Name (please print legibly!) \qquad

Gravitational Waves: Assignment 5 Astrophysical Sources

1. Practice with raising, lowering, and contracting indices: the metric tensor plays the role of allowing one to raise/lower indices on tensors, i.e. switching between contravariant and covariant forms.
(a) $g_{\mu \nu} A^{\nu}=$
(b) If ∂_{ν} is the contravariant gradient operator, $\eta^{\mu \nu} \partial_{\nu}=$
(c) $g^{i j} g_{j k}=$
(d) $g^{\alpha \gamma} g^{\beta \delta} A_{\gamma \delta}=$
(e) If \hat{n} is a unit vector, then $n^{i} n_{i}=$
(f) In spatial coordinates, $\delta_{i}^{i}=$
2. Let's show that $h_{i j}^{\mathrm{TT}}=\Lambda_{i j, k l} \bar{h}^{k l}$ really is transverse and traceless. Recall that the lambda tensor is

$$
\begin{equation*}
\Lambda_{i j, k l}(\hat{n})=P_{i k} P_{j l}-\frac{1}{2} P_{i j} P_{k l} \tag{1}
\end{equation*}
$$

where $P_{i j}(\hat{n})=\delta_{i j}-n_{i} n_{j}$ is a symmetric, transverse projection operator and \hat{n} is the direction of propagation of the GW.
(a) Using results from Problem 1, show that $P_{i}^{i}=2$.
(b) Write out $\Lambda_{i j, k l}$ in terms of the Kroneker delta $\delta_{i j}$ and \hat{n} and apply the operator to $\bar{h}^{k l}$.
(c) The condition for $h_{i j}^{\mathrm{TT}}$ to be transverse is that its component in the \hat{n} direction vanishes, i.e., $n^{i} h_{i j}^{\mathrm{TT}}=0$. Show that this is true.
(d) The condition for $h_{i j}^{\mathrm{TT}}$ to be traceless is $\delta^{i j} h_{i j}^{\mathrm{TT}}=0$. Show that this is true.
3. When the direction of propagation \hat{n} is equal to $\hat{z}, P_{i j}$ is the diagonal matrix

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \tag{2}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

This means that P is a projector on the (x, y) plane. Then the quadrupole approximation reduces to

$$
\begin{align*}
{\left[h_{i j}^{\mathrm{TT}}\right]_{\text {quad }} } & =\frac{1}{r} \frac{2 G}{c^{4}} \Lambda_{i j, k l}(\hat{n}) \ddot{M^{k l}}(t-r / c) \tag{3}\\
& \rightarrow(P \ddot{M} P)_{i j}-\frac{1}{2} P_{i j} \operatorname{Tr}(P \ddot{M}) .
\end{align*}
$$

Show that this gives the following two polarization amplitudes for a gravitational wave propagating in the \hat{z} direction:

$$
\begin{align*}
h_{+} & =\frac{1}{r} \frac{G}{c^{4}}\left(\ddot{M}_{11}-\ddot{M}_{22}\right), \\
h_{\times} & =\frac{2}{r} \frac{G}{c^{4}} \ddot{M}_{12} . \tag{4}
\end{align*}
$$

4. (a) Consider a binary on a fixed, circular Keplerian orbit. In the center-of-mass point of view for the system, suppose we have a single effective object of mass $\mu=\left(m_{1} m_{2}\right) /\left(m_{1}+m_{2}\right)$ described by coordinates:

$$
\begin{align*}
x_{0}(t) & =R \cos \left(\omega_{s} t+\pi / 2\right), \\
y_{0}(t) & =R \sin \left(\omega_{s} t+\pi / 2\right), \tag{5}\\
z_{0}(t) & =0 .
\end{align*}
$$

Determine the second derivatives of the second mass moments and plug these into the $h_{+}(t ; \theta, \phi)$ and $h_{\times}(t ; \theta, \phi)$ expressions for generic gravitational wave propagation that we saw in the lecture slides.
(b) Consider the cases where the binary orbit is edge-on $(\theta=\iota=\pi / 2)$ and face-on $(\theta=\iota=0)$. What happens to the contributions from h_{+}and h_{\times}in these cases?
5. Now consider a binary that loses energy due to the emission of gravitational waves. We saw in the lecture slides that the polarization amplitudes evolve as:

$$
\begin{align*}
& h_{+}(t)=\frac{1}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 4}\left(\frac{5}{c \tau}\right)^{1 / 4} \frac{1+\cos ^{2} \iota}{2} \cos [\Phi(\tau)], \tag{6}\\
& h_{\times}(t)=\frac{1}{r}\left(\frac{G M_{c}}{c^{2}}\right)^{5 / 4}\left(\frac{5}{c \tau}\right)^{1 / 4} \cos \iota \sin [\Phi(\tau)]
\end{align*}
$$

where $\Phi(\tau)=-2\left(\frac{5 G M_{c}}{c^{3}}\right)^{-5 / 8} \tau^{5 / 8}+\Phi_{0}, \Phi_{0}=\Phi(\tau=0)$, and $\tau \equiv t_{\text {coal }}-t$. We will generate the plots of a few chirp waveforms using a starting frequency of $f_{\mathrm{gw}}\left(\tau=t_{\text {coal }}\right)=40 \mathrm{~Hz}$. You will need to invert the following expression to determine the value of $\tau=t_{\text {coal }}$ when $f_{\mathrm{gw}}=40 \mathrm{~Hz}$:

$$
\begin{equation*}
f_{\mathrm{gw}}(\tau)=\frac{1}{\pi}\left(\frac{5}{256 \tau}\right)^{3 / 8}\left(\frac{G M_{c}}{c^{3}}\right)^{-5 / 8} \tag{7}
\end{equation*}
$$

Assuming $\Phi_{0}=0, \iota=0$ and $r=1 \mathrm{Mpc}$, create plots of h_{+}and h_{\times}versus t for the following masses:
(a) A binary neutron star: $m_{1}=1.4 M_{\odot}$ and $m_{2}=1.4 M_{\odot}$
(b) A neutron-star-black-hole system: $m_{1}=1.4 M_{\odot}$ and $m_{2}=10 M_{\odot}$
(c) A binary black hole: $m_{1}=10 M_{\odot}$ and $m_{2}=10 M_{\odot}$

