
Announcements
Visualization Project information uploaded to website. 

Due May 25th.

No class this Friday. The next class will be next 
Tuesday, May 8th. Syllabus will be updated shortly and 

email sent.



Lecture  5:  Gravita.onal  Waves  MSc  Course

Astrophysical  Sources  of  
Gravita.onal  Waves



To leading order in v/c, we can eliminate the multipole 
moments in favor of the mass moments to get a 

solution of the form:
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Review: Generation of Gravitational Waves

where we have used:

Mass quadrupole radiation!
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When the direction of propagation     of 
the GW is equal to   ,        is the 

diagonal matrix:

i.e., a projector on the  
plane,

the two polarization amplitudes have the form
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Case I: Propagation in ẑ



When the wave 
propagates in a generic 
direction    , we introduce 

two unit vectors     
and     , orthogonal to  
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Case II: Propagation in n̂
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For a generic propagation direction, the two polarization 
amplitudes have the form:
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LIGO/Virgo  Astrophysical  Sources

• Coalescing  Binaries

• Binary  Neutron  Stars

• Binary  Black  Holes

• Con.nuous  Waves

• Transient  Bursts

• Stochas.c  Background



LIGO/Virgo  Astrophysical  Sources



where                         is the reduced mass.

Example I: Quadrupole radiation from a mass in 
circular orbit
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is the relative coordinate of 

The usual center-of-mass coordinate is:

an isolated two-body system in the 
center-of-mass frame.

If we chose the origin of the coordinate 
system at            , 

then the second mass moment is: 



Choose               frame so 
orbit is in            plane.
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Example I: Quadrupole radiation from a mass in 
circular orbit

(x, y)

Orbit is given by:

The only non-vanishing second mass moment 
components are:

Compute         . Plug into generic expressions for 
polarization amplitudes to get:



The angle    is equal to the angle   
between the normal to the orbit and 

the line-of-site.

A rotation of the source by      is the 
same as a time translation so that 
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Quadrupole radiation is at twice the 
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Example I: Quadrupole radiation from a mass in 
circular orbit



!2
s =

GM

R3
Mc = µ3/5M2/5 =

(m1m2)
3/5

(m1 +m2)
1/5

!gw = 2⇡fgw

!gw = 2!s

h+(t) =
4

r

✓
GMc

c2

◆5/3 ✓⇡fgw
c

◆2/3
1 + cos

2 ✓

2

cos(2⇡fgwtret + 2�)

h⇥(t) =
4

r

✓
GMc

c2

◆5/3 ✓⇡fgw
c

◆2/3

cos ✓ sin(2⇡fgwtret + 2�)

The amplitudes of the GWs emitted depend on the masses 
m1 and m2 only through the combination Mc.

Example I: Quadrupole radiation from a mass in 
circular orbit

Use Kepler’s law, the chirp mass, and the GW frequency to 
rewrite the solutions.



Angular distribution of the radiated power in quadrupole 
approximation:

Total power radiated in quadrupole approximation
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Example I: Quadrupole radiation from a mass in 
circular orbit

For our binary system 
example:

For our binary system 
example:



In terms of the chirp mass Mc , the total radiated power in the 
binary system is
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Example I: Quadrupole radiation from a mass in 
circular orbit



The emission of GWs costs energy. Previous equations are only valid if 
sources are on fixed, circular Keplerian orbit.
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Kepler’s law

To compensate for loss of energy to GWs, R must decrease in time.

If R decreases, ωs increases.
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Then power radiated in GWs increases which means R must decrease 
even more.

Runaway process        binary system must coalesce.

Example I: Quadrupole radiation from a mass in 
circular orbit

⇒



In arguments of the trigonometric functions: !gwt ! �(t)

In factors in front of trigonometric functions: !gw ! !gw(t)

May have contributions from derivatives of        and         .!gw(t)R(t)

is negligible as long asṘ(t) fgw ⌧ 13kHz (1.2M�/Mc)

Example I: Quadrupole radiation from a mass in 
circular orbit

Changes needed to:
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Time to coalescence    measured by the observer:
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Example I: Quadrupole radiation from a mass in 
circular orbit

⌧

Evolution of GW frequency:

Evolution of arguments of trigonometric functions:

Then the GW amplitudes are



In Schwarzschild geometry, there is a minimum value of the radial 
distance beyond which stable circular orbits are no longer allowed, 

i.e. the Innermost Stable Circular Orbit (ISCO):
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For binaries of BH or NS, a phase of slow adiabiatic inspiral, 
going through quasi-circular orbit and driven by emission of GWs  
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Example I: Quadrupole radiation from a mass in 
circular orbit



Example II: Quadrupole radiation from rotating 
rigid body
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Consider a simple situation in which an ellipsoidal body rotates rigidly 
about one of its principle axes.

A rigid body is characterized by its inertia tensor:

There is a frame where the inertia tensor is 
diagonal. The principal moments of inertia are



The time-dependent inertia tensor is then 
given as
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Example II: Quadrupole radiation from rotating 
rigid body
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But the trace is a constant :

Compare the inertia tensor with the second mass moment:
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They differ by a minus sign and a trace term.
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Example II: Quadrupole radiation from rotating 
rigid body



Note, there is a time-varying second mass moment 
only if           .
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Example II: Quadrupole radiation from rotating 
rigid body



Example II: Quadrupole radiation from rotating 
rigid body

Use equations for generic propagation. 
Set         and        .
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Neutron stars that rotate more rapidly produce a 
stronger GW signal.
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Example II: Quadrupole radiation from rotating 
rigid body

Angular distribution of the radiated power in quadrupole approximation:

For our NS example:



N. Vranesevic, D.B. Melrose, MNRAS 410, 4 (2011)
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n is the braking index.

Example II: Quadrupole radiation from rotating 
rigid body

Experimentally, n 
ranges between 2 

and 3, rather than n = 
5 so GW emission is 
not main energy loss 

mechanism for 
rotating pulsars.

Other EM 
mechanisms 

dominate.



LIGO/Virgo  Astrophysical  Sources

• Coalescing  Binaries

• Binary  Neutron  Stars

• Binary  Black  Holes

• Con.nuous  Waves

• Transient  Bursts

• Stochas.c  Background
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Coalescing Binaries



Non-­‐spinning,  equal  mass  black  holes

(m1, m2) = (10, 10) M⊙

Coalescing Binaries



Non-­‐spinning,  unequal  mass  black  holes

(m1, m2) = (4, 16) M⊙

The more massive BH is closer to the center of mass.
The energy radiated is lower than an equal-mass binary.

The binary takes longer to inspiral.

Coalescing Binaries



Aligned  spin,  equal  mass  black  holes

Spin vectors are aligned with orbital angular momentum.
Orbital hang-up effect: aligned-spin black holes can inspiral to much closer 

separations, resulting in longer and stronger GW signals, compared to non-spinning 
binary.

Coalescing Binaries



An.-­‐aligned  spin,  equal  mass  black  holes

Spin vectors are aligned opposite to orbital angular momentum.
Anti-aligned-spin black holes have shorter and weaker GW signals, 

compared to non-spinning binary.

Coalescing Binaries



Misaligned  spin,  unequal  mass  black  holes

Spin vectors are misaligned with orbital angular momentum.
There are spin-orbit and spin-spin interactions between spins and orbital angular 

momentum that cause spins to precess.
Results in complicated modulations in amplitude and phase of GW signals.

Coalescing Binaries



Credit: NASA/CXC/PSU/
Pavlov, et al.

Credit: NASA/HST/ASU/
CXC/Hester, et al.

Continuous Waves

Non-axisymmetric rotating neutron stars; 
asymmetry could arise from:
• equatorial ellipticity (mm-high mountain)
• free precession around rotation axis
• excitation of long-lasting oscillations
• deformation due to matter accretion

Bumpy Neutron Star!



Extreme Quark Star

Hybrid Neutron Star

Normal Neutron Star

Continuous signal with h / ✏

Maximum Deformations

Equatorial ellipticity

SNR / hp
Sn

p
T

Continuous Waves



Nearly monochromatic, continuous signal but could have:
• relative velocity between source/detector (Doppler Effect)
• amplitude modulation due to antenna sensitivity of detector
• frequency and phase evolution

At the source
At the detector

Continuous Waves



Burst Sources

Core collapse supernovae 
when massive stars die.

Type Ia supernovae when 
white dwarfs in binary 

detonate.

Supernovae



Burst Sources



• Stochastic (random) background of gravitational 
radiation

• Can arise from superposition of large number of 
unresolved GW sources
1. Cosmological origin
2. Astrophysical origin

• Strength of background measured as gravitational 
wave energy density ⇢GW

Stochastic Background



• 1965 - Penzias and Wilson 
accidently discovered Cosmic 
Microwave Background 
(CMB), leftover radiation from 
380,000 years Big Bang

• 1978 - awarded Nobel prize

• CMB as seen by Planck, an ESA 
observatory

• Wavelengths of photons are 
greatly redshifted (1mm)

• Effective temperature ~ 2.7K
• Can be detected by far-infrared 

and radio telescopes

Cosmic Microwave Background



Cosmological Gravitational Wave Background



Cosmological Gravitational Wave Background

GW spectrum:

Critical energy density of universe:



Big-Bang-
Nucleosynthesis: 
abundances of light 
nuclei produced

Cosmic Microwave 
Background 
Measurements: 
structure of CMB and 
matter power spectra

Cosmological Gravitational Wave Background



Inflation: measuring 
GWs can test for 
“stiffness” in early 
universe

Models of Cosmic 
Strings: topological 
defects in early 
universe

Cosmological Gravitational Wave Background



Potential background from binary black hole mergers

Astrophysical Gravitational Wave Backgrounds



Frequencies of signals 
as audio



LISA Sources

• Galactic white dwarfs

• Primordial backgrounds

• Supermassive binary black holes

• Capture orbits





• Produced by an extremely large number of weak, 
independent, and unresolved gravitational-wave sources. 
For LISA, this will be white dwarf binaries.

LISA Gravitational Wave Background



Pulsar Timing Array 
Sources

• Also, supermassive binary black holes!











Merging Supermassive Black Hole 
Binaries

Image Credit: 
Debra Meloy 
Elmegreen 
(Vassar 
College) et al.,  
& the Hubble 
Heritage Team 
(AURA/STScI/
NASA)
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