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Pick up Visualization Project description

mailto:kwtsang@nikhef.nl
mailto:p.gupta@nikhef.nl


Last week’s big announcement: first image 
of black hole
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Given the source distribution       , one can solve 
this set of 10 coupled nonlinear partial differential 

equations for the metric

Gµ⌫ = Rµ⌫ � 1

2
gµ⌫R =

8⇡G

c4
Tµ⌫

The Einstein Equations

gµ⌫(x)

Tµ⌫



Solving Einstein’s equations is difficult. They’re non-linear. In 
fact, the equations of motion are impossible to solve unless 

there is some symmetry present.

In the absence of symmetry, there are two methods: 
1. Numerical relativity (next time) 

2. Approximation techniques

For the approximation technique, we consider a metric very 
close to flat space with a small perturbation. And we 

consider only first order perturbations.

Methods
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Consider the Minkowski metric - a combination of three 
dimensional Euclidean space and time into four dimensions.

Linearized Theory of Metric Field

Consider a small perturbation        on flat space:

hµ⌫

|hµ⌫ | ⌧ 1

so that higher orders of         can be neglected when 
substituting in Einstein Field Equations (EFE)

hµ⌫



is an as yet unknown perturbation on flat space. We can make 
small changes in coordinates that leave 
unchanged but make small changes in  

Can we make coordinate transformations under such 
systems? Yes, from one slightly curved one to another, aka 

“Background Lorentz transformation”

So EFE are invariant under general coordinate transformations but 
invariance is broken as a result of background.

We can only consider a sufficiently large specific reference 
frame where                                holds.

In other words, we’re restricted in how much we can change 
the coordinates.

hµ⌫

⌘µ⌫
hµ⌫

Linearized Theory of Metric Field



We are restricted to a limited set of coordinate 
transformations called “gauge transformations”

xµ ! x0µ + ⇠ (xµ)

If we transform the metric under this change of 
coordinates we find that the metric has the same form 

but with new perturbations given by

hµ⌫ (x) ! h0
µ⌫ (x

0) = hµ⌫ (x)� (@µ⇠⌫ + @⌫⇠µ)

Linearized Theory of Metric Field



h̄µ⌫ = hµ⌫ � h

2
⌘µ⌫

We can stream line some calculations by an 
appropriate choice of gauge conditions.

where we’ve defined the trace-reversed perturbation:

such that the trace has opposite sign:
h̄µ
µ ⌘ h̄µ⌫ = �h

Linearized Theory of Metric Field

We require a coordinate system in which Lorentz 
gauge (or harmonic gauge) holds

@µh̄µ⌫ = 0



Rµ⌫↵� =
1

2
(@µ@↵g⌫� � @⌫@↵gµ� + @⌫@�gµ↵ � @µ@�g⌫↵)

Rµ⌫⇢� =
1

2
(@⌫@⇢hµ� + @µ@�h⌫⇢ � @µ@⇢h⌫� � @⌫@�hµ⇢)

Then substituting the trace-reversed perturbation, EFE takes form:

⇤ ⌘ @µ@
µIf we define the d’Alembertian operator:

@µ@
µh̄µ⌫ + ⌘µ⌫@

⇢@�h̄⇢� � @⇢@⌫ h̄µ⇢ � @⇢@µh̄⌫⇢ = �16⇡G

c4
Tµ⌫

⇤h̄µ⌫ + ⌘µ⌫@
⇢@�h̄⇢� � @⇢@⌫ h̄µ⇢ � @⇢@µh̄⌫⇢ = �16⇡G

c4
Tµ⌫

Linearized Theory of Metric Field
The Riemann curvature tensor

for a flat metric with a perturbation will become



And impose the harmonic gauge, then the last three 
terms in previous equation vanish and we end up with 

the Linearized Einstein Equations

⇤h̄µ⌫ = �16⇡G

c4
Tµ⌫

Linearized Theory of Metric Field
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What happens outside the source, where                ?Tµ⌫ = 0

Then, the EFE reduces to 

⇤h̄µ⌫ = 0

Wave equation for waves propagating at speed of light c!

Solutions to wave equation can be written as superpositions 
of plane waves traveling with wave vectors    and frequency

! = c
���~k
���

Solution in a Vacuum

~k

✓
� 1

c2
@t2 +r2

◆
h̄µ⌫ = 0



Solution in a Vacuum

h(t) = Aµ⌫ cos
⇣
!t� ~k · ~x

⌘

Implications: Spacetime has dynamics of its own, 
independent of matter. Even though matter generated 
the solution, it can still exist far away from the source 

where Tµ⌫ = 0

Plane wave solution:



• Solving the Einstein Equations 
• Linearized Theory 
• Vacuum Solution 
• Solution with Source Term 

• Generation of Gravitational Waves 
• Effect of Gravitational Waves on Matter 
• LIGO & Virgo Astrophysical Sources 

• Coalescing Binaries 
• Continuous Waves 
• Transient Bursts 
• Stochastic Background 

• LISA & PTA Sources



Now allow for source. What would cause the waves to 
be generated?

⇤h̄µ⌫ = �16⇡G

c4
Tµ⌫

Solve using retarded Green’s function assuming no 
incoming radiation from infinity. The solution is

h̄µ⌫ (t, ~x) =
4G

c4

Z
d3x0 1

|~x� ~x0|Tµ⌫

✓
t� |~x� ~x0|

c
, ~x0

◆

Solution with Source



Solution with Source
We can utilize an additional gauge freedom by 

imposing the radiation gauge:
h = 0 h0i = 0

Combining the harmonic gauge and this radiation gauge, we 
can write the solution in the transverse traceless (TT) gauge

hTT
ij (t, ~x) =

4G

c4
⇤ij,kl(n̂)

Z
d3x0 1

|~x� ~x0|Tkl

✓
t� |~x� ~x0|

c
, ~x0

◆

,

~n - direction of propagation of GW

is a tool to bring        outside the source in 
the TT gauge.

⇤ij,kl(n̂) hµ⌫



Then the perturbation                    can be evaluated outside the 
source at      while      is a point inside the source.

⇤ij,kl(n̂) = PikPjl �
1

2
PijPkl

Pij ⌘ �ij � ninj

hTT
ij (t, ~x)

~x ~x0

Tkl (t� |~x� ~x0| /c, ~x0) 6= 0

We’re looking at a distance r that is much 
larger than the size of the source d. Then we 

can expand 

�~x = r � ~x0
· n̂+O

�
d2/r

�

Solution with Source
is a tool to bring         outside the source in 

the TT gauge.
⇤ij,kl(n̂) hµ⌫



Then we can write the TT solution as

hTT
ij (t, ~x) =

4G

c4
⇤ij,kl(n̂)

Z
d3x0 1

|r � ~x0 · n̂|Tkl

✓
t� r

c
+

~x0 · n̂
c

, ~x0
◆

If the source is non-relativistic, v/c << 1, then we can expand

Tkl

✓
t� r

c
+

~x0 · n̂
c

, ~x0
◆

= Tkl

⇣
t� r

c
, ~x0

⌘
+

x0ini

c
@0Tkl +

1

2c2
x0ix0jninj@2

0Tkl + ...

We can substitute this for Tkl in the TT solution to get the 
multipole expansion

hTT
ij (t, ~x) =

1

r

4G

c4
⇤ij,kl(n̂)


Skl +

1

c
nmṠkl,m +

1

2c2
nmnpS̈

kl,mp + . . .

�

ret

where ret is the retarded time t� r/c

Solution with Source
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Multipole moments of stress tensor

Sij =

Z
d3xT ij (t, ~x)

T ij

Sij,k =

Z
d3xT ij (t, ~x)xk

Sij,kl =

Z
d3xT ij (t, ~x)xkxl

...

Multipole moments of the stress energy tensor are 
not physically intuitive.

Generation of Gravitational Waves



We can express the multipole moments in terms of the 
mass moments and the momentum multipoles. 

Mass moments: momenta of energy density T 00/c2

M =
1

c2

Z
d3xT 00 (t, ~x)

M i =
1

c2

Z
d3xT 00 (t, ~x)xi

M ij =
1

c2

Z
d3xT 00 (t, ~x)xixj

Generation of Gravitational Waves

...



T 0i/cMomenta of momentum density 

P i =
1

c

Z
d3xT 0i (t, ~x)

P i,j =
1

c

Z
d3xT 0i (t, ~x)xj

P i,jk =
1

c

Z
d3xT 0i (t, ~x)xjxk

We can express the multipole moments in terms of the 
mass moments and the momentum multipoles. 

Generation of Gravitational Waves

...



To leading order in v/c, we can eliminate the multipole 
moments in favor of the mass moments to get a 

solution of the form:

Sij =
1

2
M̈ ij

⇥
hTT
ij (t, ~x)

⇤
quad

=
1

r

2G

c4
⇤ij,kl(n̂)M̈

kl (t� r/c)

Generation of Gravitational Waves

where we have used:

Mass quadrupole radiation!



Mass dipole        zero 
(i.e. constant) in center of 

mass frame

No Dipole RadiationNo Monopole Radiation

Ṁ =
1

c

Z

V
d3x@0T

00

= �1

c

Z

V
d3x@iT

0i

= �1

c
r2

Z

S
d⌦T 0i

= 0

M i

No momentum monopole 
contribution

Ṗ i = 0

⇥
hTT
ij (t, ~x)

⇤
quad

=
1

r

2G

c4
⇤ij,kl(n̂)M̈

kl (t� r/c)

Generation of Gravitational Waves
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Effect of Gravitational Waves on Matter
The best way to understand the effect of gravitational waves on 

matter is to consider two neighboring free-falling particles at             
andxµ(⌧) xµ(⌧) + ⇣µ(⌧)

d2xµ

d⌧2
+ �µ

⌫⇢(x)
dx⌫

d⌧

dx⇢

d⌧
= 0

d2(xµ + ⇣µ)

d⌧2
+ �µ

⌫⇢(x+ ⇣)
d(xµ + ⇣µ)

d⌧

d(xµ + ⇣µ)

d⌧
= 0

d2⇣µ

d⌧2
+ 2�µ

⌫⇢(x)
dx⌫

d⌧

d⇣⇢

d⌧
+ ⇣�@��

µ
⌫⇢(x)

dx⌫

d⌧

dx⇢

d⌧
= 0

Consider the geodesic equations for each particle:

Take the difference of the two and expand to leading order 
in     : ⇣µ



Effect of Gravitational Waves on Matter

gµ⌫(P) = ⌘µ⌫ @⇢gµ⌫ = 0 �⇢
µ⌫ = 0

dxi

d⌧
⌧ dx0

d⌧
dx0

d⌧
' c

@��
�
00

d2⇣i

d⌧2
= �c2Ri

0j0⇣
j

Transform into a Local Lorentz Frame such that:

Assume the particles are moving non-relativistically:

d2⇣µ

d⌧2
+ 2�µ

⌫⇢(x)
dx⌫

d⌧

d⇣⇢

d⌧
+ ⇣�@��

µ
⌫⇢(x)

dx⌫

d⌧

dx⇢

d⌧
= 0

,

,

Relate               to the Riemann tensor:



Effect of Gravitational Waves on Matter

Ri
0j0 = Ri0j0 = � 1

2c2
ḧTT
ij

⇣̈i =
1

2
ḧTT
ij ⇣j

The components of the Riemann tensor may be calculated in 
any frame due to its invariance in linearized theory. We can use 

the TT frame:

Now we see how the geodesic deviation between two particles 
is related to the perturbation caused by a passing GW:

A tidal effect!



hTT
ij =

2

4
h+ h⇥ 0
h⇥ �h+ 0
0 0 0

3

5

ij

cos (!t� zt/c) ! = c|~k|

h⇥ = 0

h+ = 0

�ẍ = �h+

2
(x0 + �x)!2 cos(!t)

�ÿ =
h+

2
(y0 + �y)!2 cos(!t)

�ẍ =
h⇥
2

(y0 + �y)!2 cos(!t)

�ÿ =
h⇥
2

(x0 + �x)!2 cos(!t)

�x(t) =
h+

2
x0 cos(!t)

�y(t) = �h+

2
y0 cos(!t)

�y(t) = �h⇥
2
x0 cos(!t)

�x(t) = �h⇥
2
y0 cos(!t)

Effect of Gravitational Waves on Matter

,

Gravitational wave in the z-direction:

Relative displacements of particles in (x, y) plane:



�x(t) =
h+

2
x0 cos(!t)

�y(t) = �h+

2
y0 cos(!t)

�y(t) = �h⇥
2
x0 cos(!t)

�x(t) = �h⇥
2
y0 cos(!t)

h+ polarization

hx polarization

Effect of Gravitational Waves on Matter



To leading order in v/c, we can eliminate the multipole 
moments in favor of the mass moments to get a solution of 

the form:

Sij =
1

2
M̈ ij

⇥
hTT
ij (t, ~x)

⇤
quad

=
1

r

2G

c4
⇤ij,kl(n̂)M̈

kl (t� r/c)

Review: Generation of Gravitational Waves

where we have used:

Mass quadrupole radiation!



x

y

z

n̂

Pij

n̂
ẑ

P =

2

4
1 0 0
0 1 0
0 0 0

3

5

(x, y)

When the direction of propagation     of 
the GW is equal to   ,        is the 

diagonal matrix:

i.e., a projector on the  
plane,

the two polarization amplitudes have the form

h+ =
1

r

G

c4

⇣
M̈11 � M̈22

⌘
h⇥ =

2

r

G

c4
M̈12

Case I: Propagation in ẑ



When the wave 
propagates in a generic 
direction    , we introduce 

two unit vectors     
and     , orthogonal to  

x

y

z

n̂✓

�

û

v̂

n̂
û

v̂ n̂

The vector     is in 
the          plane 
while     points 
downward with 

respect to 
the         plane.

(x̂, ŷ)
û

v̂

(x̂, ŷ)

Case II: Propagation in n̂



h+ (t; ✓,�) =
1

r

G

c4
[M̈11

�
cos2 �� sin2 � cos2 ✓

�

+ M̈22

�
sin2 �� cos2 � cos2 ✓

�

� M̈33 sin
2 ✓

� M̈12 sin 2�
�
1 + cos2 ✓

�

+ M̈13 sin� sin 2✓

+ M̈23 cos� sin 2✓]

For a generic propagation direction, the two polarization 
amplitudes have the form:

Case II: Propagation in n̂

h⇥ (t; ✓,�) =
1

r

G

c4
[(M̈11 � M̈22) sin 2� cos ✓

+ 2M̈12 cos 2� cos ✓

� 2M̈13 cos� sin ✓

+ 2M̈23 sin� sin ✓]
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LIGO/Virgo Astrophysical Sources
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where                         is the reduced mass.

Example I: Quadrupole radiation from a mass in 
circular orbit

x
x1

x2

m1

m2

xCM =
m1x1 +m2x2

m1 +m2

M ij(t) = µxi
0(t)x

j
0(t)

x0 = x1 � x2

µ =
m1m2

m1 +m2

xCM = 0

is the relative coordinate of 

The usual center-of-mass coordinate is:

an isolated two-body system in the 
center-of-mass frame.

If we chose the origin of the coordinate 
system at            , 

then the second mass moment is: 



Choose               frame so 
orbit is in            plane.

x
x1

x2

m1

m2

x0 = x1 � x2

x0(t) = R cos(!st+ ⇡/2)

y0(t) = R sin(!st+ ⇡/2)

z0(t) = 0

M11 = µR2 1� cos 2!st

2

M22 = µR2 1 + cos 2!st

2

M12 = �1

2
µR2 sin 2!st

M̈ij

(x, y, z)

h+ (t; ✓,�) =
1

r

4Gµ!2
sR

2

c4

✓
1 + cos2 ✓

2

◆
cos(2!stret + 2�)

h⇥ (t; ✓,�) =
1

r

4Gµ!2
sR

2

c4
cos ✓ sin(2!stret + 2�)

Example I: Quadrupole radiation from a mass in 
circular orbit

(x, y)

Orbit is given by:

The only non-vanishing second mass moment 
components are:

Compute         . Plug into generic expressions for 
polarization amplitudes to get:



The angle    is equal to the angle   
between the normal to the orbit and 

the line-of-site.

A rotation of the source by      is the 
same as a time translation so that 

h+ (t; ✓,�) =
1

r

4Gµ!2
sR

2

c4

✓
1 + cos2 ✓

2

◆
cos(2!stret + 2�)

h⇥ (t; ✓,�) =
1

r

4Gµ!2
sR

2

c4
cos ✓ sin(2!stret + 2�)

Quadrupole radiation is at twice the 
frequency     of the source:    !s

��

!s�t = ��

✓ ◆

◆

x0

y0

z0

!gw = 2!s

Example I: Quadrupole radiation from a mass in 
circular orbit



!2
s =

GM

R3
Mc = µ3/5M2/5 =

(m1m2)
3/5

(m1 +m2)
1/5

!gw = 2⇡fgw

!gw = 2!s

h+(t) =
4

r

✓
GMc

c2

◆5/3 ✓⇡fgw
c

◆2/3 1 + cos2 ✓

2
cos(2⇡fgwtret + 2�)

h⇥(t) =
4

r

✓
GMc

c2

◆5/3 ✓⇡fgw
c

◆2/3

cos ✓ sin(2⇡fgwtret + 2�)

The amplitudes of the GWs emitted depend on the masses 
m1 and m2 only through the combination Mc.

Example I: Quadrupole radiation from a mass in 
circular orbit

Use Kepler’s law, the chirp mass, and the GW frequency to 
rewrite the solutions.



Angular distribution of the radiated power in quadrupole 
approximation:

Total power radiated in quadrupole approximation

✓
dP

d⌦

◆

quad

=
r2c3

16⇡G

D
ḣ2
+ + ḣ2

⇥

E

✓
dP

d⌦

◆

quad

=
2Gµ2R4!6

s

⇡c5
g(✓)

Pquad =
32

5

Gµ2

c5
R4!6

s

g(✓) =

✓
1 + cos2 ✓

2

◆2

+ cos2 ✓

Pquad =

✓
dEgw

d⌦

◆

quad

=
r2c3

16⇡G

Z

S
d⌦

D
ḣ2
+ + ḣ2

⇥

E

Example I: Quadrupole radiation from a mass in 
circular orbit

For our binary system 
example:

For our binary system 
example:



In terms of the chirp mass Mc , the total radiated power in the 
binary system is

P =
32

5

c5

G

✓
GMc!gw

2c3

◆10/3

Example I: Quadrupole radiation from a mass in 
circular orbit



The emission of GWs costs energy. Previous equations are only valid if 
sources are on fixed, circular Keplerian orbit.

Eorbit = Ekin + Epot

= �1

2

Gm1m2

R

!2
s =

GM

R3

Kepler’s law

To compensate for loss of energy to GWs, R must decrease in time.

If R decreases, ωs increases.

P =
32

5

c5

G

✓
GMc!gw

2c3

◆10/3

Then power radiated in GWs increases which means R must decrease 
even more.

Runaway process        binary system must coalesce.

Example I: Quadrupole radiation from a mass in 
circular orbit

⇒



In arguments of the trigonometric functions: !gwt ! �(t)

In factors in front of trigonometric functions: !gw ! !gw(t)

May have contributions from derivatives of        and         .!gw(t)R(t)

is negligible as long asṘ(t) fgw ⌧ 13kHz (1.2M�/Mc)

Example I: Quadrupole radiation from a mass in 
circular orbit

Changes needed to:

h+ (t; ✓,�) =
1

r

4Gµ!2
sR

2

c4

✓
1 + cos2 ✓

2

◆
cos(2!stret + 2�)

h⇥ (t; ✓,�) =
1

r

4Gµ!2
sR

2

c4
cos ✓ sin(2!stret + 2�)



Time to coalescence    measured by the observer:
⌧ ⌘ tcoal � t

fgw(⌧) =
1

⇡

✓
5

256⌧

◆3/8 ✓GMc

c3

◆�5/8

�(⌧) = �2

✓
5GMc

c3

◆�5/8

⌧5/8 + �0 �0 = �(⌧ = 0)

h+(t) =
1

r

✓
GMc

c2

◆5/4 ✓ 5

c⌧

◆1/4 1 + cos2 ◆

2
cos [�(⌧)]

h⇥(t) =
1

r

✓
GMc

c2

◆5/4 ✓ 5

c⌧

◆1/4

cos ◆ sin [�(⌧)]

�1 < t < tcoal

Example I: Quadrupole radiation from a mass in 
circular orbit

⌧

Evolution of GW frequency:

Evolution of arguments of trigonometric functions:

Then the GW amplitudes are



In Schwarzschild geometry, there is a minimum value of the radial 
distance beyond which stable circular orbits are no longer allowed, 

i.e. the Innermost Stable Circular Orbit (ISCO):

rISCO =
6GM

c2

r & rISCO

For binaries of BH or NS, a phase of slow adiabiatic inspiral, 
going through quasi-circular orbit and driven by emission of GWs  

can only take place at distances

fmax = (fs)ISCO =
1

12
p
6⇡

c3

GM

Example I: Quadrupole radiation from a mass in 
circular orbit
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Full Coalescing Binary Signal



Non-spinning, equal mass black holes

(m1, m2) = (10, 10) M⊙

Coalescing Binaries



Non-spinning, unequal mass black holes

(m1, m2) = (4, 16) M⊙ 
The more massive BH is closer to the center of mass. 

The energy radiated is lower than an equal-mass binary. 
The binary takes longer to inspiral.

Coalescing Binaries



Aligned spin, equal mass black holes

Spin vectors are aligned with orbital angular momentum. 
Orbital hang-up effect: aligned-spin black holes can inspiral to much closer 

separations, resulting in longer and stronger GW signals, compared to non-spinning 
binary.

Coalescing Binaries



Anti-aligned spin, equal mass black holes

Spin vectors are aligned opposite to orbital angular momentum. 
Anti-aligned-spin black holes have shorter and weaker GW signals, 

compared to non-spinning binary.

Coalescing Binaries



Misaligned spin, unequal mass black holes

Spin vectors are misaligned with orbital angular momentum. 
There are spin-orbit and spin-spin interactions between spins and orbital angular 

momentum that cause spins to precess. 
Results in complicated modulations in amplitude and phase of GW signals.

Coalescing Binaries



• Solving the Einstein Equations 
• Linearized Theory 
• Vacuum Solution 
• Solution with Source Term 

• Generation of Gravitational Waves 
• Effect of Gravitational Waves on Matter 
• LIGO & Virgo Astrophysical Sources 

• Coalescing Binaries 
• Continuous Waves 
• Transient Bursts 
• Stochastic Background 

• LISA & PTA Sources



Credit: NASA/CXC/PSU/
Pavlov, et al.

Credit: NASA/HST/ASU/
CXC/Hester, et al.

Continuous Waves

Non-axisymmetric rotating neutron stars; 
asymmetry could arise from: 
• equatorial ellipticity (mm-high mountain) 
• free precession around rotation axis 
• excitation of long-lasting oscillations 
• deformation due to matter accretion

Bumpy Neutron Star!



Nearly monochromatic, continuous signal but could have: 
• relative velocity between source/detector (Doppler Effect) 
• amplitude modulation due to antenna sensitivity of detector 
• frequency and phase evolution

At the source
At the detector

Continuous Waves



Example II: Quadrupole radiation from rotating 
rigid body

Iij =

Z
d3x ⇢(x)

�
r2�ij � xixj

�

I1 =

Z
d3x0 ⇢(x0)

�
x02
2 + x02

3

�

I2 =

Z
d3x0 ⇢(x0)

�
x02
1 + x02

3

�

I3 =

Z
d3x0 ⇢(x0)

�
x02
1 + x02

2

�

x3 = x0
3

x1
x0
1

x0
2

x2

wrott

Consider a simple situation in which an ellipsoidal body rotates rigidly 
about one of its principle axes.

A rigid body is characterized by its inertia tensor:

There is a frame where the inertia tensor is 
diagonal. The principal moments of inertia are



The time-dependent inertia tensor is then 
given as

(x0
1, x

0
2, x

0
3) - attached to body 

and rotate with it
- fixed reference frame(x1, x2, x3)

The two frames are related by time-dependent 
rotation matrix:

x0
i = Rijxj

Rij =

2

4
cos!rott sin!rott 0
� sin!rott cos!rott 0

0 0 1

3

5

ij

I = RT I 0R

I11 = 1 +
I1 � I2

2
cos 2!rott

I12 =
I1 � I2

2
sin 2!rott

I22 = 1� I1 � I2
2

cos 2!rott

I33 = I3 I13 = I23 = 0

Example II: Quadrupole radiation from rotating 
rigid body

x3 = x0
3

x1
x0
1

x0
2

x2

wrott



But the trace is a constant :

Compare the inertia tensor with the second mass moment:

Iij =

Z
d3x ⇢(x)

�
r2�ij � xixj

�
M ij =

Z
d3x ⇢(x)xixj

They differ by a minus sign and a trace term.

M ij = �Iij +Tr(I)�ij

Tr(I) = Tr(RT I 0R) = Tr(RRT I 0) = Tr(I 0) = I1 + I2 + I3

Example II: Quadrupole radiation from rotating 
rigid body



Note, there is a time-varying second mass moment 
only if           .

M11 = �I1 � I2
2

cos 2!rott+ constant

M12 = �I1 � I2
2

sin 2!rott+ constant

M22 = +
I1 � I2

2
cos 2!rott+ constant

M13 = M23 = M33 = constant

I1 6= I2

Mij is a periodic function so we have production of 
gravitational waves with frequency:

!gw = 2!rot

So when taking the second time derivative of      , the trace 
terms vanish.

M ij

Example II: Quadrupole radiation from rotating 
rigid body



Example II: Quadrupole radiation from rotating 
rigid body

Use equations for generic propagation. 
Set         and        .

x1

x2

x3

◆
✓ = ◆ � = 0

h+ =
1

r

4G!2
rot

c4
(I1 � I2)

1 + cos2 ◆

2
cos (2!rott)

h⇥ =
1

r

4G!2
rot

c4
(I1 � I2) cos ◆ sin (2!rott)

Define ellipticity by: ✏ ⌘ I1 � I2
I3

h+ = h0
1 + cos2 ◆

2
cos (2⇡fgwt)

h⇥ = h0 cos ◆ sin (2⇡fgwt)
h0 =

4⇡2G

c4
I3f2

gw

r
✏

Neutron stars that rotate more rapidly produce a 
stronger GW signal.



Pquad =

✓
dEgw

d⌦

◆

quad

=
r2c3

16⇡G

Z

S
d⌦

D
ḣ2
+ + ḣ2

⇥

E

P =
32G

5c5
✏2I23!

6
rot

Then we can say that the rotational energy of the star 
decreases because of GW emission as

dErot

dt
= �32G

5c5
✏2I23!

6
rot

Rotational energy of star rotating around its principal axis is
Erot = (1/2)I3!

2
rot

Then rotational frequency of neutron star should decrease as
!̇rot = �32G

5c5
✏2I3!

5
rot

Example II: Quadrupole radiation from rotating 
rigid body

Angular distribution of the radiated power in quadrupole approximation:

For our NS example:



N. Vranesevic, D.B. Melrose, MNRAS 410, 4 (2011)

!̇rot ⇠ �!n
rot

n is the braking index.

Example II: Quadrupole radiation from rotating 
rigid body

Experimentally, n 
ranges between 2 

and 3, rather than n = 
5 so GW emission is 
not main energy loss 

mechanism for 
rotating pulsars.

Other EM 
mechanisms 

dominate.



Extreme Quark Star

Hybrid Neutron Star

Normal Neutron Star

Continuous signal with h / ✏

Maximum Deformations

Equatorial ellipticity

SNR / hp
Sn

p
T

Continuous Waves



• Solving the Einstein Equations 
• Linearized Theory 
• Vacuum Solution 
• Solution with Source Term 

• Generation of Gravitational Waves 
• Effect of Gravitational Waves on Matter 
• LIGO & Virgo Astrophysical Sources 

• Coalescing Binaries 
• Continuous Waves 
• Transient Bursts 
• Stochastic Background 

• LISA & PTA Sources



Burst Sources

The Iconic Burst GW Source - 
Core collapse supernovae 

(Type Ib/Ic & II) when massive 
stars die.

Type Ia supernovae when 
white dwarfs in binary 

detonate.

Supernovae



Burst Sources



Burst Sources
Short duration Long duration



• Stochastic (random) background of gravitational 
radiation 

• Can arise from superposition of large number of 
unresolved GW sources 
1. Cosmological origin 
2. Astrophysical origin 

• Strength of background measured as gravitational 
wave energy density ⇢GW

Stochastic Background



• 1965 - Penzias and Wilson 
accidently discovered Cosmic 
Microwave Background 
(CMB), leftover radiation from 
380,000 years Big Bang 

• 1978 - awarded Nobel prize

• CMB as seen by Planck, an ESA 
observatory 

• Wavelengths of photons are 
greatly redshifted (1mm) 

• Effective temperature ~ 2.7K 
• Can be detected by far-infrared 

and radio telescopes

Cosmic Microwave Background



Cosmological Gravitational Wave Background



Cosmological Gravitational Wave Background

GW spectrum:

Critical energy density of universe:



Big-Bang-
Nucleosynthesis: 
abundances of light 
nuclei produced 

Cosmic Microwave 
Background 
Measurements: 
structure of CMB and 
matter power spectra

Cosmological Gravitational Wave Background



Inflation: measuring 
GWs can test for 
“stiffness” in early 
universe 

Models of Cosmic 
Strings: topological 
defects in early 
universe

Cosmological Gravitational Wave Background



Potential background from binary black hole mergers

Astrophysical Gravitational Wave Backgrounds



Frequencies of signals 
as audio



• Solving the Einstein Equations 
• Linearized Theory 
• Vacuum Solution 
• Solution with Source Term 

• Generation of Gravitational Waves 
• Effect of Gravitational Waves on Matter 
• LIGO & Virgo Astrophysical Sources 

• Coalescing Binaries 
• Continuous Waves 
• Transient Bursts 
• Stochastic Background 

• LISA & PTA Sources



LISA Sources

• Galactic white dwarfs 

• Primordial backgrounds 

• Supermassive binary black holes 

• Capture orbits





• Produced by an extremely large number of weak, 
independent, and unresolved gravitational-wave sources. 
For LISA, this will be white dwarf binaries.

LISA Gravitational Wave Background



Pulsar Timing Array 
Sources

• Also, supermassive binary black holes!











Merging Supermassive Black Hole 
Binaries

Image Credit: 
Debra Meloy 
Elmegreen 
(Vassar 
College) et al.,  
& the Hubble 
Heritage Team 
(AURA/STScI/
NASA)
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