
Name (please print legibly!)

Gravitational Waves: Assignment 7
Bayesian Analyses and Parameter Estimation

1. Probability Review:

(a) Derive Bayes’ theorem from the Kolmogorov axioms.

(b) Show that Bayes’ theorem can be written as

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)

(1)

for any B and Ai disjoints and such that ∪iAi = S.

2. A gravitational-wave signal from a binary system can be characterized by more than 15
parameters. We can separate the parameters θ such that the template waveform can be
written as h(t; θ) = aha(t; ξ). Thus, θ has been separated into an amplitude term a and into
ha(t; ξ) which has the remaining parameters ξ. If

log Λ(s|θt) = (ht|s)−
1

2
(ht|ht), (2)

then compute the following:

(a) the maximum likelihood estimate âML(s) by requiring ∂ log Λ/∂a = 0.

(b) log Λ(s|ξ).

3. Consider the future when the LIGO and Virgo detectors have achieved their design sensitivity
and gravitational waves from binary black hole detections are occurring regularly. We want
to be able to measure the astrophysical rate of these black holes mergers. To do so, we
need to be able to count the number that we’ve detected in a given amount of time at this
fixed sensitivity. Let’s say that we’ve finished 50 half-year experiments. While we known the
number of mergers can vary a bit, let’s say that the true number of mergers that we should
detect in a half-year experiment is 100. Because this is a counting experiment, a Poisson
distribution is a good approximation to the measurement process.

(a) Generate some data for these N=50 experiments and see if you can make a plot like
the one shown in Fig. 1. Measurements of the rates R from a Poisson distribution can
be achieved with R = scipy.stats.poisson(R true).rvs(N) where R true is the true
rate value of 100. Note that you can set numpy.random.seed() at the beginning of your
code for reproducibility. Also include error bars on each rate number measured from the
50 experiments. Errors ei on Poisson counts can be estimated via the square root of each
measurement: ei =

√
Ri.

Overview of the Field Gravitational Waves

Figure 1: Repeated experimental results

(b) Frequentist Maximum Likelihood Approach: Given a single observation of the rate
Di = (Ri, ei), we can compute the probability distribution of the measurements given
the true rate Rtrue and our assumption of Gaussian errors:

P (Di|Rtrue) =
1√
2πe2i

exp

[
− (Ri −Rtrue)

2

2e2i

]
(3)

which can be read as “the probability of data Di given Rtrue equals...”. In the fre-
quentist sense, the likelihood function can be constructed by computing the product of
probabilities for each data point:

L(D|Rtrue) =
N∏
i=1

P (Di|Rtrue). (4)

Because the value of the likelihood can become very small, it is often more convenient
to compute the log-likelihood.

i. Combine Eq. 3 and Eq. 4, compute the natural log, and then perform the maximiza-
tion analytically by setting d lnL/dRtrue = 0. You should find that the observed
estimate of Rtrue is given by

Restimated =

∑
wiRi∑
wi

(5)

where wi is a weight given by wi = 1/e2i .

ii. It can be shown that the standard deviation of a Gaussian approximation to the
likelihood curve at maximum is:

σestimated =
1√∑N
i=1wi

. (6)

Evaluate Eq. 5 and Eq. 6 and report the result as Restimated ± σestimated. Is this
consistent with Rtrue = 100?

2

Overview of the Field Gravitational Waves

(c) Bayesian Approach: With this method, what we really want to compute is P (Rtrue|D).
To do this, Bayesian’s apply Bayes’ Theorem:

P (Rtrue|D) =
P (D|Rtrue)P (Rtrue)

P (D)
. (7)

For the one parameter problem considered here, we will compute P (Rtrue|D) as a function
of Rtrue using the Markov Chain Monte Carlo (MCMC) sampling method. The solution
below will be outlined using the Python emcee library (http://dfm.io/emcee/current/)
but you are welcome to explore other sampling methods. To perform the MCMC, start
by defining the following functions in your code in terms of an array of parameters θ,
which for this case is just θ = [Rtrue]:

i. The log prior P (Rtrue). Let’s just use a flat prior here:

def log_prior(theta):

return 1

ii. The log likelihood P (D|Rtrue) as we saw in Eq. 4 as a function of our experimental
results Ri and ei:

def log_likelihood(theta, R, e):

return -0.5 * numpy.sum(numpy.log(2 * numpy.pi * e ** 2)

+ (R - theta[0]) ** 2 / e ** 2)

iii. The log posterior P (Rtrue|D) which will simply be the sum of lnP (Rtrue) and
lnP (D|Rtrue):

def log_posterior(theta, R, e):

return log_prior(theta) + log_likelihood(theta, R, e)

iv. Now we can set up the problem, including setting some initial parameters and start-
ing guesses for multiple chains of points

ndim = 1 # number of parameters in the model

nwalkers = 50 # number of MCMC walkers

nburn = 1000 # "burn-in" period to let chains explore parameter

space and stabilize

nsteps = 2000 # number of MCMC steps to take

Start with some random locations between 0 and 500

starting_guesses = 500 * numpy.random.rand(nwalkers, ndim)

v. Import the necessary module emcee which requires the logarithm of the probability
density functions. This is why we defined log posterior(theta, R, e) above.
The first argument of log posterior is the position of a single walker. The other
arguments come from the args parameter of the emcee.EnsembleSampler. Do the
production run with emcee.EnsembleSampler.run mcmc in 2000 steps:

3

Overview of the Field Gravitational Waves

import emcee

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_posterior,

args=[R, e])

sampler.run_mcmc(starting_guesses, nsteps)

vi. The sampler has a property EnsembleSampler.chain that is a numpy array with
shape = (nwalkers, nsteps, ndim). You can use this to obtain a sample array that
is reshaped into a flat list and that has the burn-in points discarded:

sample = sampler.chain # shape = (nwalkers, nsteps, ndim)

sample = sampler.chain[:, nburn:, :].ravel() # discard burn-in

points

vii. Plot a histogram of sample with bins=50 and overlay it with a best-fit Gaus-
sian distribution. This can be achieved with stats.norm(numpy.mean(sample),

numpy.std(sample)).pdf(R fit) where R fit is the range of points to fit the Gaus-
sian. See if you can obtain a plot like Fig. 2.

viii. Report the result as numpy.mean(sample) ± numpy.std(sample). Is this consistent
with Rtrue = 100? How does this compare to the Frequentist approach?

Figure 2: Samples drawn from the normal posterior distribution.

4

