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1. INTRODUCTION

This document captures, at a high level, the global security architecture that is currently implemented in
the EGEE project. We assume that the reader is familiar with Web Services and Grid security concepts
and terminologies. We will continously refer to the EGEE middleware (gLite) throughout the document
and therefore recommend the gLite architecture document, EU deliverable DJRA1.4 [40], as additional
background reading.

The security architecture inherits many of the thoughts from previous projects and parallel ongoing
efforts. It is more of an evolutionary continuation rather than a clean start, but with some new components
and features due to the transition to a Services Oriented Architecture [40] and the inclusion of additional
user requirements from e.g. the biomedical community.

Security is a continuous arms race: new threats trigger new countermeasures, and the bar is continuously
raised. As such, our global security architecture, and consequently this document, is also subject to
constant change and evolution. This deliverable is the first update of the architecture as we envision it
for the duration of the EGEE project and its follow-on project(s). Although we are planning for realising
and deploying most of the components described in this architecture, some of them will not be realised
until the very end of the project.

This document does not specify what cryptographic algorithms or key sizes to use when and where, par-
tially due to the continuous arms race issue, but also because there is often a trade-off between security
and performance. We leave it as an operational and continuously reevaluated issue to define and set a
current acceptable level. Today, these discussions take place in any or all of the EGEE Middleware Secu-
rity Group and the EGEE/LCG/OSG Joint Security Policy Group and Operational Security Coordination
Team, depending on the issue.

1.1. REFLECTIONS AFTER A YEAR OF DEVELOPMENT

This is an update of the security architecture document, DJRA3.1[22]. The security architecture as such
has evolved marginally; the additions to this document is only at clarification or additional details level.
We take this as a token of confirmation that the initial document contained solid and future-proof work.

After only a single year of work, it should be noted that the current prototype middleware and the security
architecture is not always aligned. For instance, the security architecture make use of artifacts from
the Service-Oriented Architecture (SOA) conceptual model, such as a notion of a service container;
however, this has to date rarely been utilised in the development, which has caused some side effects
in that the current middleware design contains a slightly different security model. For instance, the
security architecture specifies a single container, governed by the local administrator, that in turn re-
routes requests to different service implementations that may run in different local (unix) accounts, for
the sake of privilege separation. However, in current practice, the services are shipped with their own
built-in container that provides a direct interface to the outer world. This causes security side effects
at the network layer in that additional firewall ports may need to opened (one for each service), at the
transport layer in that the service implementations need access to the credentials authenticating the host,
in the case of logging in that each service has to log incoming requests (and does so in slightly different
formats), and so on. These additional problems have forced us to invent additional add-on, workaround
solutions of temporary nature, which are not covered by this document, as it has the goal and ambition
of providing the security architecture that we will (eventually) use.

1.2. DEFINITION OF A SECURITY ARCHITECTURE

We define a security architecture as A set of features and services that tackles a set of security require-
ments and can handle a set of use cases. We note that the term service is here used in a broader sense
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than (web) service, which is the common jargon in other documents, and also includes infrastructure and
user-driven services such as certification, auditing and incident response procedures.

In addition to providing the components that enable secure remote access to computing and storage
resources, the security architecture also considers the non-negligible probability of malicious use or
compromised systems. Therefore additional resource protection and monitoring mechanisms, such as
application sandboxing and logging and auditing of security related events are an integral part of our
security architecture.

Furthermore, operational components are crucial to realise the security architecture as well. These in-
clude incident response procedures and the recognition among users and resources of a common Accept-
able Use Policy (AUP). Such issues are considered out of scope for this document.

1.3. A WORD ON INTEROPERABILITY

It is important that the security architecture used by EGEE allows for basic interoperability with other
Grid deployments or middleware projects such as the Open Science Grid 1, OMII 2, Naregi3, NorduGrid 4

and LCG 5. At a minimum, it should be possible to use the authentication and authorization architecture
with systems that are already in operation.

Currently, we do not know which other Grid deployment projects we will interact with or what tech-
nologies they will be using as are they are evolving, sometimes rapidly. Therefore, we do not make
assumptions on any particular technology except in the case of authentication (Section 3.). Instead, we
aim at adopting a modular software development approach and make interfaces as technology-agnostic
as possible.

Our philosophy can be summarised as:

Be modular The system can be updated by distributing additional modules and plugging them into
existing (deployed) frameworks with a simple change of configuration.

Be agnostic Here, a good example is authorization. We have seen a rapid evolution in the past years
of different authorization technologies that are all non-interoperable (grid-map files used by early
versions of Globus [18], VOMS [1], CAS [32], PERMIS [2], and Shibboleth6, and so on.) In
addition, different deployment projects have hitherto adopted or supported a single version of
these technologies.

Our end goal is a system that enables an application and an associated governing policy to remain
indifferent from what kind of attribute authorities or authorization information systems that are
currently in use: those can change over time thanks to the modularity in the authorization and
policy reasoning frameworks.

Be standard By adhering to standards, we will eliminate many of the interoperability problems be-
forehand. Sometimes there are many standards or no standards at all, often because no particular
technology is widespread enough or mature enough. In those cases, we keep an open dialogue with
the rest of the Grid community and try to settle for common practices. Considering the unique size
and manpower of the EGEE project, it is imperative that we take a leading role in the Global Grid
Forum [17] and at other Grid-related venues.

1Open Science Grid. http://www.opensciencegrid.org/
2Open Middleware Infrastructure Institute. http://www.omii.ac.uk/
3National Research Grid Initiative of Japan. http://www.naregi.org
4http://www.nordugrid.org
5LHC Computing Grid Project. http://http://lcg.web.cern.ch/LCG/
6http://shibboleth.internet2.edu/
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1.4. ASSUMPTIONS ON THE TRUST MODEL

Grid computing is, in its essence, about bridging across organisational boundaries. In order to do so in a
trustworthy manner, we identify two common solutions to this problem: virtual organisations (VOs) and
federated trust. There has been much discussion around these concepts, and investigations have been
made to clear which is the most suitable for large-scale, multi-purpose Grids [28]. Here we try to briefly
summarise the differences, as we understand them, and motivate the choice of trust model.

In the Virtual Organisation model [21], the VOs are dependent on a common, often organisationally
independent, trust fabric that typically materialises in an authentication infrastructure. This infrastructure
can be shared by many different VOs that in turn operate under different policies: in essence, all parties
(users and resources) are given authenticated unique identifiers, to which a VO or a site can tie policy
governing e.g. access control permissions to a shared pool of resource available to that particular VO.
We discuss this further in Sections 3. and 6.

The trust anchors in the VO model are the certification authorities (which govern the authentication
infrastructure) and the VOs themselves, who self-govern the use of the resources that have been made
available to them.

The federated trust model typically materialises as a more formal collaboration than that of virtual or-
ganisations, and is often used in business contexts. Here, an enumerable set of organisations join and
agree on common policies and processes. When a user attempts to access a resource at another organi-
sation, the user’s home organisation assesses the validity of the request to the external resource: in this
scenario, the trust anchors are the organisations themselves. Two examples of a federated trust model are
the Liberty Alliance7 and Shibboleth.

We have chosen the VO trust model for our global security architecture: legacy expertise from earlier
projects such as EDG [11], application experiences from LCG [25], less need for organisational support
and buy-in from the participating resource owners and service providers are some of the reasons that have
led to this decision. As a side effect, this implies that it is hard(er) to fulfill anonymity requirements: we
discuss this further in Section 3.6.

We note that the trust models as explained here are quite theoretical – in practice it is often hard to
distinguish the boundaries between the VO model and the federated trust model. Thus, our choice was
more of a paradigm choice or a way in which to think of the underlying problem. In fact, we don’t rule
out the possibility that some VOs or organisations may well operate under a federated trust model in
the real world. From “our” perspective, it will look like another trust anchor upon which we will base
authentication as well as authorization trust. An example of such a scenario is a VO making use of an
existing Shibboleth infrastructure for managing access control and membership policy.

Besides the trust model, Grid computing has traditionally honored a golden rule of thumb to which we
adhere strictly: Always retain local control. For example, any locally defined access control policy takes
precedence over any “external” or centralised policy. This is further discussed in Section 6.2.

1.5. A WORD ON VIRTUAL ORGANISATIONS

During discussions over the past years, it has become clear that we all have slightly different perceptions
on what a virtual organisation fundamentally is, and what generic properties you can attribute to it. A
simplified view on how we envision a VO is therefore explained here.

The VO-based Grid computing paradigm does not mean that additional resources magically appear in
the computing world for a user. A set of users, collaborating on a common goal, get together and throw
whatever local resources they have access to in a common pool. Or differently put, the VO is empowered
by the user with the permission to grant use of the resources to any member in the VO. The pool of

7http://www.projectliberty.org
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resources is shared by the users, with the goal of obtaining an efficient and maximum total usage. We
call the resource pool and the users a VO.

Note that the internal structure and management of a VO is not our concern. The VO can take the form of
a hierarchial, well structured collaboration, or it can be some loosely-coupled peer-to-peer relationship.

That said, we still have to provide users with tools that enable them to manage their VO. One such
tool that is provided out-of-the-box is VOMS [1]: others, such as CAS, PERMIS and Shibboleth are
envisaged as well.

1.6. SECURITY ARCHITECTURE OVERVIEW

Our security architecture consists of the services listed in Table 1. As discussed in Section 1.2., we use
the term service in a slightly wider perspective than “just” web services.
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1.7. MECHANISMS TO BE SECURED AND OUR APPROACH

We have identified the following mechanisms that our security architecture must consider:

Web Services hosted in containers and application servers such as Apache Axis [15] and Tomcat [16].
In particular, this covers large parts of the gLite middleware architecture as described in [40]. Here
we propose generic modules that integrate and extend the container environment, filtering incom-
ing and outgoing requests and passing specific tokens to the front-ended resource and application
logic.

We acknowledge that message or XML-based security fits much better than transport-level security
(e.g., SOAP over HTTPS) for Web Services architectures, where intermediaries route requests to
target actors at the back-end. In particular, real end-to-end security requirements are met. However,
due to the overhead and limited interoperability in existing software and standards 8 , we conclude
that transport-level security is an option that performs and scales better.

That said, we will make sure that we are ready to adopt the full suite of WS-Security message-
level security when improvements in standards, interoperability and tooling performance make
those technologies ready for production use.

Access to other protocols that are not Web Services based, such as GridFTP or common web servers.
Here we propose modifications and/or plugins to a small set of commonly used software compo-
nents on a per-need basis.

We note that the functionalities described in our security architecture are in most cases embedded in the
service container or in the application itself, for performance reasons – they are not rendered as separate
Web Services with which the applications or other applications interact.

Figure 1 depicts an overview on how the components in the security architecture interact in the following
typical request flow:

1. The user 9 obtains Grid credentials from a credential store, and the necessary tokens that assert
the user’s rights to access the resource 10. The credentials are short-lived and often derived from
longer-term credentials, such as X.509 identity certificates issued by a Certification Authority
(CA).

2. The user and the service container authenticate identities to each other and establish a secure
communication channel across the (open) network with integrity, authenticity and confidentiality
protection, and over which a SOAP message payload is conveyed. By default, this is accomplished
by use of HTTP over TLS. The established connection event is logged.

3. The authentication layer validates the user’s identity with the trust anchors and credential revoca-
tion information, if such exists. The result of the validation is logged. Note: While only depicted
at the right-hand side in the picture, this check is mirrored at the client side: the client validates
the target computer to which it is sending its message by performing the same set of checks.
The service container absorbs the payload and routes it to the correct service endpoint. In the
case of message-level security, the authentication and integrity checks happen here (i.e., after the
message has been absorbed from the network).

8For an amusing essay on this topic, see Peter Gutmann’s Why XML Security is Bad, http://www.cs.auckland.ac.nz/∼pgut001/
pubs/xmlsec.txt

9We use the word “user” in wide terms: for instance, it also encompasses the software agents that act on the user’s behalf
10A “resource” in Web Services terminology is practically anything that is managed/front-ended by a service: it can be a

compute element, a file transfer client, an information index etc.
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Figure 1: Overview of the components in the security architecture and a typical end-to-end interac-
tion of a user (agent) accessing a resource. (Non-complete)

4. The authorization routines ensure that the user has permission to access the resource, by combining
asserted attributes and the VO policy (sent with the request) with the local site policy and other
sources of access control.

5. In the case that delegated credentials are used, the user delegates rights to the delegating resource
to act on the user’s behalf. Note however that delegation typically happens as a separate end-point
invocation, and is part of the application-level message flow between the user and the service.

6. The service implementation gets invoked. The authorization routines may be used for additional
evaluation and consultation.

7. The service interacts with the resource, which in turn may have delegated credentials at its dis-
posal. Sandboxing and isolation techniques limit the user’s influence on the resource to within the
expected boundaries, avoiding malicious or unintended usage or in the worst scenario a security
breach. These include

a. Operating the resource in a different user space than that of the service container (Sec-
tion 7.1.).

b. Consulting the Dynamic Connectivity Service (Section 7.2.) in order to temporarily enable
direct inbound and/or outbound network connectivity to the resource.

c. Provide additional protection of the delegated credentials by use of an Active Credential
Store (Section 4.3.). This is also useful in the case of long-term use of a resource, where a
renewal of the delegated credentials may be necessary. mak
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1.8. REQUIREMENTS

Numerous sources of requirements have been considered in the discussions that led up to the security
architecture presented in this document. These sources include, but are not limited, to:

The JRA3 gap analysis Conducted in the beginning of the EGEE project to assess current support and
possible performance issues in existing toolkits and software libraries for different security solu-
tions [38],

The gLite architecture document [40],

The JRA3 User requirements survey , A summary of “old” but security related application and/or
operational requirements, originating in previous projects or elsewhere [39],

The EGEE NA4 application requirements database [41].

It is not within the scope of this document to explicitly list each of the requirements and describe how
they are fulfilled (or not) by the architecture. A brief overview is listed in Table 2 with references to
relevant sections in this document where the issue is discussed in more detail.
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Service Description Time frame Section
Logging and Auditing Ensures monitoring of system activities, and ac-

countability in case of a security event
Now 2.

Authentication Credential storage ensures proper security of
(user-held) credentials

Now 4.3., 3.2.

Proxy certificates enable single sign-on Now 6.1.
TLS, GSI, WS-Security and possibly other
X.509 based transport or message-level security
protocols ensure integrity, authenticity and (op-
tionally) confidentiality

Now 3.

EU GridPMA establishes a common set of trust
anchors for the authentication infrastructure

Now 3.

Pseudonymity services addresses anonymity
and privacy concerns

Mid-term 3.6.

Authorization Attribute authorities enable VO managed ac-
cess control

Now 6.

Policy assertion services enable the consolida-
tion and central administration of common pol-
icy

Future 6.

Authorization framework enables for local
collection, arbitration, customisation and rea-
soning of policies from different administrative
domains, as well as integration with service con-
tainers and legacy services

Now 6.5.

Delegation Allows for an entity (user or resource) to em-
power another entity (local or remote) with the
necessary permissions to act on its behalf

Now 6.1.

Encrypted storage Enables long-term distributed storage of data for
applications with privacy and/or confidentiality
requirements

Mid-term 5.

Sandboxing Isolates a resource from the local site infrastruc-
ture hosting the resource, mitigating attacks and
malicious/wrongful use

Future 7.

Dynamic connectivity Enables applications to communicate on-
demand across heterogenous and non-
transparent networks

Later 7.2.

Table 1: Overview of the security architecture services. With Mid-term we mean that solutions are
to be included before end of the (first) EGEE project, Future means things identified for
the continuation of the project.
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Requirement Fulfilled Solution/Technology/Service Time frame Section
Single sign-on Yes Proxy certificates and a global

authentication infrastructure
Now 3.

User Privacy Partially Pseudonymity services Mid-term 3.6.
Data Privacy Partially Encrypted storage Mid-term 5.
Audit ability Partially Meaningful log information Now 2.1.
Accountability Yes All system interactions can be

traced back to a user
Now 2.1., 3.

Combining policy from dif-
ferent administrative domains

Partially Authorization framework Now 6.5.

VO managed access control Yes VOMS Now 6.
Support for legacy and non-
WS based software compo-
nents

Yes Modular authentication and
authorization software suit-
able for integration

Now 1.7.

Timely revocation delays Yes Gradual transition from CRL
based revocation to OCSP
based revocation

Mid-term 3.4.

Non-homogenous network
access

Yes Dynamic Connectivity ser-
vice

Future 7.2.

Table 2: High-level requirements and how the architecture address them.
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2. LOGGING AND AUDITING

In the context of our security architecture, and in addition to any normal operational techniques for
monitoring and intrusion detection, logged information will be used to:

• Trace and time-stamp security incidents.

• Provide evidence of incidents (to enable action to be taken).

• Derive incident reports.

• Conduct security audits.

In order to meet these requirements, the information logged must be “useful” (correct and complete
information, uniform format, easy to digest, easy to correlate log entries related to the same event or user
interaction). It is impossible to state a priori exactly what information is of interest to log and what is not,
as we don’t know under what circumstances we will consume the information. Still, general best-effort
recommendations are provided in the EGEE developers guide [27].

In addition to the logging information being useful and relevant, the logging mechanism as such is a point
of concern as well, as it is typically not reliable or integrity-protected. If components log directly to a
local file, an attacker could modify or overwrite in order to not leave a trace. Methods such as logging
to a local system service such as syslog provide better security, as the log information is then separated
from the environment of the logging actor, and protected by the operating system. There are also logging
systems that provide additional features such as making modification or backrolling of log entries hard
to accomplish. All in all, we believe that there are plenty of ready-available techniques that can be used
as mitigating factors to protect the logging of events, if that is deemed necessary from an operational
perspective.

2.1. AUDITING

Auditing is a very general term: here, we primarily mean the system security aspects of auditing, such
as monitoring and providing for post-mortem analysis of security-related events.

In computational Grids, auditing comes hand-in-hand with accounting, as they share the base require-
ments on the system’s logging capabilities: who did what where and when (and in the case of accounting,
for how long or how much) [19].

We note a clash between the requirements for auditing/accountability/accounting and the requirements
for anonymity: the end-user identity should be clearly stated versus hidden respectively. This is discussed
in more detail in Section 3.6.

Auditing is not only meant in case of an emergency (system breach), but is also useful for the validation
of the continuous operations, verifying that components behave as expected and in accordance with
specified metrics.

Just as in the case of logging, auditing implies a set of common principles and practices on all system
components, e.g. to log correct, complete and relevant information. The audit information should it-
self be traceable and verifiable throughout its lifetime and throughout service invocations, so that any
anomalies in the audit trail can be traced to identifiable service components.

For a service to provide correct and complete log is a “soft” goal that is hard to measure and evaluate in
terms of compliance. We acknowledge this fact, and that we may have to resort to a best-effort approach,
including provisioning of guidelines to developers, performing software component code reviews, and
actively seek out ways in which a component, or collection of components, can be “broken”.
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We also acknowledge that the creation of a “real” audit service would clearly have benefits in terms of
enforcing the uniformity of information, providing secure remote access to the information and ease the
process of merging and combining the information from different services. However, the mere concept
of having such a “Big Brother” capability, with deep insight into a site’s internal affairs, has properties
that are non-trivial from a political and social point of view in large parts of the world. This is one of
reasons why, at this point in time, we have decided not to pursue this task, but leave the door open to a
possible future inclusion of such a component in our architecture.

2.2. SECURITY CONSIDERATIONS

Ideally, for a system to have a “proper” means for audit ability according to recognised standards, we
would need to invest heavily in detailed documentation of processes and methodologies used, as well as
employ additional technology (things such as tamper-proof logs). These features are more than we can
currently accomodate.

That being said, at least the audit information stored anywhere in the system should be self-contained
and interpretable even if the original source of the audit information is later compromised, or if it is to
be interpreted without access to the originating service 11.

11Or simply put, archive the log files and make sure the log messages are understandable and reflect actual events.
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3. AUTHENTICATION

Authentication (AuthN) is concerned with identifying entities (users, agents, and services) when estab-
lishing a context for message exchange between actors. One of the key aims for Grid authentication
is enabling single sign-on for the user – using a single identity credential with “universal” value across
many different infrastructures, communities, virtual organisations and applications. As such, attention
must be paid to the fact that the same identity is also to be used for other purposes than accessing Grid
resources, such as networks and “traditional” web resources; or in interaction with government and ad-
ministration.

The authentication model for EGEE is based on the concept of trusted third parties (TTPs): entities
that are not related to any relying party12 except through a trust relationship. Underpinning the trust
relationship is the digital signature of the TTP, based on conventional asymmetric cryptography. The
TTP will assert attributes or cryptographic key pairs to one or more identifiers that (uniquely) represent
the entity.

Although theoretically a single TTP could service the entire community, in practice a mesh of TTPs exists
for legal, cultural and administrative reasons. One can thus define a set of resources, users and services
that agree to use a common set of TTPs for authentication. Such a common authentication domain does
not imply common rights-of-access or constitute an “infrastructure” of sorts. In the context of the EGEE
project, it is assumed that a common set of TTPs exists 13. It is not assumed that all entities accept all
TTPs: This introduces an additional failure mode that higher-level services should cover, anticipate and
handle.

The strength of an authentication credential issued by a TTP is dependent on three things:

• The trust on the TTP, in particular its operations, procedures and general conduct.

• The quality of the original identity vetting. No amount of technology can overcome weak identity
checking at the source. The use of appropriately qualified authorities in the credential issuing pro-
cess is important. As such, the use of government-issued credentials (like PKI-enabled passports
or photo-IDs) is encouraged.15

• The security of the private data needed to prove possession of the credential. This is further
discussed in Section 4.

We are aware that alternative trust models exist (such as web-of-trust based on peer-to-peer authentica-
tion), but we have deemed it impossible to address these alternative authentication methods in the scope
of the project, due to resources, timelines, and the big investment already made in the EUGridPMA.

Today, grid authentication is entirely based on the push model. As part of the connection establishment
(when using a transport-level security mechanism), or as part of the message (when using message-level
security), all relevant user data are sent. For example, the proxy certificate[10] contains the subject name
of the originator, possibly a set of attributes signed by their respective attribute authorities, and a chain
of signatures relating the subject to a trust anchor — a Certification Authority (CA) — known by the
relying party.

This authentication model is ideally suited for building virtual organisations where independent users
join in a common venture with independent resource providers. This is also the operating model that
underlies most of the grids today. All major grid infrastructures in e-Science — worldwide — can rely on
a coordinated set of trust providers that comply to a set of minimum requirements: the International Grid

12That is, neither the end user, the virtual organisation, nor the resource provider.
13For the EGEE project, management of the common authentication domain based on TTPs is delegated to the EU-

GridPMA14 and the EGEE/LCG/OSG Joint Security Policy Group.
15That said, government-issued credentials can be of course be misused as well, once a malicious user has obtained them.
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Trust Federation (IGTF)16 where the EUGridPMA, together with the APGridPMA17 and the TAGPMA18

are responsible for maintaining these trust relations.19 The Certification Authorities federated in the
IGTF issue assertions to end-entities such as persons, networked entities, and attribute authorities.

The downside of this approach is that is is less suited in case larger collectives of users with common
characteristics (e.g. a classroom of students) ventures on to a grid. In such cases, it is more convenient
for both users and providers to be able to use the user’s home organisation (UHO) (“the university”) for
bulk validation of the users. In that case not all students need to be issued with specific credentials or be
re-registered. This of course can be done in both a push and a pull model, but in the interest of privacy
preservation a pull model is often selected: the resource can query selectively for the required attributes
(for which it is then up to the user to decide whether or not to give them), precluding the need for a
negotiation phase. The best known example in this area is Shibboleth.

In this case, the client no longer has its own set of identity assertions and only the UHO has the capa-
bility to state the user’s status (in this case “student”). The client itself cannot prove this status without
help. Either before authentication is attempted, or as part of the authentication validation process by the
service, these claims should be attested to by the UHO, and thus the UHO must be contacted as part of
the process. In case of the assertion pull model, this will require additional “callouts” by the validation
process that need to contact remote sources to obtain policy information: so-called Policy Information
Points. It is expected that in this scenario, the authentication validation steps will be taken alongside
other autorization decisions as part of the authorization chain: See Section 6.5. for additional details.

It should be carefully noted, however, that all the models described above imply that each domain of
resource providers, users and identity providers (which is again a federation) will include many more
trusted identity providers than what is customary today. For example in a case where large numbers
of students join an infrastructure, one would have to trust each university to assert student affiliation.
The level of trust placed in them, and the way they identify their subjects (students) is not uniform and
difficult to audit effectively.

Thus there are important considerations regarding the risk assessment: the requirements on the trust
level assured by the trust anhors (root authorities), and that these are intimately related to the value of
the resources that they are protecting. For example, the EGEE operation today is based on the IGTF
trust fabric and contains many thousands of machines, several petibytes of storage, but also expensive
supercomputers, owned by organisations in many different countries world-wide. A weak authentication
scheme, like one based on a valid email address only, is not adequate to protect these systems, and
resource owners will not allow such weakly identified users to access the systems.

In a more dynamic federation, the quality of the (identity) assertion (information regarding its generation,
the way the private data was stored, etc.) should be a part of the assertion itself, so that the authentication
validation mechanism can implement constraints given the value of the resource to be protected. For
example, an authority that issues certificates based on both smart-card based private keys embedded in
a national passport, as well as certificates that are bound to a simple key stored in a file system, should
indicate the quality of the private key storage in the certificates issued. That does imply that the source
of the assertions itself is trusted, but it allows that source to issue assertions with a self-chosen level of
validation.

3.1. IDENTITY CREDENTIAL FORMATS

We use X.509v3 public key certificates [9] to express identity assertions. These certificates are issued by
Certification Authorities. Different types of CAs exist, as well as different means of delivering certificates

16http://www.gridpma.org
17http://www.apgridpma.org
18http://www.tagpma.org
19The various nnG(rid)PMA stand for: EU: Europe, AP: Asia–Pacific, TA: The Americas (north and south)
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to end-entities. Whatever the delivery mechanism or operational mode of the CA, the authentication is
based on at least the distinguished name (DN) of the subject contained therein.

While the distinguished name may contain information about the user such as name, organisational
affiliation and email address, we do not make assumptions on these fields. The distinguished name is
only considered as a unique identifier, nothing else.

In order to facilitate a single-sign on for Grid resources as part of the authorization process, our security
architecture also allows proxy certificates as defined in [10]. Proxy certificates are normal X.509 identity
certificates equipped with an extension that ensures that applications that do not support proxy certificates
will not successfully validate them (the extension’s criticality flag is set).

We note that other identity credential formats exist, most notably the SAML [31] format. While such
credentials allow for transparent support for non-PKI technologies, they are neither widespread nor ubiq-
uitously used in a variety of the protocols that are of interest to us: therefore, we do not consider SAML
as a PKI replacement in the lifetime of this project. However, we see it as an interesting complement,
and in regards to attribute assertions, support for SAML is paramount.

Shibboleth and Liberty Alliance are two, originally browser-centric, infrastructure technologies that also
make use of SAML. Shibboleth has recently begun adoption attempts toward Grids [42]; We monitor
this development closely for possible future inclusion.

3.2. SITE-INTEGRATED CREDENTIAL SERVICES

A site-integrated credential service (SICS) is an abstraction of an organisationally managed CA service
that generate short-term identity credentials or user proxy credentials, without the user ever possessing
any long-term credentials. This eliminates many of the key hygiene and exposure problems associated
with user-held and long-term credentials, which are further discussed in Section 4. Several SICS imple-
mentations already exist today (kCA [33], Virtual Smart Card project [5]) and are described extensively
elsewhere.

While a SICS is in all respects acting as any other CA from the view of an external party, we mention
them separately as the elimination of long-term credentials somewhat alter the trust models. In addition,
the trust is not anchored on a trusted third party anymore, but on the organisation itself which administer
and manages the service: this does not scale well and it also hard(er) to ensure that a proper level of
security and ensurance is imposed by all parties. This is one of the areas in the Shibboleth community
that is still under development. See also Sections 3.4. and 4.4.

For the remainder of this document, we make a distinction between Traditional CAs and SICS CAs.

3.3. ENFORCING VALIDITY CONSTRAINTS

While proxy certificates enable single sign-on, they are typically stored with a weaker protection level
(stored in clear text and safeguarded only by local file system privileges). This is in direct analogy with
common handling of e.g. Kerberos [24] tickets.

As a consequence, security policy often declares that proxy certificates should not be trusted if issued
with a long(er) validity: the GGF site-AAA recommendations [19] suggest a maximum lifetime of such
proxy credentials to ≈ 24 hours. We enforce such common policies by extending normal proxy cer-
tificate validation by computing the proxy certificate’s life time (which may be further limited by other
certificates in the certificate chain) and comparing this to the configurable maximum life time: Proxies
with a longer life time will be refused.
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3.4. REVOCATION

There are good reasons why the binding between the public part of a key pair and an identifier or a set of
identifiers should be revoked. These include the compromise of the associated private key or invalidation
of one or more identifiers in the binding. The longer the key-to-identifier binding is considered valid, the
higher the probability that such a binding will become invalid.

The TTP is responsible for revoking credentials it has issued, but it is up to the relying parties (both
services and requesters in case of mutual authentication) to ensure that this revocation information is
consulted.

The basic revocation information is typically distributed as a Certificate Revocation List (CRL) [9].
These CRLs act upon identity certificates issued by Traditional CAs only and are not applicable to SICS
CAs or other short-term certificate issuers.

Timely identity revocation is needed to prevent exploitation of credentials that have been compromised.
The allowed response time as specified by resource providers is in the order of 10-60 minutes, a constraint
that practical implementations have shown cannot be satisfied by the periodic distribution of CRLs to all
parties at a pan-European (or bigger) scale.

Therefore, any software component that performs certificate validation must be able to check the validity
of the credentials in real-time. The protocol for validating authentication credentials will be the Online
Certificate Status Protocol [8] (OCSP). Such services are being deployed primarily by the Traditional
CAs in the course of the next year(s). While the details on the OCSP status propagation and the deploy-
ment of a suitable mesh of caches and responders is left as an operational issue, it should be mentioned
that we are leading the GGF effort on a requirements document for an OCSP service architecture suitable
for Grid environments.

We consider the use of OCSP as the primary source for revocation information as a mid-term project
goal. In the meantime, as a backup mechanism in case of network partitioning or temporary server
outage, revocation lists will be distributed periodically 20 and retrieved by all relying parties (i.e., users
and service providers).

3.5. CERTIFICATE RENEWAL

Certificates are equipped with a validity timestamp and, as such, they expire and need to be renewed.
There are several techniques that a CA may use to facilitate a trusted remote credential renewal, which
we will not cover in detail here. For instance, the CA may choose to: simply issue a new certificate to
the existing user-held key pair; require the user to generate a new key pair; countersign the new key with
the old and so on.

In the case of short-lived proxy certificates, user invoked renewal is often needed for long-running pro-
cesses and/or service interactions. Naturally, we cannot assume such level of availability from the users
that such manual renewals would require. Instead, solutions such as MyProxy [29] have been deemed
adequate to address such problems: here longer-lived credentials are consolidated in a (more trusted) on-
line repository that can in turn issue short-lived credentials automatically upon request from the user or
a running application. The user can then in turn update the credential repository at convenient intervals.
We discuss the online availability of users’ credentials in more detail in Section 4.3.

3.6. ANONYMITY, PRIVACY, PSEUDONYMITY

Application and user requirements call for anonymous use of the system: an outsider should not be able
to deduce a particular user’s activities, such as how much of the resources the user consumes or what

20Exactly how often CRLs are to be refreshed is an operational issue, but on the order of 4-6 times a day.
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applications are run. Such information creep is of serious concern to applications in areas of highly
competitive research, such as biomedicine.

One simplistic solution to the anonymity problem is by way of an anonymized access point (typically a
web portal) through which limited access to a set of services can be provided. The portal in turn has an
agent certificate which is traceable back to the person responsible and accountable for the portal and it’s
collective use of the Grid resources.

In order to enable true anonymous support throughout the system, we note that Grids are open-ended
distributed systems. As such, protecting ourselves against information creep is prohibitive and infea-
sible. Even if all the information and message exchanges were made on encrypted and authenticated
connections, analysing the message exchange patterns would still allow an adversary to deduce informa-
tion on how the system is being used. In fact, true anonymity can only be achieved by all parties sending
continuous streams of (possibly bogus) data to all other interacting parties at all time: This is a common
tactic in the military and intelligence world.

Likewise, the only way in which you can obtain true privacy is by not sharing information or data at all
– which is contradictory to the very nature and basis for Grid computing.

Thus, for these requirements, we provide best-effort solutions by the addition of a pseudonymity ser-
vice 21. The pseudonymity service swaps the user’s real identity for a pseudonym, thus hiding it from
immediate exposure in logs and on the network. The pseudonymity service acts in all regards as an-
other TTP, with the addition that it is also trusted to keep the relationship between the pseudonym and
real identity secret, unless law enforcement or a similar legitimate body requires the true identity to be
revealed as part of e.g. an investigation on malicious use.

Figure 2: Using the pseudonymity service.

To acquire a pseudonym identity, a user performs the following steps (see Figure 2):

1. The user obtains their normal authentication credential, for example: Joe.

2. The user authenticates using Joe to the pseudonymity service which issues a short-lived, one-time
identity credential, Zyx, to the user.

3. The user authenticates twice to the attribute authority using both the Joe and Zyx credentials, thus
proving possession of them both. The attribute authority can then bind authorization attributes,
originally issued to Joe, to the one-time identity.

21Pseudonymity is often used in the security literature to denote almost-anonymity.
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Alternatively, an identity assertion, issued by the pseudonymity service that confirms the binding
between the Joe and Zyx credentials, can be presented to the attribute authority. This is an approach
used by e.g. Shibboleth, but is not directly applicable here as the identity and attribute authori-
ties are different entities operating in different domains under different policies: the disclosure
ramifications of a pseudonymity service issuing identity assertions must be thoroughly analysed
first.

4. The user is now bootstrapped with a pseudonym credential Zyx and the necessary access privileges
bound to that credential to make use of Grid services.

In the Grid VO model, the user’s real identity is revealed to the pseudonymity service (the authentication
trust anchor) and the VO service (the authorization trust anchor). We work under the assumption that we
do not need to hide the true identity of a user from the other members of the same VO.

The pseudonymity service as proposed has many ramifications that must be seriously analysed: for
instance, we note that access policy is constrained to work with VO attributes, such as role and group
memberships. Certificate renewal is another that needs detailed investigation as well: ideally, a renewal
should result in a new identity credential Y xz that cannot be easily associated with Zyx.

By using the above design approach, the pseudonym service becomes an optional and orthogonal service.
It will be further investigated and for possible mid-term introduction.

3.7. SECURITY CONSIDERATIONS

Our authentication infrastructure depends on proper and trustworthy CA operations. The EUGridPMA
is tasked to perform a continuous (re-)evaluation of the TTPs, asserting their compliance to minimum
requirements and established best practices.

The delay of propagating revocation information throughout the whole system is a crude measure of the
system’s vulnerability, but it is still only a small part of the problem; We must be able to identify the
need for revocation to begin with – a very hard operational problem.

SICS services make it easier for propagation of an attack from a compromised site to other organisations,
since local site credentials can be used to obtain “global” authentication credentials. Thus, in order to
trust certificates issued by a SICS service, the security of the organisation as a whole must be trusted. In
fact, this is an example of the federated trust model explained in Section 1.4..

These are very tough requirements, and therefore we do not anticipate the existence of more than a
handful SICS implementations among the TTPs used by the EGEE production service.

INFSO-RI-508833 PUBLIC 21/39



GLOBAL SECURITY ARCHITECTURE
for web and legacy services

Doc. Identifier:
EGEE-JRA3-TEC-602183-DJRA3.3-v-1-2

Date: 2005-09-08

4. USER KEY MANAGEMENT

Experiences from the European DataGrid (EDG), the UK e-Science programme, and other projects have
shown the complexity and problems associated with decentralised key management, and allowing the
users to manage their own Grid credentials in so-called “soft credentials”: that is, credentials issued and
stored password-encrypted in normal files.

It is common knowledge within the security community that user-managed security results in sloppy
security. How many people do not use abc123 as their password, or have their ssh keys unencrypted in
their home directory for convenience? By decentralising the management of the user keys to the users
themselves, we lose the ability to assess the proper protection (strong password) and management (file
access control) of the credentials22.

Our security architecture does not prohibit the use of user-managed soft credentials, but we strongly
recommend against this practice for general use in a large end-user population. Instead, we propose
to invest in and make use of managed key solutions such as Site Integrated Credential Services (SICS)
driven CA services, hardware tokens and active certificate stores. These are all discussed below.

4.1. KEY HYGIENE AND REPUDIATION

A private key accessible only by a single user is a very powerful tool from the point of view of auditing
and accountability. This key makes it hard for a user to repudiate any proofs of their actions: this is, in
essence, the non-repudiation aspect of PKI23.

The handling and protection of credentials is often referred to as the problem with “key hygiene”. The
less a user protects their private key, the weaker the non-repudation argument becomes and the higher
the risk of a compromise. As noted in the introduction to this section, it has been shown that we cannot
delegate the key management responsibilities of soft credentials to the average end-user. Such responsi-
bilities include choosing strong passwords and ensuring proper file protection.

4.2. BOOTSTRAPPING AUTHENTICATION

However we approach the key management problem, we will always end up with an end-user and a
mechanism for the end-user to obtain Grid credentials. This bootstrap mechanism has historically been
password based, where the (static) password is used to decrypt the scrambled contents of a soft credential
file stored locally or in a MyProxy [29] server.

There have been many discussions, both within and outside the Grid community, to find better methods
and technologies to bootstrap the authentication process. Such technologies include one-time passwords
(OTP) based on communicating a one-time shared secret between two parties in an out-of-band fashion,
which is then used in addition to an ordinary password. The out-of-band methods vary, from Crypto-
Card or SecureID-based fobs [3][35] (small tamper resistant units equipped with a microprocessor and a
display) to SMS via a mobile phone. Additional technologies include codes on paper similar to scratch
lottery tickets, the use of biometric data such as fingerprints, retinal scans and voice recognition.

One of the goals of our security architecture is not to rely solely on static passwords in the authenti-
cation bootstrap process: or, using proper terminology, we want to move towards the use of two-factor
authentication.24 A future, separate JRA3 document will investigate and assess suitable complementary

22Based on empirical evidence, we make the assumption that it is virtually impossible to train all end-users to handle their
credentials correctly.

23True experts say of course that there is no such thing as non-repudiation, but we will leave that contentious debate aside.
24n-factor authentication: using n factors (properties) when establishing the identity. Factors that are normally used in these

types of schemes include 1) what you know (password), 2) what you possess (smartcard, fob, mobile phone), 3) who you are
(biometrics).
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technologies to static passwords. We will also closely monitor other related activities in this area, such
as the large-site OTP-based integration effort currently underway in the U.S.

4.3. CREDENTIAL STORES

The private key(s) pertaining to an end-entity certificate is usually held by the subscriber. The traditional
CA that signs the certificate has no means to enforce key hygiene on the side of the subscriber. Thus a
key compromise will usually go undetected for a significant amount of time.

This key hygiene problem can be addressed by the introduction of managed credential stores in our ar-
chitecture. However, one should keep in mind that such a credential store, when containing a sizeable
amount of private keys, becomes a high-value attack target. In an operational setting, adequate attention
should be given to securing the credential store and limiting the amount of possible damage done when-
ever possible. That said, it has been proven over the years that such a system is less prone to compromise
if one manages one computer containing 1000 secrets instead of 1000 computers containing one secret
each [4]: The point made here is that poorly managed user credentials have resulted in hundreds, if not
more, of real-world compromises in past years, while, to the best of our knowledge, not a single centrally
maintained authentication server has been compromised in the past decade.

The most promising credential store technologies are outlined below.

Smart Cards This type of credential store is most secure from non-authorized access. The private data
is kept internally on the tamper-resistant device and cannot be released or used by anyone (includ-
ing the user) unless they are in possession of both the smart card and the relevant activation data,
such as pin-code or biometrics. However, technological barriers and lack of infrastructure sup-
port in general prohibit large-scale smart card deployments today (especially in the case of mobile
users). Furthermore, renewal of short-term proxy certificates created by a smart card based cre-
dential is prohibitive. However, smart cards can be used in the bootstrapping phase: for instance,
by registering a long-lived proxy certificate to a MyProxy server.

Active Certificate Stores An ”active” certificate store (ACS) can act on the user’s behalf with any (tra-
ditional) CA and request conventional certificates on the user’s behalf. The private data is not
released to the user – only proxy credentials will be provided to the user. An ACS can be imple-
mented by MyProxy or similar credential repository technology, such as a SICS CA.

4.4. SECURITY CONSIDERATIONS

The fact that the users’ credentials are held in an ACS necessitates that operations are run under a strict
regime. For instance, work was done at NERSC on creating a security policy that does not allow any
other process but the MyProxy process to run on a Linux server with the NSA SecureLinux kernel.

Nevertheless, by storing each private key individually encrypted with a password known only to the
individual user, the implications of a security breach can be considered moderate. In the ACS model
neither the system administrator nor an attacker has immediate access to any raw key material.

Although the SICS does not have the issues on user key hygiene associated with traditional CAs, it does
not support the non-repudiation aspect to the same extent. It is potentially “easier” for a user to deny
having performed an action, if that action has been authenticated with a SICS-issued credential. The user
can claim that the SICS itself was compromised, or an entity capable of manipulating the SICS (such as
the administrator) has abused their rights.

INFSO-RI-508833 PUBLIC 23/39



GLOBAL SECURITY ARCHITECTURE
for web and legacy services

Doc. Identifier:
EGEE-JRA3-TEC-602183-DJRA3.3-v-1-2

Date: 2005-09-08

5. ENCRYPTED STORAGE

User groups are concerned with additional data protection mechanisms in addition to normal access
control. In particular, they are concerned with plaintext25, long-term storage of data.

As noted in Section 3.6., we can not provide a sound and complete privacy solution due to the distributed
and open-ended nature of Grids. For example, we cannot enforce that data not be copied outside of “the
Grid” and stored as copies since we do not have full control over the resources, network connectivity and
the running applications.

We introduce a Encrypted Storage key management service, and stress the fact that this service solves
the long-term plaintext storage problem and that problem only. It does not aim to evolve into a complete
solution for data privacy – in fact, in that regard we have taken a dead-end approach. We envision the
introduction of the key management service as a mid-term project goal. An early prototype has been
developed together with NA4/BioMed and JRA1/DM for evaluation.

Figure 3: Data key management.

The overall architecture is as follows (see Figure 3):

1. The data owner (i.e., creator) generates a key with which the data is encrypted using conventional
encryption algorithms. However, care must be taken in regards to what cipher mode is used so that
we keep transparency: in particular, eliminate data size increases due to encryption, providing for
random access mode, and reducing the risk of bit failure propagations. For additional details on
different cipher modes see [13]. We leave the evaluation and actual choice of cipher mode as an
implementation exercise.

The encryption key is split into parts and registered to a set of key servers using off-the-shelf M-
of-N techniques26. This way, no single server contains enough information to retrieve a plaintext
copy of the data. Furthermore, M-of-N introduces redundancy and reduces the damage of a single
server becoming compromised. In fact, there are cryptographic techniques, such as Shamir’s se-
cret sharing algorithm [36], that ensures that no information about the original encryption key is
revelead at all if you are in possession of up to N−1 parts. Determining suitable numbers of M and

25We use the word plaintext when we mean non-encrypted.
26M-of-N: you need a subset of M parts of the possible N in order to reconstruct the original message (in this case, the

encryption key).
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N is left as an operational issue: we envision something like 2-of-3, but leave it as a configurable
option.

2. The location of the key servers, the encryption algorithm with which the data was encrypted, and
the algorithm used to split the encryption key can be left as a deployment configuration option,
or modeled as additional metadata which then must be associated with the data itself. As it is not
considered sensitive information, it can be registered and managed as any other “ordinary” data
management metadata.

3. When reconstructing, a copy of the encrypted long-term storage data is retrieved using the standard
data management services. The key server locations are determined, possibly from the metadata.

4. A process authenticates (using delegated credentials with the proper authorization attributes) to the
key servers and reconstructs the original encryption key in runtime memory. Whether the process
is an actual application or some wrapper component that performs this operation transparently to
the application is left as an implementation choice.

5. The data is decrypted into plaintext in local memory, or possibly onto a temporary file on local
disk (if allowed by the application).

5.1. SECURITY CONSIDERATIONS

Our security model is far from fool-proof: it is merely a first attempt at increasing the security level that
can be applied to a plaintext copy of some data.

There are currently no revocation or automatic replacement mechanisms for the encryption key. We offer
no protection against attacks on the transient in-memory/local-disk copies of the plaintext data. We also
do not attempt to contain the damage due to the malicious use or distribution of a stolen encryption key.
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6. AUTHORIZATION

Authorization (AuthZ) is concerned with allowing or denying access to services based on policies. The
core problem with authorization in a Grid setting is how to handle the overlay of policies from mul-
tiple administrative domains (VO specific policy, operational procedures, site-local policy) and how to
combine them.

There are three basic authorization models [34], classified as agent, push and pull. In the push model, an
authorization service issues tokens. The user collects the tokens and presents these to the resource where
access is requested. Although this puts an additional burden on the client, the resource does not need to
know ahead of time about the user’s privileges.

In the agent model the user only interacts with the AuthZ server, which in turn forwards service-specific
parts of the request to the underlying resources. While being a centric approach, network bandwidth
or connectivity provisioning is best done in this mode since access to the network in the end must be
transparent.

In the pull model, the resource asks the AuthZ service on a need-to-know basis. This puts the burden on
the resource, as it needs to know up-front all the authoritative parties in the system and how to contact
them. Cellular phone roaming, and various RADIUS -based [6] network access services use this model.

All in all, we have determined that the push model is the model that best suits dynamic, distributed and
loosely coupled systems such as Grids. This is also the model that have been most widely used in other
Grid projects.

There are two kinds of AuthZ services: attribute authorities (AA) and policy assertion services.

Attribute Authority services associate a user with a set of attributes in a trusted manner to a relying party,
by way of digitally signed assertions. The relying party (the resource) evaluates the attribute assertions
(e.g. role and group membership information) and includes them as “evidence” added to a context,
which in turn is used when evaluating an access request against local policy. Examples of such services
include the VO Membership Service [1] (VOMS) and Shibboleth, which issue attribute assertions using
X.509 attribute certificates [12] or SAML [31], respectively. The attributes normally used are the VO
membership for a particular user itself, and the user’s role and group in that VO: this has been shown to
provide an adequate, fine-enough access control granularity for most Grid communities to date.

In the case of policy assertion services, the resources consolidate some of the policy definitions to a
trusted third party. The policy assertion service will issue claims that gives a user (or set of users) the
explicit privilege to perform an action (or a set of actions) on a certain resource (or set of resources). The
resource owners may or may not decide to comply with these claims, pending the evaluation of conflict-
ing local policy. Examples of such services include the Community Authorization Service, CAS [32]
and PERMIS [2], both of which can issue statements encoded in SAML [31].

In our architecture, we foresee the need for both the AA and policy assertion services mentioned above
and the use of primarily the push model. Initially, an AA service such as VOMS will provide coarse-
grained division of users into different groups, which can then be handled by the resources through local
configuration. However, with an increasing number of VOs using the EGEE resources, such config-
uration becomes unmanageable and we will therefore need a consolidation of VO policy that can be
provisioned to the resources, e.g. on a need-to-know basis via the client requests.

We do not consider the VO policy server component to be a crucial piece of the core architecture from
the start of the project, as the initial number of VOs to handle and their operational requirements are
fairly uniform and can be handled manually. However, there are several efforts underway on this front
in which we are actively involved, and while additional research is still required at this point in time, we
foresee a future inclusion and deployment of such a component in our architecture.
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6.1. DELEGATION

We foresee that future Grid systems will be rendered as Web Services and therefore many security com-
ponents and solutions (authentication, authorization, message integrity, etc) can be taken from the Web
Services communities. Currently, the cross-organisational and dynamic properties of Grids have not been
adequately dealt with by the Web Services community.

One such area that is lacking is credential delegation. It is often the case that Grid users need to delegate
some subset of their privileges to another (dynamically created) entity on relatively short notice and for
a brief amount of time. For example, a user needing to move a dataset in order to use it in a computation
may want to grant to a file transfer service the necessary rights to access the dataset and storage so that
the service can perform a set of file transfers on the user’s behalf. Since such actions may be difficult to
predict, the need to arrange delegation ahead of time is prohibitive.

An important security aspect in regards to delegation is the principle of least privilege: you only want to
delegate as much privileges as is necessary. This is hard to accomplish in reality, but our security system
software must support some simple provisioning and enforcement for constrained delegation. To a first
order of approxmation, such constraints would include a limitation against delegating a privilege further,
and to not delegate the privilege to execute or start up new processes on behalf of the user. In addition, it
is often very useful to separate the privilege to delegate from the privilege itself.

A number of existing mechanisms could satisfy the delegation use case mentioned above. The use of
proxy certificates has been the most widely mechanism adopted by the Grid community [43]. However,
the principle of least privilege has historically not been honored, except for signaling whether or not the
delegated credential can be used to start up new processes.

Historically, credential delegation has been closely tied to authentication, e.g. as an extra optional step
performed after a TLS handshake as was done in the first incarnations of GSI [14]. However, this breaks
compatibility with the TLS protocol and subsequently any protocol on top of TLS, such as HTTPS.
In our architecture, we strive to separate delegation from authentication for the non-legacy software
components. We define and implement a stand-alone Web Services delegation portType27, for which
support can be embedded in the service container/application server (as a separate service), or in the
application itself (by inclusion of the the delegation’s portType in the service description and helper
libraries that implement the operations exposed by that portType).

6.2. AUTHORIZATION POLICY OVERLAY

When making an AuthZ decision, we must be able to combine information from a number of distinct
sources (Figure 4). Besides Grid-wide or VO-wide attribute and policy assertions that are potentially
provided to a service as part of the client request, we also need to include domain specific policy such
as file system ACLs for file access or a (sub-)set of VOs that are allowed access to a particular compu-
tational resource. Finally, and most importantly, we must also take any locally defined site policy into
consideration when making a unified context-specific AuthZ decision on an individual request basis.

In order to be able to combine information from multiple sources in this manner, we must have a way
to convert any domain-specific access control language into a common language with strong support for
combining policies, such as the eXtensible Access Control Markup Language [30] (XACML). While
ideal from an architecture and interoperability point of view, this XACML conversion comes with con-
siderable performance penalty. Another possible solution is to combine the evaluation of domain-specific
policy engines in a common framework. We discuss this further in Section 6.5., where we present the
architecture of an authorization framework that can handle both use cases.

27portType is Web Services speak for the interface definition of the “exposed” parts of a service. We refer to the Web
Services literature for details.
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Figure 4: Conceptual view of a framework for collecting authorization policy from different stake-
holders and combining them into a final authorization decision. Graphics from Globus
Alliance and the security design team in the GGF OGSA working group.

6.3. MUTUAL AUTHORIZATION

There are use cases where a client wants to authorize a service as well as the service authorizing the
client access; we call this mutual authorization. For instance, a client wanting to store sensitive data may
want to first ensure that the SE has been approved to service such storage requests. Mutual authorization
only succeeds if both parties can successfully authorize each other.

If we were to build this feature tightly into every service (for instance, by having services authenticate
by using proxy certificates with embedded authorization information) this would result in additional
complexity of all client software.

There is a strong interest in keeping clients as simple as possible, ideally one should be able to inter-
act with a service using simple command-line tools such as curl or perl+openssl, whichever the version
that comes shipped natively with the operating system. Therefore, we have chosen to make mutual
authorization an optional operation, triggered by a (more complex) client. A client can obtain a mutual
authorization by interrogating a WSDL portType that a service can include as part of its WSDL specifica-
tion. The client can obtain from the service, for example, VOMS tokens tied to the service authentication
credential.

6.4. AUTHORIZATION INTERFACES TO EXISTING SYSTEMS

Some legacy services will continue to be used despite the paradigm shift to Web Services. Such services
will be updated on a per-need basis: for instance, to add VOMS and/or pool account support to a GridFTP
server. In this case, we note the usefulness of third-party applications implementing common pluggable
interfaces, such as e.g. the Globus authorization callout plugin interface, but also that such interfaces are
complete in their structure and not only cover the most basic integration use case.
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Unfortunately, such modifications to legacy code will in many cases mean that we have to apply patches
to the source code, but thanks to the systems that we provide, such as the Java AuthZ framework and
LCMAPS28, such patchwork should be reasonably easy.

6.5. AUTHORIZATION FRAMEWORK

When controlling access to services and resources, both local and distributed policies must be taken into
consideration. In this section, we show a model and framework for enforcing, retrieving, evaluating and
combining policies locally at the individual resource sites, e.g. inside service containers.

It must be easy for administrators to configure and extend the authorization system to implement local
policies. A resource in a dynamic Grid often does not have the luxury of knowing all its users a-priori,
and can thus not rely solely on local access control lists (ACLs). Furthermore, simple ACLs are typically
too coarse-grained for more advanced policy-based applications.

The goal of the Authorization framework is to provide a light-weight, configurable, and easily deployable
policy-engine-chaining infrastructure that is agnostic to back-end enforcers and evaluators, as well as
the run-time container infrastructure and the state model that hosts them. The framework allows for a
combined and flexible decision making process, taking into account information, assertions and policies
from a variety of authorities.

XACML may very well be used as a cornerstone in this architecture. On the other hand, many production
quality authorization systems already exist today, and should be leveraged with a minimal effort and
intrusion, e.g. file-level ACLs, GACL, VOMS, LCMAPS, LCAS, and CAS. Security Assertion Markup
Language [31] (SAML) may also be used to transport capability and privilege assertions (see previous
discussion in this chapter). Therefore, the core Authorization framework does not make any assumptions
about policy languages or network protocols. The only consideration is that if policies should be exposed
to external parties. This would imply the policies should be representable in a language such as XML. If
external policy modifications are allowed, the same consideration applies for the policy update language.

CORE DESIGN

While we reuse the nomenclature and overall architecture from XACML, some details in the design are
somewhat different. Additional details of this design and future extension can be found in [37].

The core part of the framework provides interfaces to a virtual Policy Enforcement Point (PEP) and Pol-
icy Administration Point (PAP). The PEP invokes a chain of policy engines and gets an authorization
decision result (permit, deny, not applicable) in return. A policy engine may be either a Policy Infor-
mation Point (PIP) or a Policy Decision Point (PDP). PIPs are responsible for interfacing to Attribute
Authority-based services to collect and verify assertions and capabilities associated with the authenti-
cated identity of the user29. These attributes can be used by PDPs configured at subsequent positions
in the chain. A PDP has the additional capability of affecting the outcome of a policy decision. It can
decide whether the user is allowed to perform the requested action, whether further evaluation is needed,
or whether the evaluation should be interrupted and the user denied access. Both custom policy engines
and policy combining chains may be plugged into the framework through configuration. Chains may be
ordered in tree-based hierarchies where the lower-level junior chains inherit the policies of the higher-
level senior chains. There is always just a single root chain, and thus there is always a guarantee that the
decision that is derived is authoritative.

28http://www.nikhef.nl/grid/lcaslcmaps/
29Note that the attributes may be part of the incoming request, e.g. VOMS tokens embedded in a user’s proxy certificate. In

such cases, the PIP in question will do introspection on said certificate – there will not be a direct interaction with any Attribute
Authority.
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We deemed converting domain specific policy into a common lingua franca, such as XACML, imprac-
tical and too performance sensitive. The tree-based hierarchy of authorization chains allow for defining
precedence and combination of multiple policies, each evaluated by its own (domain specific) decision
point. In essence, the chains make the internal workings of a PDP – as defined by XACML – explicit.

Figure 5: Conceptual model of the authorization framework, invoked from a evaluation point (PEP)
in the application or service container. The authorization request and associated metadata
is subsequently routed through a chain of information collectors (PIP), policy-driven de-
cisions (PDP), or modules that perform logical operations on results from an underlying
collection of chains (in the picture depicted by an OR).

PROVIDERS AND PLUGINS

Several plug-ins will be available both as a guide on how to use the AuthZ framework, and as a sufficient
base for setting up a simple, but complete authorization system. These include

• A plugin that verifies any VOMS tokens associated with the authenticated user, checking VO
membership as well as role and group attributes.

• A PDP/PIP that authorize an authenticated credential subject using a Globus gridmap-file

• A “BlackList” PDP that checks the authenticated user against a local list of banned users

• A PDP that can integrate with external authorization sources using the GGF OGSA AuthZ callout
protocol

• A policy enforcement module that performs additional checks on the user’s credentials, for in-
stance checking that the validity of a proxy certificate is within the established operative guidelines

A more elaborate listing is given in the Site Access Control document, EGEE deliverable DJRA3.2 [23],
but some of the PIP and PDP plugins that are planned or already supported include

6.6. SECURITY CONSIDERATIONS

It is vital that any components of the AuthZ infrastructure are managed and operated as securely as the
corresponding parts of the authentication infrastructure. For instance, a repository containing the trusted
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signature keys of the AAs needs to be protected as securely against infiltration as a repository of the
authentication trust anchors (CAs).
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7. ISOLATION AND SANDBOXING

Access to remote computing or storage resources should ideally be completely transparent to the user.
Furthermore, the user’s actions should be sandboxed in order to minimise the impact on the local system.
Within the sandbox the user is free to do whatever they want and the removal of the sandbox as soon as
they are finished minimises the effect on the local system. The generic creation of sandboxes, only based
on an entity’s Grid credentials such as VO membership, relieves the local system administrator from the
burden of administering individual users.

For the creation, access control and life-time management of sandboxed environments, we use Workspace
management service (WSS) [7]. Further details on this solution can be found in project deliverables
DJRA1.4 and DJRA3.4.

By allowing a process to only access its home directory and a standard location for its temporary files (on
Linux/Unix systems defined by the $TMPDIR environment variable) the process is reasonably sandboxed,
but it is very difficult to enforce this. In particular, once local access is obtained, the more advanced
so-called root kits will be able to compromise almost any Linux installation (patched or not) and provide
the adversary with root access. We don’t foresee that this situation will change to the better anytime
soon, and therefore work under the assumption that an adversary’s access to a normal account can and
will result in root compromise, given enough time.

A more elegant way to solve this problem is to run the Grid user processes inside a virtual machine,
which provides the user job with a complete operating system. The entire system of the virtual machine
is contained in a single file and can be discarded after the Grid user processes are finished. The long-
term negative effects of an adversary gaining root privileges in a virtual machine are negligible and the
network connections to/from a virtual machine can be easily controlled.

While several successful proof-of-concept experiments with virtual machines such as VMWare30 and
Xen31 have been reported to date, work is still underway: deployment, packaging, management, per-
formance, installation invasiveness (modifications to the hosting operating system are often needed) and
overhead reduction, in particular in resource consumption and memory footprint, are some of the prob-
lems that are still being investigated.

7.1. SECURING THE HOSTED TO NATIVE INTERFACE

Hosted services (Web Services in containers) and application servers need to carry out actions on the
native system, for which a change of ‘user space’ is needed. This requires a trusted ‘setuid’ function-
ality that can provide a correct mapping to a local account, based on the user’s Grid credentials, and
put restrictions on the resulting process driven by local policy (for instance, only allowing executable).
Implementations providing this setuid functionality exists, such as the LCMAPS plugin framework and
the GridSite [26] extensions to the Apache web server. Of interest is also support for industry standard
system interfaces such as PAM/ NSS.

The detailed design of the setuid components is addressed in the updated version of deliverable DJRA3.2.

7.2. NETWORK ISOLATION

By reducing connectivity using firewall or NAT32 techniques, a site can reduce its overall vulnerability to
outside attacks. Connectivity goes both ways: a site may choose to cut off inbound as well as outbound
connectivity for various, often well motivated, reasons.

30http://www.vmware.com
31http://www.xensource.com
32NAT: Network Address Translation.
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In principle, only the services that are essential for the site to operate in a Grid environment need inbound
connectivity by default. They also need outbound connectivity to be able to contact other principal
services at other sites.

All other services and resources that will handle the requested operations may have connectivity con-
straints by default. For instance, this would include machines that are designated as worker nodes in a
compute element. The site externally publishes its policy on possible connectivity constraints.

For current internet-capable applications to work in such a setting, a user must be able to trigger a
dynamic change in the site policy regarding its inbound and outbound connectivity. For instance, an
online database may be consulted over an HTTPS connection, or a real-time UDP data feed needs to be
propagated to an application component running elsewhere.

This dynamic connectivity problem can be solved with a Dynamic Connectivity service that temporarily
grants the ability to connect to a requested location with a specified protocol. This service would be
able to uphold a site policy that describes the network capabilities and restrictions with regards to IP-
address/dns-name, port numbers, protocols and bandwidth. It would be capable of applying changes to
network restricting units, such as the iptables/ipchains configuration on a worker node, or by directly
reconfiguring a router through a management interface, and could be implemented as a thin wrapper
around the authorization framework for policy decision and enforcement.

The Dynamic Connectivity service could also be used to create a central manageable point for a site
to keep track of its current connectivity needs. It is an optional component that is considered outside
of the core security architecture for the time being, but we mention it for completeness and work with
collaborators to conduct research and develop experience thorough experiments with prototypes of this
service.

7.3. SECURITY CONSIDERATIONS

Sandboxing and isolation techniques often give a false sense of security. Improper system management
and operational procedures can never be made up for by additional (site) perimeter defense.
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8. USE-CASES

In this section, we should ideally present a use-case for each and every component that is listed in Table 1
and/or presented as part of our security architecture, to assess its necessity and showcase how it will in-
teract with other services and components. However, as stated in Section 1., our security architecture is
an evolutionary continuation where we have leveraged ideas and experiences gained in previous projects.
This includes sharing the underlying motivation and some of the use-cases documented elsewhere: in-
stead of replicating them here, we will simply refer to them.

The EDG’s security design document [20] showcases several use cases in the form of UML sequence
diagrams, of which some are still valid: in particular how to obtain a certificate and VO user registration.
Those use-cases will not be replicated here.

The gLite architecture document[40] showcases how some selected services make use of credential
stores, authentication, attribute authorities, authorization framework and logging (for auditing purposes).
Those use-cases will not be replicated here.

Figure 2 and 3 are described in Sections 3.6. and 5., respectively. While not UML renderings, we feel
that they provide an adequate description of scenarios where pseudonymity and Encryted Storage key
management services are used, and will not be replicated here.

For clarity, the slightly complex Figure 1 described in Section 1.7. is redrawn as UML sequence diagrams
and explained in more detail below.

8.1. A GENERIC SERVICE REQUEST FLOW

Figure 1 depicts an overview on how the components in the security architecture interact in a request,
showcasing most of the security architecture components coming into play. This sequence is quite long
and therefore divided into two parts, Figures 6 and 7.

Please note that in a normal deployment scenario, many steps are optional. For instance, the deployment
of and need for interaction with a Site Proxy service depends on local network policy of the site hosting
the resource.

The sequence in Figure 6 depicts a user obtaining credentials, establishing a secure communication
channel with a service, over which credentials are being delegated. This is described in more detail
below. References to sections in this document are made throughout for further information. While
logging is an important detail of the security architecture, it has not been thoroughly documented but
only mentioned in the text below, to reduce complexity.

1. The user identifies to a credential store by way of some bootstrap mechanism, such as password,
one-time-token or kerberos ticket. (Sections 3.2.,4.3.,4.2.)

2. The credential store validates the user’s request and provides the user with authentication creden-
tials. If the credential store is active, it logs the event. (Sections 3.2.,4.3.)

3. The user authenticates to the necessary attribute authorities (or policy assertion services) to obtain
authorization assertion tokens that assert a user’s privilege to access/make use of the resource.
(Section 6.)

4. The attribute authority validates the user’s request and issues the request authorization assertions.
The event is logged. (Section 6.)

5. The authorization assertions are returned to the user and included as part of the prepared service
request, by inclusion in a proxy certificate. (Section 3.1.)
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Figure 6: Sequence diagram over security architecture components and their interactions (1 of 2).

6. Transport-level security: The user and the computer on which the service container runs perform
a handshake operation. This handshake authenticates and validates each other’s identities and
establishes a secure communication channel across the (open) network with integrity, authenticity
and confidentiality protection. SOAP messages can later be conveyed over this connection. The
established connection event is logged.

In the case of message-level security, the user’s SOAP message is routed to the service, which in
turn takes care of the authentication, integrity and confidentiality, for instance by validating the
signature on a user’s request, and/or en/decrypting the content of the SOAP message body and se-
lected headers in accordance with conventional XML and Web Services standards.33 (Section 1.7.)

7. The user initiates a delegation of privileges, to enable to resource act on its behalf by way of a
proxy certificate. (Section 6.1.)

8. (Optional) The service container authorizes incoming messages using the authorization frame-
work, to assert whether the user has the necessary priviliges to interact with the service. The result
is logged. (Section 6.5.)

9. The service container routes the SOAP message to the correct service implementation and invokes
the request service operation.

10. The service implementation in turn makes additional authorization (and in the case of message-
level security, authentication) checks, possibly reusing the same authorization framework as the
service container. The result is logged. (Section 1.7.,6.5.)

33It is a common implementation approach that these operations are handled by the service container, but we ignore that to
clarify an ideal system architecture enabling end-to-end message-level security.
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11. (Optional) The service uses sandboxing techniques to access the local resource in a confined and
regulated manner to reduce the risk for vulnerabilities, for instance by mapping a into different
local user account using a setuid component. The mapping event is logged. (Section 7.1.)

12. The delegated credential is stored.

13. The service prepares a message with the result of the operation. In case message-level security is
used, the message is signed.

14. The service container adds necessary enveloping to the message. In case transport-level security
is used, the message is encrypted as it is being sent.

15. The user retrieves, authenticates and unwraps the result message of the operation.

Figure 7: Sequence diagram over security architecture components and their interactions (2 of 2).

The sequence in Figure 7 is a continuation of Figure 6. Here, the user makes use of a resource managed
by the service. The resource (for instance, an application) in turn interacts with other services and
resources distributed across the Grid. In order to obtain network connectivity, the local Site Proxy is
used. In this sequence the logging component is not depicted at all for clarity, but its use is mentioned in
the text below.

1. Steps 1 through 6 are analogous to steps 6 through 11 in Figure 6.

7. The resource obtains the delegated credentials, if such were provided. In case the delegated cre-
dential was stored in an active certificate store, the event is logged. (Section 4.3.)

8. The resource make use of the delegated credentials to contact the Site Proxy. The Site Proxy in
turn authenticates and authorizes the request. The event is logged. (Section 7.2.)

9. The Site Proxy enables network connectivity, for instance by modifying the local firewall config-
uration. (Section 7.2.)
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10. The resource is used for the requested use by the user (for instance, to run an application).

11. The Site Proxy closes down network access after some period of time, or by request from the
resource.

12. through 14 are analogous to steps 13 through 15 in Figure 6.
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