Announcements

Visualization Project information uploaded to website. Due May 25th.

No class this Friday. The next class will be next Tuesday, May 8th. Syllabus will be updated shortly and email sent.

Astrophysical Sources of Gravitational Waves

Lecture 5: Gravitational Waves MSc Course

Review: Generation of Gravitational Waves

To leading order in v / c, we can eliminate the multipole moments in favor of the mass moments to get a solution of the form:

$$
\left[h_{i j}^{\mathrm{TT}}(t, \vec{x})\right]_{\mathrm{quad}}=\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l}(\hat{n}) \ddot{M}^{k l}(t-r / c)
$$

where we have used: $\quad S^{i j}=\frac{1}{2} \ddot{M}^{i j}$

Mass quadrupole radiation!

Case I: Propagation in ẑ

Case II: Propagation in \hat{n}

When the wave propagates in a generic direction \hat{n}, we introduce
two unit vectors \hat{u} and \hat{v}, orthogonal to \hat{n}

The vector \hat{u} is in the (\hat{x}, \hat{y}) plane while \hat{v} points downward with respect to the (\hat{x}, \hat{y}) plane.

Case II: Propagation in \hat{n}

For a generic propagation direction, the two polarization amplitudes have the form:

$$
\begin{aligned}
h_{+}(t ; \theta, \phi)=\frac{1}{r} \frac{G}{c^{4}} & {\left[\ddot{M}_{11}\left(\cos ^{2} \phi-\sin ^{2} \phi \cos ^{2} \theta\right)\right.} \\
& +\ddot{M}_{22}\left(\sin ^{2} \phi-\cos ^{2} \phi \cos ^{2} \theta\right) \\
& -\ddot{M}_{33} \sin ^{2} \theta \\
& -\ddot{M}_{12} \sin 2 \phi\left(1+\cos ^{2} \theta\right) \\
& +\ddot{M}_{13} \sin \phi \sin 2 \theta \\
& \left.+\ddot{M}_{23} \cos \phi \sin 2 \theta\right]
\end{aligned} \begin{aligned}
h_{\times}(t ; \theta, \phi)=\frac{1}{r} \frac{G}{c^{4}} & {\left[\left(\ddot{M}_{11}-\ddot{M}_{22}\right) \sin 2 \phi \cos \theta\right.} \\
& +2 \ddot{M}_{12} \cos 2 \phi \cos \theta \\
& -2 \ddot{M}_{13} \cos \phi \sin \theta \\
& \left.+2 \ddot{M}_{23} \sin \phi \sin \theta\right]
\end{aligned}
$$

LIGO/Virgo Astrophysical Sources

- Coalescing Binaries
- Binary Neutron Stars
- Binary Black Holes
- Continuous Waves
- Transient Bursts
- Stochastic Background

LIGO/Virgo Astrophysical Sources

Signal Duration

Example I: Quadrupole radiation from a mass in circular orbit

The usual center-of-mass coordinate is:

$$
\mathbf{x}_{\mathrm{CM}}=\frac{m_{1} \mathbf{x}_{\mathbf{1}}+m_{2} \mathbf{x}_{\mathbf{2}}}{m_{1}+m_{2}}
$$

$\mathrm{x}_{0}=\mathrm{x}_{1}-\mathrm{x}_{2}$ is the relative coordinate of an isolated two-body system in the center-of-mass frame.
If we chose the origin of the coordinate system at $\mathrm{x}_{\mathrm{CM}}=0$,
then the second mass moment is: $M^{i j}(t)=\mu x_{0}^{i}(t) x_{0}^{j}(t)$
where $\quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad$ is the reduced mass.

Example I: Quadrupole radiation from a mass in circular orbit

Choose (x, y, z) frame so orbit is in (x, y) plane.

Orbit is given by:
$x_{0}(t)=R \cos \left(\omega_{s} t+\pi / 2\right)$
$y_{0}(t)=R \sin \left(\omega_{s} t+\pi / 2\right)$
$z_{0}(t)=0$

The only non-vanishing second mass moment components are:

$$
\begin{aligned}
& M_{11}=\mu R^{2} \frac{1-\cos 2 \omega_{s} t}{2} \\
& M_{22}=\mu R^{2} \frac{1+\cos 2 \omega_{s} t}{2} \\
& M_{12}=-\frac{1}{2} \mu R^{2} \sin 2 \omega_{s} t
\end{aligned}
$$

Compute $\ddot{M}_{i j}$. Plug into generic expressions for polarization amplitudes to get:

$$
\begin{aligned}
& h_{+}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right) \\
& h_{\times}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}} \cos \theta \sin \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
\end{aligned}
$$

Example I: Quadrupole radiation from a mass in circular orbit

$$
\begin{aligned}
h_{+}(t ; \theta, \phi) & =\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right) \\
h_{\times}(t ; \theta, \phi) & =\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}} \cos \theta \sin \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
\end{aligned}
$$

Quadrupole radiation is at twice the frequency ω_{s} of the source: $\omega_{\mathrm{gw}}=2 \omega_{s}$

A rotation of the source by $\Delta \phi$ is the same as a time translation so that

$$
\omega_{s} \Delta t=\Delta \phi
$$

The angle θ is equal to the angle ι between the normal to the orbit and the line-of-site.

Example I: Quadrupole radiation from a mass in circular orbit
Use Kepler's law, the chirp mass, and the GW frequency to rewrite the solutions.

$$
\begin{gathered}
\omega_{s}^{2}=\frac{G M}{R^{3}} \quad M_{c}=\mu^{3 / 5} M^{2 / 5}=\frac{\left(m_{1} m_{2}\right)^{3 / 5}}{\left(m_{1}+m_{2}\right)^{1 / 5}} \quad \omega_{\mathrm{gw}}=2 \omega_{s} \\
\omega_{\mathrm{gw}}=2 \pi f_{\mathrm{gw}}
\end{gathered}
$$

The amplitudes of the GWs emitted depend on the masses m_{l} and m_{2} only through the combination M_{c}.

Example I: Quadrupole radiation from a mass in circular orbit

Angular distribution of the radiated power in quadrupole approximation:

$$
\left(\frac{d P}{d \Omega}\right)_{\text {quad }}=\frac{r^{2} c^{3}}{16 \pi G}\left\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle
$$

$\begin{gathered}\text { For our binary system } \\ \text { example: }\end{gathered}\left(\frac{d P}{d \Omega}\right)_{\text {quad }}=\frac{2 G \mu^{2} R^{4} \omega_{s}^{6}}{\pi c^{5}} g(\theta)$

$$
g(\theta)=\left(\frac{1+\cos ^{2} \theta}{2}\right)^{2}+\cos ^{2} \theta
$$

Total power radiated in quadrupole approximation

$$
P_{\text {quad }}=\left(\frac{d E_{\text {gw }}}{d \Omega}\right)_{\text {quad }}=\frac{r^{2} c^{3}}{16 \pi G} \int_{\mathcal{S}} d \Omega\left\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle
$$

For our binary system $\quad P_{\text {quad }}=\frac{32}{5} \frac{G \mu^{2}}{c^{5}} R^{4} \omega_{s}^{6}$ example:

Example I: Quadrupole radiation from a mass in circular orbit

In terms of the chirp mass M_{c}, the total radiated power in the binary system is

$$
P=\frac{32}{5} \frac{c^{5}}{G}\left(\frac{G M_{c} \omega_{\mathrm{gw}}}{2 c^{3}}\right)^{10 / 3}
$$

Example I: Quadrupole radiation from a mass in circular orbit

The emission of GWs costs energy. Previous equations are only valid if sources are on fixed, circular Keplerian orbit.

To compensate for loss of energy to GWs, R must decrease in time.

If R decreases, ω_{s} increases.
Then power radiated in GWs increases which means R must decrease even more.

Runaway process \Rightarrow binary system must coalesce.

Example I: Quadrupole radiation from a mass in circular orbit

Changes needed to:

$$
\begin{gathered}
h_{+}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}}\left(\frac{1+\cos ^{2} \theta}{2}\right) \cos \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right) \\
h_{\times}(t ; \theta, \phi)=\frac{1}{r} \frac{4 G \mu \omega_{s}^{2} R^{2}}{c^{4}} \cos \theta \sin \left(2 \omega_{s} t_{\mathrm{ret}}+2 \phi\right)
\end{gathered}
$$

In arguments of the trigonometric functions: $\omega_{\mathrm{gw}} t \rightarrow \Phi(t)$
In factors in front of trigonometric functions: $\omega_{\mathrm{gw}} \rightarrow \omega_{\mathrm{gw}}(t)$
May have contributions from derivatives of $R(t)$ and $\omega_{\mathrm{gw}}(t)$.
$\dot{R}(t)$ is negligible as long as $f_{\mathrm{gw}} \ll 13 \mathrm{kHz}\left(1.2 M_{\odot} / M_{c}\right)$

Example I: Quadrupole radiation from a mass in circular orbit

Time to coalescence τ measured by the observer:

$$
\tau \equiv t_{\text {coal }}-t \quad-\infty<t<t_{\text {coal }}
$$

Evolution of GW frequency:

$$
f_{\mathrm{gw}}(\tau)=\frac{1}{\pi}\left(\frac{5}{256 \tau}\right)^{3 / 8}\left(\frac{G M_{c}}{c^{3}}\right)^{-5 / 8}
$$

Evolution of arguments of trigonometric functions:

$$
\Phi(\tau)=-2\left(\frac{5 G M_{c}}{c^{3}}\right)^{-5 / 8} \tau^{5 / 8}+\Phi_{0} \quad \Phi_{0}=\Phi(\tau=0)
$$

Then the GW amplitudes are

$$
\begin{aligned}
& h_{+}(t)=\frac{1}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 4}\left(\frac{5}{c \tau}\right)^{1 / 4} \frac{1+\cos ^{2} \iota}{2} \cos [\Phi(\tau)] \\
& h_{\times}(t)=\frac{1}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 4}\left(\frac{5}{c \tau}\right)^{1 / 4} \cos \iota \sin [\Phi(\tau)]
\end{aligned}
$$

Example I: Quadrupole radiation from a mass in circular orbit

In Schwarzschild geometry, there is a minimum value of the radial distance beyond which stable circular orbits are no longer allowed,
i.e. the Innermost Stable Circular Orbit (ISCO):

$$
r_{\mathrm{ISCO}}=\frac{6 G M}{c^{2}}
$$

For binaries of BH or NS, a phase of slow adiabiatic inspiral, going through quasi-circular orbit and driven by emission of GWs can only take place at distances $r \gtrsim r_{\text {ISco }}$

$$
f_{\max }=\left(f_{s}\right)_{\mathrm{ISCO}}=\frac{1}{12 \sqrt{6} \pi} \frac{c^{3}}{G M}
$$

Example II: Quadrupole radiation from rotating rigid body

A rigid body is characterized by its inertia tensor:

$$
I^{i j}=\int d^{3} x \rho(\mathbf{x})\left(r^{2} \delta^{i j}-x^{i} x^{j}\right)
$$

There is a frame where the inertia tensor is diagonal. The principal moments of inertia are

$$
\begin{aligned}
& I_{1}=\int d^{3} x^{\prime} \rho\left(\mathbf{x}^{\prime}\right)\left(x_{2}^{\prime 2}+x_{3}^{\prime 2}\right) \\
& I_{2}=\int d^{3} x^{\prime} \rho\left(\mathbf{x}^{\prime}\right)\left(x_{1}^{\prime 2}+x_{3}^{\prime 2}\right) \\
& I_{3}=\int d^{3} x^{\prime} \rho\left(\mathbf{x}^{\prime}\right)\left(x_{1}^{\prime 2}+x_{2}^{\prime 2}\right)
\end{aligned}
$$

Consider a simple situation in which an ellipsoidal body rotates rigidly about one of its principle axes.

Example II: Quadrupole radiation from rotating rigid body

$\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ - attached to body and rotate with it
$\left(x_{1}, x_{2}, x_{3}\right)$ - fixed reference frame
The two frames are related by time-dependent rotation matrix:

$$
x_{i}^{\prime}=\mathcal{R}_{i j} x_{j}
$$

$$
\mathcal{R}_{i j}=\left[\begin{array}{ccc}
\cos \omega_{\mathrm{rot}} t & \sin \omega_{\mathrm{rot}} t & 0 \\
-\sin \omega_{\mathrm{rot}} t & \cos \omega_{\mathrm{rot}} t & 0 \\
0 & 0 & 1
\end{array}\right]_{i j}
$$

The time-dependent inertia tensor is then given as $I=\mathcal{R}^{T} I^{\prime} \mathcal{R}$

$I_{11}=1+\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\text {rot }} t \quad I_{22}=1-\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\text {rot }} t$
$I_{12}=\frac{I_{1}-I_{2}}{2} \sin 2 \omega_{\mathrm{rot}} t \quad I_{33}=I_{3} \quad I_{13}=I_{23}=0$

Example II: Quadrupole radiation from rotating rigid body

Compare the inertia tensor with the second mass moment:

$$
I^{i j}=\int d^{3} x \rho(\mathbf{x})\left(r^{2} \delta^{i j}-x^{i} x^{j}\right) \quad M^{i j}=\int d^{3} x \rho(\mathbf{x}) x^{i} x^{j}
$$

They differ by a minus sign and a trace term.

$$
M^{i j}=-I^{i j}+\operatorname{Tr}(I) \delta^{i j}
$$

But the trace is a constant :

$$
\operatorname{Tr}(I)=\operatorname{Tr}\left(\mathcal{R}^{T} I^{\prime} \mathcal{R}\right)=\operatorname{Tr}\left(\mathcal{R} \mathcal{R}^{T} I^{\prime}\right)=\operatorname{Tr}\left(I^{\prime}\right)=I_{1}+I_{2}+I_{3}
$$

Example II: Quadrupole radiation from rotating rigid body

So when taking the second time derivative of $M^{i j}$, the trace terms vanish.

$$
\begin{gathered}
M_{11}=-\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\mathrm{rot}} t+\mathrm{constant} \\
M_{12}=-\frac{I_{1}-I_{2}}{2} \sin 2 \omega_{\mathrm{rot}} t+\mathrm{constant} \\
M_{22}=+\frac{I_{1}-I_{2}}{2} \cos 2 \omega_{\mathrm{rot} t} t \mathrm{constant} \\
M_{13}=M_{23}=M_{33}=\mathrm{constant}
\end{gathered}
$$

Note, there is a time-varying second mass moment only if $I_{1} \neq I_{2}$.
$M_{i j}$ is a periodic function so we have production of gravitational waves with frequency:

$$
\omega_{\mathrm{gw}}=2 \omega_{\mathrm{rot}}
$$

Example II: Quadrupole radiation from rotating rigid body

Use equations for generic propagation.
Set $\theta=\iota$ and $\phi=0$.

$$
\begin{gathered}
h_{+}=\frac{1}{r} \frac{4 G \omega_{\mathrm{rot}}^{2}}{c^{4}}\left(I_{1}-I_{2}\right) \frac{1+\cos ^{2} \iota}{2} \cos \left(2 \omega_{\mathrm{rot}} t\right) \\
h_{\times}=\frac{14 G \omega_{\mathrm{rot}}^{2}}{c^{4}}\left(I_{1}-I_{2}\right) \cos \iota \sin \left(2 \omega_{\mathrm{rot}} t\right)
\end{gathered}
$$

Define ellipticity by: $\epsilon \equiv \frac{I_{1}-I_{2}}{I_{3}}$

$$
\begin{array}{ll}
h_{+}=h_{0} \frac{1+\cos ^{2} \iota}{2} \cos \left(2 \pi f_{\mathrm{gw}} t\right) \\
h_{\times}=h_{0} \cos \iota \sin \left(2 \pi f_{\mathrm{gw}} t\right)
\end{array} \quad h_{0}=\frac{4 \pi^{2} G}{c^{4}} \frac{I_{3} f_{\mathrm{gw}}^{2}}{r} \epsilon
$$

Neutron stars that rotate more rapidly produce a stronger GW signal.

Example II: Quadrupole radiation from rotating rigid body

Angular distribution of the radiated power in quadrupole approximation:

$$
P_{\text {quad }}=\left(\frac{d E_{\mathrm{gw}}}{d \Omega}\right)_{\mathrm{quad}}=\frac{r^{2} c^{3}}{16 \pi G} \int_{\mathcal{S}} d \Omega\left\langle\dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle
$$

For our NS example: $P=\frac{32 G}{5 c^{5}} \epsilon^{2} I_{3}^{2} \omega_{\text {rot }}^{6}$
Then we can say that the rotational energy of the star decreases because of GW emission as

$$
\frac{d E_{\mathrm{rot}}}{d t}=-\frac{32 G}{5 c^{5}} \epsilon^{2} I_{3}^{2} \omega_{\mathrm{rot}}^{6}
$$

Rotational energy of star rotating around its principal axis is

$$
E_{\mathrm{rot}}=(1 / 2) I_{3} \omega_{\mathrm{rot}}^{2}
$$

Then rotational frequency of neutron star should decrease as

$$
\dot{\omega}_{\mathrm{rot}}=-\frac{32 G}{5 c^{5}} \epsilon^{2} I_{3} \omega_{\mathrm{rot}}^{5}
$$

Example II: Quadrupole radiation from rotating rigid body

$$
\dot{\omega}_{\mathrm{rot}} \sim-\omega_{\mathrm{rot}}^{n}
$$

Table 1
Braking index measurements for six pulsars. Also given are the pulsar period, period derivative, period second derivative and characteristic age.

Pulsar names J2000; B1950	P (ms)	$p\left(10^{-25}\right)$	$\ddot{P}\left(s^{-1}\right)$	${ }_{T}{ }_{C}(\mathbf{y r})$	braking index n
Crab*					
J0534+2200; B0531+21	33.085	423	-3.61×10^{-24}	1240	$2.51(1)^{\text {a }}$
J0540-6919, 80540-69*	50.499	479	-1.6×10^{-24}	1670	$2.140(9)^{\text {b }}$
Vela					
J0835-4510; 80833-45	89.328	125		11300	$1.4(2)^{\text {c }}$
J1119-6127*	407.746	4022	-8.8×10^{-24}	1160	$2.91(5)^{\text {d }}$
J1513-5908; B1509-58*	150.658	1540	-1.312×10^{-23}	1550	2.839(3) ${ }^{\text {e }}$
J1845-0258*	325.694	7083		728	$2.65(1)^{\prime}$

${ }^{\circ}$ Demiańskd \& Prószyńskj (1983), Lyne, Pritchard \& Smith (1988, 1993).
${ }^{b}$ Livingstone et al. (2005).
${ }^{\text {'Lyne et aL. (1996), Dodson, McCulloch \& Lewis (2002). }}$
${ }^{d}$ Camilo et al. (2000).
${ }^{\text {e }}$ Manchester, Durdin \& Newton (1985), Kaspi et al. (1994).
${ }^{\prime}$ Livingstone et al. (2006).
n is the braking index.

Experimentally, n ranges between 2 and 3 , rather than $n=$ 5 so GW emission is not main energy loss mechanism for rotating pulsars.

LIGO/Virgo Astrophysical Sources

- Coalescing Binaries
- Binary Neutron Stars
- Binary Black Holes
- Continuous Waves
- Transient Bursts
- Stochastic Background

Coalescing Binaries

Coalescing Binaries

Non-spinning, equal mass black holes

$$
(m 1, m 2)=(10,10) M_{\odot}
$$

Coalescing Binaries

Non-spinning, unequal mass black holes

$(m 1, m 2)=(4,16) M_{\odot}$
The more massive BH is closer to the center of mass.
The energy radiated is lower than an equal-mass binary.
The binary takes longer to inspiral.

Coalescing Binaries

Aligned spin, equal mass black holes

Spin vectors are aligned with orbital angular momentum.
Orbital hang-up effect: aligned-spin black holes can inspiral to much closer separations, resulting in longer and stronger GW signals, compared to non-spinning binary.

Coalescing Binaries

Anti-aligned spin, equal mass black holes

Spin vectors are aligned opposite to orbital angular momentum.
Anti-aligned-spin black holes have shorter and weaker GW signals, compared to non-spinning binary.

Coalescing Binaries

Misaligned spin, unequal mass black holes

Spin vectors are misaligned with orbital angular momentum.
There are spin-orbit and spin-spin interactions between spins and orbital angular momentum that cause spins to precess.
Results in complicated modulations in amplitude and phase of GW signals.

Continuous Waves

Non-axisymmetric rotating neutron stars; asymmetry could arise from:

- equatorial ellipticity (mm-high mountain) $f_{\mathrm{GW}}=2 f_{\text {rot }}$
- free precession around rotation axis
- excitation of long-lasting oscillations $f_{\mathrm{GW}} \sim f_{\text {rot }}+f_{\text {prec }}$
- deformation due to matter accretion

$$
\begin{gathered}
f_{\mathrm{GW}} \sim 4 / 3 f_{\mathrm{rot}} \\
f_{\mathrm{GW}}=2 f_{\mathrm{rot}}
\end{gathered}
$$

Continuous Waves

Continuous signal with $h \propto \epsilon \quad \mathrm{SNR} \propto \frac{h}{\sqrt{S_{n}}} \sqrt{T}$
Equatorial ellipticity $\epsilon=\frac{I_{\mathrm{XX}}-I_{\mathrm{YY}}}{I_{\mathrm{ZZ}}}$
Maximum Deformations
$\epsilon<10^{-5} \quad$ Normal Neutron Star
$\epsilon<10^{-3} \quad$ Hybrid Neutron Star
$\epsilon<10^{-1} \quad$ Extreme Quark Star

Continuous Waves

At the source

Nearly monochromatic, continuous signal but could have:

- relative velocity between source/detector (Doppler Effect)
- amplitude modulation due to antenna sensitivity of detector
- frequency and phase evolution

Burst Sources

Supernovae

Type la supernovae when white dwarfs in binary detonate.

Core collapse supernovae when massive stars die.

Burst Sources

Stochastic Background

- Stochastic (random) background of gravitational radiation
- Can arise from superposition of large number of unresolved GW sources

1. Cosmological origin
2. Astrophysical origin

- Strength of background measured as gravitational wave energy density ρ_{GW}

Cosmic Microwave Background

- 1965 - Penzias and Wilson accidently discovered Cosmic Microwave Background (CMB), leftover radiation from 380,000 years Big Bang
- 1978 - awarded Nobel prize

- CMB as seen by Planck, an ESA observatory
- Wavelengths of photons are greatly redshifted (1mm)
- Effective temperature ~ 2.7 K
- Can be detected by far-infrared and radio telescopes

Cosmological Gravitational Wave Background

What powered the big bang?

Only gravitational waves can escape from the earliest moments of the Big Bang

Big Bang plus $10-43$ seconds

Inflation

(Big Bang plus 10^{-35} seconds?)

Big Bang plus
300,000 Years
Cosmic microwave background, distorted by seeds of structure and gravitational waves

Big Bang plus
15 Billion Years

Cosmological Gravitational Wave Background

GW spectrum: $\Omega_{\mathrm{GW}}(f)=\frac{f}{\rho_{c}} \frac{\mathrm{~d} \rho_{\mathrm{GW}}}{\mathrm{d} f}$
Critical energy density of universe: $\rho_{c}=\frac{3 c^{2} H_{0}^{2}}{8 \pi G}$

Cosmological Gravitational Wave Background

Big-BangNucleosynthesis: abundances of light nuclei produced

Cosmic Microwave Background Measurements: structure of CMB and matter power spectra

Cosmological Gravitational Wave Background

Inflation: measuring GWs can test for "stiffness" in early universe

Models of Cosmic Strings: topological defects in early universe

Astrophysical Gravitational Wave Backgrounds

Potential background from binary black hole mergers

Frequencies of signals as audio

LISA Sources

- Galactic white dwarfs
- Primordial backgrounds
- Supermassive binary black holes
- Capture orbits

LISA Gravitational Wave Background

- Produced by an extremely large number of weak, independent, and unresolved gravitational-wave sources. For LISA, this will be white dwarf binaries.

Pulsar Timing Array
 Sources

- Also, supermassive binary black holes!

Merging Supermassive Black Hole Binaries

