Name (please print legibly!) \qquad

Gravitational Waves: Assignment 2 Review of General Relativity

1. Indicate whether the following equations or terms are valid under Einstein Summation convention rules. Also indicate the free and dummy indices in each.
(a) $s_{j k}=t_{k j}+t_{j k}$
(b) $A_{i}=B_{j}+C_{i}$
(c) $S_{j k}=A_{j}\left(B_{k}+C_{k}\right)$
(d) $\lambda \times \mu$ where $\lambda=t_{i} t^{i}$ and $\mu=q_{i} q^{i}$
(e) $x_{i} y^{i} z_{i}$
(f) $a_{i j}^{i}=t_{j}+b^{k} c_{k j}+d_{m n j}^{m n}$
(g) $\Gamma_{\beta \gamma}^{\alpha} a^{\alpha} c^{\beta} c^{\gamma}=b^{\alpha}$
(h) $\partial x^{\alpha} / \partial x^{\beta}=\delta_{\beta}^{\alpha}$
(i) $\partial g_{\alpha \beta} / \partial x^{\gamma}=0$
2. Once we have a metric, other geometric quantities can be computed. Express the following quantities in terms of metric and/or vector components:
(a) The cosine of the angle between two vectors, $\cos \theta$
(b) An element of area $\mathrm{d} A$ for a diagonal metric
(c) A four-volume $\mathrm{d} v$ element for a diagonal metric
3. Express the metric given the following infinitesimal length elements:
(a) spherical surface in polar coordinates: $d s^{2}=R^{2} d \theta^{2}+R^{2} \sin ^{2} \theta d \phi^{2}$
(b) spherical surface in cylindrical coordinates: $d s^{2}=\frac{R^{2} d \rho^{2}}{R^{2}-\rho^{2}}+\rho^{2} d \phi^{2}$
4. (a) In class, we saw that a finite length s can be computed as the line integral of $d s$ which depends on the metric. From this expression, extract the Lagrangian as

$$
\begin{equation*}
L(x, \dot{x})=g_{a b} \frac{d x^{a}}{d \lambda} \frac{d x^{b}}{d \lambda} \tag{1}
\end{equation*}
$$

and use the Euler-Lagrange equation to obtain the geodesic equation which determines the trajectory of the "shortest curve". Note the fact that the metric function $g_{a b}$ depends on x but not \dot{x}.
(b) Use the geodesic equation to confirm the familiar results that the geodesic is a straight line on a flat plane.
5. In Cartesian coordinates, the line element of Euclidean, 3-dimensional space is

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}+d z^{2} \tag{2}
\end{equation*}
$$

(a) Compute the Christoffel symbols $\Gamma_{\mu \nu}^{\alpha}$ in this coordinate system. What do you conclude about the Riemann tensor?
(b) Express the line element of Eq. 2 in the usual spherical coordinates (r, θ, ϕ).
(c) Compute the Christoffel symbols in spherical coordinates.
(d) Compute the Riemann tensor in spherical coordinates. Had you expected this result?

