Announcements

Please turn in Assignment 1 and pick up Assignment 2
You can also email assignments to the TAs:

Ka Wa Tsang (kwtsang@nikhef.nl)

Pawan Gupta (p.gupta@nikhef.nl)

If you haven't yet, please provide your email and affiliation.
Note minor amendments to online syllabus.

Upcoming Events

* Press conference this Wednesday on first result from Event Horizon
Telescope: first-ever image of a black hole


mailto:kwtsang@nikhef.nl

General Relativity: A
Summary

Lecture 2: Gravitational Waves MSc Course
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Principle of Equivalence

There Is no experiment you can do that will
distinguish between the following two experiments.

| Stationary but subject
Accelerating at g to gravitational force




Light Bends in a Gravitational Field

| Light has followed a
| curve.



Light appears to curve when you are accelerating
through space with acceleration g.

By principle of equivalence, accelerating with
acceleration g is equivalent to being stationary
subject to acceleration g.

Then, light should also appear to curve in a
gravitational field.




Solar Eclipse of May 29, 1919

-irst observation of light detlection by Arthur
—ddington during solar eclipse.




Bending, in seconds of arc
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Why do these measurements imply
spacetime is curved?

Apparent
location
of star

Newton’s law of

gravitation
Path of starlight
B GM ™ Faith —% Actuc{/
F = 5 location
r of star

This form of Newton's law doesn't work for light!

Constant

f velogity “Gravity” causes acceleration.
Acceleration in Therefore, spacetime must be
spacetime results curved if it is creating an
IN a curve.

y acceleration.



Gravitational Lensing

Nl

Lensing by a single galaxy:_
Einstein ring

galaxy
galaxy cluster

__~-lensed galaxy images

distorted light-rays

Earth
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3 Essential Ideas Underlying
General Relativity

1. Spacetime may be described as curved, 4-D
mathematical structure called pseudo-Riemannian
manifold

2. At every spacetime point, there exist locally inertial
reference frames, corresponding to locally flat
coordinates carried by freely falling observers:
Einstein’s strong equivalence principle.

3. Mass and mass/momentum flux curves spacetime in a
way described by Einstein’s tensor field equations.



What is a tensor?

Scalar - tensor rank 0, magnitude, ex: temperature.
Vector - tensor rank 1, magnitude and direction, ex: force.
Tensor - combination of vectors where there is a fixed
relationship, independent of coordinate system; ex: dot
product, work.

Principle of relativity - “Physics equations should be
covariant under coordinate transformation.”

To ensure that this is automatically satisfied, write physics
equations in terms of tensors.



Inertial Frame of Reference

Coordinate systems in which a particle will, if no external
force acts, continue it’s state of motion with constant velocity.
Physics descriptions are simplest here.

Galilean ;
Relativity ¥

. 1 P TE o

Special Relativity -
constancy of light
speed

Michelson-Morley Experiment

Famous null
experiment - motion
through aether does
not cause a
differential phase
shift




Coordinate Symmetry
Transformations

 (Galilean
transformation

Classical, non-relativistic
mechanics.

Valid forv « ¢

e Lorentz
transformation

Revealed by Special Relativity,
l.e. Maxwell equations.

Valid forv <c

e (General
coordinate
transformation

Needed for General Relativity.

Physics should be covariant under
general transformations between
frames of reference.

Valid for v = ¢ and accelerating
frames.



Einstein Summation Convention

Repeated indices imply

5 summation.
A¥B, = A'B, = A°By+ A'By + A?By + A®Bs
p=0 _AO_
Al
= |By B1 By B3] 12
A3

Free index - appears Dummy "_‘de_x - appears
exactly twice in one given term

exactly once in every . .
. of equation but only once In
term of equation .
equation
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Spacetime

Spacetime points (events) can be labeled by

coordinate system:
xt = (xo,xl,:EQ,xB)

which has no intrinsic meaning.

May be described as curved, 4-D mathematical

structure called pseudo-Riemannian differentiable
manifold.

Distances between nearby events are calculated using
a metric g,

Greek indices for components u, v € {0,1,2,3}



* A Brief Introduction
e Some Terminology
* Spacetime
e Metric of flat space: Newtonian
e Metric of flat space: Special Relativity
e Metric of curved space
e The Metric Tensor
e Tensor Calculus
e Covariant Derivative
e Parallel Transport
e Curvature and the Riemann Tensor
* Motivating the Einstein Equations




The Metric of Flat Space: Newtonian Mechanics

Pythagorean Theorem in 2-D Euclidean
Space

Kronecker delta is metric tensor Iin flat space.

9mn — 5mn

S

_O 1_

Position-
independent metric



* A Brief Introduction
* Some Terminology
* Spacetime
e Metric of flat space: Newtonian
e Metric of flat space: Special Relativity
e Metric of curved space
e The Metric Tensor
e Tensor Calculus
e Covariant Derivative
e Paralllel Transport
e Curvature and the Riemann Tensor
* Motivating the Einstein Equations




The Metric of Flat Space: Special Relativity

Worldline of particle
moving with speed v<e

I TR Units in which ¢ = 1

/7

Spacetime interval in flat 4D
spacetime

ds* = —dt* + dz* + dy* + dz*

|4
= N, T

Credit: http://www.mth.uct.ac.za X

Minkowski metric is metric tensor in flat 4D spacetime.

-1 0 0 O
0 1 0 O .
Juv — Nuy — 0 0 1 0 — dlag (—1, 1, 1, 1)
0 0 0 1 Position-independent

metric


http://www.mth.uct.ac.za

Spacetime Intervals

B. Timelike separation - causally
connected to A

ds? < 0

A. Lightlike (Null) separation
ds® = ()

C. Spacelike separation - cannot
exchange signals between Aand C

ds? > 0

Light cone
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The Metric of Curved Space: General Relativity

General relativity as a geometric theory of gravity posits
that matter and energy cause spacetime to warp so that

Juv T Nuv

Thus gravitational phenomena are just effects of a

curved spacetime on a test particle.

Source particle

Source >
Einstein

Field
equation

Field

>

equation

Field

>

Equation
of motion

Curved spacetime

Test Particle

>

Geodesic
equation

Test Particle




The Metric of Curved Space: General Relativity

Some facts about the warped manifold of space and time:

1. It has a position-dependent metric g,. ()
- Metric describes gravitational field completely
- Metric plays role of relativistic gravitational
potentials

2. It has non-Euclidean relations
- In curved space, Euclidean relations no longer hold
- Ex: sum of interior angles of triangle on sphere
deviates 180°

Neutron
. Star

3. It will have a locally flat metric and locally inertial
frame

- A small local region can always be described
approximately as flat space (Flathess theorem)

- In this region, because of the absence of gravity,
Special Relativity is valid and the metric is flat
Minkowski; local lightcone structure




Local Inertial Frames or Local Lorentz Frame

Local properties of curved spacetime should be indistinguishable
from those of flat spacetime.

Given a metric gos In one system of coordinates, at each point 2 it is
possible to introduce new coordinates such that

9as(P) = Nag

It is not possible to find coordinates in which the metric is flat over
the whole of curved spacetime.

At every spacetime point, one can construct a free-fall frame in which
gravity is transformed away. However, in a finite-sized region, one
can detect the residual tidal force which are second derivatives of the
gravitational potential. It is the curvature of spacetime.

9 s (P) =0 o
O Jap — I Ol gap (7)) # 0
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The Metric Tensor

Greek indices for components i, v € {0,1,2,3}

Basis vectors in a general coordinate system are not necessarily
mutually orthogonal or of unit length

e, €, =gu 7 Opv

But we can define an inverse basis such that
vV SV
e, e = 5u

As an example, in a four dimensional Cartesian coordinate system:

Basis
vectors:

€y —

o O O =

S O = O

, etfc.

Inverse basis vectors
(One-forms):

e"=1[1 0 0 0
ee=[0 1 0 0




The Metric Tensor

Metric: e, -€, = g
Inverse Metric: e - e” = g""
Metric matrices are \ \
. 14
Inverse to each other: gGuvg =~ = 5M

Because there are two sets of coordinate basis vectors,
there are two possible expansions for vector A:

Contravariant components: A = A¥e,, A* = A . e

Covariant components: A = A4,e" A, = A ¢,



Using the Metric

Scalar product of two vectors: A -B = g, A" B
— g’UJVAIUJBV

A-B
AB

Angle between two vectors: cosf =

In curved spacetime, the metric only determines the infinitesimal

length:
J ds = \/ gapdzadz?

For a finite length, perform the line integration

dx® dmb
S_/ds_/_dA /\/ng o
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Tensor Calculus: Coordinate
Transformations

Recall the chain rule differentiation relation using the gradient:

Transformation for contravariant vector:
ox'
oxV

Transformation for covariant vector (1-form):

, oz

H — aa?’“

Transformation of tensor with mixed indices:

ozx> Ox'*
1 o p
T = T = o o T

AP 5 AP = T A

A, — A A,
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Tensor Calculus: Covariant Derivative

Ordinary derivatives of tensor components are not tensors. The
combination 0, A¥ does not transform properly.

ox> Oz
ox'V OxP

9, A" — 9 A" £ 9y AP

We seek a covariant derivative V, to be used in covariant physics
equations. Such a differentiation is constructed so that when acting on
tensor components it still yields a tensor.

ox> Ox'H
ox'V OxP

In order to produce the covariant derivative, the ordinary derivative must be
supplemented by another term:

V, A" = 9, A" +Th, A VoA, =0,A, -T;, A\

VVA“%V/VA/“: V)\A’O




Covariant Derivative and Metric
Tensor

Metric tensor is position-dependent but it is a constant with respect
to covariant differentiation:

0g + 0 Vg =10 Vaguw =0

We can use this relationship to find an expression for the coefficients in
the extra term. These coefficients are known as Christoffel symbols -
the first derivative of the metric tensor, 1.e. “the fundamental theorem of
Riemannian geometry”.
L p

Fi\w — 59 Ov9up + 0uGup — Opguu]

In the special case of a Local Lorentz Frame, the Christoffel
symbols vanish.
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Parallel Transport and Geodesics

Consider a vector transported along
a curve. A difference in the vector X X o

could be caused by either:
1. change of the vector itself
2. coordinate change 2

Thus, if we move a vector (tensor)
without changing itself, then the only
change in components is due to
coordinate changes.




Parallel Transport and Geodesics

difference in direction dz* — difference in direction dx”
D
C e - ) - (Ve — V)
, dz”  _[(Ve —Vp) = (Vb = Va)]
A dxt
A B Vi—Vy =dV
dA'u — [AAM]total — [AAM]true + [AAM]Coord
AA] = (V, AF) da
[AAM]coord — _PlVLAAVdQEA

Parallel transport - Only change due to coordinate changes
AAY] = dA" — [AA¥| =0

true cCOoor



The Geodesic

Mathematical expression for parallel transport of vector components is

VA* = dA* +T*, AVdz* = 0

The process of parallel transporting a vector A* along a curve x* (o)
can be expressed according to:

dAH dz™
FTH . AY—— =0
do VA do

But the geodesic is a curve for which the tangent vector parallel
transports itself, i.e.:

7
s dx
do
d? dz¥ dx?
Thus, the geodesic equation is: L TH — ()
do?2 " do do
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Curvature and the Riemann Tensor

Local Lorentz Frame: effects of curvature become noticeable when
taking second derivatives.

Vo, V] AF =V, VA" — VsV A" = Ry 5 AY
Réfozﬁ — aaréfﬁ - aﬁrl)foz T Flljozriﬁ o F'LI/LB I)/\oz

In Local Lorentz Frame:
1

2
Form of Riemann Tensor: R=dI' + 1] —— 5’29 -+ (5’9)2

Ruvas = 5 (0u0agvp — 000agus + 0098910 — 0089va)

In flat space, the first and second derivatives of the metric vanish.

Rf\baﬁ = 0 implies flat space.



The Riemann Tensor
Ri\o5 = 0al\g — 0Ty, + 1, T5s — ', 5%,
Symmetries:  R,,,.3 = —Ry,ua83
Ryvap = —Ruusa
R,vag = +Rapguw

_ _ _ _ pb
Ricci tensor: Rluy — gaﬁRauﬁl/ — R,UBV

Ricciscalar: R = g* Ro3 = Rg

Bianchi identity: V Rapgys + VyRagsy + VsRaguy =0
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Motivating Einstein Equations

a (.’L‘) :1 ad agdc | agab 8gbc
be 27 Oxb  Ozxe Oxd

Consider low gravity, low speed, ordinary flat space. Then, GR must
reduce to Newtonian gravity.

Only term with any significance is derivative of time component goo.
All other derivatives go to zero and g goes to 1.

1 dgoo

' =
2 Ox

= F

0P
F=_-= — _ > =20+ C
5 F Vo goo ¢



Motivating Einstein Equations

Consider force capability across whole sphere

M M
/F-dAz/ G2 aa= - My~ _troum

r 2

Divergence theorem
—47rG/pdV= /V-FdV
/ F-dAz/ V.- FdV
vol —4rGp=V-F =V - (-V¢)

ng M:/pdv V¢ = 4Gp



Motivating Einstein Equations

1
% (5900) = 4nGp

V2900 = 87Gp

But this is not a tensor equation and for general relativity, we need
tensor equations.

G, =8rGT),,

Now we have tensors on both left and right hand side. Einstein
tensor is on the left. Instead of mass density on the right, we
have a stress-energy-momentum tensor with all mass-energy-
stress-pressure terms that you can have.



Stress-Energy-Momentum Tensor

Momentum 4-vector But we need a tensor!
5 (CEO 1T X9 1193) E W F x L F
= 1m . . : _— = — - —
P ' v T V V L3 L2

1,v has 0 to 3 indices.

» 00 - time component / energy part.

+ Along top - energy flow

- Along side - momentum density

- 9 middle components - momentum flux-stress energy part

| | | | D it
Pl | o | Too [ Tos | et
Energy Flux
7R 10 Momentum Density
T2 0 Pressure
| T30 Shear Stress




Motivating Einstein Equations

?
G, =8rGT,, ' > R, =8rGT,,

We need the spacetime curvature term on the left. Einstein thought it
should be the Ricci curvature tensor. But there is a problem.

Due to energy conservation:
Vi1,,=0

But the derivative of Ricci tensor does not equal zero as can be seen
with the Bianchi Identities. Instead, what is found is

1 1
v,u (R,LLV — §g,uVR> =0 G'uy — R,uu — §g,u,/R

Einstein tensor



Motivating Einstein Equations

Thus, the equation could have the form:

1 871G
Ryv — §guvR — c—4TpV

Einstein thought he forgot something because it is also true that

Vg =0
Then we can add the metric tensor term with a constant:
1 81
Ry — §9¢WR + Aguy = c_4TW

A is the cosmological constant for space in math terms. It is often
left out except for major cosmological scales.

(G
Guv + Aguv = c—4Tuv




Einstein Field Equations

1 (G
Ry — QQWR + Aguy = C—4Tuv

Indices u, v represent dimensions of spacetime.
Combinations of 1, v mean there are 16 variations of this equation.
6 equations are duplicates.

Total of 10 Einstein Field Equations.



Methods

Solving Einstein’s equations is difficult. They're non-linear. In
fact, the equations of motion are impossible to solve unless
there 1Is some symmetry present.

In the absence of symmetry, there are two methods:
1. Numerical relativity (next time)
2. Approximation techniques

For the approximation technique, we co
close to flat space with a small pertu

nsider a metric very
rbation. And we

consider only first order pertu

roations.



Online Resources

Sean Carroll lecture notes on General Relativity:
https://arxiv.org/abs/gr-qc/9712019

Leonard Susskind GR lectures on youtube:

https://www.youtube.com/watch?v=JRZgW1Y|CKk


https://arxiv.org/abs/gr-qc/9712019
https://www.youtube.com/watch?v=JRZgW1YjCKk

