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Outline

« Historic attempts to measure GW
 Detecting GW with interferometry

e Future instruments

* Disclaimer: | am an experimental physicist with a background in optics,
| don’t know a lot about GR or astronomy
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What are Gravitational Waves?
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'‘Ripples in the fabric of space-time' that propagate with the speed of light

Natural wave solution of General Relativity (Einstein, 1916/1918/1936)

A GW stretches and squeezes space-time in transverse direction, 2 possible polarizations

oL
« Gravitational wave strain: h _ —

L

Generated when masses are accelerated non-symmetrically (change of quadrupole moment)
Extremely weak, h = 10! for typical astronomical sources
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Are GW detectable?

Einstein: GW are so small that they can be ignored, too hard to detect
Not a surprising idea at the time:

- theory was not yet mature, not immediately clear if GW are observable at all,
if they carry energy

- missing observational evidence for astronomical sources of GW
(black holes, neutron stars, pulsars, ...)

- missing technology: lasers, modern electronics, ...

Sticky Bead Argument (Feynman, 1957): Beads sliding with friction on a stick would
generate heat due to a passing GW, so GW carries energy

>y > — =)
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« Passing GW will excite a mechanical resonator like a tuning fork

* First experiments around 1968 by J. Weber: resonant aluminum bar at room temperature
« Resonance frequency 1660 Hz, capacitive readout, sensitivity around 10® m

 Did claim detection: excess correlation of signals between 2 separated instruments

» Results could not be reproduced by others

« Weber was discredited for not retracting his claims, but is widely considered as the
pioneer of experimental GW detection (book Gravity's Shadow - H. Collins)
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Modern resonant detectors

NAUTILUS ALLEGRO

Vibration Isolation
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« Cryogenic (few mK) version of Weber bars -l 10"

 Resonant bars or spheres, seismically isolated

ALLEGRO

MAUTILUS

» Position readout with capacitive or super-conducting transducers E
(SQUIDs), using amplification by a small mechanical resonator =

* Never detected anything (one claim due to bad statistics)

AURIGA

 Mostly decommissioned around 2007, since they are narrow-
band, and even at resonance have lower sensitivity than <0 0 - - ™ o
interferometers Frequency (Hz)
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Indirect evidence for GW

« Binary system of neutron star and pulsar observed by
radio telescopes (1974)

« Orbital period of 8 hours, but accurate timing over years
showed that orbit gets shorter

 Decay perfectly predicted by loss of energy radiated
away due to gravitational waves

« System will collide in 300 million years

* Nobel prize in physics for Hulse and Taylor (1993)

Cumulative period shift (s)
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Primordial GW in CMB?

theguardian

News Sport Comment Culture Business | Money  Life & style

) Space

Gravitational waves: have US scientists
heard echoes of the big bang?

Discovery of gravitational waves by Bicep telescope at south
pole could give scientists insights into how universe was born

BICEF2 B-mode signal
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« BICEP2 (2014): possible imprint of gravitational waves found in polarization of Cosmic
Microwave Background

« Claim later retracted: forgot to account for effect of dust in our galaxy
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Michelson-Morley experiment
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 Old idea: if light is an oscillation in some medium (luminiferous aether), it should be
possible to measure difference in the speed of light based on the direction of travel
(movement of Earth around Sun)

« MM experiment (1887): white light interferometer, folded path length of 11 meter, setup
could be rotated in bath of mercury

 Expected a shift of 0.4 fringe when rotating setup, observed < 0.02 fringe: one of the most
famous null-results, which was at basis of Lorentz transformations, Special Relativity

« Could MM have detected GW: no, too insensitive by about 10 orders of magnitude!
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Michelson Iinterferometer
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« Monochromatic light source Photodiode 1
* 50/50 beam-splitter, note sign flip in reflection coefficient tes = \/5
to conserve energy (see Stokes relations)
» Perfectly reflecting end-mirrors (End Test Mass): TETM =
2
Light of arms interferes on photodiode, which measures power — E‘
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Interferometry basics
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For a perfect interferometer:

P = |]_5J0/2(e“l€2Lf’s — eZk2L9)| = Py/2 (1 — cos(Ag))

Sensitive to differential path length differences A¢ p— Qk(Lw — Ly)
Maximum sensitivity (in W/m) at ‘half fringe’

Detected power also fluctuates due to laser intensity noise (~10®) and shot noise.
To achieve the best SNR, you therefore want to be close to 'dark fringe'

Also sensitive to laser frequency noise if arms are not equal!
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Interferometric GW detection
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 Michelson interferometer is a natural fit for measuring gravitational waves: GW cause a
differential change of arm length:

~
]
|

(14 h/2)L
L,=(1-h/2)L
A¢ =2k(Ly — Ly) = 2khL

- Idea first proposed by Braginsky, first technical feasibility study by R. Weiss (1972)

* Note: interferometers measure the amplitude of the GW and not the power, so
dependency on source distance is 1/R instead of 1/R"2

« A simple Michelson is not sensitive enough to detect GW, need several extra tricks ...
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GW polarization

a) h-polarized GW b)  hy-polarized GW
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+ polarization: d/’?ETMX — (]’L_|_L/2, O), d’FETMY — (O, —h_|_L/2)
X polarization: d”?ETMX — (O, hXL/Q), drFETMY — (th/Q, 0)

An interferometer is only sensitive to differential changes of arm lengths, which depends on
mirror movements along the optical axis

Perfect for detecting + polarized GW, but insensitive to X polarized GW
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Antenna pattern

Virgo bealil pattern

* In addition to GW polarization, the sensitivity depends also on the propagation direction of
the GW: sensitive to GW traveling perpendicular to the plane, insensitive to the some
directions in the plane. Leads to ‘blind spots’ (see GW170817 for Virgo)

 Argument for having multiple interferometers spread around the Earth with different
orientations, if you want to observe the whole sky in both polarizations all the time (also
helps with redundancy, coincident detection and sky localization)
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Why can interferometers
measure GW?

« Valid question: we use an optical wavelength as our ruler to measure distances, but doesn’t
the wavelength itself change by a passing GW? It does ...

« Assume a GW with a sudden step at t=0: h(t) = dh * step(t). Not a realistic waveform, but
imagine some slowly oscillating signal as composed of several steps.

« The passing GW changes the wavelength (and thus frequency) of the light inside
interferometer, but interference condition does initially stays the same

After the step, the arm lengths have changed, but speed of light is still ¢
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Why can interferometers
measure GW?
T=2L/c y

frequency of arriving light

— Xarm

t
P(t) = QW/O v(t) dt _ i

phase difference

AG(t) =¢=(t) =) |

T T
0 T

* It takes a period tau for the modified light to stream out of the interferometer, which
meanwhile fills with light of the original frequency

A phase difference will gradually accumulate due to the change in frequencies
« Measured phase is ‘moving average’ of GW signal over a period tau
« See Saulson, American Journal of Physics 65, 501 (1997) for complete argument

« Alternative view: you don’t measure GW using the wavelength itself, but using difference of
arrival time of wavefronts
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Increasing the arm length
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« Sensitivity of Michelson interferometer can be increased by making the arms longer

* Note that longer interferometers have a smaller bandwidth, since GW signal gets ‘averaged’ over the
round-trip time. Transfer function is a Sinc-function in frequency domain, with zeros

* Ideally few 100 km long (for certain interesting astrophysical sources), but money/terrain limits this to
few km

 Could use a delay line (Herriott cell), but this has practical issues
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F§ bry-Perot cavit
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Fabry-Perot Michelson

ETMY
MY ETMX
ITMX

 Add extra ‘Input Test Masses’ at the beginning of the long arms, so that light will ‘bounce
many times’ up and down arm cavities.

- ForVirgo: F =440,L = 3 km, L__ = 840 km!

 Only works when cavity lengths are actively kept on resonance,
so comes at cost of complexity
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Fa bry Perot Michelson
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« Effect on sensitivity of adding a FP to the arms is similar to increasing the arm lengths by a
factor N__, but without the extra zeros in frequency domain

 Cavity behaves like a low-pass filter with fcut—oﬂ-‘ — 5LFWHM/2
- For Advanced Virgo: f =57 Hz
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Power recycling

* Michelson is tuned to dark-fringe, light is reflected back to the laser
 For shot-noise reasons, you want to have a very high laser power

 Add a 'Power Recycling Mirror', to form another resonant cavity, effectively increasing the laser
power by a factor ~37

 Laser power ~25 W, power in central cavities ~500 W, power in long arm cavities ~100 kW!
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Signal recycling

fow

Ulaser <>

Vlaser T fGW
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« Passing GW causes ‘audio sidebands’ around laser frequency. By adding an extra Signal Recycling
Mirror, these signal sidebands can be sent back into the interferometer to gain more phase

« Technique already used at LIGO, will be installed at Virgo this year
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Seismic isolation: pendulum
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* Mirrors on Earth would vibrate to much, needs seismic isolation

* Suspend them by wires to form a pendulum, you win above resonance
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Multi-stage pendulum
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* In reality, a single pendulum is not enough: use multiple stages

* Also need to isolate vertically due to curvature of the earth,
vertical to horizontal coupling ~ 1/10000
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Virgo Interferometer

« 3 x 3 km interferometer, located near Pisa, Italy
* Originally a French-Italian collaboration

« Now about 400 scientists from lItaly, France, Netherlands (Nikhef, Utrecht, Nijmegen, Maastricht),
Poland, Hungary, Spain
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* Need more than a 10 orders of magnitude attenuation above 10 Hz

 Use combination of active pre-isolation stage (inertial free platform balancing on inverted
pendulum, using accelerometers and position sensors) and passive multi-stage pendulums
and blade springs

* Mirrors are suspended by 4 glass fibers for thermal noise: need materials with low
mechanical losses
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* Fluctuations of air-pressure changes optical path length, so GW interferometers are located
inside large vacuum tubes

« Virgo interferometer: 7000 m? vacuum, long tubes have pressure ~10° mBar

» Biggest UHV system in Europe, only LIGO is bigger
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Save Data

 Main laser: 1064 nm Nd:YAG NPRO, amplified in 2 stages to ~60 Watt
« Main mirrors: 41 kg low absorbing fused silica, polished with RMS < 0.1 nm
* Low loss multi-layer coatings (both optical and mechanical), reflectivity up to 99.996 %

« Beam shape: Gaussian with radius of a few cm, input/output telescopes for matching to
laser and photodiodes
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g Photodiode
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Interferometer is only sensitive when all cavities are on resonance / at dark fringe: use real-time system to control many

degrees-of-freedom

Error signals obtained mostly using Pound-Drever-Hall scheme: modulate laser beam with Electro-Optic Modulater,
demodulate photodiode/quadrant signals

Actuate on mirrors using voice-coil actuators

Main DARM loop suppresses the GW signal! Effect of control loop compensated in calibration

Similar control loops for angular degrees of freedom
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Quantum noise

Fu ndamental noise sources
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Noise budget dominated by 'fundamental noises':

107

quantum noise (shot noise at high frequencies, radiation pressure at low frequencies)
thermal noise: suspensions, coatings

residual gas pressure

These noises can only be improved by getting stronger laser, heavier mirrors, better coatings, larger
beams, longer arms, better vacuum, cryogenics: $$$/€€€
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Technical noise sources
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* In practice, the sensitivity is also spoiled by various 'technical noises':

- coupling to environmental noise: magnetic, acoustic, seismic
- scattered light: non-linear process!
- ADC/DAC/electronics noise, ...

« Takes many years of commissioning and ‘noise hunting’ to mitigate all of these

/{@}/ B. Swinkels — Experimental GW detection Niklhef

32



== O1 02 == 03 04 05
M t t N 80 100 105-130 160-190 Target
Moc Mpc Mpc Mpc 330 Mpc
LIGO
any detections ... P
ao 50 90-120 150-260
V' Moo Mpc Mic Mpc
GRAVITATIONAL-WAVE TRANSIENT CATALOG-1  BLIGO @)V i cegrain Irgo
8-25 25-130 130+
Mpc Mpc Mpc
KAGRA j -
GW150914 GW151012 I GW151226 e I Target
i S— . A . 330 Mpc
LIGO-India

2015 2016 2017 2018 29 2020 2021 2022 2023 2024 2025 2026

GW170608 GW170729 GW170809 Il GW170814

AAANA /A\V‘Aﬂ “‘& oot AAA /
|/ Cumulative Count of Events and (non-retracted) Alerts
; 01 =3, 02 =8, 03a =33, 03b =23, Total =67

1
~~~vfee
|

Al
-~ ,,j\,\/\"‘w”\wrw,
|

~
o

3

GW170818 ! " GW170823

g

O1 02 O3a /0O3b

3

TIME (St

LIGO-VIRGO DATA: HTTPS://DOLOF 2H3-HH23 N WAVELET (UNMODELED) Il EINSTEIN'S THEORY S. GHONGE, K. JANI | GEORGIA TECH

8

GW190412

The first gravitational wave observation from
the merger of two black holes with different masses

Discovery Distance 3 Detectors
] —_— Three detectors made the
12 April 2019 2.4 billion observation: the two LIGO detectors
— light years away in the USA and Virgo in Italy.

0
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« O3 science run started on April 1 2019, finished one month it Binary |
Black

early due to Covid-19 Hole

Cumulative #Events/Candidates
[+
o

« 11 confirmed GW detections during O1 and O2 science
runs (10 BBH, 1 BNS)

-
o

« 56 alerts sent out during O3, so far only published % =g e

Unequal itz

GW190425 (BNS) and GW190412 (announced this week, i

detection where the Remnant

two black holes had

very asymmetric), expect more publications soon! Ll

e About 1/month in O1+02, about 1/week in O3 Higher Harmonics @ @ g

be measured in the signal.

These allow new tests of General Relativity.
Everything continues to be consistent with Einstein's
theory following these tests.
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Future Earth-ba_sed detectors

* Further improvement in sensitivity of Advanced LIGO and Advanced Virgo
 LIGO India and KAGRA (Japan) should start in the next years

« New facilities and techniques needed for next big step forward: cryogenic mirrors, underground, longer
baseline, bigger beams, squeezing

* Proposal for underground 10 km Einstein Telescope (maybe in NL/BE/DE!) and 40 km Cosmic Explorer,
will costs ~1e9 $/€

« Atom interferometers (MIGA)

« Torsion bar (TOBA), would bridge gap between space and ground-based detectors
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Space: LISA

Measurement S/C to test mass Measurement S/C to test mass
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§/C to §/C measurement

« 3 spacecraft, flying in a triangle with 2.5e6 km sides. Send laser beam to remote
spacecraft, amplify it, send it back, measure round-trip phase. GW signal reconstructed in
post-processing (Time Delay Interferometry).

» Spacecraft experiences many disturbances: fly drag-free around test-mass

» LISA pathfinder satellite (2015-2017): technology demonstrator using 2 test-masses at 38
cm distance. Performed better than expected

« LISA mission approved recently, scheduled for launch in 2034

« Distance resolution 20 pm, observation bandwidth 0.03 mHz to 100 mHz: sensitive to
heavy black holes
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Pulsar timing arrays

T, - =\
s ; == W

« GW at even lower frequency (< uHz) are emitted by super-massive black holes, galaxies
 Pulsars are some of the most stable clocks in the universe

 Idea: take a number of bright and stable pulsars, accurately track pulse arrival times over
a long period to look for GW fingerprint

 Challenging to subtract several effects of much higher amplitude

- rotation of earth, orbit of Earth, orbit of Solar system in Milky Way

« Measurements ongoing for several years, no detection so far
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GW spectrum

The Gravitational Wave Spectrum

Quantum fluctuations in early universe
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* Interesting science over a huge frequency range

()

B. Swinkels — Experimental GW detection

In 20 years, we might see sources scanning through LISA band into ET band!

Science of PTA/space/ground is complementary, similar to IR/VIS/UV astronomy
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Conclusion

« GW predicted about 100 years ago, serious attempts to measure them
for more than 50 years

* Indirect evidence of GW from radio astronomy

 First direct detection of BBH with Earth-based interferometers in 2015,
many more since then, including BNS+GRB

* Only the beginning of an era, new instruments are planned that are
more sensitive and have different bandwidths. Note: detection rate
scales with cube of sensitivity improvements!

« Stay tuned for more expected and unexpected science

* Interested in experimental side of GW detection?
dedicated course on GW instrumentation, possibility to do thesis in the
GW group at Nikhef

 Questions: swinkels@nikhef.nl
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End
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