Review for Final

Also:
Review homework
Review Lecture 9 slides



Example: Binary star system in Virgo cluster (16.5 Mpc away)

would produce h ~ 1021, Over a distance of L=1 AU, AL would
be ~ 1 atomic diameter.

Credit: LIGO



Gravitational-wave Sources for
Ground-based Detectors
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First Observational Evidence

Hulse-Taylor Binary
Pulsar
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Bar Detectors

Josep Webber -
University of Maryland
1961: proposed to use

resonant bar detectors to
detect GWs

Piezoelectric sensors

Only sensitive over very
narrow range of
frequencies



Masses in the Stellar Graveyard

in Solar Masses

LIGO-Virgo Black Holes o
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Characteristic Strain

Gravitational-wave Spectrum
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What is a tensor?

Scalar - tensor rank O, magnitude, ex: Temperature

Vector - tensor rank 1, magnitude and direction, ex: Force

Tensor - combination of vectors where there is a fixed relationship,
independent of coordinate system; ex: Dot product, work

Principle of relativity - “Physics equations should be covariant
under coordinate transformation.”

To ensure that this is automatically satisfied, write physics equations
in terms of tensors.



Finstein Summation Convention

Repeated indices imply summation.

3
A¥B, = A'B, = A°By+ A'By + A?By + A®Bs
p=0 -

AV
Al
= |By B1 By B3] A2
A3
Free index - appears Dummy index - appears exactly
exactly once in every twice in one given term of equation

term of equation but only once in equation



The Metric of Curved Space: General Relativity

General relativity as a geometric theory of gravity posits that
matter and energy cause spacetime to warp so that Guv 7 Muv

Thus gravitational phenomena are just effects of a
curved spacetime on a test particle.

Source particle > |Field » | Test Particle
Field Equation
equation of motion
Source » |Curved spacetime » | Test Particle
Ein.stein Geodesic
Field equation

equation



Tensor Calculus: Covariant Derivative

Ordinary derivatives of tensor components are not tensors. The
combination 9, A" does not transform properly.

ox> Oz
ox'V OxP

We seek a covariant derivative V,, to be used in covariant physics
equations. Such a differentiation is constructed so that when acting
on tensor components it still yields a tensor.

ox> Ox'H
ox'V OxP

In order to produce the covariant derivative, the ordinary derivative
must be supplemented by another term:

V, A" = 9, A" +Th, A VoA, =0,A, -T;, A\

9, A" — 9 A'M + Oy AP

V, A" — V! AN = VAP




Parallel Transport and Geodesics

Consider a vector transported
along a curve. A difference in the
vector could be caused by either:
1. change of the vector itself

2. coordinate change

Thus, if we move a vector (tensor)
without changing itself, then the
only change in components is due
to coordinate changes.

A A A

2




Curvature and the Riemann Tensor

Local Lorentz Frame: effects of curvature become noticeable when
taking second derivatives.

Vo, V] AF =V, VA" — VsV A" = Ry 5 AY
Réfozﬁ — aaréfﬁ - aﬁrl)foz T Flljozriﬁ o F'LI/LB I)/\oz

In Local Lorentz Frame:
1

5 (
Form of Riemann Tensor: R=dl' +11" —— 529 + (39)2

Ruvas = 5 (0u0agvp — 000agus + 0098910 — 0089va)

In flat space , the first and second derivatives of the metric vanish.

R\ 5 = 0 implies flat space.



Motivating Einstein Equations

G, =8rGT),, > R, =8rGT,,

We need the spacetime curvature term on the left. Einstein
thought it should be the Ricci curvature tensor. But there is a
problem.

Due to energy conservation:
VI,,=0

But the derivative of Ricci tensor does not equal zero as can be
seen with the Bianchi Identities. Instead, what is found is

1 1

\%a (R,ul/ _ §g,ul/R> =0 G,LLI/ — R,LW — §gMVR

Einstein tensor



Methods

Solving Einstein’s equations is difficult. They're non-linear. In
fact, the equations of motion are impossible to solve unless
there 1Is some symmetry present.

In the absence of symmetry, there are two methods:
1. Numerical relativity (next time)
2. Approximation techniques

For the approximation technigue, we co
close to flat space with a small pertu

nsider a metric very
rbation. And we

consider only first order pertL

rbations.



Linearized Theory of Metric Field

And iImpose the harmonic gauge, then the last three
terms in previous equation vanish and we end up with
the Linearized Einstein Equations

167G
bl

U

Ny =
H 64




Solution in a Vacuum

What happens outside the source, where 1, =0 7

Then, the EFE reduces to

huw =0
1 _
(——aﬂ + v2> B =0

2

Wave equation for waves propagating at speed of light ¢!

Solutions to wave equation can be written as superpositions
of plane waves traveling with wave vectors k£ and frequency

k

W —C




Solution with Source

Now allow for source. What would cause the waves to
be generated”

_ 16w
hp = i T

Solve using retarded Green’s function assuming no
incoming radiation from infinity. The solution is

] 4 | _ 7
P (L, 7) = G/d?” T (t z m',f’)

c z— 7| " c




Generation of Gravitational Waves

To leading order in v/c, we can eliminate the multipole
moments in favor of the mass moments to get a
solution of the form:

126G
quad r c

[hZ?T (t, f)} Aijjkl(ﬁ)Mkl (t — T/C)

1

where we have used: S = 5]\"4”‘5

Mass quadrupole radiation!



Effect of Gravitational Waves on Matter

h+ polarization

h ¢ o o

ox(t) = %a’zo cos(wt) " e,

h_l_ ® ® o o o ® ¢
oy(t) = 5 Yo cos(wt)

hx polarization Q.

h>< ® .
0z (t) = 5 Yo cos(wt) o .

B e

oy(t) = 5 Lo cos(wt) oot



Noise spectral density

Sn(f) is the noise spectral density (aka noise spectral
sensitivity or noise power spectrum):
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nterferometric GW
Detector Pattern runctions

1

F.(0,¢;19 =0) = 5 (1 + cos® (9) cos 2¢

F. (0, ;7 = 0) = cos fsin 2¢

Thus GW Interferometers have blind direc

‘lons. For

instance, for a GW with plus polarizat

on,

7 7 ¢=m/4 and Fy =0

. e This wave produces t
. . displacement in the ¥ a

NE SdImeE

nd x arm.

Differential phase shift vanishes!



Define the signal-to-noise ratio...

Using this scalar product definition, we have:

S (u|h) 1

~

N~ (ufu)l/? where u(f) = §Sn(f)K(f)

We are searching for vector u/(ulu)'/? such that its scalar
product with vector A 1s maximum.

They should be parallel (1.e. proportional):

~

K (f) = const.

~

h(f)

Sn(f)

This 1s the Wiener filter (aka matched filter).




Burst Analysis with
VWavelets

® \Vavelets are waveforms of limited duration and
bandwidth

® W bursts can be described as superposition of
wavelets
A
\J

Credit: MathWorks



The Continuous Wave from
an Isolated NS

® [he source should emit a nearly EW
monochromatic sinusoidal wave ¢

—
(S8

Time

® | mit on observation comes from total
avallable observation time

® But the detector will see a modified signal

./I:{f,f,f,...,&,5,h0,COSL,¢,¢Q}

® Four phase evolution parameters

® Four amplitude parameters



What is a stochastic background?

e Stochastic (random) background of gravitational
radiation

e Can arise from superposition of large number of
unresolved GW sources
1. Cosmological origin
2. Astrophysical origin

e Strength of background measured as gravitational
wave energy density paw



Detecting Stochastic Backgrounds

The filter function has the form:

~ - V(f)QGW(f)Hg
Q) =N (AR

overlap reduction function: v(f)

power law template for GW spectrum: Qaw (f) = Qq (f/100Hz)®
present value of Hubble parameter: Hy

noise in detector 1: P1(f)

noise in detector 2;: Pa( f)

Purpose: Enhance SNR at frequencies where signal is strong and
suppress SNR at frequencies where detector noise is large.



Overlap Reduction Function

Signal in two detectors will not be exactly the
same because:
) time delay between detectors
1) non-alignment of detector




Bayes' Theorem
Given:
P(AN B) = P(A|B)P(B)
P(BNA)=P(B|A)P(A)
ANB=BNA
We can derive Bayes’ Theorem:

P(B|A)P(A)
P(B)

P(A|B) =

A = hypothesis (or parameters or theory)
B = data

P(hypothesis|data) « P(datalhypothesis) P(hypothesis)



More on Bayes Theorem

Initial Understanding + New Observation = Updated Understanding

Likelihood | .

probabillity

Evidence



The likelihood function: the data

hy = h(6;)

(

A(s18.) = Nexp { (hals) — ~(hulis) - §<s\s>}

\

In this form, information might not be very manageable.

el

" ql X
For binary coalescence A B
there could be more than
15 parameters 6*




The evidence: model selection

dlh', M)p(h'| M)

: ~p(
p(ld, M) = p(d| M)

M: any overall assumption or model (e.g. the signal is

a GW, the binary black hole is spin-precessing, the
binary components are neutron stars)

Odds Ratio: Compare competing models, for
example “GW170817 was a BNS” vs “GW1/70817

was a BBH":
p(M;|d)

p(M;|d)
p(M;
p(M

~
N—r"
)

N

M;)

d
)p(d

S,



What is the most probable value of
the parameters, 6,?

A rule for assigning the most probable value is called
an estimator. Choices of estimators include:

1. Maximum likelihood estimator
2. Maximum posterior probability

3. Bayes estimator



Confidence versus Credibility

Consider variable with bounded domain like a mass or
rate. We can accommodate the physical constraint with a

prior.
Example: square of mass of electron neutrino
. 2\ 0 m2 <0
j |>|O IO'”Qr . P(m”) = { uniform m? >0
7 0.08 - B
(o) P(md | mi=—54) (b)
n 0.06 |- | =
- 0.04 - -
N 0.02 I~ ]
10%
| \ ¥
700 200 T T, E—" 700 200
2 o
- 30)eV m? < 26.6eV?

FD Cousins (1995)



During inspiral, phase evolution ¢aw (t;m1,2,S1,2) can
be computed with PN-theory in powers of v/c.

leading order higher order even higher order

M1/5 q = 2 < 1] Slwaslyaslz

' Sory 994y S
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