
Name (please print legibly!)

Gravitational Waves: Assignment 3
Derivation of GWs and Sources of GWs

1. Practice with raising, lowering, and contracting indices: the metric tensor plays the role
of allowing one to raise/lower indices on tensors, i.e. switching between contravariant and
covariant forms.

(a) gµνA
ν =

(b) If ∂ν is the contravariant gradient operator, ηµν∂ν =

(c) gijgjk =

(d) gαγgβδAγδ =

(e) If n̂ is a unit vector, then nini =

(f) In spatial coordinates, δii =

2. Start with a metric of the form gµν = ηµν +hµν . From the definition of the Christoffel symbols
Γρµν and the Riemann tensor Rµ

νρσ, show that to linear order in hµν , the Riemann tensor
becomes

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) . (1)

Note that for the linear approximation, we can ignore all products of h with h or its derivatives
and that we use the convention that indices are raised and lowered with the Minkowski flat
metric ηµν .

3. Define

h̄µν = hµν −
1

2
ηµνh. (2)

Calculate how h̄µν changes under gauge transformations. Then show that for any field con-
figuration hµν(x), one can find a gauge transformation such that

∂ν h̄µν = 0. (3)

(Hint: first calculate how ∂ν h̄µν changes under gauge transformations. Then using the Green’s
function of the d’Alembertian, construct the gauge transformation which makes it zero. Note
that a Green’s function G(x) of the d’Alembertian satisfies �xG(x− y) = δ4(x− y).)

4. Let’s show that hTT
ij = Λij,klh̄

kl really is transverse and traceless. Recall that the lambda
tensor is

Λij,kl(n̂) = PikPjl −
1

2
PijPkl (4)

where Pij(n̂) = δij−ninj is a symmetric, transverse projection operator and n̂ is the direction
of propagation of the GW.

(a) Using results from Problem 1, show that P i
i = 2.

(b) Write out Λij,kl in terms of the Kroneker delta δij and n̂ and apply the operator to h̄kl.
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(c) The condition for hTT
ij to be transverse is that its component in the n̂ direction vanishes,

i.e., nihTT
ij = 0. Show that this is true.

(d) The condition for hTT
ij to be traceless is δijhTT

ij = 0. Show that this is true.

5. When the direction of propagation n̂ is equal to ẑ, Pij is the diagonal matrix

P =

1 0 0
0 1 0
0 0 0

 . (5)

This means that P is a projector on the (x, y) plane. Then the quadrupole approximation
reduces to [

hTT
ij

]
quad

=
1

r

2G

c4
Λij,kl(n̂)M̈kl(t− r/c)

→
(
PM̈P

)
ij
− 1

2
PijTr(PM̈).

(6)

Show that this gives the following two polarization amplitudes for a gravitational wave prop-
agating in the ẑ direction:

h+ =
1

r

G

c4

(
M̈11 − M̈22

)
,

h× =
2

r

G

c4
M̈12.

(7)

6. (a) Consider a binary on a fixed, circular Keplerian orbit. In the center-of-mass point of view
for the system, suppose we have a single effective object of mass µ = (m1m2)/(m1 +m2)
described by coordinates:

x0(t) = R cos(ωst+ π/2),

y0(t) = R sin(ωst+ π/2),

z0(t) = 0.

(8)

Determine the second derivatives of the second mass moments and plug these into the
h+ (t; θ, φ) and h× (t; θ, φ) expressions for generic gravitational wave propagation that we
saw in the lecture slides.

(b) Consider the cases where the binary orbit is edge-on (θ = ι = π/2) and face-on
(θ = ι = 0). What happens to the contributions from h+ and h× in these cases?

7. Now consider a binary that loses energy due to the emission of gravitational waves. We saw
in the lecture slides that the polarization amplitudes evolve as:

h+(t) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4
1 + cos2 ι

2
cos [Φ(τ)] ,

h×(t) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4

cos ι sin [Φ(τ)]

(9)
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where Φ(τ) = −2
(
5GMc

c3

)−5/8
τ 5/8 + Φ0, Φ0 = Φ(τ = 0), and τ ≡ tcoal− t. We will generate the

plots of a few chirp waveforms using a starting frequency of fgw(τ = tcoal) = 40 Hz. You will
need to invert the following expression to determine the value of τ = tcoal when fgw = 40 Hz:

fgw(τ) =
1

π

(
5

256τ

)3/8(
GMc

c3

)−5/8

. (10)

Assuming Φ0 = 0, ι = 0 and r = 1 Mpc, create plots of h+ and h× versus t for the following
masses:

(a) A binary neutron star: m1 = 1.4M� and m2 = 1.4M�

(b) A neutron-star-black-hole system: m1 = 1.4M� and m2 = 10M�

(c) A binary black hole: m1 = 10M� and m2 = 10M�

3


