Announcements

Please turn in Assignment 2 and pick up Assignment 3
You can also email assignments to the TAs:

Ka Wa Tsang (kwtsang@nikhef.nl)

Pawan Gupta (p.gupta@nikhef.nl)

Pick up Visualization Project description
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Last week’s big announcement: first image
of black hole

.

Event Horizon Telescope




Gravitational Wave
Derivation and
Astrophysical Sources

| ecture 3: Gravitational Waves MSc Course



e Solving the Einstein Equations
e Linearized Theory
e \acuum Solution
e Solution with Source Term
e (Generation of Gravitational Waves
e Effect of Gravitational Waves on Matter
e | IGO & Virgo Astrophysical Sources
e Coalescing Binaries
e Continuous Waves
e [ransient Bursts
e Stochastic Background
e |[SA & PTA Sources




The Einstein Equations

1 &
GMV — R'L”/ — §g'uyR —

1
ot H

Given the source distribution 1}, one can solve
this set of 10 coupled nonlinear partial differential
equations for the metric guv ()



Methods

Solving Einstein’s equations is difficult. They're non-linear. In
fact, the equations of motion are impossible to solve unless
there 1Is some symmetry present.

In the absence of symmetry, there are two methods:
1. Numerical relativity (next time)
2. Approximation techniques

For the approximation technique, we co
close to flat space with a small pertu

nsider a metric very
rbation. And we

consider only first order pertu

roations.
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| inearized Theory of Metric Field

Consider the Minkowski metric - a combination of three
dimensional Euclidean space and time into four dimensions.

ds® = —c*dt* + dz® + dy* + dz* = n,, dz'dz”

o = OO
—— 0 O O

Consider a small perturbation .. on flat space:
Juv = Muv T h;w |h,uy‘ < 1

so that higher orders of hu. can be neglected when
substituting in Einstein Field Equations (EFE)



| inearized Theory of Metric Field

Can we make coordinate transformations under such
systems? Yes, from one slightly curved one to another, aka
“Background Lorentz transtformation”

So EFE are invariant under general coordinate transtormations but
iInvariance is broken as a result of background.

huvis an as yet unknown perturbation on flat space. We can make
small changes in coordinates that leave 71,
unchanged but make small changes in i,

We can only consider a sufficiently large specific reference
frame where g,,, = 1,, + h,, holds.

In other words, we're restricted in how much we can change
the coordinates.



| inearized Theory of Metric Field

We are restricted to a limited set of coordinate
transformations called "gauge transformations”

o — o't + € (2*)
It we transtorm the metric under this change of

coordinates we find that the metric has the same form
but with new perturbations given by

hp () = Py, (27) = By () = (s + 00€4)



| inearized Theory of Metric Field

We can stream line some calculations by an
appropriate choice of gauge conditions.

We require a coordinate system in which Lorentz
gauge (or harmonic gauge) holds

Oh,, =0

where we've defined the trace-reversed perturbation:
_ h

h,ul/ — h,uy — 577,uy

such that the trace has opposite sign:
ht = h,, = —h

s



| inearized Theory of Metric Field

The Riemann curvature tensor
1

5 (
for a flat metric with a perturbation will become

1
Rvps = 5 (0,0ph s + 0,05hy, — 0,,0,hye — OL0shy,p)

Ryvap = 5 (0u0agvp — 0v0agus + 0v089ua — 0,989va)

Then substituting the trace-reversed perturbation, EFE takes form:

— _ _ _ 167G
0, 0" hy + 1, 0P 0 by — POy by — PO,y = CZ T..
If we define the d’Alembertian operator: [ = 9,,0"
_ - _ _ 167G
By + N 0?07 By — 00,y — 00y = — —— Ty

C



| inearized Theory of Metric Field

And iImpose the harmonic gauge, then the last three
terms in previous equation vanish and we end up with
the Linearized Einstein Equations

167G
bl

U

Ny =
H 64
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Solution in a Vacuum

What happens outside the source, where 1, =0 7?

Then, the EFE reduces to

huw =0
1 _
(——aﬂ + v2> B =0

2

Wave equation for waves propagating at speed of light ¢!

Solutions to wave equation can be written as superpositions
of plane waves traveling with wave vectors k£ and frequency

k

W — C




Solution in a Vacuum

Plane wave solution:
h(t) = A, cos (wt _ f)

Implications: Spacetime has dynamics of its own,
independent of matter. Even though matter generated
the solution, it can still exist far away from the source

where 1, =0
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Solution with Source

Now allow for source. What would cause the waves to
be generated?

_ 16w
hp = i T

Solve using retarded Green’s function assuming no
iIncoming radiation from infinity. The solution is

_ 4 1 i
P (t,7) = G/dS’ T (t z x',f’)

c iz — 7| " C




Solution with Source

We can utilize an additional gauge freedom by
imposing the radiation gauge:

h=0, ho; =0

Combining the harmonic gauge and this radiation gauge, we
can write the solution in the transverse traceless (1T) gauge

. 4G ) 1 -7
hz-TjT (t, .Cl?) — —Aij,kl(n) /dSLIZ‘/ ‘ = _,/‘ Tkl (t ,Zlﬁl>

ct T — I C

n - direction of propagation of GW

Aij r1(7)is a tool to bring hy,,, outside the source in
the TT gauge.



Solution with Source

Aij k1(7)is a tool to bring h,,,, outside the source in

the TT gauge.

A 1
Nij k() = PPy — §Pijpkl

Pij — 57;]' — nmj

Then the perturbaﬂon hTT (t T) can be evaluated outside the
source at vvhlle 7 is a point inside the source.

T (t — |7 =2 /e, &) # 0

We're looking at a distance » that iIs much i
larger than the size of the source d. Then we ﬂ
\

can expand | d )
AT =r—F - n+0(d?/r) \ /




Solution with Source

Then we can write the TT solution as

. 4d X 1 r ¥-n _
hgT (t,7) = C—4A7;j,kl(n) /dgaf;’ - mTkl (t — — 4 ,ZE’)

C C

It the source is non-relativistic, v/ic << 1, then we can expand

/1

77 2 1 . .
T (t — 4= nvfl) = 1k (t - faf,) + T + “x ! 05 Thy + ...
C C C

——
C 2c2

We can substitute this for 7w in the TT solution to get the
multipole expansion

i 1 1
his' (6, &) = = —Nj(R) | S + =n,p S
C

ckl,mp
5.2 N Mp S + ...

dret

where ret is the retarded time t — 7/c
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Generation of Gravitational Waves

Multipole moments of stress tensor 7%
SY = / dPxTY (t, %)
Sk — /dSLETij (t, &) "

Szy Kkl /deng ( —») xka:l

Multipole moments of the stress energy tensor are
not physically intuitive.



Generation of Gravitational Waves

We can express the multipole moments in terms of the
mass moments and the momentum muiltipoles.

Mass moments: momenta of energy density TOO/c2

1 —

M:C—Q/dSZI?TOO(t,QZ‘)
i L N
M :C—Q/d3$TOO(t,QZ‘)LE

| o
MY = —/dB:L‘TOO (t,7) x*x’

2



Generation of Gravitational Waves

We can express the multipole moments in terms of the
mass moments and the momentum muiltipoles.

Momenta of momentum density T /c

. 1 .
P! = - / T (¢, Z)

C

1 | |
pPvl = = /deTOZ (t, T) 2’

c
1 3 Oz k
d>xT (t, %) 2’z

C

Pi,jk



Generation of Gravitational Waves

To leading order in v/c, we can eliminate the multipole
moments in favor of the mass moments to get a
solution of the form:

126G
quad r c

[hZ?T (t, f)} Aijjkl(ﬁ)Mkl (t — T/C)

1

where we have used: S = 5]\"4”‘5

Mass quadrupole radiation!



Generation of Gravitational Waves

T 12G
quad r C4

hET (t, f)} Aijykl(”fl)Mkl (t — T/C)

No Monopole Radiation No Dipole Radiation
M — 1/ 43 28, T Mass dipole M" zero
CJv (i.e. constant) in center of
1 mass frame

— ——/ dSLEa&'TOi
cJv
No momentum monopole
— _ETZ/dQTOi contribution
© Js P =0
=0
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Effect of Gravitational Waves on Matter

The best way to understand the effect of gravitational waves on

matter is to consider two neighboring free-tfalling particles at
zt(r)and (1) + (¥ (1)

Consider the geodesic equations for each particle:

e dx” dx”

= Ky =
dr? ”p(m) dr dt U
d* (" + ¢") d(z" + ¢") d(zt + ¢*)
o Ky =
dT? ve (z+¢) dr dr U

Take the difference of the two and expand to leading order
in C*:

dx” d(¢F dx” dx”

- (70,T'F =
dr dt 0 ”p(x) dr dr U

d2¢r

dT?

| ZF,‘/‘p(x)



Effect of Gravitational Waves on Matter

d?(H Y d(CP dx? dxP
- 2T - (90, TH =0
dT? vP % dT C vp () dr dt

Transform into a Local Lorentz Frame such that:

g,uz/(P) — 77,u1/a 8,0.g,ul/ = () > FZV — ()
Assume the particles are moving non-relativistically:

dx’ < dz®  dy°
dr dr  dr

~ C

Relate 9,159 to the Riemann tensor:




Effect of Gravitational Waves on Matter

The components of the Riemann tensor may be calculated in
any frame due to its invariance In linearized theory. We can use
the TT frame:

1 hTT

0 — 141090 —
050 J 262 (]

Now we see how the geodesic deviation between two particles
s related to the perturbation caused by a passing GW:

C _ lhTng

A tidal effect!



Effect of Gravitational Waves on Matter

Gravitational wave in the z-direction:

h_|_ h/x O .
h;.IJ‘-T h —hy 0| cos(wt—zt/c), w=clk|
0o 0 of,

Relative displacements of particles in (x, y) plane:
hyx =0

h h

0F = 2+ (z¢ + 0x) w* cos(wt) ox(t) = 7—'_2170 cos(wt)
0y = % (Yo + 0y) w” cos(wt) ) 0y(l) = h; yo cos(wt)
iy =0 B h
0L = - (yo + 0y) w” cos(wt) ox(t) = 5 Yo cos(wt)
0l = % (2 + d7) w? cos(wt) )5y(t) = h2>< T( cos(wt)



Effect of Gravitational Waves on Matter

h+ polarization

h ¢ ¢ o

ox(t) = %a’zo cos(wt) " e,

h_l_ & ® o o o ® ¢
oy(t) = 5 Yo cos(wt)

hx polarization .

h>< ® .
0z (t) = 5 Yo cos(wt) o .

ho e o

oy(t) = 5 Lo cos(wt) oot



Review: Generation of Gravitational Waves

To leading order in v/c, we can eliminate the multipole

moments in favor of the mass moments to get a solution of
the form:

126G
quad r c

[hZ?T (t, f)} Aijjkl(ﬁ)Mkl (t — T/C)

1

where we have used: SY = 5]\"4”

Mass quadrupole radiation!



Case |: Propagation in z

When the direction of propagation n of
the GW is equal to 2, F;; is the
diagonal matrix:

Z

I 0 O
P= (0 1 0
0 0 O

.e., a projector on the
(x,y)plane,

the two polarization amplitudes have the form

1 G

rct

x hy = (Mn — M22) hy = =— Mo



Case Il: Propagation in n

Z

v

When the wave
propagates in a generic
direction n, we introduce

two unit vectors

A

and ¢, orthogonal ton

Y

The vector 4 IS In
the (z,9) plane
while v points
downward with

respect to
the (2, y) plane.



Case Il: Propagation in n

For a generic propagation direction, the two polarization
amplitudes have the form:

ha (t;0,0) = ECE[MH (cos® ¢ — sin” ¢ cos” 6)

+ Mo (sm b — cos® ¢ cos? 9)
— M35 sin? 6

— M5 sin 20 (1 + cos? (9)
Mj 3 sin ¢ sin 26

M3 cos ¢ sin 26]

1 G
r ot

hy (t;0,¢) = - [(M11 — Mas) sin 2¢ cos 0

+ 2My 5 cOS 2¢ cos 6
— 2M3 cos ¢ sin 6
+ 2Mo3 sin ¢ sin 6]
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-xample | Quadrupole radiation from a mass in

circular orbit

The usual center-of-mass coordinate is:

mi1Xy1 + MoXao
XCM =
mi1 + Mo

xo = x1 — %2 IS the relative coordinate of
an isolated two-body system in the

center-of-mass frame.

It we chose the origin of the coordinate
system at xqy =0,

then the second mass moment is: M¥(t) = pxd (t)z)(t)

mimso

where #= IS the reduced mass.

mi1 + Mms




X0 — X1 — X9

Choose (x,y, z) frame so
orbitisin (x,y) plane.

Orbit is given by:
xo(t) = Rcos(wst + 7/2)
Yo(t) = Rsin(wst + 7/2)
Zo(t) =0

-xample | Quadrupole radiation from a mass in
circular orpit

The only non-vanishing second mass moment
components are:

1 — cos 2wt

My = MR2 9
My — e L0820

1
M12 == —§/LR2 sin QwSt

Compute Mij . Plug into generic expressions for
polarization amplitudes to get:

1 4Guw?R? (1 + cos? 6

ha (t;0,0) = " 7 ( > ) cos(2wstret + 2¢)
1 4G pw? R?

hy (t;0,¢0) = HEs cos 0 sin(2wgtret + 20)

r ct



-xample | Quadrupole radiation from a mass in
circular orpit

1 4Guw?R? (1 + cos? 6
ho (t;0,0) = . 'uc4 ( ; ) cos(2wgtret + 20)
1 4G pw? R?
hy (t;0,0) W:SR cos 0 sin(2wgtret + 20)

(A C

Quadrupole radiation is at twice the
frequency ws of the source: wew = 2ws

A rotation of the source by A¢ IS the
same as a time translation so that
wsAt = Ag

The angle g Is equal to the angle ¢
between the normal to the orbit and
the line-of-site.




-xample | Quadrupole radiation from a mass in

circular orpit
Use Kepler’s law, the chirp mass, and the GW frequency to
rewrite the solutions.

3/5
W2 — GM M, = M3/5M2/5 _ (mlmQ) / Wew — 2w,
S R3 (m1 +m )1/5
1 2 Wew = 2T fow
4 (GM.\"? L\ 231 29
hlt) =7 ( 2 ) (W];g ) O 7 o827 fntres + 20)

)= (

(A

GMC>5/3 (ngw

2/3
> » ) cos 0 sin(27 fowlret + 20)

The amplitudes of the GWs emitted depend on the masses
m; and m2 only through the combination M.



-xample | Quadrupole radiation from a mass in
circular orpit

Angular distribution of the radiated power in quadrupole
approximation:

dP reCS /i i
(dTZ)quad 167G <h+ " h><>

For our binary system (£>
quad

e g(0)
example:

1 20\ °
9(9):( —H;OS 9) + cos®

- 2Gp*RYWY?
N e

Total power radiated in guadrupole approximation

dE T3 —
p.o= ( LZew _ 49 <h2 h2>
quad ( ) )quad 167TG/3 + T

. 2
For our binary system P, = B2CHT pa 8

5 ¢ >
example:




-xample | Quadrupole radiation from a mass in
circular orpit

In terms of the chirp mass M. , the total radiated power in the
binary system is

b 20 (Gl )
5 G 2c3



-xample | Quadrupole radiation from a mass in
circular orpit

The emission of GWs costs energy. Previous equations are only valid if
sources are on fixed, circular Keplerian orbit.

Eorbit — Ekin + Epot

__lelmg
Kepler's Iaw/ 2 R \

PaCY B2 (Gl )
’ RS 5 G 2c3

To compensate for loss of energy to GWs, R must decrease in time.

If R decreases, ws Increases.

Then power radiated in GWs increases which means R must decrease
even more.

Runaway process = binary system must coalesce.



—xample |: Quadrupo

CIrc

e radiation from a mass in

Jlar orbit

Changes needed to:

1 4Guw?R? (1 20
ha (t;0,0) = " ,u(:s ( il (;OS > cos(2wstret + 2¢)
1 4G puw? R?
hy (t;0,0) = — G,uz:s cos 0 sin(2wgtret + 20)
r

In arguments of the trigonometric functions: wgwt — @(t)

In factors in front of trigonometric TUNCLIONS: wyyw — wWew ()

May have contributions from derivatives of R(t) and wgw(t).

R(t) is negligible as long as fsw < 13kHz (1.2M /M.)



-xample | Quadrupole radiation from a mass in

circular orbit

Time to coalescence ™ measured by the observer:
T = leoal — T —00 < U < Teoal

Evolution of GW frequency:

1/ 5 \*%/rgm.\ %8
fgW(T)_E(%GT) ( 3 )

Evolution of arguments of trigonometric functions:

5GM,\ /8
(I)(T):_z( 3 ) %+ @ ®y = @(r =0)

Then the GW amplitudes are

1 M. 5/4 1/41 2 _
=1 (5] (2) T sl

c2 CT

0= L (E) T () cosssin(r)

C CT

= |




—xample |: Quadrupo
CIrc

e radiation from a mass in

Jlar orbit

In Schwarzschild geometry, there is a minimum value of the radial

distance beyond which stable

circular orbits are no longer allowed,

.e. the Innermost Stable Circular Orbit (ISCO):

TISCO =

6G M
2

For binaries of BH or NS, a phase of slow adiabiatic inspiral,
going through quasi-circular orbit and driven by emission of GWs
can only take place at distances r 2 risco

1 c3

fmax = (fs)1sco = oo G



Full Coalescing Binary Signal

Strain (10-21)

—
o




Coalescing Binaries
Non-spinning, equal mass black holes
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Coalescing Binaries
Non-spinning, unegqual mass black holes

15 )0

1.0

100 400 0.0 0.2 0.4 0.6 0.8 1.0 [.2

‘Ly [CTS Ankit Singh / P, Ajith '
h time (s)

(m1, m2) = (4, 16) Mo
The more massive BH is closer to the center of mass.
The energy radiated is lower than an equal-mass binary.
The binary takes longer to inspiral.



Coalescing Binaries
Aligned spin, equal mass black holes

x 10~2"

1F

4”7/ 100
200) 200) —4

(.0 (.2 (.4 (.6 ().8 1.0
time (s)

l‘ Y ICTS Akt ingh / P Ath

Spin vectors are aligned with orbital angular momentum.
Orbital hang-up effect: aligned-spin black holes can inspiral to much closer
separations, resulting in longer and stronger GW signals, compared to non-spinning
binary.



Coalescing Binaries
Anti-aligned spin, equal mass black holes

o x107%

*”)/ 100 -1.5
200) 200)

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.7

‘7 [CTS Ankit Singh / P, Ajith |
s time (s)

Spin vectors are aligned opposite to orbital angular momentum.
Anti-aligned-spin black holes have shorter and weaker GW signals,
compared to non-spinning binary.



Coalescing Binaries

Misaligned spin, unequal mass black holes

x 102!
41
\ 9
200 “1
Nl \'
N0 R
3 \ . 0l
—200] <
4001
~500 =2
J/[ﬁ;’/) i\\k«\\ _4 ,
200500 0 1 2 3 1

Ly 1CTS Mkitsingh P At |
h time (s)

Spin vectors are misaligned with orbital angular momentum.
There are spin-orbit and spin-spin interactions between spins and orbital angular
momentum that cause spins to precess.
Results in complicated modulations in amplitude and phase of GW signals.
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Continuous Waves

Non-axisymmetric rotating neutron stars;

asymmetry could arise from:

e equatorial ellipticity (mm-high mountain) fow = 2frot

o free precession around rotation axis  faw ~ Jrot + fprec

e excitation of long-lasting oscillations faw ~ 4/3frot
e deformation due to matter accretion fow = 2 frot
1 U -,'t__f

4 60— ' Spin axis precesses
| & | ; with frequency f_




Continuous Waves

At the source

At the detector !

Nearly monochroma

ic, continuous signal but could have:

e relative velocity between source/detector (Doppler Eftect)

e amplitude modulat
e frequency and pha

lon due to antenna sensitivity of detector

se evolution



—xample |l Quadrupole radiation from rotating
rigid body
A rigid body is characterized by its inertia tensor:

IV = /de p(x) (r*6" — z'a?)

There is a frame where the inertia tensor is A
diagonal. The principal moments of inertia are

I = /d3x’p(xl) (x'22 + x{f)

Iy = /dgx’p(x’) (x’lz + x{f)

= /dgx’p(x’) (x’lz + x'22)

Consider a simple situation in which an ellipsoidal body rotates rigidly
about one of its principle axes.



—xample |l Quadrupole radiation from rotating
rigid body

(z}, 25, x5) - attached to body
and rotate with it

(z1,z2,23) - fixed reference frame

The two frames are related by time-dependent
rotation matrix:

, _— o o .
Ly = R@]xj

COS Wrott SN weott 0
Rij = | —Slnwrott  CcOSwrott 0
0 0 1

i 145

The time-dependent inertia tensor is then T M
givenas I =R'I'R

I -1 -1
i1 =1+ 12 20082wr0tt Iro =1 — 12 2(:052@r01;t

I — 1
I1o = . 5 2 sin 2Wrott I35 = I3 Ii3 =13 =0




—xample |l Quadrupole radiation from rotating
rigid body

Compare the inertia tensor with the second mass moment:

IV = /dgaj p(x) (r*6" — z'a?) MY = /d3x p(x)z'z?

They difter by a minus sign and a trace term.

M"Y = —I% 4 Tr(I)6"

But the trace I1s a constant :

Tr(l) = To(R'I'R) = Te(RR'I) = Te(I') = 1) + I + I3



—xample |l Quadrupole radiation from rotating
rigid body

So when taking the second time derivative of M", the trace
terms vanish.

I — 1

M1 = — = 5 2 cos 2wrott + constant
I — 1

Mo = — L > 2 sin 2wrott + constant
I — 1

Mooy = + > 2 cos 2Wrott + constant

M13 — M23 — M33 = constant

Note, there Is a time-varying second mass moment
only it n, #1,.

M;; 1s a periodic function so we have production of
gravitational waves with frequency:

Wegw — 2Wrot



—xample |l Quadrupole radiation from rotating
rigid body

9 Use equations for generic propagation.
Set =1 and ¢=0.

1 4Gw? . 1 + cos? .
’2132 h, = p— ([, — I5) 5 cos (2wyott)
1 4Gw?, ,
h, = — Y (I — Iy) cos ¢ sin (2wroit)
. T Y F e b
Detine ellipticity by: €= I
1 + cos? ¢
i = ho =5 cos (27 fgu) b 472G Isff
-4
h« = hgcostsin (27 fgwt) ¢ 4

Neutron stars that rotate more rapidly produce a
stronger GW signal.



—xample |l Quadrupole radiation from rotating
rigid body

Angular distribution of the radiated power in quadrupole approximation:
[ dEgy B r?c’ 5
Fauad = ( dQ )quad B 167‘(’G/3d9 <h++hX>

32G

5¢

For our NS example: P = e I2wP

rot

Then we can say that the rotational energy of the star
decreases because of GW emission as

dEI'Ot L 32G 2
dt  5cP

Rotational energy of star rotating around its principal axis is
Erot = (1/2)I3w?

rot
Then rotational frequency of neutron star should decrease as
32G .

. _ 2
wrot — 565 € Igwrot



—xample |l Quadrupole radiation from rotating
rigid body

. n
wI‘Ot ~ wrot

Tab'e 1 n h b kl n d
Braking index measurements for six pulsars. Also given are the pulsar period, period derivative, period second derivative and characteristic n I S t e ra I n g l n eX '
age.

Pulsar names J2000; B1950 P(ms) /~(10°) /F(s ) Yc(yr) brakingindexn

crab Experimentally, n
J0534+2200; B0531+21 33,085 423 -361x10% 1240 2.51(1)° ranges between 2

JO540-6919; B0S40-69° 50.499 479 -1.6x10 - 1670 2.140(9]:' and 3, I’ather thaﬂ n —
Vela . . .

4 : 5s0 GW emission is
JO835-4510; B0O&33-45 £89.328 125 11300 1.4(2)

J1119-6127° 407.746 4022 -88x10"  ne0  294s)° NOt main energy |OSS
J1513-5908; B1509-58" 150.658 1540 -1312x10° 1550 2.839(3)° meChan|Sm fOI’
J1846-0258" 325.684 7083 728  2.65(1) rOtatlng pU|SarS

“Demianski & Proszynski (1983), Lyne, Pritchard & Smith (1988, 1993).
) e
Livingstone et al, (2005).

“Lyne et al. (1996), Dodson, McCulloch & Lewis (2002).

_4 o Other EM
Camilo et al. (2000).

Manchester, Durdin & Newton (1985), Kaspi et al. (1994). m eC h an ISm S

"Liv ngstone et al. (20086). d Om | nate .

N. Vranesevic, D.B. Melrose, MNRAS 410, 4 (2011)



Continuous Waves

h
Continuous signal with h o< € SNR ox Eﬁ

Ixx — Iyy
177

Equatorial ellipticity € =

Maximum Deformations

e <1072 Normal Neutron Star
e <1073  Hybrid Neutron Star

e <101 Extreme Quark Star



e Solving the Einstein Equations
e Linearized Theory
e \acuum Solution
e Solution with Source Term
e (Generation of Gravitational Waves
e Effect of Gravitational Waves on Matter
e | IGO & Virgo Astrophysical Sources
e Coalescing Binaries
e Continuous Waves
e Transient Bursts
e Stochastic Background
e |ISA & PTA Sources




Burst Sources

Supernovae

lype la supernova
White dwarf detonation

Type la supernovae when The lconic Burst GW Source -
white dwarfs in binary Core collapse supernovae
detonate. (Type Ib/lc & Il) when massive

stars die.



Burst Sources

Characteristic Strain

AdV

Type IA aLIGO
supemovae

Compact binary
inspirals

Core collapse
supernovae

Pulsars

10° 102 10°
Frequency / Hz




Frequency [Hz]

101 L

Burst Sources

Short duration

Long duration

T LA |

collapse | SH-GRB
— | NS g modes

NS NS/NS post-merger,

LS-GRB,
Fallback accretion
onto NS

SASI

CCSN — PNS instabilities,

SGR torsional modes

BBH

Cosmic | CCSN — non spherical
SIrings neutrino emission

BH torus clumps
fragmentation,

1 " P | " e |

aaal

il n PR |

1073 1072 101

109
Duration [s]

101 102




Stochastic Background

e Stochastic (random) background of gravitational
radiation

e Can arise from superposition of large number of
unresolved GW sources
1. Cosmological origin
2. Astrophysical origin

e Strength of background measured as gravitational
wave energy density paw



Cosmic Microwave Background

e 1965 - Penzias and Wilson * CMB as seen by Planck, an ESA
observatory

* Wavelengths of photons are
greatly redshifted (1mm

380,000 years Big Bang e Effective temperature ~ 2.7K

e Can be detected by far-infrared
and radio telescopes

accidently discovered Cosmic
Microwave Background
CMB), leftover radiation from

e 1978 - awarded Nobel prize



Cosmological Gravitational Wave Background

>

Big Bang plus

10 -4 seconds

What powered the big bang?

Only gravitational waves can escape from
the earliest moments of the Big Bang

Cosmic microwave background,
N distorted by seeds of structure
~y = and gravitational waves

o A - (Big Bang plus 1035 seconds?)

BigOBang plus

300,000 Years
Gravitational
waves

Big Bang plus
15 Billion Years




Cosmological Gravitational Wave Background

x 1028 Example Stochastic Gravitational Wave
4

Gravitational Wave Signal

) | | ] | | | ] |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

f dPGW
GW spectrum: 2 f) =
P GW( ) Pc df
3c?H{

Critical energy density of universe: p, =
8



Cosmological Gravitational Wave Background

| | |

10

Spectra

. -d--h----‘-!.----t

- Planck greo e Mg

10

108 Lo b= TN

=
O
G
10

CMB Largel ST
, Angle

107"}

t
' Inﬂatlon
107"

| | |

LIGO S5

Cosmlc Strlngs

== AdeIGO

| | | | |

10"’10‘%0““10“210”10 10°107°10

>10° 10° 10" 10° 10° 10™

Frequency (Hz)

Big-Bang-
Nucleosynthesis:
abundances of light
nuclel produced

Cosmic Microwave
Background
Measurements:
structure of CMB and
matter power spectra



Cosmological Gravitational Wave Background

10
10

10
=
O
G

10

10

10

I |

Spectra

: -‘--h----‘-!:—----ﬁ

Planck

CMBLargeI _
X Angle

LIGO SS

Cosmlc Strln_qs

- AdeIGO

1O1QIO16IO‘14|0'1210‘1°10‘810 10710 10° 10° 10" 10° 10° 10™
Frequency (Hz)

Inflation: measuring
GWs can test for
“stiffness” in early
universe

Models of Cosmic
Strings: topological
defects in early
universe



Astrophysical Gravitational Wave Backgrounds

3 Potential background from binary black hole mergers
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Frequencies of signals
as audio




e Solving the Einstein Equations
e Linearized Theory
e \acuum Solution
e Solution with Source Term
e (Generation of Gravitational Waves
e Effect of Gravitational Waves on Matter
e | IGO & Virgo Astrophysical Sources
e Coalescing Binaries
e Continuous Waves
e [ransient Bursts
e Stochastic Background
e | ISA & PTA Sources




| ISA Sources

(Galactic white dwarfs

°rimordial backgrounds
Supermassive binary black holes

Capture orbits



Characteristic Strain

102

10

10 ¢

10

10 %

10 %

10

10

eLISA
Massive binaries
Resolvable galactic
binaries
Extreme mass
ratio inspirals
Compact binary
Inspirals
Core collapse
supernovae
Pulsars
10° 107 10* 10° 102 104 10°

Frequency / Hz



LISA Gravitational Wave Background

e Produced by an extremely large number of weak,

independent, and unresolved gravitational-wave sources.
For LISA, this will be white dwart binaries.
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Pulsar Iiming Array
Sources

e Also, supermassive binary black holes!



10 2

10 %

10

Stochastic

Massive binaries

Resolvable galactic
binaries

Extreme mass
ratio inspirals

Compact binary
Inspirals

Core collapse
supernovae
Pulsars
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10 2

10 %

10

Stochastic

EPTA

Massive binaries

Resolvable galactic
binaries

Extreme mass
ratio inspirals

Compact binary
Inspirals

Core collapse
supernovae
Pulsars
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10+ 10 10° 10° 10°
Frequency / Hz

10°
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Characteristic Strain

10

10#

10

EPTA

Extreme mass
ratio Iinspirals

Massive binaries

Resolvable galactic
binaries

Compact binary
Ingpirals

Core collapse
supernovae
Pulsars
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10% 10°
Frequency / Hz

102

10*

10°



Characteristic Strain
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10#
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EPTA

Extreme mass
ratio Iinspirals

Massive binaries

Resolvable galactic
binaries

Compact binary
Ingpirals

Core collapse
supernovae
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Merging Supermassive Black Hole
Binaries

‘l

Image Credit:
Debra Meloy
Elmegreen
(Vassar

College) et al.,
& the Hubble

Heritage Team
(AURA/STScl/ 0.000 billion years

NASA)
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