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The Einstein Equations
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Given the source distribution 1}, , one can solve
this set of 10 coupled nonlinear partial differential
equations for the metric g ()



Methods

Solving Einstein’s equations is difficult. They're non-linear. In
fact, the equations of motion are impossible to solve unless
there 1Is some symmetry present.

In the absence of symmetry, there are two methods:
1. Numerical relativity (next time)
2. Approximation techniques

For the approximation technigue, we co
close to flat space with a small pertu

nsider a metric very
rbation. And we

consider only first order pertL

rbations.
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Linearized Theory of Metric Field

Consider the Minkowski metric - a combination of three
dimensional Euclidean space and time into four dimensions.

ds® = —c*dt* + dz® + dy* + dz* = n,, dz'dz”

o = OO
O O O

Consider a small perturbation huv on flat space:
Juv = Muv T h;u/ |h,uy‘ < 1

so that higher orders of hu. can be neglected when
substituting in Einstein Field Equations (EFE)



Linearized Theory of Metric Field

Can we make coordinate transformations under such
systems? Yes, from one slightly curved one to another,
aka "“Background Lorentz transformation”

So EFE are invariant under general coordinate
transtormations but invariance is broken as a result of
background.

huv is an as yet unknown perturbation on flat space. We can
make small changes in coordinates that leave Muv
unchanged but make small changes in ..

We can only consider a sufficiently large specitic
reference frame where 9uv = Muv + Puw holds.

In other words, we're restricted in how much we can
change the coordinates.



Linearized Theory of Metric Field

We are restricted to a limited set of coordinate
transformations called "gauge transformations”

o — o't + € (2*)
It we transtform the metric under this change of

coordinates we find that the metric has the same form
but with new perturbations given by

hp () = Py, (27) = By () = (s + 00€4)



Linearized Theory of Metric Field

We can stream line some calculations by an
appropriate choice of gauge conditions.

We require a coordinate system in which Lorentz
gauge (or harmonic gauge) holds

O hy, =0

where we've defined the trace-reversed perturbation:
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such that the trace has opposite sign:
Rt = hy,, = —h

s



Linearized Theory of Metric Field

The Riemann curvature tensor

1
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for a tflat metric with a perturbation will become

1
R,pe = 5 (0L0ph e + 0,050y — 0,0,hye — 0L0sh )

Ryvap =

Then substituting the trace-reversed perturbation, EFE takes
form:
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Linearized Theory of Metric Field

And iImpose the harmonic gauge, then the last three
terms in previous equation vanish and we end up with
the Linearized Einstein Equations
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Solution in a Vacuum

What happens outside the source, where 1, =0 7

Then, the EFE reduces to

huw =0
1 _
(——aﬂ + v2> B =0

2

Wave equation for waves propagating at speed of light ¢!

Solutions to wave equation can be written as superpositions
of plane waves traveling with wave vectors k£ and frequency

k

W —C




Solution in a Vacuum

Plane wave solution:
h(t) = A, cos (wt _ f)

Implications: Spacetime has dynamics of its own,
independent of matter. Even though matter generated
the solution, it can still exist far away from the source

where 1, =0
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Solution with Source

Now allow for source. What would cause the waves to
be generated”

_ 16w
hp = i T

Solve using retarded Green’s function assuming no
incoming radiation from infinity. The solution is

] 4 | _ 7
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Solution with Source

We can utilize an additional gauge freedom by
Imposing the radiation gauge:

h=0, hop; =0

Combining the harmonic gauge and this radiation
gause, we can write the solution in the transverse
traceless (1 1) gauge

4G ) 1 r—a| |
hz-TjT (t,aj‘) — —Aij,kl(n) /dSCE, Tkl (t ‘ |,CE',>

c? 7 — 7 C

1 - direction of propagation of GW

A k() is atool to bring huw outside the
source in the TT gauge.



Solution with Source

A k1(n)is atool to bring huw outside the

source in the TT gauge.

) 1
Nij k() = PPy — §Pz’jpkl

Pz'j — 57;]' — nmj

Then the perturbation h;;" (t,Z) can be evaluated outside
the source at & while &' is a point inside the source.
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We're looking at a distance r thatis much 7~
larger than the size of the source d. Then ™ x~ X
we can expand [ ¢ /

AT =r—& 7+ O (d2/r)



Solution with Source

Then we can write the TT solution as

4G 1 r -
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It the source is non-relativistic, v/c << 1, then we can expand

T X n r x’ini 1 S
T |t — — 4 ,f’ = T (t — —, f’) -+ 0ol + —x’zaz’Jn’nJ@ngl -+ ...
C C C c 22

We can substitute this for Ti in the TT solution to get
the multipole expansion

1 4G I 1 ° 1 X
TT =\ __ N ~ kl - kl,m | kl,m

dret

where ret is the retarded time t — r/c
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Generation of Gravitational Waves

Multipole moments of stress tensor 7%
Sii — / BT (1, 7)
Sk — /d?’xTij (t, Z) z"
CREE /dga;'Tij (t, z) z"2’

Multipole moments of the stress energy tensor are
not physically intuitive.



Generation of Gravitational Waves

We can express the multipole moments in terms of the
mass moments and the momentum muiltipoles.

Mass moments: momenta of energy density 7°° /¢
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Generation of Gravitational Waves

We can express the multipole moments in terms of the
mass moments and the momentum muiltipoles.

Momenta of momentum density T /c
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Generation of Gravitational Waves

To leading order in v/c, we can eliminate the multipole
moments in favor of the mass moments to get a
solution of the form:

126G
quad r c

[hZ?T (t, f)} Aijjkl(ﬁ)Mkl (t — T/C)
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where we have used: S = 5]\"4”‘5

Mass quadrupole radiation!



Generation of Gravitational Waves

T 12G
quad r C4

hET (t, f)} Aijykl(”fl)Mkl (t — T/C)

No Monopole Radiation No Dipole Radiation
M — 1/ 43 28, T Mass dipole M* zero
CJv (i.e. constant) in center of
1 mass frame

— ——/ dSLEa&'TOi
cJv
No momentum monopole
_ _ETZ/dQTOi contribution
© /s P =0
=0
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Effect of Gravitational Waves on Matter

The best way to understand the effect of gravitational waves
on matter is to consider two neighboring free-talling
particles at z¥(7) and z"(7) + ¢*(7)

Consider the geodesic equations for each particle:

d? dx¥ dx?”
- =
dT? Vp(x) dr dt !
d* (" + ¢) d(z" + ¢*) d(zt + ¢*)
o Ky =
dT? vp (z+¢) dr dr U

Take the difference of the two and expand to leading order
in ¢

dx” dCP dx¥ dxP
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Effect of Gravitational Waves on Matter

d?(H Y d(CP dx? dxP
- 2T - (90, TH =0
dT? vP % dT C vp () dr dt

Transform into a Local Lorentz Frame such that:

g,uz/(P) — 77,u1/; 8,0.g,ul/ = () > FZV — ()
Assume the particles are moving non-relativistically:

dx" < dx®  dxO
dT dr dr

~ C

Relate 9,159 to the Riemann tensor:




Effect of Gravitational Waves on Matter

The components of the Riemann tensor may be calculated
in any frame due to its invariance in linearized theory. We
can use the TT frame:

1 1T
2 h’LJ

1 D,
ojo—RzO]O—

Now we see how the geodesic deviation between two

particles is related to the perturbation caused by a passing
GW:

¢ = SR

A tidal effect!



Effect of Gravitational Waves on Matter

Gravitational wave in the z-direction:

h_|_ h/x O .
h;.IJ‘-T h —hy 0| cos(wt—zt/c), w=c|k|
0o 0 of,

Relative displacements of particles in (x, y) plane:
hyx =0

h h

0F = 2+ (z¢ + 0x) w* cos(wt) ox(t) = 7—'_2170 cos(wt)
0y = % (Yo + 0y) w” cos(wt) ) 0y(l) = h; yo cos(wt)
iy =0 B h
0L = - (yo + 0y) w” cos(wt) ox(t) = 5 Yo cos(wt)
0l = % (2 + d7) w? cos(wt) )5y(t) = h2>< T( cos(wt)



Effect of Gravitational Waves on Matter

h+ polarization

h ¢ o o

ox(t) = %a’zo cos(wt) " e,
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hx polarization Q.

h>< ® .
0z (t) = 5 Yo cos(wt) o .
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oy(t) = 5 Lo cos(wt) oot



