Announcements

Please turn in Assignment 2 and Assignment 3 is uploaded to Piazza and the course website.

DataNose has been updated to reflect the actual times of the Werkcolleges. Your app should now reflect this.

Gravitational Wave

 Derivation andAstrophysical Sources

Lecture 3: Gravitational Waves MSc Course

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

The Einstein Equations

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

Given the source distribution $T_{\mu \nu}$, one can solve this set of 10 coupled nonlinear partial differential equations for the metric $g_{\mu \nu}(x)$

Using Bianchi identities, there are really only 6 independent equations.

Methods

Solving Einstein's equations is difficult. They're non-linear. In fact, the equations of motion are impossible to solve analytically except for certain choices of metric (ex: flat Minkowski, Schwarzschild)

In the absence of symmetry, there are two methods: 1. Numerical relativity (see slides from 2018) 2. Approximation techniques

For solutions for weak gravitational fields, we consider an approximation with a metric very close to flat space but with a small perturbation. And we consider only first order perturbations.

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Linearized Theory of Metric Field

Consider the Minkowski metric - a combination of three dimensional Euclidean space and time into four dimensions.

$$
\begin{gathered}
d s^{2}=-c^{2} d t^{2}+d x^{2}+d y^{2}+d z^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu} \\
\eta_{\mu \nu}=\left(\begin{array}{cccc}
-c^{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Consider a small perturbation $h_{\mu \nu}$ on flat space:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad\left|h_{\mu \nu}\right| \ll 1
$$

so that higher orders of $h_{\mu \nu}$ can be neglected when substituting in Einstein Field Equations (EFE)

Linearized Theory of Metric Field

Can we make coordinate transformations among such systems? Yes, from one slightly curved one to another, aka
"Background Lorentz transformation"

So EFE are invariant under general coordinate transformations but invariance is broken as a result of the choice of background $\eta_{\mu \nu}$
$h_{\mu \nu}$ is an as yet unknown perturbation on flat space. We can make small changes in coordinates that leave $\eta_{\mu \nu}$ unchanged but make small changes in $h_{\mu \nu}$

Thus, different choices for coordinates may give different forms

$$
\text { for } h_{\mu \nu}
$$

In order to deal with this, we introduce gauge symmetry...

Linearized Theory of Metric Field

We are restricted to a limited set of coordinate transformations called "gauge transformations"

$$
x^{\mu} \rightarrow x^{\prime \mu}+\xi\left(x^{\mu}\right)
$$

If we transform the metric under this change of coordinates we find that the metric has the same form but with new perturbations given by

$$
h_{\mu \nu}(x) \rightarrow h_{\mu \nu}^{\prime}\left(x^{\prime}\right)=h_{\mu \nu}(x)-\left(\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}\right)
$$

Linearized Theory of Metric Field

We can stream line some calculations by an appropriate choice of gauge conditions.

We require a coordinate system in which Lorentz gauge (or harmonic gauge) holds

$$
\partial^{\mu} \bar{h}_{\mu \nu}=0
$$

where we've defined the trace-reversed perturbation:

$$
\bar{h}_{\mu \nu}=h_{\mu \nu}-\frac{h}{2} \eta_{\mu \nu}
$$

such that the trace has opposite sign:

$$
\bar{h}_{\mu}^{\mu} \equiv \bar{h}_{\mu \nu}=-h
$$

Linearized Theory of Metric Field

The Riemann curvature tensor

$$
R_{\mu \nu \alpha \beta}=\frac{1}{2}\left(\partial_{\mu} \partial_{\alpha} g_{\nu \beta}-\partial_{\nu} \partial_{\alpha} g_{\mu \beta}+\partial_{\nu} \partial_{\beta} g_{\mu \alpha}-\partial_{\mu} \partial_{\beta} g_{\nu \alpha}\right)
$$

for a flat metric with a perturbation will become

$$
R_{\mu \nu \rho \sigma}=\frac{1}{2}\left(\partial_{\nu} \partial_{\rho} h_{\mu \sigma}+\partial_{\mu} \partial_{\sigma} h_{\nu \rho}-\partial_{\mu} \partial_{\rho} h_{\nu \sigma}-\partial_{\nu} \partial_{\sigma} h_{\mu \rho}\right)
$$

Then substituting the trace-reversed perturbation, EFE takes form:

$$
\partial_{\mu} \partial^{\mu} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\rho} \partial^{\sigma} \bar{h}_{\rho \sigma}-\partial^{\rho} \partial_{\nu} \bar{h}_{\mu \rho}-\partial^{\rho} \partial_{\mu} \bar{h}_{\nu \rho}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}
$$

If we define the d'Alembertian operator: $\square \equiv \partial_{\mu} \partial^{\mu}$

$$
\square \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\rho} \partial^{\sigma} \bar{h}_{\rho \sigma}-\partial^{\rho} \partial_{\nu} \bar{h}_{\mu \rho}-\partial^{\rho} \partial_{\mu} \bar{h}_{\nu \rho}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}
$$

Linearized Theory of Metric Field

And impose the harmonic gauge, then the last three terms in previous equation vanish and we end up with the Linearized Einstein Equations

$$
\square \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}
$$

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Solution in a Vacuum

What happens outside the source, where $T_{\mu \nu}=0$?
Then, the EFE reduces to

$$
\begin{aligned}
\square \bar{h}_{\mu \nu} & =0 \\
\left(-\frac{1}{c^{2}} \partial t^{2}+\nabla^{2}\right) \bar{h}_{\mu \nu} & =0
\end{aligned}
$$

Wave equation for waves propagating at speed of light c !
Solutions to wave equation can be written as superpositions of plane waves traveling with wave vectors \vec{k}, in the direction of the vector \vec{k} with frequency

$$
\omega=c|\vec{k}|
$$

Solution in a Vacuum

Plane wave solution:

$$
h(t)=A_{\mu \nu} \cos (\omega t-\vec{k} \cdot \vec{x})
$$

Implications: Spacetime has dynamics of its own, independent of matter. Even though matter generated the solution, it can still exist far away from the source where $T_{\mu \nu}=0$

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Solution with Source

Now allow for source. What would cause the waves to be generated?

$$
\square \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu}
$$

Solve using retarded Green's function assuming no incoming radiation from infinity. The solution is

$$
\bar{h}_{\mu \nu}(t, \vec{x})=\frac{4 G}{c^{4}} \int d^{3} x^{\prime} \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|} T_{\mu \nu}\left(t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}, \vec{x}^{\prime}\right)
$$

Solution with Source

We can utilize an additional gauge freedom by imposing the radiation gauge:

$$
h=0, h_{0 i}=0
$$

Combining the harmonic gauge and this radiation gauge, we can write the solution in the transverse traceless (TT) gauge
$h_{i j}^{\mathrm{TT}}(t, \vec{x})=\frac{4 G}{c^{4}} \Lambda_{i j, k l}(\hat{n}) \int d^{3} x^{\prime} \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|} T_{k l}\left(t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}, \vec{x}^{\prime}\right)$
\vec{n} - direction of propagation of GW
$\Lambda_{i j, k l}(\hat{n})$ is a tool to bring $h_{\mu \nu}$ outside the source in the TT gauge.

Solution with Source

$\Lambda_{i j, k l}(\hat{n})$ is a tool to bring $h_{\mu \nu}$ outside the source in the TT gauge.

$$
\begin{gathered}
\Lambda_{i j, k l}(\hat{n})=P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l} \\
P_{i j} \equiv \delta_{i j}-n_{i} n_{j}
\end{gathered}
$$

Then the perturbation $h_{i j}^{T T}(t, \vec{x})$ can be evaluated outside the source at \vec{x} while \vec{x}^{\prime} is a point inside the source.

$$
T_{k l}\left(t-\left|\vec{x}-\vec{x}^{\prime}\right| / c, \vec{x}^{\prime}\right) \neq 0
$$

We're looking at a distance r that is much larger than the size of the source d. Then we can expand

$$
\Delta \vec{x}=r-\vec{x}^{\prime} \cdot \hat{n}+\mathcal{O}\left(d^{2} / r\right)
$$

Solution with Source

Then we can write the TT solution as
$h_{i j}^{\mathrm{TT}}(t, \vec{x})=\frac{4 G}{c^{4}} \Lambda_{i j, k l}(\hat{n}) \int d^{3} x^{\prime} \frac{1}{\left|r-\vec{x}^{\prime} \cdot \hat{n}\right|} T_{k l}\left(t-\frac{r}{c}+\frac{\vec{x}^{\prime} \cdot \hat{n}}{c}, \vec{x}^{\prime}\right)$
If the source is non-relativistic, $\mathrm{v} / \mathrm{c} \ll 1$, then we can expand
$T_{k l}\left(t-\frac{r}{c}+\frac{\vec{x}^{\prime} \cdot \hat{n}}{c}, \vec{x}^{\prime}\right)=T_{k l}\left(t-\frac{r}{c}, \vec{x}^{\prime}\right)+\frac{x^{\prime i} n^{i}}{c} \partial_{0} T_{k l}+\frac{1}{2 c^{2}} x^{\prime i} x^{\prime j} n^{i} n^{j} \partial_{0}^{2} T_{k l}+\ldots$

We can substitute this for $T_{k l}$ in the TT solution to get the multipole expansion
$h_{i j}^{\mathrm{TT}}(t, \vec{x})=\frac{1}{r} \frac{4 G}{c^{4}} \Lambda_{i j, k l}(\hat{n})\left[S^{k l}+\frac{1}{c} n_{m} \dot{S}^{k l, m}+\frac{1}{2 c^{2}} n_{m} n_{p} \ddot{S}^{k l, m p}+\ldots\right]_{\mathrm{ret}}$ where ret is the retarded time $t-r / c$

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Generation of Gravitational Waves

Multipole moments of stress tensor $T^{i j}$

$$
\begin{aligned}
S^{i j} & =\int d^{3} x T^{i j}(t, \vec{x}) \\
S^{i j, k} & =\int d^{3} x T^{i j}(t, \vec{x}) x^{k} \\
S^{i j, k l} & =\int d^{3} x T^{i j}(t, \vec{x}) x^{k} x^{l}
\end{aligned}
$$

Multipole moments of the stress energy tensor are not physically intuitive.

Generation of Gravitational Waves

We can express the multipole moments in terms of the mass moments and the momentum multipoles.

Mass moments: momenta of mass-energy density $T_{00}=\rho c^{2}$

$$
\begin{aligned}
M & =\frac{1}{c^{2}} \int d^{3} x T^{00}(t, \vec{x}) \\
M^{i} & =\frac{1}{c^{2}} \int d^{3} x T^{00}(t, \vec{x}) x^{i} \\
M^{i j} & =\frac{1}{c^{2}} \int d^{3} x T^{00}(t, \vec{x}) x^{i} x^{j}
\end{aligned}
$$

Generation of Gravitational Waves

We can express the multipole moments in terms of the mass moments and the momentum multipoles.

Momenta of the momentum density $T^{0 i} / c$

$$
\begin{aligned}
P^{i} & =\frac{1}{c} \int d^{3} x T^{0 i}(t, \vec{x}) \\
P^{i, j} & =\frac{1}{c} \int d^{3} x T^{0 i}(t, \vec{x}) x^{j} \\
P^{i, j k} & =\frac{1}{c} \int d^{3} x T^{0 i}(t, \vec{x}) x^{j} x^{k}
\end{aligned}
$$

Generation of Gravitational Waves

To leading order in v / c, we can eliminate the multipole moments in favor of the mass moments to get a solution of the form:

$$
\left[h_{i j}^{\mathrm{TT}}(t, \vec{x})\right]_{\mathrm{quad}}=\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l}(\hat{n}) \ddot{M}^{k l}(t-r / c)
$$

where we have used: $\quad S^{i j}=\frac{1}{2} \ddot{M}^{i j}$

Mass quadrupole radiation!

Generation of Gravitational Waves

$$
\left.h_{i j}^{\mathrm{TT}}(t, \vec{x})\right]_{\mathrm{quad}}=\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l}(\hat{n}) \ddot{M}^{k l}(t-r / c)
$$

No Monopole Radiation

$$
\begin{aligned}
\dot{M} & =\frac{1}{c} \int_{V} d^{3} x \partial_{0} T^{00} \\
& =-\frac{1}{c} \int_{V} d^{3} x \partial_{i} T^{0 i} \\
& =-\frac{1}{c} r^{2} \int_{S} d \Omega T^{0 i} \\
& =0
\end{aligned}
$$

No Dipole Radiation

Mass dipole M^{i} zero
(i.e. constant) in center of mass frame

No momentum monopole contribution

$$
\dot{P}^{i}=0
$$

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Effect of Gravitational Waves on Matter

The best way to understand the effect of gravitational waves on matter is to consider two neighboring free-falling particles at

$$
x^{\mu}(\tau) \text { and } x^{\mu}(\tau)+\zeta^{\mu}(\tau)
$$

Consider the geodesic equations for each particle:

$$
\begin{gathered}
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\nu \rho}^{\mu}(x) \frac{d x^{\nu}}{d \tau} \frac{d x^{\rho}}{d \tau}=0 \\
\frac{d^{2}\left(x^{\mu}+\zeta^{\mu}\right)}{d \tau^{2}}+\Gamma_{\nu \rho}^{\mu}(x+\zeta) \frac{d\left(x^{\mu}+\zeta^{\mu}\right)}{d \tau} \frac{d\left(x^{\mu}+\zeta^{\mu}\right)}{d \tau}=0
\end{gathered}
$$

Take the difference of the two and expand to leading order in ζ^{μ} :

$$
\frac{d^{2} \zeta^{\mu}}{d \tau^{2}}+2 \Gamma_{\nu \rho}^{\mu}(x) \frac{d x^{\nu}}{d \tau} \frac{d \zeta^{\rho}}{d \tau}+\zeta^{\sigma} \partial_{\sigma} \Gamma_{\nu \rho}^{\mu}(x) \frac{d x^{\nu}}{d \tau} \frac{d x^{\rho}}{d \tau}=0
$$

Effect of Gravitational Waves on Matter

$$
\frac{d^{2} \zeta^{\mu}}{d \tau^{2}}+2 \Gamma_{\nu \rho}^{\mu}(x) \frac{d x^{\nu}}{d \tau} \frac{d \zeta^{\rho}}{d \tau}+\zeta^{\sigma} \partial_{\sigma} \Gamma_{\nu \rho}^{\mu}(x) \frac{d x^{\nu}}{d \tau} \frac{d x^{\rho}}{d \tau}=0
$$

Transform into a Local Lorentz Frame, assume the particles are moving non-relativistically, and write in terms of the Riemann tensor to simplify to the form:

$$
\frac{d^{2} \zeta^{i}}{d \tau^{2}}=-c^{2} R_{0 j 0}^{i} \zeta^{j}
$$

Effect of Gravitational Waves on Matter

The components of the Riemann tensor may be calculated in any frame due to its invariance in linearized theory. We can use the TT frame:

$$
R_{0 j 0}^{i}=R_{i 0 j 0}=-\frac{1}{2 c^{2}} \ddot{h}_{i j}^{\mathrm{TT}}
$$

Now we see how the geodesic deviation between two particles is related to the perturbation caused by a passing GW:

$$
\ddot{\zeta}^{i}=\frac{1}{2} \ddot{h}_{i j}^{\mathrm{TT}} \zeta^{j}
$$

A tidal effect!

Effect of Gravitational Waves on Matter

Gravitational wave in the z-direction:

$$
h_{i j}^{\mathrm{TT}}=\left[\begin{array}{ccc}
h_{+} & h_{\times} & 0 \\
h_{\times} & -h_{+} & 0 \\
0 & 0 & 0
\end{array}\right]_{i j} \cos (\omega t-z t / c), \quad \omega=c|\vec{k}|
$$

Relative displacements of particles in (x, y) plane:

$$
\begin{aligned}
& h_{x}=0 \\
& \delta \ddot{x}=-\frac{h_{+}}{2}\left(x_{0}+\delta x\right) \omega^{2} \cos (\omega t) \longrightarrow \delta x(t)=\frac{h_{+}}{2} x_{0} \cos (\omega t) \\
& \delta \ddot{y}=\frac{h_{+}}{2}\left(y_{0}+\delta y\right) \omega^{2} \cos (\omega t) \\
& h_{+}=0 \\
& \delta \ddot{x}=\frac{h_{\times}}{2}\left(y_{0}+\delta y\right) \omega^{2} \cos (\omega t) \\
& \delta \ddot{y}=\frac{h_{\times}}{2}\left(x_{0}+\delta x\right) \omega^{2} \cos (\omega t) \quad \delta y(t)=-\frac{h_{\times}}{2} x_{0} \cos (\omega t)
\end{aligned}
$$

Effect of Gravitational Waves on Matter

h_{+}polarization

$$
\begin{aligned}
& \delta x(t)=\frac{h_{+}}{2} x_{0} \cos (\omega t) \\
& \delta y(t)=-\frac{h_{+}}{2} y_{0} \cos (\omega t)
\end{aligned}
$$

h_{x} polarization

$$
\begin{aligned}
& \delta x(t)=-\frac{h_{\times}}{2} y_{0} \cos (\omega t) \\
& \delta y(t)=-\frac{h_{\times}}{2} x_{0} \cos (\omega t)
\end{aligned}
$$

Review: Generation of Gravitational Waves

To leading order in v / c, we can eliminate the multipole moments in favor of the mass moments to get a solution of the form:

$$
\left[h_{i j}^{\mathrm{TT}}(t, \vec{x})\right]_{\mathrm{quad}}=\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l}(\hat{n}) \ddot{M}^{k l}(t-r / c)
$$

where we have used: $S^{i j}=\frac{1}{2} \ddot{M}^{i j}$

Mass quadrupole radiation!

Case I: Propagation in ẑ

Case II: Propagation in \hat{n}

When the wave propagates in a generic direction \hat{n}, we introduce
two unit vectors \hat{u} and \hat{v}, orthogonal to \hat{n}

The vector \hat{u} is in the (\hat{x}, \hat{y}) plane while \hat{v} points downward with respect to the (\hat{x}, \hat{y}) plane.

Case II: Propagation in \hat{n}

For a generic propagation direction, the two polarization amplitudes have the form:

$$
\begin{aligned}
& h_{+}(t ; \theta, \phi)=\frac{1}{r} \frac{G}{c^{4}}\left[\ddot{M}_{11}\left(\cos ^{2} \phi-\sin ^{2} \phi \cos ^{2} \theta\right)\right. \\
& \\
& \quad+\ddot{M}_{22}\left(\sin ^{2} \phi-\cos ^{2} \phi \cos ^{2} \theta\right) \\
& \\
& -\ddot{M}_{33} \sin ^{2} \theta \\
& \\
& -\ddot{M}_{12} \sin 2 \phi\left(1+\cos ^{2} \theta\right) \\
& \\
& +\ddot{M}_{13} \sin \phi \sin 2 \theta \\
& \\
& \left.+\ddot{M}_{23} \cos \phi \sin 2 \theta\right] \\
& \begin{aligned}
h_{\times}(t ; \theta, \phi)=\frac{1}{r} \frac{G}{c^{4}} & {\left[\left(\ddot{M}_{11}-\ddot{M}_{22}\right) \sin 2 \phi \cos \theta\right.} \\
& +2 \ddot{M}_{12} \cos 2 \phi \cos \theta \\
& -2 \ddot{M}_{13} \cos \phi \sin \theta \\
& \left.+2 \ddot{M}_{23} \sin \phi \sin \theta\right]
\end{aligned}
\end{aligned}
$$

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

LIGO/Virgo Astrophysical Sources

$\xrightarrow{\text { Computational Cost }}$
Bursts
Compact
Binaries

Signal Duration

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Example I: Quadrupole radiation from a mass in circular orbit

The usual center-of-mass coordinate is:

$$
\mathbf{x}_{\mathrm{CM}}=\frac{m_{1} \mathbf{x}_{\mathbf{1}}+m_{2} \mathbf{x}_{\mathbf{2}}}{m_{1}+m_{2}}
$$

$\mathrm{x}_{0}=\mathrm{x}_{1}-\mathrm{x}_{2}$ is the relative coordinate of an isolated two-body system in the center-of-mass frame.
If we chose the origin of the coordinate system at $\mathrm{x}_{\mathrm{CM}}=0$,
then the second mass moment is: $M^{i j}(t)=\mu x_{0}^{i}(t) x_{0}^{j}(t)$
where $\quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad$ is the reduced mass.

Example I: Quadrupole radiation from a mass in circular orbit

Choose (x, y, z) frame so orbit is in (x, y) plane.

Orbit is given by:
$x_{0}(t)=R \cos \left(\omega_{s} t+\pi / 2\right)$
$y_{0}(t)=R \sin \left(\omega_{s} t+\pi / 2\right)$
$z_{0}(t)=0$

The only non-vanishing second mass moment components are:

$$
\begin{aligned}
& M_{11}=\mu R^{2} \frac{1-\cos 2 \omega_{s} t}{2} \\
& M_{22}=\mu R^{2} \frac{1+\cos 2 \omega_{s} t}{2} \\
& M_{12}=-\frac{1}{2} \mu R^{2} \sin 2 \omega_{s} t
\end{aligned}
$$

Compute $\ddot{M}_{i j}$. Plug into generic expressions for polarization amplitudes to get:

$$
\begin{aligned}
& h_{+}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right) \\
& h_{\times}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}} \cos \theta \sin \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
\end{aligned}
$$

Example I: Quadrupole radiation from a mass in circular orbit

$$
\begin{aligned}
h_{+}(t ; \theta, \phi) & =\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right) \\
h_{\times}(t ; \theta, \phi) & =\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}} \cos \theta \sin \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
\end{aligned}
$$

Quadrupole radiation is at twice the frequency ω_{s} of the source: $\omega_{\mathrm{gw}}=2 \omega_{s}$

A rotation of the source by $\Delta \phi$ is the same as a time translation so that

$$
\omega_{s} \Delta t=\Delta \phi
$$

The angle θ is equal to the angle ι between the normal to the orbit and the line-of-site.

Example I: Quadrupole radiation from a mass in circular orbit
Use Kepler's law, the chirp mass, and the GW frequency to rewrite the solutions.

$$
\begin{gathered}
\omega_{s}^{2}=\frac{G M}{R^{3}} \quad M_{c}=\mu^{3 / 5} M^{2 / 5}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}} \quad \begin{array}{l}
\omega_{\mathrm{gw}}=2 \omega_{s} \\
\omega_{\mathrm{gw}}=2 \pi f_{\mathrm{gw}}
\end{array} \\
h_{+}(t)=\frac{4}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 3}\left(\frac{\pi f_{\mathrm{gw}}}{c}\right)^{2 / 3} \frac{1+\cos ^{2} \theta}{2} \cos \left(2 \pi f_{\mathrm{gw}} t_{\mathrm{ret}}+2 \phi\right) \\
h_{\times}(t)=\frac{4}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 3}\left(\frac{\pi f_{\mathrm{gw}}}{c}\right)^{2 / 3} \cos \theta \sin \left(2 \pi f_{\mathrm{gw}} t_{\mathrm{ret}}+2 \phi\right)
\end{gathered}
$$

The amplitudes of the GWs emitted depend on the masses m_{l} and m_{2} only through the combination M_{c}.

Example I: Quadrupole radiation from a mass in circular orbit

Angular distribution of the radiated power in quadrupole approximation:

$$
\left(\frac{d P}{d \Omega}\right)_{\text {quad }}=\frac{r^{2} c^{3}}{16 \pi G}\left\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle
$$

$\begin{gathered}\text { For our binary system } \\ \text { example. }\end{gathered}\left(\frac{d P}{d \Omega}\right)_{\text {quad }}=\frac{2 G \mu^{2} R^{4} \omega_{s}^{6}}{\pi c^{5}} g(\theta)$

$$
g(\theta)=\left(\frac{1+\cos ^{2} \theta}{2}\right)^{2}+\cos ^{2} \theta
$$

Total power radiated in quadrupole approximation

$$
P_{\text {quad }}=\left(\frac{d E_{\mathrm{gw}}}{d \Omega}\right)_{\text {quad }}=\frac{r^{2} c^{3}}{16 \pi G} \int_{\mathcal{S}} d \Omega\left\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle
$$

For our binary system $\quad P_{\text {quad }}=\frac{32}{5} \frac{G \mu^{2}}{c^{5}} R^{4} \omega_{s}^{6}$ example:

Example I: Quadrupole radiation from a mass in circular orbit

In terms of the chirp mass M_{c}, the total radiated power in the binary system is

$$
P=\frac{32}{5} \frac{c^{5}}{G}\left(\frac{G M_{c} \omega_{\mathrm{gw}}}{2 c^{3}}\right)^{10 / 3}
$$

Example I: Quadrupole radiation from a mass in circular orbit

The emission of GWs costs energy. Previous equations are only valid if sources are on fixed, circular Keplerian orbit.

To compensate for loss of energy to GWs, R must decrease in time.

If R decreases, ω_{s} increases.
Then power radiated in GWs increases which means R must decrease even more.

Runaway process \Rightarrow binary system must coalesce.

Example I: Quadrupole radiation from a mass in circular orbit

Changes needed to:

$$
\begin{gathered}
h_{+}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right) \\
h_{\times}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}} \cos \theta \sin \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
\end{gathered}
$$

In arguments of the trigonometric functions: $\omega_{\mathrm{gw}} t \rightarrow \Phi(t)$
In factors in front of trigonometric functions: $\omega_{\mathrm{gw}} \rightarrow \omega_{\mathrm{gw}}(t)$
May have contributions from derivatives of $R(t)$ and $\omega_{\mathrm{gw}}(t)$.
$\dot{R}(t)$ is negligible as long as $f_{\mathrm{gw}} \ll 13 \mathrm{kHz}\left(1.2 M_{\odot} / M_{c}\right)$

Example I: Quadrupole radiation from a mass in circular orbit

Time to coalescence τ measured by the observer:

$$
\tau \equiv t_{\text {coal }}-t \quad-\infty<t<t_{\text {coal }}
$$

Evolution of GW frequency:

$$
f_{\mathrm{gw}}(\tau)=\frac{1}{\pi}\left(\frac{5}{256 \tau}\right)^{3 / 8}\left(\frac{G M_{c}}{c^{3}}\right)^{-5 / 8}
$$

Evolution of arguments of trigonometric functions:

$$
\Phi(\tau)=-2\left(\frac{5 G M_{c}}{c^{3}}\right)^{-5 / 8} \tau^{5 / 8}+\Phi_{0} \quad \Phi_{0}=\Phi(\tau=0)
$$

Then the GW amplitudes are

$$
\begin{aligned}
& h_{+}(t)=\frac{1}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 4}\left(\frac{5}{c \tau}\right)^{1 / 4} \frac{1+\cos ^{2} \iota}{2} \cos [\Phi(\tau)] \\
& h_{\times}(t)=\frac{1}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 4}\left(\frac{5}{c \tau}\right)^{1 / 4} \cos \iota \sin [\Phi(\tau)]
\end{aligned}
$$

Example I: Quadrupole radiation from a mass in circular orbit

In Schwarzschild geometry, there is a minimum value of the radial distance beyond which stable circular orbits are no longer allowed,
i.e. the Innermost Stable Circular Orbit (ISCO):

$$
r_{\mathrm{ISCO}}=\frac{6 G M}{c^{2}}
$$

For binaries of BH or NS, a phase of slow adiabiatic inspiral, going through quasi-circular orbit and driven by emission of GWs can only take place at distances $r \gtrsim r_{\text {ISCO }}$

$$
f_{\max }=\left(f_{s}\right)_{\mathrm{ISCO}}=\frac{1}{12 \sqrt{6} \pi} \frac{c^{3}}{G M}
$$

Full Coalescing Binary Signal

Coalescing Binaries Non-spinning, equal mass black holes

$$
(m 1, m 2)=(10,10) M_{\odot}
$$

Coalescing Binaries Non-spinning, unequal mass black holes

$(m 1, m 2)=(4,16) M_{\odot}$
The more massive BH is closer to the center of mass.
The energy radiated is lower than an equal-mass binary.
The binary takes longer to inspiral.

Coalescing Binaries Aligned spin, equal mass black holes

ICTS ANkit Singh/ $/$ Paith

Spin vectors are aligned with orbital angular momentum.
Orbital hang-up effect: aligned-spin black holes can inspiral to much closer separations, resulting in longer and stronger GW signals, compared to non-spinning binary.

Coalescing Binaries Anti-aligned spin, equal mass black holes

Spin vectors are aligned opposite to orbital angular momentum.
Anti-aligned-spin black holes have shorter and weaker GW signals, compared to non-spinning binary.

Coalescing Binaries Misaligned spin, unequal mass black holes

Spin vectors are misaligned with orbital angular momentum.
There are spin-orbit and spin-spin interactions between spins and orbital angular momentum that cause spins to precess.
Results in complicated modulations in amplitude and phase of GW signals.

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Continuous Waves

Non-axisymmetric rotating neutron stars; asymmetry could arise from:

- equatorial ellipticity (mm-high mountain) $f_{\mathrm{GW}}=2 f_{\text {rot }}$
- free precession around rotation axis $f_{\mathrm{GW}} \sim f_{\text {rot }}+f_{\text {prec }}$
- excitation of long-lasting oscillations $f_{\mathrm{GW}} \sim 4 / 3 f_{\text {rot }}$
- deformation due to matter accretion
$f_{\mathrm{GW}}=2 f_{\text {rot }}$

Continuous Waves

At the detector

Nearly monochromatic, continuous signal but could have:

- relative velocity between source/detector (Doppler Effect)
- amplitude modulation due to antenna sensitivity of detector
- frequency and phase evolution

Example II: Quadrupole radiation from rotating rigid body

A rigid body is characterized by its inertia tensor:

$$
I^{i j}=\int d^{3} x \rho(\mathbf{x})\left(r^{2} \delta^{i j}-x^{i} x^{j}\right)
$$

There is a frame where the inertia tensor is diagonal. The principal moments of inertia are

$$
\begin{aligned}
& I_{1}=\int d^{3} x^{\prime} \rho\left(\mathbf{x}^{\prime}\right)\left(x_{2}^{\prime 2}+x_{3}^{\prime 2}\right) \\
& I_{2}=\int d^{3} x^{\prime} \rho\left(\mathbf{x}^{\prime}\right)\left(x_{1}^{\prime 2}+x_{3}^{\prime 2}\right) \\
& I_{3}=\int d^{3} x^{\prime} \rho\left(\mathbf{x}^{\prime}\right)\left(x_{1}^{\prime 2}+x_{2}^{\prime 2}\right)
\end{aligned}
$$

Consider a simple situation in which an ellipsoidal body rotates rigidly about one of its principle axes.

Example II: Quadrupole radiation from rotating rigid body

$\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ - attached to body and rotate with it
$\left(x_{1}, x_{2}, x_{3}\right)$ - fixed reference frame
The two frames are related by time-dependent rotation matrix:

$$
x_{i}^{\prime}=\mathcal{R}_{i j} x_{j}
$$

$$
\mathcal{R}_{i j}=\left[\begin{array}{ccc}
\cos \omega_{\mathrm{rot}} t & \sin \omega_{\mathrm{rot}} t & 0 \\
-\sin \omega_{\mathrm{rot}} t & \cos \omega_{\mathrm{rot}} t & 0 \\
0 & 0 & 1
\end{array}\right]_{i j}
$$

The time-dependent inertia tensor is then given as $I=\mathcal{R}^{T} I^{\prime} \mathcal{R}$

$I_{11}=1+\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\text {rot }} t \quad I_{22}=1-\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\text {rot }} t$
$I_{12}=\frac{I_{1}-I_{2}}{2} \sin 2 \omega_{\text {rot }} t \quad I_{33}=I_{3} \quad I_{13}=I_{23}=0$

Example II: Quadrupole radiation from rotating rigid body

Compare the inertia tensor with the second mass moment:

$$
I^{i j}=\int d^{3} x \rho(\mathbf{x})\left(r^{2} \delta^{i j}-x^{i} x^{j}\right) \quad M^{i j}=\int d^{3} x \rho(\mathbf{x}) x^{i} x^{j}
$$

They differ by a minus sign and a trace term.

$$
M^{i j}=-I^{i j}+\operatorname{Tr}(I) \delta^{i j}
$$

But the trace is a constant :

$$
\operatorname{Tr}(I)=\operatorname{Tr}\left(\mathcal{R}^{T} I^{\prime} \mathcal{R}\right)=\operatorname{Tr}\left(\mathcal{R} \mathcal{R}^{T} I^{\prime}\right)=\operatorname{Tr}\left(I^{\prime}\right)=I_{1}+I_{2}+I_{3}
$$

Example II: Quadrupole radiation from rotating rigid body

So when taking the second time derivative of $M^{i j}$, the trace terms vanish.

$$
\begin{gathered}
M_{11}=-\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\mathrm{rot}} t+\mathrm{constant} \\
M_{12}=-\frac{I_{1}-I_{2}}{2} \sin 2 \omega_{\mathrm{rot}} t+\mathrm{constant} \\
M_{22}=+\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\mathrm{rot}} t+\mathrm{constant} \\
\quad M_{13}=M_{23}=M_{33}=\mathrm{constant}
\end{gathered}
$$

Note, there is a time-varying second mass moment only if $I_{1} \neq I_{2}$.
$M_{i j}$ is a periodic function so we have production of gravitational waves with frequency:

$$
\omega_{\mathrm{gw}}=2 \omega_{\mathrm{rot}}
$$

Example II: Quadrupole radiation from rotating rigid body

Use equations for generic propagation.
Set $\theta=\iota$ and $\phi=0$.

$$
\begin{gathered}
h_{+}=\frac{14 G \omega_{\text {rot }}^{2}}{r} \frac{\left.I_{1}-I_{2}\right) \frac{1+\cos ^{2} \iota}{2} \cos \left(2 \omega_{\text {rot }} t\right)}{h_{x}=\frac{14 G \omega_{\text {rot }}^{2}}{r} \frac{c^{4}}{}\left(I_{1}-I_{2}\right) \cos \iota \sin \left(2 \omega_{\text {rott }}\right)}
\end{gathered}
$$

Define ellipticity by: $\epsilon \equiv \frac{I_{1}-I_{2}}{I_{3}}$

$$
\begin{array}{ll}
h_{+}=h_{0} \frac{1+\cos ^{2} \iota}{2} \cos \left(2 \pi f_{\mathrm{gw}} t\right) \\
h_{\times}=h_{0} \cos \iota \sin \left(2 \pi f_{\mathrm{gw}} t\right)
\end{array} \quad h_{0}=\frac{4 \pi^{2} G}{c^{4}} \frac{I_{3} f_{\mathrm{gw}}^{2}}{r} \epsilon
$$

Neutron stars that rotate more rapidly produce a stronger GW signal.

Example II: Quadrupole radiation from rotating rigid body

Angular distribution of the radiated power in quadrupole approximation:

$$
P_{\mathrm{quad}}=\left(\frac{d E_{\mathrm{gw}}}{d \Omega}\right)_{\mathrm{quad}}=\frac{r^{2} c^{3}}{16 \pi G} \int_{\mathcal{S}} d \Omega\left\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle
$$

For our NS example: $P=\frac{32 G}{5 c^{5}} \epsilon^{2} I_{3}^{2} \omega_{\text {rot }}^{6}$
Then we can say that the rotational energy of the star decreases because of GW emission as

$$
\frac{d E_{\mathrm{rot}}}{d t}=-\frac{32 G}{5 c^{5}} \epsilon^{2} I_{3}^{2} \omega_{\mathrm{rot}}^{6}
$$

Rotational energy of star rotating around its principal axis is

$$
E_{\mathrm{rot}}=(1 / 2) I_{3} \omega_{\mathrm{rot}}^{2}
$$

Then rotational frequency of neutron star should decrease as

$$
\dot{\omega}_{\mathrm{rot}}=-\frac{32 G}{5 c^{5}} \epsilon^{2} I_{3} \omega_{\mathrm{rot}}^{5}
$$

Example II: Quadrupole radiation from rotating rigid body

$$
\dot{\omega}_{\mathrm{rot}} \sim-\omega_{\mathrm{rot}}^{n}
$$

${ }^{\circ}$ Demiańskl \& Prószyńskj (1983), Lyne, Pritchard \& Smith (1988, 1993).
${ }^{b}$ Livingstone et aL. (2005).
${ }^{\text {'Ly }}$ Lyne et aL. (1996), Dodson, McCulloch \& Lewis (2002).
${ }^{\text {d }}$ Camilo et al. (2000).
${ }^{6}$ Manchester, Durdin \& Newton (1985), Kaspi et al. (1994).
${ }^{f}$ Livingstone et al. (2006).
n is the braking index.

Experimentally, n ranges between 2 and 3 , rather than $n=$ 5 so GW emission is not main energy loss mechanism for rotating pulsars.
N. Vranesevic, D.B. Melrose, MNRAS 410, 4 (2011)

Continuous Waves

Continuous signal with $h \propto \epsilon \quad \mathrm{SNR} \propto \frac{h}{\sqrt{S_{n}}} \sqrt{T}$
Equatorial ellipticity $\epsilon=\frac{I_{\mathrm{XX}}-I_{\mathrm{YY}}}{I_{\mathrm{ZZ}}}$
Maximum Deformations
$\epsilon<10^{-5} \quad$ Normal Neutron Star
$\epsilon<10^{-3} \quad$ Hybrid Neutron Star
$\epsilon<10^{-1} \quad$ Extreme Quark Star

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

Burst Sources

Supernovae

Type la supernovae when white dwarfs in binary detonate.

The Iconic Burst GW Source Core collapse supernovae (Type lb/lc \& II) when massive stars die.

Burst Sources

Burst Sources

Stochastic Background

- Stochastic (random) background of gravitational radiation
- Can arise from superposition of large number of unresolved GW sources

1. Cosmological origin
2. Astrophysical origin

- Strength of background measured as gravitational wave energy density ρ_{GW}

Cosmic Microwave Background

- 1965 - Penzias and Wilson accidently discovered Cosmic Microwave Background (CMB), leftover radiation from 380,000 years Big Bang
- 1978 - awarded Nobel prize

- CMB as seen by Planck, an ESA observatory
- Wavelengths of photons are greatly redshifted (1 mm)
- Effective temperature ~ 2.7 K
- Can be detected by far-infrared and radio telescopes

Cosmological Gravitational Wave Background

What powered the big bang?

Only gravitational waves can escape from the earliest moments of the Big Bang

Big Bang plus $10-43$ seconds

Inflation

(Big Bang plus 10^{-35} seconds?)

Big Bang plus
300,000 Years
Cosmic microwave background, distorted by seeds of structure and gravitational waves

Big Bang plus
15 Billion Years

Cosmological Gravitational Wave Background

GW spectrum: $\Omega_{\mathrm{GW}}(f)=\frac{f}{\rho_{c}} \frac{\mathrm{~d} \rho_{\mathrm{GW}}}{\mathrm{d} f}$
Critical energy density of universe: $\rho_{c}=\frac{3 c^{2} H_{0}^{2}}{8 \pi G}$

Cosmological Gravitational Wave Background

Big-BangNucleosynthesis: abundances of light nuclei produced

Cosmic Microwave Background Measurements: structure of CMB and matter power spectra

Cosmological Gravitational Wave Background

Inflation: measuring GWs can test for "stiffness" in early universe

Models of Cosmic Strings: topological defects in early universe

Astrophysical Gravitational Wave Backgrounds

Potential background from binary black hole mergers

Frequencies of signals as audio

- Solving the Einstein Equations
- Linearized Theory
- Vacuum Solution
- Solution with Source Term
- Generation of Gravitational Waves
- Effect of Gravitational Waves on Matter
- LIGO \& Virgo Astrophysical Sources
- Coalescing Binaries
- Continuous Waves
- Transient Bursts
- Stochastic Background
- LISA \& PTA Sources

LISA Sources

- Galactic white dwarfs
- Primordial backgrounds
- Supermassive binary black holes
- Capture orbits

LISA Gravitational Wave Background

- Produced by an extremely large number of weak, independent, and unresolved gravitational-wave sources. For LISA, this will be white dwarf binaries.

Pulsar Timing Array
 Sources

- Also, supermassive binary black holes!

Merging Supermassive Black Hole Binaries

