<u>Announcements</u>

Welcome to Gravitational Waves Msc course at Nikhef!

Instructor: Dr. Sarah Caudill (<u>physarah@gmail.com</u>) Teaching Assistants: Ka Wa Tsang & Pawan Gupta

Course Website: <u>https://www.nikhef.nl/~caudills/teaching.html</u>

Please pick up a Homework assignment and a Syllabus.

Please fill out your name and preferred email address.

Summary of the field

Lecture 1: Gravitational Waves MSc Course

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

What are gravitational waves?

Einstein field equations:

$$G_{\mu\nu} = 8\pi \frac{G}{c^4} T_{\mu\nu}$$

description of geometry of spacetime

description of how matter/energy is distributed

Spacetime tells matter how to move; matter tells spacetime how to curve. - John Wheeler

What are gravitational waves?

Einstein field equations:

$$G_{\mu\nu} = 8\pi \frac{G}{c^4} T_{\mu\nu} = 0 \text{ (in vacuum)}$$

description of geometry of spacetime

description of how matter/energy is distributed

Spacetime tells matter how to move; matter tells spacetime how to curve. - John Wheeler

What are gravitational waves?

Einstein field equations:

$$G_{\mu\nu} = 8\pi \frac{G}{c^4} T_{\mu\nu} = 0 \text{ (in vacuum)}$$

Far from the source: metric is flat with small perturbation

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Far from the source: Einstein equations reduce to wave equation for the perturbation

$$\left(-\frac{\partial^2}{c^2\partial t^2} + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)h_{\mu\nu}^{\rm TT} = 0$$

What are the properties of these waves?

Propagation: light speed, have effect of traveling tidal waves

What are the properties of these waves?

Generation: Accelerating masses (changing quadrupole and higher multipole moments)

What are the properties of these waves?

Measurability: Induce a strain on a ring of test masses; two independent polarizations

$$h = \frac{\delta L}{L}$$
$$\Delta L = L_x - L_y = hL$$

Example: Binary star system in Virgo cluster (16.5 Mpc away) would produce $h \sim 10^{-21}$. Over a distance of L = 1 AU, Δ L would be ~ 1 atomic diameter.

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

Ground-based Detector Network

The Advanced LIGO Detectors

- LIGO Laser Interferometer Gravitational-wave Observatory
- Operated in Hanford, WA and Livingston, LA USA
- 4 km-long arms

Advanced Virgo

- Operated in Cascina, Italy
- 3 km-long arms
- France, Italy, Netherlands, Poland, Hungary

Kamioka Gravitational-wave Detector (KAGRA)

- Operated in Kamioka Observatory, Japan
- 3-km arms
- First major underground GW observatory
- Will use cryogenic mirrors

GEO

- GEO600, test-bed for new technologies: laser stabilization, absorption-free optics, control engineering, vibration damping, etc.
- "Squeezed light" technology mitigating shot-noise

- What are gravitational waves?
 - Detectors
 - <u>Sources</u>
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

Gravitational-wave Sources for Ground-based Detectors

Signal Duration

Compact Binary Coalescence Sources

- neutron stars

- stellar mass black holes
- intermediate mass black holes

Compact Binary Coalescence Waveforms

Burst Sources of Gravitational Waves

- Transient GW astronomy using minimal assumptions. Sources could include:
- core collapse SN
- merger phase of heavy binary compact objects
- NS instabilities
- accretion disk instabilities
- fall back accretion, cosmic string cusps/kinks
- unexpected...

Continuous Gravitational Wave Sources

Non-axisymmetric rotating neutron stars; asymmetry could arise from:

- equatorial ellipticity (mm-high mountain)
- free precession around rotation axis
- excitation of long-lasting oscillations
- deformation due to matter accretion

Stochastic Gravitational Waves

I. Cosmological origin

What powered the big bang? BIG BANG Only gravitational waves can escape from the earliest moments of the Big Bang Inflation (Big Bang plus 10-35 seconds?) **Big Bang plus** 10-43 seconds Cosmic microwave background, distorted by seeds of structure and gravitational waves Big Bang plus 300,000 Years Light Gravitational Now waves Big Bang plus 15 Billion Years

II. Astrophysical origin

- What are gravitational waves?
 - Sources
 - Detectors
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

First Observational Evidence

Pulsar-Neutron Star System

- Period: 7.75 hours
- Discovered by R. Hulse
 - and J. Taylor
- Awarded 1993 Nobel prize

Bar Detectors

Piezoelectric sensors

Joseph Webber -University of Maryland 1961: proposed to use resonant bar detectors to detect GWs

Only sensitive over very narrow range of frequencies

Interferometric Detectors

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- <u>Some terminology</u>
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

Power Spectral Density

$$s(t) = n(t) + h(t)$$

$$\tilde{x}(f) = \mathcal{F}\left\{x(t)\right\}(f) = \int_{-\infty}^{\infty} \mathrm{d}t \, x(t) \exp(-2\pi \mathrm{i}ft)$$

Energy in time series is
$$E = \int_{\infty}^{\infty} |n(t)|^2 dt = \int_{\infty}^{\infty} |\tilde{n}(f)|^2 df$$

Parseval's theorem

f - frequency in Hz, i.e. cycles per second

 $\left| \tilde{n}(f) \right|^2$ - density function describing energy per unit frequency in time series at frequency f

Energy spectral density of signal is defined as $S(f) = |\tilde{n}(f)|^2$

Power Spectral Density

If the energy is spread over long-ish time interval, we instead define the power spectral density (PSD):

$$S(f) = \lim_{T \to \infty} \mathbb{E}\left[|\tilde{n}(f)|^2 \right]$$

Power spectral density (PSD): $S(f) \sim \frac{\text{strain}^2}{\text{Hz}}$

Amplitude spectral density (ASD):
$$\sqrt{S(f)} \sim rac{\mathrm{strain}}{\sqrt{\mathrm{Hz}}}$$

frequency (Hz)

An example of identified spectral lines

Spectrogram

Visual representation of power at certain frequencies as a function of time.

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

Sept 12, 2015

Advanced LIGO's First Observing Run (OI)

GWI70I04						GWI708I4			
Jan 4, 2017						Aug 14, 2017			
		A	dvance Obse	ed LIG rving I	iO's Se Run (C	cond)2)			Virgo turns on
Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
2016	2016	2017	2017	2017	2017	2017	2017	2017	2017
		GWI7 Jun 6, 2	0608 2017			GWI7 Aug 17,	0817 2017		

LVT151012 ~~~~~~

0

GW170817

່າ time observable (seconds)

LIGO/Virgo/University of Oregon/Ben Farr

2

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

Matched Filtering

Masses in the Stellar Graveyard

LIGO-Virgo | Frank Elavsky | Northwestern

GW150914: The First Direct Detection of Gravitational Waves

GW170608: Least Massive Binary Black Hole Observed So Far

GW170814: First Event Seen By LIGO and Virgo Detectors

GW170814: First Event Seen By LIGO and Virgo Detectors

Primary black hole mass	$30.5^{+5.7}_{-3.0}M_{\odot}$
Secondary black hole mass	$25.3^{+2.8}_{-4.2}M_{\odot}$
Final black hole mass	$53.2^{+3.2}_{-2.5}M_{\odot}$
Final black hole spin	$0.07\substack{+0.07 \\ -0.05}$
Luminosity distance	540^{+130}_{-210} Mpc
Source redshift z	$0.11\substack{+0.03 \\ -0.04}$

GW170817: The First Detection of Gravitational Waves from a Binary Neutron Star Coalescence

Least binary detect	massive black hole ed so far	9	Only s signifi spin	signal with cant alignec	1						
Event	m_1/M_{\odot}	m_2/M_{\odot}	$\mathcal{M}/\mathrm{M}_{\odot}$	$\chi_{ ext{eff}}$	$M_{\rm f}/{ m M}_{\odot}$	a_{f}	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\rm peak}/({\rm erg}{\rm s}^{-1})$	$d_L/{ m Mpc}$	Z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} \times 10^{56}$	430^{+150}_{-170}	$0.09\substack{+0.03 \\ -0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7\substack{+9.9\\-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5\substack{+6.4\\-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} \times 10^{56}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3_{-10.1}^{+9.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} imes 10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05\\-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3\substack{+2.9\\-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$	87
GW170817	$1.46^{+0.12}_{-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186^{+0.001}_{-0.001}$	$0.00\substack{+0.02\\-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8\substack{+4.3\\-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8\substack{+4.8\\-3.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07\\-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4\substack{+6.3\\-7.1}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71^{+0.08}_{-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9} \times 10^{56}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$	1651
Most massive signal detected so far. Only binary neutron star detected so far. Best localised Best localised									Best localised signal alised		

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - <u>Science results</u>
- Next steps
 - Detectors
- Homework

BBH Science: Measuring a Mass Distribution

Revealing a new population of heavy stellar-mass black holes.

BBH Science: Measuring Effective Spins

Helping to distinguish between binary formation channels.

BBH Science: Measuring Precessing Spins

Helping to distinguish between binary formation channels.

LVC, PRX 6, 041015 (2016)

LVC, PRX 6, 041015 (2016)

BBH Science: Do the signals agree with General Relativity?

These systems give us empirical access to genuinely strong-field dynamics of spacetime.

	Solar system	Binary pulsars	Compact binary
$\frac{GM}{c^2R}$	$\sim 10^{-8}$	$\sim 10^{-6}$	~ 0.2
$\frac{v}{c}$	$\sim 10^{-5}$	$\sim 10^{-3}$	~ 0.4

BBH Science: Parameterized Tests of General Relativity?

Allow for fractional changes with respect to the General Relativity value.

For example, the inspiral phase can be expressed in terms of characteristic speed v(t)

$$\Phi\left(v(t)\right) = \left(\frac{v}{c}\right)^{-5} \sum_{n=0}^{7} \left[\phi_n + \phi_n^{(l)} \ln\left(\frac{v}{c}\right)\right] \left(\frac{v}{c}\right)^n$$

Fractional changes of the form: $p_i \rightarrow (1 + \delta \hat{p}_i) p_i$

Inspiral
$$\left\{ \delta \hat{\phi}_i \right\}$$
 Intermediate $\left\{ \delta \hat{\beta}_i \right\}$ Merger-
Ringdown $\left\{ \delta \hat{\alpha}_i \right\}$

BBH Science: Parameterized Tests of General Relativity?

No evidence for disagreement with the predictions of General Relativity.

BBH Science: Testing for Lorentz Invariance

Graviton energy:

$$E^2 = p^2 c^2 + m_g^2 c^4 + A p^\alpha c^\alpha$$

Graviton's Compton wavelength:

$$\lambda_g = \frac{h}{m_g c}$$

Massive graviton propagates at energy (or frequency) dependent speed:

$$\frac{v_g^2}{c^2} \equiv \frac{c^2 p^2}{E^2} \simeq 1 - \frac{h^2 c^2}{\lambda_g^2 E^2}$$

BNS Science: Start of Multi-messenger Astronomy with Gravitational Waves

Around 70 observatories worldwide observed the ^o event by using space and ground-based telescopes.

BNS Science: Association with Short Gamma-ray Bursts 1056 Abbott et al., ApJL, 1055 848:L13, 2017 10⁵⁴ E_{iso} (1 keV - 10 MeV) (erg) 10⁵³ 10⁵² 1051 1050 10⁴⁹ 1048 Long GRBs Short GRBs 1047 GRB 170817A

GWs identified the progenitor of the short gamma-ray burst. This was found to be the closest by and weakest short gamma-ray burst with redshift measured.

4

Redshift (z)

6

8

2

1046

0

BNS Science: In-depth Study of Kilonova

Astronomers performed in-depth study of a kilonova and witnessed the creation of heavy elements.

BNS Science: Neutron Star Equation of State (EOS)

Neutron stars are similar density to atomic nuclei.

Tidal effects leave their imprint on GW signal from binary neutron stars.

BNS Science: Measuring the Hubble Constant

 $v_H = H_0 d$

Distance from GW signal: $d = 44 \,\mathrm{Mpc}$

Recessional velocity from galaxy: $v_H = 3000 \, \mathrm{km/s}$

BNS Science: Measuring the speed of gravity

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

Space-based Detectors: eLISA

Three spacecraft in Earth-like orbits around Sun. Arm length of 1 million km, equilateral triangle formation.

Space-based Detectors: eLISA

Each spacecraft carries lasers. They're too far apart for the laser light to reflect back and forth. Instead, when light from one arrives at the other, the onboard laser of receiving craft amplifies and returns it (like reflection): active mirrors.

Space-based Detectors: eLISA

Changing orientation of triangle through one orbit will allow observers to determine direction of sources.

LISA pathfinder operates 1.5 mill km from Earth toward the Sun, orbiting the Sun-Earth langrangian point L1.
Two inertial sensors surrounding independent test masses and an optical bench in-between monitor test masses as they free-fall through space

One of LISA Pathfinder's two test masses, cube of solid goldplatinum alloy, 1.96kg.

Space-based Detectors: eLISA

Microthrusters will make minuscule shifts in order to keep the spacecraft centered on one of the masses.

This will isolate the two cubes from all external and internal forces except gravity, placing them in the most precise freefall ever obtained.

LISA Sensitivity

Millisecond pulsars rotate with incredible stability, can be used as precise clocks.

The time of arrival (TOA) of pulse can be usually measured to:

 δ - pulse width; few hundred microseconds

Difference between predicted and measured TOAs can have RMS scatter as little as 100 nanoseconds over timescales of many years.

Germany UK France Italy Netherlands US Puerto Rico Australia

Pulsar timing brings together astronomers who use the world's most sensitive radio telescopes to observe and discover millisecond pulsars.

They look for the influence of GWs on timing residuals from ultra-precise millisecond pulsars, in particular for correlations in timing residuals between pairs of pulsars

Sensitive to GWs with periods between the cadence of pulsar timing observations (weeks) and the span of the dataset (years), ie nanohertz frequencies.

Gravitational-wave Spectrum

Einstein Telescope

-the next gravitational-wave observatory coordinated effort with the US

Einstein Telescope: observing all BBH mergers in the Universe

- What are gravitational waves?
 - Detectors
 - Sources
- A brief history of the field
- Some terminology
- Current state of the field
 - Detections
 - Science results
- Next steps
 - Detectors
- Homework

Python Tutorials:

- https://wiki.python.org/moin/BeginnersGuide/Programmers
- Also check out Coursera

Homework is based on paper here about the basic physics of binary black hole merger GW150914:

- https://arxiv.org/abs/1608.01940

Problem 2: Waveform should look like:

Problem 2: Determine zero crossings:

