The data movement services provide scalable and robust managed data transfer between Grid sites, to
and from Grid storage. Files are scheduled to be moved between sites reliably. Scalability, manageability
and extensibility have driven the service decomposition described in this section (see also4ection

The logical service decomposition for data services is shown in Fijuréhe services involved in data
movement are the following:

Data Scheduler From the VO's point of view the Data Scheduler is a single central service. It may
actually be distributed and there may be several of them, but that depends on the implementation.
It accepts high-level transfer requests, where the user does not specify the source replica, or even
the destination of any given transfer.

File Transfer/Placement ServiceThe transfer and placement services may get transfer requests from
the user directly or through the Data Scheduler. The difference between a transfer and placement
service is only their connection to the catalog — the transfer service does not provide LFN and
GUID resolution into SURL/TURLSs. The deployment of FTS and FPS services depends on what
the needs of the VO are. It is possible to have a service at each site.

INFSO-RI-508833 PUBLIC 6705

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Locate
Replicas

Data
Scheduler

Catalogs

Register and
Locate
Replicas

SE1

Forward transfer
request

Worker Node, Ul

» .
o Client
N Application

Trigger Transfer

File

Submit transfer request

Placement

.y
ra

Data Transfer

Transfer

Service

Register
transfer request

Transfer
Queue

Figure 17: Architecture overview of the Data Movement service components. The Data Scheduler

is a high-level component. There may be many File Placement Services around, acting
as interfaces to put requests into the Transfer Queues.

Trigger Transfer

Get transfer job

Apply policies SE2

Transfer Queue The transfer queue is persistent and is not tied to a site, but rather to a (set of) connec-
tions, wide area network channels (links). It keeps track of all ongoing transfers and may also be
used to keep a transfer history, for logging and accounting purposes.

Transfer Agent The transfer agent again is tied to both the network channels and the VOs (see details

below). The Agent may not only simply get the next transfer job out of the queue, but may also
reorder the queue according to site and VO policies.

In the following, we describe each service in more detail and explain their control flow, look at their
components and discuss actual use cases.

9.4.1 DATA SCHEDULER

The Data Scheduler (DS) is the high-level service that keeps track of most ongoing WAN transfers inside
a VO. The DS schedules data movement based on user requests. At a later stage, the DS might be
extended to accept more dynamic kinds of requests by virtue of a data job description language, enabling
it to do data job scheduling coordinated together with the WMS.

Users and the job scheduling system will contact the DS in order to move data in a scalable, coordinated
and controlled fashion between two SEs. The DS has the following components:

VO Policies Each VO can apply policies with respect to data scheduling. These may include priority
information, preferred sites, recovery modes and security considerations. There may be also be a
global policy which the VO, by its policy, may choose to apply. Global policy is usually fetched
from some configurable place. The same global policy may apply for many VOs.

Data Scheduler Interface The actual service interface that the clients connect to, exposing the service
logic. All operations that the clients can use are exposed through this service.

Task Queue The queue holding the list of transfers to be done. The queue is persistent and holds the
complete state of the DS, so that operations can be recovered if the DS is shut down and restarted.

This queue is the heart of the DS, all services and service processes operate on this persistent
queue.

INFSO-RI-508833 PUBLIC 6895

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

‘Waorler Node, Ul Data Scheduler VO1

0

WO Policy Jrssernaa, L
N Optimizer '
Global Policy
Data Scheduler VO2

W0 Paolicy

N Optimizer '

Client

Task
Queue

Application

User WOl

0

0

Task
Queue

0

Figure 18: The Data Scheduler

Optimisers A set of modules to fill in missing information (like the source to copy from), or modifying
the details of a request based on some algorithm (such as the protocol or the source replica to be
used).

The DS is shown in Figur&8 as a single instance. However, there may be several Data Schedulers for
the same VO deployed in the Grid. The DS may also be contacted by the File Placement Service, not
only from the user directly (see Figui§).

9.4.2 FILE TRANSFER AND PLACEMENT SERVICE

There is no difference between the FTS and FPS service in terms of functionality, except that the FPS
accepts LFNs and GUIDs in its interface and resolves them through the Grid Catalogs whereas the FTS
does not. The FTS and FPS receive requests either through their Web Service interface directly from the
clients or indirectly through the Data Scheduler. If the request cannot be managed by the local service, it
may be forwarded to a known Data Scheduler for further processing.

Once a request is accepted, it is simply put into the associated File Transfer Queue. If the request came
through the FPS interface, the LFNs and GUIDs are first resolved through the catalog, and only the
resolved names (SURLS) are put into the persistent queue. However, it is made sure that FPS requests
also are updating the proper replica catalogs after successful transfer.

The transfers managed by the FTS/FPS are all asynchronous, i.e. the client submits a transfer ’job’,
which may contain a list of files (with proper source and destination qualifiers) to be transferred. The
FTS/FPS assigns a unique string identifier to the job if it is accepted. The states of the whole job and the
states of the individual files (that can be tracked using this ID) are not the same: SeelBidur¢he

job states and Figur20 for the individual file states. The reason for the difference is that there may be
many files to be transferred in a single job.

The clients see only the FTS/FPS Web Service interface and its associated API and convenience com-
mand line tools. In gLite we also provide a web browser interface to the FPS/FTS.

9.4.3 FILE TRANSFER QUEUE

The transfer queue is just a table, usually kept in a relational database. However, any other persistency
mechanism is suitable. The queue in itself does not provide an interface or a service. In the gLite

INFSO-RI-508833 PUBLIC 6995

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

nabling CGrids
for E-scienc

EGEE MIDDLEWARE ARCHITECTURE

Date July 15, 2005

Job is running

FFS submit FPS[if all files Canceled]

Canceled
all files Cancelad
{ FPS cancel }L_J

FT5[0<Canceled and all in

(Submit@

FPS name resalution

(Done, TransferFailure,

{if all hames are resolved} Canceled)]
Canceling
all files Pending
Pending FP& cancel
FP= cancel
fﬁm [W]
FT5[0 < Active] FTS[all files Dong] L_J

FT5[0<TransferFailure and all in

(Dane, Transferfailure)] FP]

{if a

catalog update
files are updated}

—J

FP3

—J

[Finisthir‘tv}

Figure 19: The states that are possible for a file transfer job. A job may have many files.

FPS.submit

FP5 cancel
Canceled) Canceling) TransferFaiied)

FP5 nd

e resolution

—

FTS[job status is Canceling]

-
K@ding

FTS[job status is Canceling]

Artive

—J FTS[successful cancel] L—JFTS[transferfailed] L—J

FTS[transfer

ailecl]

;J FT% start transfer

____J

FTS[tranfer finished]
Cone FTS[transfer successful]

Finished l
FP3 catalog update

Figure 20: The states that are possible for a file that is being transferred.

(Catalograied)
[J

implementation it is simply a set of tables in a relational database. The queue is being manipulated
directly by the Transfer Agents and the FPS/FTS.

9.4.4 FILE TRANSFER AGENT

The FTA is a very modular component built as a container for nfsstgrsthat can be executed period-
ically. Each Actor will act on the Transfer Queue in a very well-defined manner.

INFSO-RI-508833 PUBLIC 7005

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

The Transfer Queue provides different views for the FTA agents to operate on. There are two kinds of
views: channel and VO views. The channel view will expose all transfers relevant for a given channel,
the VO view will show all transfers associated with a certain VO.

Standard FTA Actors will resolve names, apply VO policy, channel policy, monitor the state, trigger and
monitor the actual file transfer and change the state in the queue if the state of the transfer has changed.
For the discussion below, it is important to define at least two Actors:Clitennel Allocator Actowill

actually assign a file to be transferred through a certain channellréhefer Trigger Actowill actually

work its way through triggering the transfers based on the parameters set for the channel configuration
(number of parallel transfers, etc).

9.4.5 TRANSFER CHANNELS

The Data Movement services need to interoperate and manage two basic resources: Storage and net-
working. For the network side, we use the concept of network channels (links) that may be dedicated or
shared resources. Each channel has its own queue in a File Transfer Queue, which is managed by at least
one File Transfer Agent.

The following channel states are defined (explained by referring to the two FTA Actors defined above):

Active The Allocator is looking for work to assign to a chanaeld the Trigger is looking for work in
that channel to be put on the wire.

Drain The Allocator willnot add anything new to a channalit the Trigger will continue to serve jobs
that have been assigned to its channel. The effect is to drain all pending transfers from the channel.

Inactive The Allocator will assign work to a channeiit the Trigger willnot put any more jobs on the
wire. This is used by a sysadmin to empty the network. Note that jobs currently active on the wire
will complete.

Stopped Neither the Trigger or Allocator will do any work. Nothing will be assigned to the channel and
no work will be put on the wire. Existing jobs on the wire will complete.

Halted A serious error has been detected on the channel (e.g. there have been a certain number of
'sequential’ failures on the channel in the last few minutes) and that the channel has been automat-
ically stopped by some monitoring process. When a channel is halted an alarm should be raised
to alert an operator for manual intervention. This state is designed to prevent the transfer queue
draining in case of problems.

9.4.6 ADDITIONAL HIGHER LEVEL SERVICES

Having the basic set of data management services in place, it is straightforward to put additional conve-
nience services in place, usually in the application layer. An example is a component that automatically
schedules data transfers based on some trigger or event. The event may be application specific or it may
be linked through the catalogs (new entries) or from the SE (new data) or other monitoring services. The
auto-scheduling service would place new requests into either the local FPS or the global DS periodically
whenever the event is triggered. It may use the WS interface to achieve the scheduling task and can
focus on implementing its triggering mechanism. It is also possible to extend the FTS/FPS and the File
Transfer Agent by implementing custom actions directly into the FTA, which are executed periodically
and may be used to enforce some special policy (reordering the queue) or to add additional tasks (register
data and metadata in application specific catalogs), etc.

INFSO-RI-508833 PUBLIC 7105

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

9.5 SECURITY IN DATA MANAGEMENT

As described in the executive summary Sectirit is important to distinguish services owned and
managed by the VO from those owned and managed by the site administrators (sel¢. THiMleughout

this Section, all Figuresl(l - 18) colour-code the components that are managed by the VO (in green
circles) and by the site (in blue rectangles). Some components of the Data Movement services are
managed by both, these are coloured in a greenish blue and their shape is rectangular with rounded edges
(e.g. in Figurel?).

The importance of this taxonomy is two-fold:

e It allows the assignment of clear responsibilities for every Grid service, which is important for
accounting, auditing and liability, which are all important aspects of the security management and
design.

¢ Itallows us to identify service locality, since all site-managed services are running at a well-defined
site. VO-managed services are usually 'free-roaming’ services, i.e. the VO is free to choose on
which site to deploy them, and vice versa each site, knowing what service is VO managed and
what service is site-managed, is free to choose which VO service to deploy.

MyProxy

€2, myproxy-init .
store long-lived Fll_e)
user prosy S2. renew user proxy Authorization

if close to expiration Service

S1, Authorize file access

‘Worleer Node, Ul
- Using delegated user proxy

Local Authentication,
> Data Service Authorization and
using user proxy

c4. delegating Mapping
user proxy to service

Client
Application

€3, Service call

S4, access SE
Using delegated, maybe
renewed user proxy

SS. Authorize and map user on site

53, re-request VOMS
3 C1, voms-proxy-init signature on renewed proxy
% returns signed proxy cert SE

VOMS

Figure 21: Security interactions of the Grid Data Services: Grid /0 and data transfer. The steps are
explained in the text. The dotted line represents direct, non-Grid access.

On the Grid it is very difficult to provide uniform security semantics for data since every Storage Element
may be built on different local services with conflicting semantics. It is possible, however, to provide
uniform file access semantics using the PKI infrastructure. Figlirghows the steps that are needed

to authorize Grid file access (either through 1/O or through the data movement services). The details of
Figure21 are explained below.

Client

C1 The Client first needs to acquire a VOMS proxy by issuigs-proxy-init. The VOMS server
returns a signed VOMS proxy, with some additional fields in the proxy. The ones relevant to the
data services are:

INFSO-RI-508833 PUBLIC 7205

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

DN The DN provided in the user certificate identifies the user. Its unigueness within its VOMS
domain is guaranteed by the VOMS server.

VO The VO name is also provided as part of the VOMS proxy. This is an extension.

Groups The user may be member of one or several VOMS groups. These groups are also provided
as part of the VOMS proxy extension.

C2 The user can also put a long-lived certificate into a MyProxy server. 'Normal’ certificates last for
a few hours (12 is the default), which may be insufficient for some tasks (like very long lasting
data transfers). Therefore a longer proxy can be acquired by the user upon request. However, a
long lasting proxy should not be used directly (otherwise the proxy concept would be useless) so
it is kept in a MyProxy server, which uses it to extend the lifetime of short-lived proxy certificates.
The lifetime of the short proxies may of course be only extended up to the total lifetime of the
long-lived proxy.

C3 After having acquired a proxy and optionally having placed a long-lived one into MyProxy, the
user can contact the service (either the Grid 1/O or File Transfer/Placement Service), which will
successfully authenticate and authorize the user if the credential is valid.

C4 Although the user may not be aware of this process, the user also delegates his credential to the
server so that it can further process the request on the user’s behalf.

Server

S1 After the server receives the client’s request (C3), it not only checks the DN and the VO to be valid
for the given server, but it also contacts the File Authorization Service (FAS) using the user’s
delegated credentials (from C4). It is as if the user would contact the FAS himself. The FAS will
authorize the operation, i.e. whether the given file may be accessed, read or written by the user.
The FAS takes the DN and the Groups of the user into account.

S2 Upon successful authorization with the FAS, the user’s request may need some babysitting. In the
File Transfer Service, it is common that requests sit on the Transfer Queue for hours. If the user’s
delegated proxy nears expiration, a Transfer Agent Actor will contact MyProxy and ask for a
renewed proxy.

S3 VOMS signatures and attributes may need to be renewed as well, since they expire also periodically;
so the same Actor also has to call VOMS to fill in the necessary attributes in order to get a fully
renewed VOMS proxy. These two steps are not necessary in the synchronous Grid 1/O case.

S4 Finally, if the user’s certificate is valid and not expired, the server will contact the SE (either its native
I/O or GridFTP or SRM interface) using the user’'s delegated proxy and will try to access the data.

S5 On the SE server side, it is foreseen that for each access the SE also authorizes and maps the user
locally (based on the certificate it's being handed with the request) by contacting the site-local
(blue) authorization and mapping service.

9.5.1 FILE OWNERSHIP AND AUTHORIZATION DETAILS

In this section we discuss some of the implications of the model presented above in detail.

The data stored on some site local storage is ultimately owned by a site local owner. This owner has
to be identifiable by the site for accounting and auditing purposes locally, but it does not have to be the
storage system itself that specifies who corresponds to a given local user. If we take the SE as given in

INFSO-RI-508833 PUBLIC 7305

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Figure13a user can access all its interfaces using a non-grid certificate or some local account directly
(direct local accesk as if there was no Grid context (if the user is known to the system). This access

is represented by the dotted line in Fig® However, as mentioned above, the semantics of access
may be different for this direct local access as opposed to the Grid access using the mechanism described
before (see Figurd2for the difference between Grid and native 1/0 access and mapping). For example,

if direct local access is used, the SE will not check authorization with the FAS since it has no way of
knowing which FAS for what VO to contact if the user simply comes with a (valid) local account name
and local group (see also Figu?g). In order to assure the same security semantics everywhere, there
are two options:

Grid 1/0 Server File
Authorization

Service

uuuuuuuuuuuuu
eeeee

e proxy
F | signed by server o
m Client native /0 “mapsto Grid awner - | Local Authentication,
using user proxy ther
Application > SE Authorization and
i PP T Mapping

Y

Figure 22: Certificates being used to give a user access to data either through the Grid I/O or through
native 1/0O directly. The Grid services need to sign the user’s certificate so that the local
mapping is done correctly, and for the right operations (which is what is checked with
the FAS).

1. If the local access mechanism provides ACL semantics which can be mapped on the ACLs pro-
vided by the FAS, the Grid services may simply map all users to local users (through the local
authorization and mapping service). However, some service will need to keep the ACLs in sync
between the FAS and the local SE.

2. The data in the SE will need to have full access through the Grid services. In conventional storage
facilities where no ACL support is available, this means that the Grid serviwaghe files. If
ACL support is there, it simply means that the Grid services have full rights on all files exposed
through the Grid.

If the local storage DOES NOT support ACLsbut the VO wants to secure Grid access to it with full

Grid ACL support, this can only be done using option 2, with the Grid services owning the data. In this
particular case howevedjrect local access using a site local usenidll not necessarily be possible
anymore, unless for example the Grid group is the same as the user’s group when it is mapped to the
local SE security context. However, if such mappings exist, it is a serious breach of the security offered
by the Grid ACL and enforced by the Grid Services, which both the users and the service providers need
to be aware of. Site local protocols that dot need a local ID but can authorize the user with its Grid
certificate, are slightly better, since the users that should be able to access the data can be mapped to the
same account as the Grid service if the SE does not support native ACLs. However, in this case the given
user will be able to accesdl files of a given VO. The bottom line is that storage services that do not
offer ACLs can only be trusted from the Grid point of view if all of the data in such storages are owned
by the Grid I/O and transfer services and no other user is mapped to this user. This is no surprise, as this
is the mechanism which is used in all comparable systems to enforce incompatible security semantics

INFSO-RI-508833 PUBLIC 7495

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

(e.g. a relational database management system (RDBMS) owns all its partitions and files and therefore
all data has to be accessed through the RDBMS interfaces, not the native file interfaces the operating
system provides).

If the local storage DOES support ACLs we can analyze the issues we face for the two options in
detail:

Option 1 Semantics and IssuesOption 1 is only workable if the FAS ACL semantics are identical to
the local SE semantics. This means that the storage has to provide the same semantics as the FAS
(i.e. for gLite, NTFS-like ACLs and not POSIX — see SecthB.5, with the same set of access
control elements as supported by the FAS. There is also the need for a consistency service which
has to be provided for each storage service type separately, keeping the ACLs on storage and in
FAS in sync. In EGEE we do not foresee to provide any such service, since we do not know of any
storage that provides the same ACL semantics. So option 1 again does not seem workable.

Option 2 Semantics and Issueslf the local storage supports ACLSs, itis easy for the local administrator
to add the Grid service user to the list of users having authorized access to the files that are to be
'in the Grid’. This also works with storage systems with incompatible ACL semantics, since Grid
access authorization would still be enforced through the FAS.

There are three issues with this model:

1. If the local owner of the data manages the ACLs locally outside of the Grid, i.e. adding new
users to the read’ list for example, the Grid owner may not be aware that his data is suddenly
readable by another person at a given site. However, since usually the Grid owner (who owns
a given file according to the FAS) and the local owner are one and the same person, this is
probably a minor point.

2. If the Grid owner manipulates the ACLs, for example by giving additional people 'read’
rights on the data, these people will not automaticallylgeal accesgead rights on the
storage through the native interfaces, i.e. they would need to get local accounts and be added
locally to the storage ACL lists to be granted the given access control capability. Since the
Grid and local owners are usually the same, this may be a minor issue again.

3. The biggest problem is if a user wants to h&ed accesgo data stored in an SE using his
own certificate while he is not the local owner of the data. This means that somehow the
certificate that the user presents locally would need to have extra information embedded in
it so that he is mapped to thecal Grid user This would mean that if a user needs native
I/0 like shown in Figure22, but has to be mapped into the proper Grid user, the client has to
request a service-signed proxy from the Grid 1/0O server before using native I/O (see Figure
23). This is a possibility that we foresee to explore further in EGEE (it is not possible in gLite
yet). This is the model that has been proposed by the Globus project in their Community
Authorization Service (CASYg)].

In summary, option 2 is the only way to secure data without explicitly compromising its access through
'back-door’ access, i.e. the Grid service needs to have ownership rights on the data managed by it. The
issues that arise from this model are not easy to reconcile but also not impossible, while option 1 leaves
the door open for unwanted access with no clear solution of how to avoid it.

9.5.2 USER AND SERVICE CERTIFICATE USAGE

In this section we discuss the usage of certificates by the data management services.

In EGEE we have decided to support the Grid Security Infrastructure (GSI) based on PKI certificates as
introduced by the Globus Projeet4], and as described in Sectiénl

INFSO-RI-508833 PUBLIC 7505

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Grid I/O Server

File
Authorization
Service

p
eeeee

>
2. native /O A "maps to Grid owner Local Authentication,
using user proxy ; s

> SE Authorization and
b g Mapping

signed by 1/0 server

Figure 23: Certificates being used to give a user access to data both through the Grid I/O and through
native I/O, mapping it always to the Grid user and authorizing through the FAS. For
native /O, the Grid I/O server needs to be contacted to provide a server-signed proxy.

According to this mechanism, the user identifies himself by presenting a proxy certificate (step C3 in
Figure 21) and delegating it to the service (step C4). As we have discussed above, the service would
need tosignthe delegated user proxy so that it can contact the site local service with a certificate that
carries both the user and the service information. (Actually it does not matter whether it's the service
certificate containing the user proxy or the user proxy signed by the service.) As shown inZigie

Grid 1/0O server contacts the SE with suchwal certificate. The SE again uses this certificate to contact
the local mapper so that the proper local account can be selected. This mechanism allows to

e Authenticate the user locally at the site. Since the user identity is transferred with the proxy, the
site has full control over who has access to its resources.

e Map the user into the proper local account. Since the service certificate or signature is part of
the certificate, the mapping can be done into the proper Grid owner. If the service certificate is
used with an embedded user cert, it is not a problem trusting the service and doing the mapping,
otherwise the local service would still need to keep a table of trusted IP addresses in order to
avoid man-in-the middle attacks (someone may fake a service signature), assuring that the message
comes from a trusted machine.

10 HELPER SERVICES

10.1 BANDWIDTH ALLOCATION AND RESERVATION

The European Research Areais currently served by a set of NRENSs linked via a high-speed pan-European
backbone, the GEANT network, built and operated by DANMTHhe EGEE Grid will use these net-

works to connect the providers of computing, storage, instrumentation and applications resources with
user virtual organizations. Grid demonstration projects have shown that Grid applications can generate
very high volumes of network traffic that can exceed the current aggregate flows from non-Grid usage,
and will therefore demand new and innovative features of GEANT and the NRENSs over and above the
current best-efforts IP service.

JRA4 is putting in place a web service to implement bandwidth allocation and reservation. This will
allow the usage of the network to be controlled and balanced and to categorise and prioritise traffic flows
so that users and the layers of Grid middleware receive the required level of service from the network.

11http://wwvv.dante.net

INFSO-RI-508833 PUBLIC 7695

http://www.dante.net

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

For EGEE-1 the service available from the networks is IP-Premium, an IP-level implementation of Dif-
ferentiated ServicesrB]. It should be noted that the European Network Survey carried out by SA2
showed that, while the service is available on the backbone (GEANT), it is still far from being widely
deployed on the NRENS3P]. We will install a pilot service on a limited number of NRENs who have
expressed in principle an interest to install the GN2 software under development.

In the following we give an overview on the BAR architecture. More details can be foura®@)in [

10.1.1 BAR ARCHITECTURE OVERVIEW

Figure24 shows how a BAR service interacts with High Level Middleware (HLM) and network services.
An example of a HLM service could be the Data Scheduler (see Sexdhn

Metwark 1 Metwark 2 Mebuark 2
Site 1 Site 2

BAR BAR
] EGEE [

y \\ Hetwork r

‘ L-NSAP ‘ ‘ NSAP |<_+{ NSAP }<—+{ NSAP | L-NSAF ‘
B R

Figure 24: BAR service and how it fits into the bigger picture

There are three webservices involved in Bandwidth Allocation and Reservation: BAR, Network Service
Access Point (NSAP) and Local Network Service Access Point (L-NSAP).

BAR: Receives the HLM request in a network-neutral language. It passes the request on to its desig-
nated NSAP and L-NSAP for the configuration of the backbone and local network respectively, and also
to the BAR at the target destination. When interacting with NSAPs and L-NSAPs, BAR translates an
HLM request into a network-oriented request.

NSAP: Present in the backbone (GEANT and NRENSs). They are concerned with the configuration
of network equipment on the backbone. Their functionality involves sending notification to BAR of the
success of the request. As explained2d]]the NSAP abstracts the network-specific services but still
speaks a language that is network-oriented.

L-NSAP: Of equivalent functionality to the NSAPs but concerned with the configuration of equipment
on the local network of the source and destination slgeg-fnile problem

The HLM and BAR entities belong to the EGEE administrative domain, and as such they are developed
by EGEE. Network service providers are free to implement NSAP (and L-NSAP) however they see fit.
The only constraint is that the standard BAR-NSAP and BAR-L-NSAP interfaces defined by EGEE and
GN2 must be honoured.

JRA4 will deploy the GN2 NSAP solution on the pilot service. L-NSAPs belong to the administrative
domain of the end-sites and the resulting diversity of local equipment and policies complicates the last-
mile problem. JRA4 will likely only investigate reference implementations of L-NSAP.

INFSO-RI-508833 PUBLIC 7705

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

10.1.2 WEB SERVICES AND THEIR INTERFACES

The HLM-BAR and BAR-NSAP interfaces are represented as web service interfaces, each being com-
posed of set of Port Types (PTs) showing the operations that can be performed.

BulkTransferPT

I
virtualleasedLineP T
I BAR Web Service

R —

YideoPT

YisualisationP T

Figure 25: BAR Web Service

BAR Web Service Figure25 shows the BAR service interface that is exposed to the HLM. Based on
four Service Types defined i24], the BAR web service provides four Port Types as its interface. Bulk
Transfer (BT), Virtual Leased Line (VLL), Video and Visualisation Port Types corresponding to the BT,
VLL, Video and Visualisation Service Types defined 8. The framework is extensible as extra Port
Types can be added to support additional Service Types. It is also flexible since each service type is free
to define, if necessary, a completely different interface. That is, operations and their signatures can be
completely different from one service type to another.

| RequestReservationPT ‘

BAR | MDdifyReservatiDnFl’T ‘
Yeh (—— | CancelReservationPT ‘NSAP Wieb Service
Service

| ReservationStatusPT ‘

|ResewatiDnNntificatmnF'T ‘

Figure 26: NSAP Web Service

BAR-NSAP interface and NSAP Web Service Figure26 shows the interface exposed by the NSAP
Web Service. Its interface is used by a BAR service to access network-oriented services in order to
fulfil HLM requests. The parts of the NSAP interface and the parameters they accept are described
in [24]. The port types RequestReservationPT, ModifyReservationPT, CancelReservationPT, Reserva-
tionStatusPT and ReservationNotificationPT correspond to the Request Network Service, Modify Net-
work Service, Cancel Network Service, Query Network Service Status and Network Service Notification
parts of the interface respectively and accepts the parameters descrigdd in [

Note that translation is necessary between the operations in the BAR service and the ones in the NSAP
service.

Scope for EGEE 1 Out of the four BAR Port Types shown in Figuzg, only Bulk Transfer and Virtual
Leased Line can be supported. This is because only two service types, BT and VLL, are widely available
on the underlying networks presently.

INFSO-RI-508833 PUBLIC 7895

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

10.1.3 SECURITY

Figure 27 shows the overall security architecture for the BAR. The entities involved, their certificates,
and the information stored pertaining to authorisation are shown.

Security is required at the following levels:

¢ Between the Higher Level Middleware (HLM) or other Clients and the Bandwidth Allocation and
Reservation (BAR) service, to ensure that no-one can alter or intercept the requests and to ensure
that only authorised users can successfully make requests to the BAR service via either their Client
or the HLM.

e Between the BAR service and the Local Network Service Access Points (L-NSAPs)/Network Ser-
vice Access Points (NSAPs), to ensure that no-one can alter or intercept the requests and to ensure
only authorised BAR services can successfully make bandwidth reservations.

e Between BAR services communicating with each other (to set up the L-NSAPs at each end-site
involved in a bandwidth reservation), to ensure that no-one can alter or intercept the requests and to
ensure only BAR services that have been delegated a Proxy by an authorised user can successfully
make requests to another BAR service.

e Between NSAP services; this is outside the scope of JRA4 and will not be considered further.

The security architecture is defined 28].

10.2 AGREEMENT SERVICE

The Agreement Service implements the communication protocol used to exchange information about
Service Level Agreements (SLAs) and defines the SLA structure. Signalling requires the exchange of
one reservation and allocation request betweemtireement Initiatoand theAgreement Servicd he
Agreement Service is responsible for ensuring that the SLA guarantees are enforced by asaritatagle
provider. In addition, the Agreement layer defines the mechanisms to: 1. expose information about
types of service and the related agreement offeredAtireement templatgs2. handle the submission

of service requests (the so-callagreement offejs

The gLite architecture for resource reservation is based on three notions: the agreement initiator, the
agreement service and the service provider, as illustrat@8,iaccording to the approach followed by
the GRAAP Working Group of the GGR§].

An agreement initiator uses the agreement service to obtain appropriate agreements with reservation and
allocation service providers, which are typically co-located with physical or logical resources. In the
glLite architecture, agreement initiators would include the workload management system (WMS), the
data scheduler (DS), and the user; while reservation and allocation service providers (RASPs) would
be associated with the logical representation of physical resources: the computing element (CE), the
storage element (SE), and the network service access point (NSAP). The agreement initiator forwards a
list of potential resources and an agreement offer to the agreement service. The agreement service will
contact the relevant RASPs and the result of the negotiation is communicated back to the initiator. If an
agreement can be reached with one of the RASPs, the agreement service returns information about the
successful agreement, while in case of failure, an error code is sent back.

10.2.1 RESERVATION AND ALLOCATION SERVICE PROVIDER

The reservation and allocation service provider is responsible for performing admission control, i.e. of
checking if the requested service can be actually guaranteed to the user, and of applying the configuration

INFSO-RI-508833 PUBLIC 795

Doc. Identifier
c;;abmgefi EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Virtual Organisation

HLM / Clicnt HLM / Client

I

BAR L BAk
Prraimed raies F Prraminted raivs

Pevaifmed BAR e

L-MSAP

Bermaivged BAR I

~ ~

- e

r .
MNEAP NSAP NSAP

Fermiieod §AFR i

Peremitted FAN s

Frrmuraed B4R {5

Koy

g.l.'l"- il.:l.' f.fl:--ﬂ. . D [)«.‘l_'gilr._'.ll Router Interfice

Certificate Certificate Proxy of D 5 .

[Client side) [Server side) h User SHTIpHETE
Certificate

Emd-Hrte MREM Rackbine

Figure 27: BAR Security Architecture

techniques needed to enforce the guarantees when agreed reservations start. Admission control depends
on the user’s identity, on the policies applicable to her/him and to the availability of a sufficient amount

of resources to satisfy the request. Enforcement of service guarantees requires actions on the physical
resources. An example of action is the configuration of network devices in case of bandwidth reservation.
For brevity reasons, in what follows the reservation and allocation service provider is simply named
service provider. The service provider is characterized by the following list of properties.

10.2.2 AGREEMENT SERVICE

The service provider is invoked by one agreement service, a collective-layer service characterized by the
following functionality and set of properties.

e The agreement service interacts with the agreement initiator and with the service providers that
can potentially satisfy one user’s request. In particular, the agreement service accepts reservation

INFSO-RI-508833 PUBLIC 80195

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

nabling Grids EGEE MIDDLEWARE ARCHITECTURE
for E-scienc Date July 15, 2005
Agreement Agreemerit Agreement
Initiztor Initistor Imitiztor
WMS user Data Scheduler

Y Y Y

‘ Agreement Service

Y Y Y

RASP RASP RASP
Metwiork Servce
CE SE bocess Point
[MEAF]

Figure 28: gLite Advance Reservation Architecture

requests (the so-called agreement offers) from the initiators, it checks the compliance of the offer,
and in case of success it hands it to one or more service providers.

e The agreement service advertises the service provider capabilities through Agreement Templates.
The template is a skeleton defining the structure of the contract. It includes a list of creation
constraints, which define the rules that need to be satisfied by the service description terms in
the offer. The template is an XML document. The templates advertised by one agreement service
explicitly define the types of service the agreement service can handle, and consequently depend on
the service providers the agreement service interacts with. In addition to this, different templates
for the same service may be exposed in order to offer various types of agreement to different user
groups, where each agreement template expresses one specific service abstraction. Membership of
users to groups and information about roles and capabilities can, for instance, be handled through
the VO Membership Service (VOMSJ]L.

e The agreement service can invoke one or more service providers. In order to do so, it needs to
support the service provider interface. Different invocation strategies can be supported depending
on the Grid environment; this is transparent to the initiator.

e The agreement service can perform negotiation, i.e. agreement offer attributes from the initiator
can be tuned during the negotiation phase according to the response received from one service
provider.

e The service description terms specified in the agreement offer may be different from the parameters
required by the service provider interfaces. In this case, the agreement service translates high-
level service description terms (from the agreement initiator) to low level service specific terms
requested by the service providers, depending on the case.

e The agreement service needs to provide information about both the status of agreements under
negotiation and the attributes of the agreements established. These information elements need to
be appropriately logged, for instance in the gLite Logging and Bookkeeping component.

INFSO-RI-508833 PUBLIC 815

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

e The agreement service rejects offers from non-authorized initiators.

10.2.3 AGREEMENT INITIATOR

The agreement initiator is responsible of triggering the negotiation of a new agreement by interacting
with one agreement service. According to the gLite architecture (FRR)rehe agreement initiator will
for instance be the WMS, the Data Scheduler or the user.

The input information sent to the agreement service includes: 1. the quantitative description of the
service profile requested; 2. one or more identifiers of the reservation and allocation service providers
that the initiator wishes to be contacted by the agreement service.

The initiator can be the consumer of the resource reserved, or a proxy. The former case can apply
when the consumer has a-priori knowledge of the resources to be reserved. If this is not the case, the
consumer can decide to submit a service profile request to the WMS (the so-called agreement offer),
which performs resource discovery according to the resource requirements specified by the invoker, and
contacts the agreement service on behalf of it.

10.3 CONFIGURATION AND INSTRUMENTATION
10.3.1 OVERVIEW

The Configuration and Instrumentation Services are a first attempt at introducing common, standard-
based configuration and instrumentation functionality in the gLite grid middleware.

The term configuration is here used to represent the set of information required to transition a service (or
service instance) from its initial installed state to a working state or from two different working states
according to given functional and environmental condition. The term instrumentation is used to represent
the set of operations that a service (or service instance) must implement in order to store, query or change
its configuration, state and management information.

Since instrumentation can be used to query a service state, it can also be used to implement monitoring
functionality in the service for example by periodically querying the values of specific service attributes
either in real-time or via some queuing mechanism. Although the configuration and instrumentation
services do not implement themselves this functionality, they provide the basic building blocks to do so.

The gLite configuration and instrumentation architecture is represented in FA§urk is based on

the web service paradigm as are the other services composing the glLite middleware stack. A basic
principle that has been followed is that the system should work even in the absence of the configuration
and instrumentation service, although the resilience, robustness and ease-of-use of the middleware may
decrease.

The main components are the Configuration Service and Clients, the Instrumentation Interface imple-
mented by all services and the Configuration and Instrumentation Proxies. The component responsibili-
ties are explained in more details in the following sections.

10.3.2 CONFIGURATION SERVICE

The Configuration Service is responsible to provide a standard interface to configuration information
stored in a number of back-end repositories. Consumers of configuration information should not depend
on the type of storage (files, RDBMS, LDAP repositories, grid File Catalogs, etc), but only on a set of
agreed interfaces to store and retrieve information and appropriate schemas.

INFSO-RI-508833 PUBLIC 8295

Doc. Identifier
enab”ngerﬁ EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Back-ends

Configuration <query, store>

X Administration
Service

Tools

<i >
<query> instrument

Server

Service Container

<read,write> Legacy
service
L

ocal config files Node

Configuration/Instrumentation Interfaces

Figure 29: The gLite Configuration and Instrumentation Architecture

The Configuration Service receives queries from clients (services or administration tools), retrieves the
information from the existing back-end, formats and verifies the data (according to some validation and
consistency rules) and pass the information to the requestor.

In the same way, the Configuration Service can receive request to store, modify or delete configuration
information using properly formatted messages and updates the back-end as needed.

The service interface will be described in a separate design document using the appropriate notation.

10.3.3 CONFIGURATION CLIENTS

The Configuration Clients are standard information consumers implemented by:

e Services: to get configuration information during the service initialization phase and possibly to
put modified values changed by administrators or other services via the service instrumentation
interface

e Administration Tools: to get, put and delete configuration information from the back-end reposi-
tories

The architecture also provides the possibility for the services to read configuration information from
local files without using the configuration service. This is done in order to avoid strong coupling between
services and the configuration service.

10.3.4 INSTRUMENTATION INTERFACES

The instrumentation interfaces are an agreed set of operations that all gLite instrumented services must
implement. The details of the interfaces will be described in a separate design document using the

INFSO-RI-508833 PUBLIC 83195

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

appropriate notation, but they should comply with existing instrumentation standards or guidelines (such
as the DMTF WBEM L17] or the OASIS WSDM §0]). The interfaces include the operations required to
get and set configuration, state and management information from and to the instrumented services.

10.3.5 SERVICE CONTAINERS

A service container is implemented in each node (host) where services are deployed. The service con-
tainer is normally provided by existing third-party applications inside which the web services are running,
like Tomcat for example. In order to support the functionality required by the instrumented services, such
as service registration and discovery, the service container is extended with instrumentation functionality
implemented by standard tools like JMA{] that provides such instrumentation capabilities for Java

web services via an MBeans Server and local service MBeans (MBeans are management beans analo-
gous to the EJBs in the SUN J2EE architecture).

10.3.6 CONFIGURATION AND INSTRUMENTATION PROXIES

The gLite middleware stack is composed of service implementations of various nature, provenance and
history. They are developed in different languages and are more or less suitable for being instrumented
using existing standard instrumentation technologies. In order to ease the transition from the current
services to a set of fully instrumented services, the use of configuration and instrumentation proxies is
foreseen. A proxy is a service fully compliant with the web service paradigm suggested by the gLite

Architecture and implementing the configuration and instrumentation interfaces recommended in this
section. However, its role is to act on behalf of a “legacy service” implementing the configuration client

that interacts with the configuration service and receiving/transmitting instrumentation messages using
any appropriate protocol. Internally, the proxy communicates with the legacy service and executes on it
the requested instrumentation operations using any existing feature provided by the legacy service. As
the legacy services are properly instrumented and implement the standard interfaces and functionality,
the proxies can be progressively removed without changes in the external interaction with other actors.

10.3.7 IMPLEMENTATION CONSIDERATIONS

Data Modelling and Encoding The modelling of the configuration information and the objects in-
volved in the configuration and instrumentation operations must be done according to a standard model.
The preferred choice to describe information and objects is the DMTF Common Information Model
(CIM) [12]. A subset of the CIM model is used. However additional providers using different modelling
schemas can be foreseen if the need arises.

The data encoding language at the transport level is XML from which appropriate formats can be derived
and objects instantiated within the services and clients using functionality of the local object managers
and specific language support.

Communication Protocol The recommended communication protocol is SOAP as described in the
general introduction to this architecture document. If CIM is used as suggested, the standard set of CIM
Operations over HTTP(S1P] or the CIM-SOAP protocol being discussed by DMTF/OASIS within the
WSDM context can be used.

Authentication All the communication between the configuration service or the instrumented ser-
vices/proxies and the clients is authenticated using appropriate user or service credentials.

INFSO-RI-508833 PUBLIC 8495

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Authorization The execution of configuration or instrumentation operations on the configuration ser-
vice or the instrumented services/proxies is authorized using ACLs based on user DNs or VOMS roles.

10.3.8 OTHER SERVICES USED

VOMS and the gLite security infrastructure.

11 |ISSUES

In this section we briefly discuss some of the most urgent issues we believe work is needed on in future. In
particular, we discuss emerging standards, database access, virtualization, and reliable message passing.

11.1 STANDARDS
11.1.1 SERVICE COORDINATION

In service-oriented architectures (see Sectiprservices may expose a well-defined set of operations to

the clients where the operations are atomic. Atomicity means that an operation either succeeds or fails
completely; there are no partial failures or partial successes. As an example, consider the File Placement
Service described in Sectidh4.2 It has to coordinate the File Transfer Service and Catalog Service
operations in order to expose an atomic behaviour.

So in service-oriented architectures we often build new services by aggregating other services. In a

distributed environment, however, there is no guarantee that a service may be contacted at all times. This
means that the service which is coordinating operations of other services has to have built-in policies on

how to deal with failures.

The policies depend on the semantics of the service. In our example of the FPS, it makes sense to re-try
to contact the File Transfer and Catalog Services at certain intervals (until a timeout is reached) to try to
complete the operation. However, if we try to copy a file first and fail with the catalog operation, should
the copy be removed in the process? (Our answer is yes.)

There are several proposed specifications to deal with the issue of service coord@tion [

e WS-Coordination describes an extensible framework for providing protocols that coordinate the
actions of distributed applications or services.

e WS-Transactions describes coordination types that are used with the extensible coordina-
tion framework described in WS-Coordination. It defines two coordination types: WS-
AtomicTransactions and WS-BusinessActivity. Either of these can be used when building ap-
plications requiring consistent agreement on the outcome of distributed activities.

e WS-ReliableMessagingdescribes a protocol that allows messages to be delivered reliably be-
tween distributed applications in the presence of failures. WS-Reliability from OASIS is another
specification that has the same goals. Both specifications might merge into one in the future.

It is an open question how these specifications can be used to achieve the desired functionality of our
services. Such an evaluation will have to be made on a case-by-case basis. Most of the WS-* specifica-
tions are still in draft stage and subject to change in the near future and have yet to be submitted to any
standards body. The extent of their implementation in various tools varies.

INFSO-RI-508833 PUBLIC 85095

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

11.1.2 ADDRESSING

WS-Addressing is a fundamental specification that defines transport neutral mechanisms for send-
ing messages and addressing web service endpoints. For example both WS-Coordination and WS-
ReliableMessaging make use of WS-Addressing. Because of its importance, this specification is nearing
recommendation status as a result of a fast track approach to its standardization within W3C. This makes
it a safe candidate for adoption by the project in the near term.

11.1.3 WSRF RESOURCES

Very recently, the Grid community has proposed the notion of Resources in the Web Service context by
proposing a Web Service Resource Framework (WSRF) as a standard framework for building a rich set
of services managing stateful resourcggd.[The Global Grid Forum (GGF) bases its Open Grid Service
Architecture (OGSA V1.0) on the WSRF modél].

The motivation to introduce WSRF is as follow&/]: Web services must often provide their users with

the ability to access and manipulate state, i.e., data values that persist across, and evolve as a result of,
Web Service interactions. And while Web Services successfully implement applications that manage
state today, we need to define conventions for managing state so that applications discover, inspect,
and interact with stateful resources in standard and interoperable ways. The WS-Resource Framework
defines these conventions and does so within the context of established Web Services standards.

The WS-Resource Framework (WSRF) is a set of Web Services specifications that define what is termed
the WS-Resource approach to modelling and managing state in a Web Services context.

The WS-Resource approach has been introduced in order to declare and implement the association be-
tween a Web Service and one or more named, typed state compoB@&ntin[this approach, state is
modelled as stateful resources and codify the relationship between Web services and stateful resources
in terms of the implied resource pattern, a set of conventions on Web Services technologies, in particular
WS-Addressing. When a stateful resource participates in the implied resource pattern, it is referred to as
a WS-Resource.

EGEE cannot adopt the WSRF approach currently because of its immature state. The progress of this
important standardisation effort has to be tracked though and the architecture should be such that a future
migration to WSRF standards is straightforward.

11.1.4 WEB SERVICE INTEROPERABILITY WS-I

The Web Services Interoperability Organisation is an open industry effort chartered to promote Web Ser-
vices interoperability across platforms and programming langu&gksi[he first basic WS-1 document

was released in April 2004, and contains simple guidelines on how to use WSDL 1.1 and SOAP 1.1 to
be interoperable within the Web Services domain.

These specifications should be adapted by EGEE middleware as soon as the appropriate tooling is avail-
able. For legacy and early WS implementations effort should be planned to implement the WS-I guide-
lines.

11.1.5 NOTIFICATIONS

Many of the gLite services described in this document need to notify the client or other services on
changes in their internal state. It is important to adopt a common mechanism for notifications. Unfor-
tunately, there is currently no commonly agreed upon standard for notifications in the WS community:
Microsoft is proposing WS-Eventin@fl] while IBM and others specified WS-NotificatioB).

INFSO-RI-508833 PUBLIC 86/95

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

11.1.6 JOB SUBMISSION RELATED STANDARDS

Several useful systems have been constructed in the past years in many Grid projects for enabling remote
access to compute resources. Unfortunately, because of the lack of clear and consolidated standards in
this area, these systems are often incompatible.

The specification and adoption of standards in the areas of compute resource management interfaces,
and of the language used to specify job characteristics and requirements are therefore needed to allow
different implementations to co-exist and interoperate.

Initiatives where these issues are currently tracked and which hopefully will make progress towards the
definitions of these standards include:

e the GGF Job Submission Description Language (JSDL) Working Groglpwhich aims to spec-
ify an abstract standard job submission description language independent of language bindings;

o the newly formed GGF OGSA Basic Execution Service Working Group, which has the objective
to develop a a specification for a minimal set of execution management services;

e the CRM (Compute Resource Management) initiati&g],[where the goal is to make progress
towards the definition of standard compute resource management interfaces.

11.2 DATABASE ACCESS

The current architecture as described in this document is based on the assumption that data is stored in
files and that the finest level of granularity for a data item is a file. The File Catalog with its filesystem-
like semantics is the manifestation of this assumption. However, many applications store their data notin
files butin databases. Such applications should also profit from being able to run in a distributed Grid en-
vironment. We believe that the current architecture is flexible enough to accommodate such applications.
For EGEE, we define a Metadata catalog interface for which we also provide an implementation. In prin-
ciple, any database can easily implement this interface on top of its existing interfaces, fully integrating

it with the gL.ite services.

It has been shown that data stored in databases can be made accessible to the applications in a distrib-
uted Grid environment. Existing efforts include the EU DataGrid Spitfire profgctiie OGSA-DAI

project B8] (which provides an implementation of the GGF Data Access and Integration Services work-
ing group’s (DAIS-WG) L] specifications for data access) and efforts from the industry (Oracle, IBM).
Data in an existing (usually central) database may be made available to Grid jobs through such mech-
anisms. We will make sure that gLite is interoperable with OGSA-DAI and applications can use this
mechanism to access data in databases. Still, distributing the data in a scalable, secure, controlled man-
ner, co-locating it with the running jobs, making it writable at many sites (i.e. multi-master database
replication) is a nontrivial problem that has kept the database community busy for the last two decades.
Some commercial solutions exist, but none provide interoperability and platform-independence, which
is necessary for Grid deployment.

We are actively involved in the DAIS-WG of GGF and will also make sure that the proper binding layers
are provided to existing databases in our user communities. However, some problems might be too
difficult to solve within the lifetime of this project.

11.3 VIRTUALIZATION

One of the primary obstacles users face in Grid computing today is that while Grids offer them access
to many powerful resources, they offer very little to ensure that this access fulfils the user’s expectations

INFSO-RI-508833 PUBLIC 87105

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

of the resource and the requirements of their code. This is because most Grid platforms today do not
support performance isolation: memory demands or scheduling priority of one job will affect another
executing on the same platform in an uncontrolled way. One way to address the problem is to build
support for performance isolation on a per-process basis into the operating system. However, we are
typically interested in controlling resource usage on the granularity of groups of processes, in particular
a group of processes belonging to a specific user or virtual organization (VO).

Another manifestation of the lack of control is that while Grids typically offer access to a group of
resources of diverse software environments a user’s application requires a very specific, customized
environment. Between computing clusters, variations in operating system, middleware versions, library
environments, and file system layouts all pose barriers to the portability of applications. Applications
that work on a developer’s desktop may only function “out of the box” on a small fraction of the total
number of compute resources potentially available to the scientist.

Virtual machines (VMs), integrated into existing Grid security and resource management infrastructure,
provide a compelling solution to these problems. The concept of machine virtualization allows a client to
create a custom execution environment configured with a required operating system and software stack
on almost any physical computer. Moreover, sharing between such environments can be orchestrated
based on scheduling resources between virtual machines themselves assuring controlled resource usage.
In addition, VMs allow the client to suspend the operation of a “guest” virtual machine by writing the
VM’s state to disk; such saved VM “images” can be subsequently resumed allowing the migration of the
VM'’s frozen state across different resources.

A virtual machine provides an isolated virtualization of the underlying physical host machine. Software
running on the host, called virtual machine monitor (VMM) or “hypervisor”, is responsible for sup-
porting the perception of multiple isolated physical machines by intercepting and emulating privileged
instructions issued by the guest virtual machines. A VMM typically provides an interface allowing a
client to start, pause or stop multiple guests. A VM representation contains a full image of the VM'’s
RAM, disk, and other devices, allowing its state to be fully serialized, preserved, and restored at a later
date. Recent exploration of “paravirtualization”, specifically the development of the Xen hypervisor
has led to substantial performance improvements in virtualization technologies that make VMs a very
cost-effective solution typically resulting in only very small performance degradation.

11.4 RELIABLE MESSAGE PASSING

Messaging systems were conceived in order to solve the problem of reliable message passing across wide
area networks. This is especially important for businesses where messages have to be delivered with zero
loss like for banks using Automated Teller Machines. Such systems employ industrial-strength products
like IBM's MQSeries b5] and Microsoft's MSMQ #5].

These messaging systems operate with a store-and-forward message queue. The sender of the message
expects someone to handle the message asynchronously. There are several standards in the domain of
messaging, a very widely used standard is the Message Passing Interface3NIPMPI is designed

for high performance on both massively parallel machines and workstation clusters. Messaging frame-
works based on the classical remote procedure calls include COBA(m OMG, DCOM [18] from

Microsoft and Java RMI94] from Sun Microsystems.

We speak of message oriented middleware (MOM) if the publish/subscribe model is applied, where
the implementation takes care of routing the right content of the messages from the right publisher to
the right subscriber. Industrial strength solutions in the publish/subscribe domain include products like
Rendezvousl4] and SmartSocketslp] from TIBCO. Other related efforts in the research community
include NaradaBroker7g] and Elvin [6]. Sun Microsystems have pushed Java to include publish sub-
scribe features into its messaging middleware through AN ¢nd JMS p1]. JMS aims to offer a
unified API across publish subscribe implementations. Various JMS implementations include solutions

INFSO-RI-508833 PUBLIC 8895

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

like SonicMQ [74] from Progress, Java Message System Quéligfjom Sun and FioranoMQ1[3] from
Fiorano. In the open source community there is Jora8h PBOSS p2], ActiveMQ [2] and OpenJMS

[69]. Also MQSeries and Microsoft MSMQ as well as some of the above mentioned publish/subscribe
MOM systems implement JMS.

Reliable message passing may also be used in a Grid architecture to coordinate the state of services
residing at different sides in the wide area network. By using a standard like JMS it is possible to choose
from a wide range of existing solutions, both commercial and open source to deliver the necessary Quality
of Service to the distributed Grid services. Message passing will increasingly become one of the driving
factors in distributed service provisioning for Grids, as is being demonstrated by NaradaBrokering for
example.

For EGEE, we intend to use JMS to keep the Storagelndex up to date with the local site File and Replica
Catalogs in a distributed deployment scenario.

12 IMPLEMENTATION CONSIDERATIONS

The Grid system realised by the services described above should allow a maximum of flexibility in
service deployment, service composition, and service interoperability.

In order to achieve this, implementations of the services need to take into account the requirements
discussed in Sectiod The main issues include:

Interoperability Service implementations need to be interoperable in such a way that a client may talk
to different independent implementations of the same service. Following a strict SOA approach with
well-defined interfaces specified in WSDL will help achieve this goal.

In addition, the Grid services need to be able to co-exist with, and leverage existing Grid infrastructures
like LCG (http://cern.ch/lcg), Grid3 (http://www.ivdgl.org/grid2003/), OSG (ttp://www.opensciencegrid.

org/) or NorduGrid (ttp://www.nordugrid.org). This can be achieved in developing lightweight services
that only require minimal support from their deployment environment.

Service Deployment Grid services need to be easily deployable and configurable across a wide range
of platforms. This goes along the lines of the goal of interoperability with existing infrastructures dis-
cussed above. In addition, several deployment scenarios need to be supported (e.g. services running
together on the same physical machine, services supporting single or multiple VOs, etc.).

Figure 30 shows a typical deployment scenario for a site providing computing and storage resources.
Figure 31 shows the additional services a VO might use. Note that we focus on job submission, data
management, and information and monitoring in these figures and do not cover additional services like
accounting, bandwidth allocation, agreement, and configuration. In depicting the services we try to
separate resource and virtualized services. Naturally, all the services in Bigare virtual ones.

Service Autonomy Although the services constituting the gLite architecture are supposed to work
together in a concerted way, they should be usable also in a stand-alone manner in order to be exploitable
in different contexts. Ideally, if a user only requires a subset of services to achieve his task, he should not
be forced to use additional services; in reality, this goal might not always be achievable and at least stubs
or dummy services might be needed, however, the service design and implementation should proceed
in that direction. The inverse of this argument needs to be supported as well: in certain circumstances
there might be the need to include additional services into the Grid system. While a service oriented
architecture in general foresees this dynamic extension, the service implementations also need to be
compliant with this goal, by using dynamic discovery mechanisms, for instance.

INFSO-RI-508833 PUBLIC 8995

http://cern.ch/lcg
http://www.ivdgl.org/grid2003/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://www.nordugrid.org

Doc. Identifier
enab”ngeﬁci EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

Information
Producer

Virtualized
‘ ‘ Service

Ele

7 I -
~Storage ::’:é. Grid Multiple
ment AN 110 instances
IS, 7 v possible
(AL LIS

Site

Figure 30: Typical Site Deployment Scenario

13 CONCLUSIONS

This document presented the revised architecture of the EGEE Grid middleware,gtateedsing a

service oriented architecture approach. Five main logical service groups have been identified which
themselves contain a set of services. The architecture of these services has been described and we
discussed the differences between resource and virtualized services.

The services have been put in context to requirements and a number of issues, in particular with respect
to ongoing standardization efforts have been discussed.

The detailed specification of these services will be described in a separate design docu-
ment (Deliverable DJRA1.5) which will be a revision of the original document DJRAL1.2
(https://edms.cern.ch/document/487871/).

It is also worth noting that the architecture described in this document is subject to a continual evolution,
based on experiences with deployment and usage of the implementations of the services described, user
feedback, and the evolution of application requirements.

INFSO-RI-508833 PUBLIC 9095

e ee Doc. Identifier
EGEE-DJRA1.1-594698-v1.0

nabling Grids EGEE MIDDLEWARE ARCHITECTURE
for E-scienc Date July 15, 2005
i i
“/Bemice
| VOMS Il
Virtualized
eeeeeee
Information File Multiple
Registry & Catalogs Authorization ossle
Schema

T

L&B WMS File Transfer/
Placement
|

Figure 31: Typical VO Deployment Scenario

REFERENCES

[1] GGF Data Access and Integration Services Working Group. Data Acces and Integration Services.
http://forge.gridforum.org/projects/dais-rg/document/.

[2] ActiveMQ. Webpagehttp://activemg.codehaus.org/.

[3] Alfieri R. et al. VOMS, an Authorization System for Virtual Organizations.And Computing,
First European Across Grids Conferen@904.

[4] Alexander Barmouta and Rajkumar Buyya. Gridbank: A grid accounting services architecture
(gasa) for distributed system sharing and integrationPrisceedings of the 17th Annual Interna-
tional Parallel & Distributed Processing Symposium (IPDPS 2003) Workshop on Internet Comput-
ing and E-Commerce2003.

[5] William Bell, Diana Bosio, Wolfgang Hoschek, Peter Kunszt, Gavin McCance, and Mika Silan-
der. Project spitfire - towards grid web service databasessldbal Grid Forum Informational
Document (GGF5)Edinburgh, Scotland, July 2002.

[6] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. IMUUG97, September 1997.

[7] P. Buncic, F. Rademakers, R. Jones, R. Gardner, L.A.T. Bauerdick, L. Silvestris, P. Charpentier,
A. Tsaregorodtsev, D. Foster, T. Wenaus, and F. Carminati. Architectural Roadmap towards Dis-
tributed Analysis. Technical report, LHC Computing Grid Project, October 2003.

[8] Steve Burbeck. The Tao of e-business servicesttp://www-106.ibm.com/developerworks/
webservices/library/ws-tao/.

[9] F. Carminati, P. Cerello, C. Grandi, E. Van Herwijnen, O. Smirnova, and J. Templon. Common Use
Cases for a HEP Common Application Layer — HEPCAL. Technical report, LHC Computing Grid
Project, 2002.http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG_GAG_Docs/HEPCAL-prime.
pdf.

INFSO-RI-508833 PUBLIC 915

http://forge.gridforum.org/projects/dais-rg/document/
http://activemq.codehaus.org/
http://www-106.ibm.com/developerworks/webservices/library/ws-tao/
http://www-106.ibm.com/developerworks/webservices/library/ws-tao/
http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG_GAG_Docs/HEPCAL-prime.pdf
http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG_GAG_Docs/HEPCAL-prime.pdf

Doc. Identifier
c;;abmgefi EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

[10] F. Carminati and J. Templon (Editors). Common Use Cases for a HEP Common Application Layer
for Analysis — HEPCAL Il.http://lcg.web.cern.ch/LCG/SC2/GAG/HEPCAL-Il.doc.

[11] A. Chervenak et al. Giggle: A Framework for Constructing Sclable Replica Location Services. In
Proceedings of Supercomputing 2002 (SC202a)2.

[12] Common Information Modelhttp://www.dmtf.org/standards/cim.

[13] Fiorano Corporation. A Guide to Understanding the Pluggable, Scalable Connection Management
(SCM) Architecture http://www.fiorano.com/products/fmg5_scm_wp.htm.

[14] TIBCO Corporation. Rendezvousitp://www.tibco.com/software/enterprise_backbone/rendezvous.
jsp/.

[15] TIBCO Corporation. SmartSockets. http://www.tibco.com/software/enterprise_backbone/
smartsockets.jsp/.

[16] DANTE. Multi-Domain Monitoring Perfmonit http://www.dante.net/server/show/nav.
00100g003002.

[17] Distributed Management Task Force. Web-Based Enterprise Management (DMTF WB&M).
[Iwww.dmtf.org/standards/wbem.

[18] Guy Eddon and Henry Eddon. Understanding the DCOM Wire Protocol by Analyzing Network
Data PacketsMicrosoft Systems Journailarch 1998.

[19] EDG. WP7 Network Servicesittp://ccwp7.in2p3.fr.
[20] EGEE JRA3. Global Security Architecturettps://edms.cern.ch/document/487004/.
[21] EGEE JRA3. Site Access Control Architecturetps://edms.cern.ch/document/523948/.

[22] EGEE JRAA4. Architecture For Bandwidth Allocation And Reservatibips://edms.cern.ch/file/
533751/1/EGEE-JRA4-TEC-533751-BAR-arch-v0-5.doc.

[23] EGEE JRA4. Security Architecture For Bandwidth Allocation and Reservaltigps://edms.cern.
ch/file/571891/1/.

[24] EGEE JRAA4. Specification of Interfaces for Bandwidth Reservation Seriige/edms.cern.ch/
document/501154/1.

[25] Andy Hanushevsky et al. The SLAC Virtual Smart Card project.

[26] C. Rigney et al. RFC2865: Remote Authentication Dial In User Service (RADIUS)://www.
ietf.org/rfc/rfc2865.txt.

[27] Karl Cajkowski et. al. The WS-Resource Framework, 2004http://www-106.ibm.com/
developerworks/library/ws-resource/ws-wsrf.pdf.

[28] M. Myers et al. RFC2560: X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol (OCSP)http://www.ietf.org/rfc/rfc2560.txt.

[29] W. Allcock et al. GridFTP Protocol Specification. Global Grid Forum Recommendation GFD.20,
March 2003.

[30] European Grid Authentication Policy Management Authority for e Scieimge//www.eugridpma.
org/.

INFSO-RI-508833 PUBLIC 9295

http://lcg.web.cern.ch/LCG/SC2/GAG/HEPCAL-II.doc
http://www.dmtf.org/standards/cim
http://www.fiorano.com/ products/fmq5_scm_wp.htm
http://www.tibco.com/software/enterprise_backbone/rendezvous.jsp/
http://www.tibco.com/software/enterprise_backbone/rendezvous.jsp/
http://www.tibco.com/software/enterprise_backbone/smartsockets.jsp/
http://www.tibco.com/software/enterprise_backbone/smartsockets.jsp/
http://www.dante.net/server/show/nav.00100q003002
http://www.dante.net/server/show/nav.00100q003002
http://www.dmtf.org/standards/wbem
http://www.dmtf.org/standards/wbem
http://ccwp7.in2p3.fr
https://edms.cern.ch/document/487004/
https://edms.cern.ch/document/523948/
https://edms.cern.ch/file/533751/1/EGEE-JRA4-TEC-533751-BAR-arch-v0-5.doc
https://edms.cern.ch/file/533751/1/EGEE-JRA4-TEC-533751-BAR-arch-v0-5.doc
https://edms.cern.ch/file/571891/1/
https://edms.cern.ch/file/571891/1/
http://edms.cern.ch/document/501154/1
http://edms.cern.ch/document/501154/1
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc2865.txt
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf
http://www.ietf.org/rfc/rfc2560.txt
http://www.eugridpma.org/
http://www.eugridpma.org/

Doc. Identifier
c;;abmgefi EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

[31] Message Passing Interface Forum. A Message Passing Interface Standard, May 1994.

[32] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.Qpen Grid Service Infrastructure WG, Global
Grid Forum, June 2002.

[33] Apache Software Foundation. Chainsawtp://logging.apache.org/log4j/docs/chainsaw.html.
[34] Apache Software Foundation. log4itp://logging.apache.org/log4j/.
[35] Apache Software Foundation. Logging Servicesp://logging.apache.org/.

[36] Erich Gamma, Richard Helm, Ralph Johnson, and John VlissiDesign Patterns: Elements of
Reusable Object-Oriented Softwareddison-Wesley, 1995.

[37] The GEANT2 Projecthttp://www.genat2.net.

[38] GGF. The grid resource allocation and agreement protocol working group (gragm)//forge.
gridforum.org/projects/graap-wg.

[39] M. Goutelle. European Network Overview. http://egee-sa2.web.cern.ch/egee-sa2/
EurNetOverview/index.html.

[40] EDG Application Working Group. Joint List of Use Casggps://edms.cern.ch/document/386184.

[41] EGEE Application Working Group. Biomedical Application Requiremenisps://edms.cern.ch/
file/474424.

[42] GGF Site AAA Research Group. Grid Authentication Authorization and Accounting Requirements.
http://forge.gridforum.org/projects/saaa-rg/document/.

[43] The GGF Grid Storage Resource Manager Working Group.
[44] GSI: Grid Security Infrastructurenttp://www.globus.org/security/overview.html.

[45] P. Houston. Building Distributed Applications with Message Queuing Middleware. Microsoft
White Paper.

[46] J. Howard, M. Kazar, S. Menees, D. Nichols, and M. West. Scale and performance in a distributed
file system. IrProceedings of the eleventh ACM Symposium on Operating systems prineiges
1-2. ACM Press, 1987.

[47] I. Foster and C. Kesselman and S. Tuecke. The Anatomy of the Gmiglinternational Journal of
High Performance Computing Applicatigris5(3):200-222, Fall 2001.

[48] Java Management Extensiofstp://java.sun.com/products/JavaManagement/.

[49] Ken Arnold, Bryan O'Sullivan, Robert Scheifler, Jim Waldo and Ann Wollrathe Jini Specifica-
tion. Addison-Wesley, June 1999.

[50] Paul J. Leach and Rich Salz. UUIDs and GUIDs, February 1998.

[51] Rich Burridge Mark Happner and Rahul Sharma. Java Message Service Specificationnt2000.
/ljava.sun.com/products/jms.

52] JBoss Messaging. Webpagdetp://wiki.jooss.org/wiki/Wiki.jsp?page=JBossMessaging/.
9 p

[53] JORAM: Java Open Reliable Asynchronous Messaging. Webpaige!/joram.objectweb.org/.

INFSO-RI-508833 PUBLIC 9395

http://logging.apache.org/log4j/docs/chainsaw.html
http://logging.apache.org/log4j/
http://logging.apache.org/
http://www.genat2.net
https://forge.gridforum.org/projects/graap-wg
https://forge.gridforum.org/projects/graap-wg
http://egee-sa2.web.cern.ch/egee-sa2/EurNetOverview/index.html
http://egee-sa2.web.cern.ch/egee-sa2/EurNetOverview/index.html
https://edms.cern.ch/document/386184
https://edms.cern.ch/file/474424
https://edms.cern.ch/file/474424
http://forge.gridforum.org/projects/saaa-rg/document/
http://www.globus.org/security/overview.html
 http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/jms
http://java.sun.com/products/jms
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging/
http://joram.objectweb.org/

Doc. Identifier
c;;abmgefi EGEE MIDDLEWARE ARCHITECTURE FGEEDIRAL1-594698v1.0

for E-scienc Date July 15, 2005

[54] Sun Microsystems. Java Remote Method Invocation (Java RMI) - Distributed Computing for Java.
White Paperhttp://java.sun.com/marketing/collateral/javarmi.html.

[55] IBM MQSeries. Websitehttp://www.ibm.com/software/mgseries.

[56] O. Mulmo and V. Welch. Using the Globus Toolkit(R) with Firewall€lusterworld magazine
March 2004.

[57] Network Measurments Working Group. Schema-related watkp://www-didc.lbl.gov/NMWG/
#schema.

[58] OASIS. eXtensible Access Control Markup Language (XACML)ttp://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=xacml.

[59] OASIS. Security Assertion Markup Language (SAMLttp://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=security.

[60] OASIS. Web Services Distributed Management (WSDM)p://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsdm.

[61] Object Management Group (OMG). CORBA Services, June 20@0//www.omg.org/technology/
documents/.

[62] Workshop on Compute Resource Management. Welsite//www.pd.infn.it/grid/crm/.

[63] The Web Services Interoperability Organization. WS- Documents$itp://www.ws-i.org/
Documents.aspx.

[64] E. O'Tuathail and M. Rose. RFC3288: Using the Simple Object Access Protocol (SOAP) in Blocks
Extensible Exchange Protocol (BEER)tp://www.ietf.org/rfc/rfc3288.txt.

[65] F. Pacini. JDL Attributes. DataGrid-01-TEN-0142, 2003http://www.infn.it/workload-grid/
documents.html.

[66] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community Authorization Ser-
vice for Group Collaboration. IFroceedings of the IEEE 3rd International Workshop on Policies
for Distributed Systems and NetwoyR902.

[67] R. Piro, A. Guarise, and A. Werbrouck. An economy-based accounting infrastructure for the Data-
Grid. InProc. of the 4th International Workshop on Grid Computing (Grid20@3)oenix, Arizona,
USA, November 2003. SC2003.

[68] OGSA-DAI project. Websitehttp://www.ogsadai.org.uk/index.php.
[69] The OpenJMS Project. Webpadetp://openjms.sourceforge.net/.
[70] UMich Kerberos PKI Projecthttp://www.citi.umich.edu/projects/kerb_pki/.

[71] Sun Java Systems Message Queue. Webpage://www.sun.com/software/products/message._
queue/index.xml/.

[72] IRTF AAAarch RG. RFC2904: AAA Authorization Frameworkttp://www.ietf.org/rfc/rfc2904.txt.
[73] The SEQUIN Projecthttp://archive.dante.net/sequin/.

[74] SonicMQ JMS Server. Websitettp://www.sonicsoftware.com/.

INFSO-RI-508833 PUBLIC 9495

http://java.sun.com/marketing/collateral/javarmi.html
http://www.ibm.com/software/mqseries
http://www-didc.lbl.gov/NMWG/#schema
http://www-didc.lbl.gov/NMWG/#schema
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.omg.org/technology/documents/
http://www.omg.org/technology/documents/
http://www.pd.infn.it/grid/crm/
http://www.ws-i.org/Documents.aspx
http://www.ws-i.org/Documents.aspx
http://www.ietf.org/rfc/rfc3288.txt
http://www.infn.it/workload-grid/documents.html
http://www.infn.it/workload-grid/documents.html
http://www.ogsadai.org.uk/index.php
http://openjms.sourceforge.net/
http://www.citi.umich.edu/projects/kerb_pki/
http://www.sun.com/software/products/message_queue/index.xml/
http://www.sun.com/software/products/message_queue/index.xml/
http://www.ietf.org/rfc/rfc2904.txt
http://archive.dante.net/sequin/
http://www.sonicsoftware.com/

Doc. Identifier
c;;abmgefi EGEE MIDDLEWARE ARCHITECTURE FOEEDIRAL 15046080

for E-scienc Date July 15, 2005

[75] David Sprott and Lawrence Wilkes. Understanding Service-Oriented Architechiife/msdn.
microsoft.com/library/default.asp?url=/library/en-us/dnmaj/html/ajlsoa.asp.

[76] The Narada Event Brokering System. Website&tp:/grids.ucs.indiana.edu/ptliupages/projects/
narada/.

[77] Globus Alliance Websitehttp://www.globus.org/wsrf/.

[78] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke, J. Gawor, S. Meder, and
F. Siebenlist. X.509 Proxy Certificates for Dynamic Delegatior8rthAnnual PKI R&D Workshaop
2004.

[79] GGF Job Submission Description Language WG. Websiteps://forge.gridforum.org/projects/
jsdl-wg/.

[80] GGF OGSA WG. Open Grid Services Architecture — Glossary of Telttgs://forge.gridforum.
org/projects/ogsa-wg.

[81] GGF OGSA WG. The Open Grid Services Architecture, Version https://forge.gridforum.org/
projects/ogsa-wg.

[82] IBM Developer Works. Modeling stateful resource with Web servidesy://www-106.ibm.com/
developerworks/library/ws-resource/ws-modelingresources.html.

[83] IBM Developer Works. Web Services Standardgp://www-106.ibm.com/developerworks/views/
webservices/standards.jsp.

[84] WS-Eventing. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/
WS-Eventing.asp.

[85] WS-Notification. http://www-106.ibm.com/developerworks/library/specification/ws-notification.

INFSO-RI-508833 PUBLIC 9595

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmaj/html/aj1soa.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmaj/html/aj1soa.asp
http://grids.ucs.indiana.edu/ptliupages/projects/narada/
http://grids.ucs.indiana.edu/ptliupages/projects/narada/
http://www.globus.org/wsrf/
https://forge.gridforum.org/projects/jsdl-wg/
https://forge.gridforum.org/projects/jsdl-wg/
https://forge.gridforum.org/projects/ogsa-wg
https://forge.gridforum.org/projects/ogsa-wg
https://forge.gridforum.org/projects/ogsa-wg
https://forge.gridforum.org/projects/ogsa-wg
http://www-106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.html
http://www-106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.html
http://www-106.ibm.com/developerworks/views/webservices/standards.jsp
http://www-106.ibm.com/developerworks/views/webservices/standards.jsp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/WS-Eventing.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/WS-Eventing.asp
http://www-106.ibm.com/developerworks/library/specification/ws-notification

	1 Introduction
	1.1 Purpose of the Document
	1.2 Application Area
	1.3 Main Changes to DJRA1.1
	1.4 Document Amendment Procedure
	1.5 Terminology

	2 Executive Summary
	3 Requirements
	4 Service Oriented Architecture
	4.1 Services
	4.2 Messages
	4.3 Policies
	4.4 State

	5 Security Services
	5.1 Authentication
	5.1.1 Trust domains
	5.1.2 Revocation
	5.1.3 Credential storage
	5.1.4 Privacy preservation
	5.1.5 Security considerations

	5.2 Authorization
	5.2.1 Sources of authorization
	5.2.2 Policy combination and evaluation
	5.2.3 Mutual authorization
	5.2.4 Other Services Used
	5.2.5 Security considerations

	5.3 Delegation
	5.4 Sandboxing
	5.5 Dynamic Connectivity Service
	5.6 Auditing
	5.6.1 Services
	5.6.2 Other services used
	5.6.3 Security considerations

	6 Grid Access
	7 Information and Monitoring Services
	7.1 Basic Information and Monitoring Services
	7.1.1 Other Services Used
	7.1.2 Producer services
	7.1.3 Consumer Service
	7.1.4 Registry and Schema Services
	7.1.5 Bootstrapping
	7.1.6 Security

	7.2 Job Monitoring
	7.2.1 Other Services Used
	7.2.2 Services
	7.2.3 Security

	7.3 Service Discovery
	7.3.1 Other Services Used
	7.3.2 Services
	7.3.3 Security

	7.4 Network Performance Monitoring
	7.4.1 Interface to Network Monitoring Frameworks
	7.4.2 NPM Mediator
	7.4.3 NPM Publisher Architecture

	8 Job Management Services
	8.1 Accounting
	8.1.1 Resource Metering
	8.1.2 Accounting service
	8.1.3 Cost computation and Billing

	8.2 Computing Element
	8.2.1 Job management functionality
	8.2.2 Other functionality
	8.2.3 Internal CE architecture
	8.2.4 Policy definition and enforcement

	8.3 Workload Management
	8.3.1 Functionality
	8.3.2 Scheduling Policies
	8.3.3 The Information Supermarket
	8.3.4 The Task Queue
	8.3.5 Job Logging and Bookkeeping
	8.3.6 The Overall Architecture

	8.4 Job Provenance
	8.4.1 Purpose, Expected Usage, and Limitations
	8.4.2 Encompassed Data and Their Sources
	8.4.3 Service Components
	8.4.4 Security

	8.5 Package Manager
	8.5.1 Other Services Used
	8.5.2 Security

	9 Data Services
	9.1 Data Naming
	9.1.1 Logical File Name
	9.1.2 Directories
	9.1.3 Symbolic Links
	9.1.4 GUID
	9.1.5 Motivation

	9.2 Storage Element
	9.2.1 Storage Space Types
	9.2.2 Storage Resource Management Interface
	9.2.3 Services
	9.2.4 Grid File I/O
	9.2.5 Grid File Transfer
	9.2.6 Other Services Used
	9.2.7 Security

	9.3 Catalogs
	9.3.1 Metadata
	9.3.2 Scalability and Consistency
	9.3.3 Bulk Operations
	9.3.4 Other Services Used
	9.3.5 Security
	9.3.6 Additional Concepts

	9.4 Data Movement
	9.4.1 Data Scheduler
	9.4.2 File Transfer and Placement Service
	9.4.3 File Transfer Queue
	9.4.4 File Transfer Agent
	9.4.5 Transfer Channels
	9.4.6 Additional Higher Level Services

	9.5 Security in Data Management
	9.5.1 File Ownership and Authorization Details
	9.5.2 User and Service Certificate Usage

	10 Helper Services
	10.1 Bandwidth Allocation and Reservation
	10.1.1 BAR Architecture Overview
	10.1.2 Web Services and Their Interfaces
	10.1.3 Security

	10.2 Agreement Service
	10.2.1 Reservation and Allocation Service Provider
	10.2.2 Agreement Service
	10.2.3 Agreement Initiator

	10.3 Configuration and Instrumentation
	10.3.1 Overview
	10.3.2 Configuration Service
	10.3.3 Configuration Clients
	10.3.4 Instrumentation Interfaces
	10.3.5 Service Containers
	10.3.6 Configuration and Instrumentation Proxies
	10.3.7 Implementation Considerations
	10.3.8 Other Services Used

	11 Issues
	11.1 Standards
	11.1.1 Service Coordination
	11.1.2 Addressing
	11.1.3 WSRF Resources
	11.1.4 Web Service Interoperability WS-I
	11.1.5 Notifications
	11.1.6 Job Submission related Standards

	11.2 Database Access
	11.3 Virtualization
	11.4 Reliable Message Passing

	12 Implementation Considerations
	13 Conclusions

