
Announcements

Lecture today: HW will not be graded. But content 
from lecture and HW can show up on final exam.

Final Exam: 13:00-16:00 Wednesday May 29, in 
H331 

Note: no make-up of final exam except in cases 
of emergency or prior arrangement

Visualization Project due by email on May 28

Please turn in Assignment 5.



Bayesian analyses 
for parameter 

estimation
Lecture 5: Gravitational Waves MSc Course



How do we go from detector data...

LVC, PRL 116, 241103 (2016)



LVC, PRL 118, 221101 (2017) 
LVC, PRL 119, 161101 (2017)

...to astrophysical parameters?



We’ve seen that we can apply the matched filtering 
technique with many different possible filters in a coarse 

template bank and extract possible events...

What can we conclude?
Can we claim detection?

If it is a detection, how can we reconstruct the properties of 
the source? And with what accuracy?



Consider set S with subsets A, B, ...

Probability is real-valued 
function that satisfies: 

1. For every A in S, P(A) ≥ 0. 
2. For disjoint subsets (A⋂B = 0), 
   P(A⋃B) = P(A) + P(B). 
3. P(S) = 1.

Conditional probability: 
probability of A given B

P (A|B) =
P (A \B)

P (B)

B

Probability

A

S

A B

A \B



Frequentist
1. A, B, ... are outcome of repeatable experiment 

2. P(A) is frequency of occurrence of A 

3. P(data | hypothesis) or P(data | parameters) are probabilities 
   of obtaining some data, given some hypothesis or given 
   value of a parameter 

4. Hypotheses are either correct or wrong and parameters 
    have a true value. We do not talk about probabilities of 
    hypotheses or parameters.

Frequentist versus Bayesian 
interpretation



Bayesian
1. A, B, ... are hypotheses, or theories, or parameters 
    within a theory. 

2. P(A) is probability that A is true. 

3. P(data | hypothesis) or P(data | parameters) are 
    probabilities of obtaining some data, given some 
    hypothesis or given value of a parameter. 

4. Hypotheses and parameters are associated with 
probability distribution functions.

Frequentist versus Bayesian 
interpretation



P (A \B) = P (A|B)P (B)

P (B \A) = P (B|A)P (A)

A \B = B \A

P (A|B) =
P (B|A)P (A)

P (B)

We can derive Bayes’ Theorem:

A = hypothesis (or parameters or theory)
B = data

Bayes’ Theorem

P(hypothesis|data) ∝ P(data|hypothesis) P(hypothesis)

Given:



It is customary to explicitly denote probabilities being 
conditional on “all background information we have”: 

P( A | I ), P( B | I ), ...

All essential formulae are unaffected, for example:

P (A|B, I) =
P (B|A, I)P (A|I)

P (B|I)

P (A,B|I) = P (A|B, I)P (B|I)

More on conditional 
probability



Consider sets       such thatBk

Bk \Bl = ;

[kBk
X

k

p(Bk|I) = 1

p(A|I) =
X

k

p(A,Bk|I)

Marginalization Rule

Marginalization

- They are disjoint:
- They are exhaustive:             is the Universe, or 

Then,



Consider the proposition, “The continuous variable x has 
the value    .”
Not a well-defined meaning of probability:

Instead assign probabilities to finite intervals:

where pdf() is the probability density function.

Marginalization for 
continuous variables:

p(x = ↵|I)

↵

p(x1  x  x2|I) =
Z x2

x1

pdf(x)dx

Z xmax

xmin

pdf(x)dx = 1

p(A) =

Z xmax

xmin

pdf(A, x)dx

Marginalization over continuous 
variable



Initial Understanding + New Observation = Updated Understanding

Evidence

p (h0|d) = p (d|h0) p (h0)

p (d)

Prior probability
Likelihood 
function

Posterior 
probability

More on Bayes’ Theorem



Posterior probability of   :

Consider a model      that allows us to calculate the 
probability of getting data     if parameter    is known.

We are measuring parameter   .

An experiment is performed, data    is collected.d

✓

✓

d
H

p(✓|d,H, I) =
p(d|✓, H, I)p(✓|H, I)

p(d|H, I)

p(✓|d,H, I) / p(d|✓, H, I)p(✓|H, I)

More on Bayes’ Theorem

✓

The evidence doesn’t 
depend on     so 

ignore for now: 
✓



If we want posterior distribution just for variable     , 

then we marginalize

More parameters
Can extend to more parameters: joint posterior

p(✓1, . . . , ✓N |d,H, I)

p(✓1|d,H, I)

p(✓1|d,H, I) =

Z ✓max
2

✓min
2

. . .

Z ✓max
N

✓min
N

p(✓1, . . . , ✓N |d,H, I)d✓2. . . d✓N

✓1



p (h0|d) = p (d|h0) p (h0)

p (d)

Likelihood 
function

In GW science, the likelihood function is 
the noise model.

Probability of data given hypothesis - a 
true “frequentist” probability

The likelihood function



Output of detector:                                   ,

The likelihood function: the data
If the detector noise is stationary and Gaussian:

hñ⇤(f)ñ(f 0)i = �(f � f 0)
1

2
Sn(f)

Gaussian probability distribution for noise:

p(n0) = N exp

(
�1

2

Z 1

�1
df

|ñ0(f)|2

(1/2)Sn(f)

)

= N exp

⇢
� (n0|n0)

2

�

n0 = s� h(✓t)s(t) = h(t; ✓t) + n0(t)

⇤(s|✓t) = N exp

⇢
�1

2
(s� h(✓t)|s� h(✓t))

�Plug into 
p(n0) to get:



⇤(s|✓t) = N exp

⇢
(ht|s)�

1

2
(ht|ht)�

1

2
(s|s)

�
ht ⌘ h(✓t)

In this form, information might not be very manageable. 

For binary coalescence 
there could be more than 
15 parameters ✓i

The likelihood function: the data



The prior probability

p (h0|d) = p (d|h0) p (h0)

p (d)

Prior probability

Thus, prior choices can influence results.

Probability of hypothesis; makes no sense in 
frequentist interpretation.

But for a Bayesian, one can make assumptions 
to include a prior; can be subjective.

Can be seen as the “degree of belief” that the 
hypothesis is true before a measurement is made.



p(0)(✓t)

Examples in GW science:
* Known distributions in space

* Known mass distribution of neutron stars ~1.35 M⦿

p(0)(r)dr ⇠ r2dr for isotropic sources

p(0)(r)dr ⇠ rdr for sources in the Galaxy

The prior probability



Can be seen as the “degree of belief” that the 
hypothesis is true after a measurement is made.

The posterior probability

p(✓t|s) = Np(0)(✓t)exp

⇢
(ht|s)�

1

2
(ht|ht)

�

p (h0|d) = p (d|h0) p (h0)

p (d)Posterior 
probability



The evidence is unimportant for parameter 
estimation (but not model selection).

Notice that it doesn’t depend on the parameter 
being measured.

It is basically a normalization factor for parameter 
estimation.

The evidence

Evidence

p (h0|d) = p (d|h0) p (h0)

p (d)



p(h0|d,M) =
p(d|h0,M)p(h0|M)

p(d|M)

M: any overall assumption or model (e.g. the signal is 
a GW, the binary black hole is spin-precessing, the 

binary components are neutron stars)

The evidence: model selection

Odds Ratio: Compare competing models, for 
example “GW170817 was a BNS” vs “GW170817 
was a BBH”:

Oij =
p(Mi|d)

p(Mj |d)

=
p(Mi)p(d|Mi)

p(Mj)p(d|Mj)



What is the most probable value 
of the parameters,    ?✓t

A rule for assigning the most probable value is called 
an estimator. Choices of estimators include:

1. Maximum likelihood estimator

2. Maximum posterior probability

3. Bayes estimator



p(✓t|s) = Np(0)(✓t)exp

⇢
(ht|s)�

1

2
(ht|ht)

�

Define     as value which maximizes 
probability distribution:
✓̂

Let prior be flat. Then problem is to 
maximize the likelihood ⇤(s|✓t)

Generally simpler to maximize         . log⇤

log⇤(s|✓t) = (ht|s)�
1

2
(ht|ht)

@

@✓it


(ht|s)�

1

2
(ht|ht)

�
= 0

1. Maximum likelihood estimator



it is no longer true that     is the maximum of 
the reduced distribution function 

2. Maximum posterior probability
Allows us to include prior information.

Then we maximize the full posterior probability:

p(✓t|s) = Np(0)(✓t)exp

⇢
(ht|s)�

1

2
(ht|ht)

�

Non-trivial priors can lead to conceptual issues. 
For example, if             is the maximum of the 

distribution function 
                 ,

(✓̄1, ✓̄2)

p(✓1, ✓2|s)
✓̄1

p̃(✓1|s) =
Z

d✓2 p(✓1, ✓2|s) ✓2, integrating out



Neither 1) nor 2) minimizes the error on the 
parameter estimation.

✓̂iB(s) ⌘
Z

d✓ ✓i p(✓|s)
Most probable values of parameters defined by

Errors on parameters defined by matrix:

⌃ij
B =

Z
d✓

h
✓i � ✓̂iB(s)

i h
✓j � ✓̂jB(s)

i
p(✓|s)

Independent of whether we integrate out a 
variable, minimizes parameter estimation error, 

but has a high computational cost.

3. Bayes’ Estimator



For example, consider an experimental apparatus 
that provides values distributed as Gaussian around 
true value      with standard deviation sigma

Frequentist relies on confidence interval (CI).

Bayesian approach relies on a credible region (CR)

Confidence versus Credibility

P (x|xt) =
1

(2⇡�2)1/2
exp

⇢
� (x� xt)2

2�2

�
xt �

One repetition of experiment yields value            .x0 = 5



Use Neyman’s construction for 90% confidence level.

1. Find value               such that 5% of area under           
is at             .

x1 < x0 P (x|x1)
x > x0

31

x1 ' x0 � 1.64485�

x1

Frequentist confidence interval

x0

5



1. Find value               such that 5% of area under           
is at             .

x2 > x0

x < x0

P (x|x2)

7 9531

x2 ' x0 + 1.64485�

x2

Frequentist confidence interval

x0

Use Neyman’s construction for 90% confidence level.



Bayesian approach: construct probability distribution for 
true value     from the likelihood function P(data|hypothesis)

⇤(x0|xt) = P (x0|xt) =
1

(2⇡�2)1/2
exp

⇢
� (x0 � xt)2

2�2

�

P(hypothesis|data)  ∝ P(data|hypothesis) P(hypothesis)
Flat prior so P(hypothesis|data)  ∝ P(data|hypothesis)

5x1 x2

Bayesian credible region
xt

P (xt|x0) =
1

(2⇡�2)1/2
exp

⇢
� (xt � x0)2

2�2

�
x0 = 5



For Gaussian distributions, the Frequentist and 
Bayesian definitions give the same result for x1 and x2 

but the interpretation is different.

Frequentist: In the limit of a large number of 
repetitions, 90% of the confidence regions 
obtained by the different repetitions of the 
experiment will cover the true value of xt.

Bayesian: 90% confidence interval is interval 
which subtends an area equal to 90% the total 
area of the p.d.f. of the true value xt.

Confidence versus Credibility



Consider variable with bounded domain like a mass or 
rate. We can accommodate the physical constraint with a 

prior.
Example: square of mass of electron neutrino

m2 = (�54± 30)eV2

P (m2) =

⇢
0 m2 < 0
uniform m2 � 0

m2 < 26.6eV2

FD Cousins (1995)

Confidence versus Credibility

No prior



Hypothesis: GW signal            is present.
We’ve found the most probable value of 

parameters     

h(t; ✓)

✓

Question: What is the statistical 
significance of an event found at a given 

level of signal-to-noise ratio?

Matched filtering statistics



                drops very fast for large 
values of argument x.

In any detector, we have two kinds of noise:

1. Well-behaved Gaussian noise

⇠ e�x2/2

Can eliminate Gaussian noise by setting a large 
threshold for signal-to-noise ratio.

Matched filtering statistics



Typically characterized by long tails at 
large values of signal-to-noise ratio, 

decays as power law.

Cannot be eliminated with large 
threshold.

Best way to eliminate is to require 
coincidence.

Matched filtering statistics
In any detector, we have two kinds of noise:

2. Non-Gaussian noise



Question: What is the statistical significance of 
obtaining a given signal-to-noise ratio assuming only 
Gaussian noise is present.

⇢ =
ŝ

N

ŝ =

Z 1

�1
dt [h(t) + n(t)]K(t)

S/N = h⇢i

Matched filtering statistics

In absence of GW signal, the probability distribution 
of     is⇢

p(⇢|h = 0)d⇢ =
1p
2⇡

e�⇢2/2d⇢



Let              .

                          is Gaussian variable with 
zero mean and unit variance

If there is a GW with signal-to-noise ratio     in the 
output, then the full signal-to-noise ratio will be

⇢ = ⇢̄+ n̂/N

⇢̄

⇢� ⇢̄ = n̂/N

p(⇢|⇢̄)d⇢ =
1p
2⇡

e�(⇢�⇢̄)2/2d⇢

R ⌘ ⇢2

P (R|R̄)dR = p(⇢|⇢̄)d⇢+ p(�⇢|⇢̄)d⇢

P (R|R̄)dR =
1p
2⇡R

e�(R̄+R)/2 cosh
hp

RR̄
i
dR

Matched filtering statistics



False Alarm Probability

pFA =

Z 1

Rt

dR P (R|R̄ = 0)

= 2 erfc(⇢t/
p
2)

False Dismissal Probability - probability of losing a 
real GW signal.

pFD =

Z Rt

0
dR P (R|R̄)

Matched filtering statistics



Detected on September 14, 2015 @ 09:50:45 UTC

False alarm probability < 2⇥ 10�7

Parameter estimation started: 
* coherent across the LIGO network 
* used waveform models that include full richness of 
physics with black hole spins 
* covers full parameter space with fine sampling

A Case Study - Binary Black Hole 
Merger GW150914



8 intrinsic parameters
mass 1 
mass 2 
spin1x 
spin1y 
spin1z 
spin2x 
spin2y 
spin2z 

9 extrinsic parameters
luminosity distance 
right ascension 
declination 
binary orbital inclination 
binary polarization angle 
coalescence time 
coalescence phase 
eccentricity magnitude 
periapsis

A Case Study - Binary Black Hole 
Merger GW150914

Radiation reaction circularizes orbits 
for signals in LIGO/Virgo band so 
ignore this



During inspiral, phase evolution                               can 
be computed with PN-theory in powers of v/c.

�GW(t;m1,2,S1,2)

Mc =
(m1m2)

3/5

M1/5

' c3

G


5

96
⇡�8/3f�11/3ḟ

�3/5
q =

m2

m1
 1

S1,2 k L

S1x, S1y, S1z

S2x, S2y, S2z

leading order higher order even higher order



Numerical relativity needed for binary 
evolution in late inspiral and merger.

Mtotal = m1 +m2



Details of ringdown

Final dimensionless spin magnitude
Final mass Mf

af =
c|Sf |
Gm2

f

 1



Observed frequency redshifted 
by a factor of (1 + z)

- cosmological redshiftz

Indistinguishable from rescaling 
of masses m = (1 + z)msource

Amplitude

AGW / 1

DL



For systems with minimal precession, all the following 
change the overall amplitude and phase but not 
signal morphology:

DL,↵, �, ◆, , tc,�c



      ,   become time-dependent; binary’s orbital 
plane precesses around direction of total 
angular momentum:

Amplitude and phase modulations

 ◆

J = L+ S1 + S2

Depends on viewing angle



Evaluation of multidimensional integrals using 
two independent stochastic sampling 
engines based on: 
* Markov-chain Monte Carlo 
* Nested Sampling

Hypothesis: GW from compact binary 
coalescence 

Use model waveforms for inspiral/merger of two 
black holes

Results are posterior PDFs for parameters describing 
the signal and the model evidence

A Case Study - Binary Black Hole 
Merger GW150914



A Case Study - Binary Black Hole 
Merger GW150914

Priors
tc ±0.1 s

�c [0, 2⇡]

f 2 [20, 1024] Hz

uniform in volume

isotropically oriented

m1,2 2 [10, 80]M�

a1,2 2 [0, 1]

Precessing model: isotropic spin orientation
Aligned-spin model: uniform distribution [-1, 1]

in

in



Parameter estimates are broadly consistent 
across two models. 

Log Bayes factors are comparable so we cannot 
prefer one model over the other.



LVC, PRL 116, 241102 (2016)

msource
1 = 36+5

�4M�

msource
2 = 29+4

�4M�

0.66  q  1
with 90% probability

Conservative upper limit for 
mass of stable NS is 3M�

Could consider exotic alternatives.

A Case Study - Binary Black Hole 
Merger GW150914



         correlated with the inclination of orbital plane 
with respect to line of sight

Assuming flat ΛCDM 
cosmology, the inferred 
luminosity distance 
corresponds to redshift:

DL = 410+160
�180Mpc

z = 0.09+0.03
�0.04

DL

Orientation of total orbital angular momentum misaligned to 
line of sight is disfavored

A Case Study - Binary Black Hole 
Merger GW150914



Does not use waveform models 
but rather fitting formula 

calibrated to NR simulations.

M source
f = 62+4

�4M�

af = 0.67+0.05
�0.07

Final spin is precisely 
determined.

Erad = M source �M source
f = 3.0+0.5

�0.4M�c
2

A Case Study - Binary Black Hole 
Merger GW150914



Network of GW detectors 
needed to reconstruct 
location of GW in sky via 
time of arrival and 
amplitude and phase 
consistency

�tHL = 6.9+0.5
�0.4ms

610 deg2 (90% probability)

A Case Study - Binary Black Hole 
Merger GW150914



Spin projections along direction of orbital angular 
momentum affect inspiral rate of binary.

a1 < 0.7 (at 90% probability)
a2 < 0.9 (at 90% probability)

A Case Study - Binary Black Hole 
Merger GW150914



A Case Study - Binary Black Hole 
Merger GW150914

Difficult to untangle full degrees of freedom but several 
one dimensional parameterizations have been defined.

�e↵ = �0.07+0.16
�0.17�e↵ =

c

GM

✓
S1

m1
+

S2

m2

◆
· L

|L|



A Case Study - Binary Black Hole 
Merger GW150914

Difficult to untangle full degrees of freedom but several 
one dimensional parameterizations have been defined.

�p consistent with prior.
Effective precession spin parameter

�p =
c

B1Gm2
1

max(B1S1?, B2S2?) > 0 B1,2(q)



* ~10 cycles during inspiral phase from 30Hz 
* merger 
* ringdown

Minimal assumption analysis: not necessarily derived 
from binary system

Remarkable agreement between the actual data and the 
reconstructed waveform under two model assumptions.



Heaviest stellar mass BHs known to date

First stellar-mass binary BH

Binary black holes do form and merge within Hubble time

First BH spin constraints independent of x-ray spectra 
observations

A Case Study - Binary Black Hole 
Merger GW150914



Strong field tests of General Relativity

Baker, et al ApJ 802, 63 (2015)



Baker, et al ApJ 802, 63 (2015)

Strong field tests of General Relativity



Remove most 
probable GR 
waveform from data. 

Calibrated against 
waveforms from 
direct numerical 
integration of 
Einstein equations.

Analysis reveals that GW150914 residual favors instrumental noise 
over the presence of coherent signal or glitches.

Residual strain



Mass and spin parameters 
predicted from binary inspiral

Mass and spin inferred from 
post-inspiral signal

Numerical relativity provides fitting 
formulas for relations between the 

binary’s components and final 
masses and spins.

Inspiral-merger-ringdown 
consistency test

versus

Analysis reveals that GW150914 inspiral and post-inspiral have 
significant region of overlap.



Orbital phase between inspiral and merger-ringdown 
parameterized by     .

Orbital phase of merger-ringdown parameterized by       .

Parameterized deviations from 
GR

Orbital phase during inspiral is function of ever increasing orbital speed:

Look for possible departures from GR, parameterized by set of 
testing coefficients.

In GR, these have known functions.

�j

↵j



Parameterized deviations from 
GR

Look for possible departures from GR, parameterized by set of 
testing coefficients.

GW150914 provided 
probe of late inspiral and 
merger.



GW151226 provided opportunity 
to probe PN inspiral with many 
more waveform cycles.

Parameterized deviations from 
GR

Look for possible departures from GR, parameterized by set of 
testing coefficients.



No evidence for disagreement with predictions of GR. 
Accuracies will improve with        .

p
N

Posterior distributions for deviations can be combined to yield 
stronger constraints.

Parameterized deviations from 
GR

Look for possible departures from GR, parameterized by set of 
testing coefficients.



In GR, GWs are 
nondispersive.

But modifications to 
the dispersion 
relation can arise in 
theories that include 
violations of local 
Lorentz invariance.

Constraints on Lorentz violations

Thus, modified propagation of GWs can 
be mapped to Lorentz violation.



Several modified theories of gravity predict specific 
values of            .

Constraints on Lorentz violations

E2 = p2c2 +Ap↵c↵

↵ � 0

Dispersion occurs during propagation of GW toward 
Earth. GW170104 provides the best constraint since 
it was the furthest signal so far. Redshift ~0.2.

A - amplitude of dispersion. GR predicts A=0.

Consider modified dispersion relation of the form:



Constraints on Lorentz violations
Combined posterior of GW150914, 

GW151226, and GW170104

(↵ = 2.5)

multifractal spacetimeLVC, PRL 118, 221101 (2017).



Constraints on Lorentz violations
Combined posterior of GW150914, 

GW151226, and GW170104

(↵ = 3)

doubly special relativity
LVC, PRL 118, 221101 (2017).



Constraints on Lorentz violations
Combined posterior of GW150914, 

GW151226, and GW170104

(↵ = 4)

extra-dimensional theories
LVC, PRL 118, 221101 (2017).



LVC, PRL 118, 221101 (2017).

Constraints on Lorentz violations
Combined posterior of GW150914, 

GW151226, and GW170104

(↵ = 2) degenerate with 
arrival time of signal



LVC, PRL 118, 221101 (2017).

Constraints on Lorentz violations
Combined posterior of GW150914, 

GW151226, and GW170104

(↵ = 0, A > 0) massive-graviton theories



Massive graviton
(↵ = 0, A > 0) - reparameterized to derive lower bound 

on graviton Compton wavelength

�g > 1.6⇥ 1013 km

mg  7.7⇥ 10�23 eV/c2

Finite Compton wavelength ⇒ nonzero mass

LVC, PRL 118, 221101 (2017).



Gravitational-wave Polarizations

General relativity 
predicts only two 

tensor GW 
polarizations.

Alternate theories allow for 
up to four additional vector 

and scalar modes.

In principle, full generic metric theories predict any 
combination of tensor, vector or scalar polarizations.



Consider models where polarization states are pure 
tensor, pure vector, or pure scalar.

Two LIGO detectors are almost aligned so they can’t 
really give us information on other polarizations.

With Virgo, we get a little more information.

P (✓|tensor)
P (✓|vector) = 200

P (✓|tensor)
P (✓|scalar) = 1000

Bayes’ factors for GW170814 (triple BBH):

Network of at least six detectors is required to determine 
the polarization content of GW transient.

Gravitational-wave Polarizations

LVC, PRL 119, 141101 (2017).


