
Name (please print legibly!)

Gravitational Waves: Assignment 5
Gravitational-wave Data Analysis

1. In class, we saw that it is not necessary for a signal to have an amplitude h0 greater than the
noise floor amplitude n0 for us to be able to detect it. Instead, it is sufficient to have h0 >
(τ0/T )1/2n0 where τ0 is the typical characteristic time of the signal and T is the observation
time. Consider the following astrophysical sources. How many orders of magnitude weaker
than the noise amplitude can signal amplitude be for us to begin to detect it?

(a) Millisecond pulsar with a period of 1 ms with data collected for 1 year

(b) Binary object with period of 10−2s with data collected for 100 seconds

2. In this exercise, we will find an inspiral signal buried in detector noise. To get started,
download the data and template files from the following locations:
https://www.nikhef.nl/∼caudills/assignments/strain data.dat

https://www.nikhef.nl/∼caudills/assignments/template data.dat

The data contains a signal hidden in the first 12 seconds of data. Both the data and the
template have a sampling rate of 4096 Hz.

(a) Separately plot the data and the template. Can you see the inspiral signal in the data?
Also note the structure of the beginning and end of the template. It has been tapered
at the beginning and end so that it can be more easily Fourier transformed.

(b) As you should have seen above, the signal amplitude is much smaller than the noise
amplitude. But the signal does have more power than the noise at some frequencies.
Make an amplitude spectral density (ASD) plot of the template and the noise on the
same figure. To get the ASD for the noise, use data from the last 4 seconds since the signal
is present somewhere in the first 12 seconds and we don’t want it to contaminate our
measurement. Note in Python, you can use matplotlib.pyplot.psd(data, NFFT=fs,

Fs=fs) where fs is the the sampling rate. This function will return a power spectral
density (PSD) and the frequencies corresponding to each point in the PSD. To get the
ASD, simply take the square root of the PSD. You will want to plot these on log-log
scales.

(c) The noise has been high-pass filtered with a 20 Hz cut-off. What effect does this have
on the noise ASD and what can we infer from the ASD below 20 Hz?

(d) The noise ASD starts to fall-off around 2048 Hz. What is special about this frequency
and what can we infer from the ASD above 2048 Hz?

(e) Method 1: Bandpass Filter. This method is very simple. We know that the
signal probably has frequency evolution between 80 to 250 Hz so we can look for
a signal in this frequency range. We can make a bandpass filter using Python’s
scipy.signal.butter(N=4, Wn=[80/(fs/2), 250/(fs/2)]) where N=4 is the order of
the filter and Wn is an array giving the frequencies of importance as a fraction of the
Nyquist frequency. To apply the filter to the data, we can use scipy.signal.lfilter(B,
A, data) where B,A are the coefficients of the bandpass filter that you made and data

contains the hidden signal.



Overview of the Field Gravitational Waves

i. Plot the band-passed data versus time. Do you see any evidence for the signal? At
what time?

(f) Method 2: Time Domain Cross Correlation This method looks for the similarity
between two time series. We will take the cross-correlation of the template with the data.
We can use Python’s numpy.correlate(data, template) for this.

i. Plot the cross-correlation of the template with the data. Note that the time axis of
the cross-correlation represents the off-set between the data start time and the filter
start time. There should be a peak when the start of the template matches the data.

ii. Plot the cross-correlation of the template with the band-passed data. Now the peak
will occur when the signal is the loudest, near the end of the template. This is
closest to what we actually do in LIGO and Virgo, when we report the coalescence
time when the binary crosses the inner-most stable circular orbit, near the end of
the template.

(g) Method 3: Optimal Matched Filter The cross correlation in the time domain does
not allow us to weight frequency bins. We would like to be able to do this because the
gravitational wave data has more noise in some frequency bins than others. Thus, we
can perform a cross correlation in the frequency domain and then weight each frequency
bin by the inverse of the noise power spectrum.

i. Take the Fourier Transform of the data and the template. For the data, we can use
Python’s numpy.fft.fft(data). We can use this for the template too but we need
the template and data to be the same length. Thus, we should zero pad the template
before we take the FFT. I suggest to look at numpy.zeros() and numpy.append()

for achieving this.

ii. We need a measurement of the PSD again, with no signal in it. Take the PSD of the
last 4 seconds of data. You can achieve this again with matplotlib.pyplot.psd().
The numpy FFT function returns an array with a particular convention for the
order of the frequency bins. You need to interpolate this PSD to estimate the
values at each FFT frequency. The needed frequencies can be obtained with
numpy.fft.fftfreq(data.size)*fs. Then you can use numpy.interp() to de-
termine the interpolated PSD values.

iii. Multiply the Fourier space template conjugate (template fft.conjugate()) with
the Fourier space data and divide by the noise power in each frequency bin to obtain
the matched filter output. Then we can take the Inverse Fourier Transform (IFFT)
of the filter output to put it back in the time domain. This can be obtained with
numpy.fft.ifft().

iv. Finally, we can normalize the matched filter output so that we expect a value of
1 at times of just noise. Then the peak of the matched filter output will tell us
the signal-to-noise ratio (SNR) of the signal. To do this, we need to compute the
variance of the template using 2 * (template fft * template fft.conjugate()

/ psd).sum() * df. The SNR is then the IFFT of the filter output divided by the
square root of the variance of the template.

v. Plot SNR versus time.

2


