Nikhef VELO module measurement results

Contents

- Test setup
- Displacement results
 - Module I
 - Module II
 - Module III
- Thermal model
- Creep test results
- Conclusion

Test setup

- 6 LVDT sensors
- 16 temperature sensors PT100
- Temperature control for frame
- Vacuum pressure better than 10⁻⁴ mbar

More info: https://indico.cern.ch/event/3 64489/contribution/1/material /slides/1.pdf

Location sensors

Measuring displacement

- Point P is the location of the proton-proton interaction point relative to the silicon, when the module is perfectly aligned i.e. (x,y)=(0,0)
- The measured values of the LVDTs are converted to a displacement of point P, by means of a transformation matrix

Displacement in X	LVDT 4
Displacement in Y	LVDT 5 & 6
Displacement in Z	LVDT 1, 2 & 3
Rotation X-axis	LVDT 2 & 3
Rotation Y-axis	LVDT 1 & 2
Rotation Z-axis	LVDT 5 & 6
LVDT5	

VELO Upgrade module workshop

Nikhef modules

- Module I:
 - Cooling block glued to silicon
- Module II:
 - Cooling block soldered to silicon
 - Capillaries direct on CO2 in/outlet

- Module III:
 - Mustache shaped cooling block
 - Metalized layer came loose, thus cooling block glued to silicon

5

- 1/8 inch VCR connector

Nikhef module I

- Cooling block glued to the silicon
- Measurement 1 is with straight tubes connected to the capillaries of the module
- Measurement 2 is with pig-tail shaped tubes connected to the capillaries of the module

Nikhef module I Straight tubes and pig-tail shaped tubes

Displacement results Nikhef module I

Sensor	Displacement (µm) Measurement 1	Displacement (µm) Measurement 2
LVDT 1	-17	-16
LVDT 2	-10	-11
LVDT 3	-2	-6
LVDT 4	-26	-27
LVDT 5	-8	-8
LVDT 6	-12	-12

Displacement of point P:

Displacement in X	-27 μm	Rotation X-axis
Displacement in Y	-7 μm	Rotation Y-axis
Displacement in Z	-15 μm	Rotation Z-axis

Conclusion: changing the cooling pipe lay out does not affect the measurements

Extrapolation to -35 °C Nikhef module I

The cooling temperature is expected to be near -30 °C. A temperature of -35 °C is used for the extrapolation to find the extreme values.

Sensor	Displacement (µm)
LVDT 1	-33
LVDT 2	-11
LVDT 3	-5
LVDT 4	-33
LVDT 5	-10
LVDT 6	-15

Displacement of point P:

Displacement in X	-33 µm
Displacement in Y	-9 μm
Displacement in Z	-36 µm
Rotation X-axis	0.08 mrad
Rotation Y-axis	-0.44 mrad
Rotation Z-axis	0.10 mrad

Nikhef module II

- Cooling block soldered on the silicon
- Silicon lost a 'small' corner due to handling the capillaries after bonding the silicon to the carbon hurdle →
- LVDT 3 can not be used for the measurement
- Measurement 1: capillaries connected to CO2 in/outlet
- Measurement 4: pig-tail shaped capillaries

Nikhef module II Straight tubes and pig-tail shaped tubes

Displacement results Nikhef module II

Sensor	Displacement (µm) Measurement 1 22-04-2015 -23.5 °C	Displacement (µm) Measurement 4 01-05-2015 -22.3 °C
LVDT 1	-162	-169
LVDT 2	-38	-38
LVDT 3	N/A	N/A
LVDT 4	-25	-26
LVDT 5	-10	-10
LVDT 6	-14	-14

Displacement of point P:

Displacement in X	-25 μm
Displacement in Y	~ -12 μm
Displacement in Z	~ -170 μm

Can not calculate the rotation, due to the missing LVDT 3

Extrapolation to -35 °C Nikhef module II

Sensor	Displacement (µm) Measurement 1
LVDT 1	-197
LVDT 2	-56
LVDT 3	N/A
LVDT 4	-30
LVDT 5	-12
LVDT 6	-16

Displacement of point **P** :

Displacement in X	-30 µm
Displacement in Y	~ -14 μm
Displacement in Z	~ -200µm

Extra measurements with constraint Nikhef module II

- Measurement 2: constrain capillaries, all directions
- Measurement 3: constrain in x & y direction
- The displacement for the module with an extra constraint is larger than without any constraint

Sensor	Displacement (µm) Measurement 2 24-04-2015 -24.1 °C	Displacement (µm) Measurement 3 29-04-2015 -23.2 °C
LVDT 1	-193	-243
LVDT 2	-47	-64
LVDT 3	N/A	N/A
LVDT 4	-27	-34
LVDT 5	-7	-6
LVDT 6	-10	-8

VELO Upgrade module workshop

Nikhef module III

- Mustache shaped cooling block
- Cooling block glued to the silicon
- 1/8 inch VCR connector on the capillaries

15

Displacement results Nikhef module III

Sensor	Displacement (µm) Measurement 1 21-05-2015 -26.8 °C
LVDT 1	-87
LVDT 2	-52
LVDT 3	-44
LVDT 4	-29
LVDT 5	-11
LVDT 6	-12

Displacement of point **P** for measurement 1:

Displacement in X	-29 μm
Displacement in Y	-11 μm
Displacement in Z	-93 µm
Rotation X-axis	0.10 mrad
Rotation Y-axis	-0.70 mrad
Rotation Z-axis	0.03 mrad

Displacement of point **P** for extrapolation to -35 °C :

Displacement in X	-32 μm
Displacement in Y	-11 μm
Displacement in Z	-105 μm
	i
Rotation X-axis	0.11 mrad
Rotation Y-axis	-0.72 mrad
Rotation Z-axis	0.04 mrad

Additional cooling midplate Nikhef module IIIb

- From the LVDT1/LVDT2 ratio can be derived that the rotation point is situated at the height of the midplate
- Additional cooling on the back of the midplate for a more homogeneous temperature → less deformation
- Sensors T1, T15 & T16 are relocated to the back of the midplate for the second measurement

Results additional cooling midplate

Comparison temperature IIIa and IIIb

Displacement results Nikhef module IIIb

Sensor	Displacement (µm) Measurement 2 22-05-2015 -26.9 °C
LVDT 1	-72
LVDT 2	-49
LVDT 3	-44
LVDT 4	-23
LVDT 5	-9
LVDT 6	-11

Displacement of point P for measurement 1:

Displacement in X	-23 μm
Displacement in Y	-8 μm
Displacement in Z	-76 µm
Rotation X-axis	0.06 mrad
Rotation Y-axis	-0.46 mrad
Rotation Z-axis	0.04 mrad

Displacement of point **P** for extrapolation to -35 °C :

Displacement in X	-27 μm
Displacement in Y	-11 μm
Displacement in Z	-90 µm
	i
Rotation X-axis	0.08 mrad
Rotation Y-axis	-0.58 mrad
Rotation Z-axis	0.02 mrad
	\sim

Comparison with thermal model

Creep test VELO hurdle

- 3 weeks with a constant load of 420 grams
- Accuracy $\pm 4 \ \mu m$

VELO Upgrade module workshop

Creep test VELO hurdle results

The lower marker moved down 12 μ m The upper marker moved down 15 μ m Creep is a significant effect thus creep test is ongoing

23

Conclusion

- The displacements at the "point P" as the result of a ΔT of 55°C (cooling temperature of -35°C) are
 - − About -30 μ m in X → predictable
 - − About -10 μ m in Y → small
 - − About -36, -200 and -93 μ m for module I, II and III, respectively in Z → requires further study
- Constraining the capillaries causes a larger displacement of the silicon and thus "point P "
- Additional cooling on backside of mid plane reduces displacement in Z
 - Rotation of the silicon may be caused by inhomogeneous temperature of midplate
 - Deformation of the midplate may be due to cooling, a possible solution is optimizing the midplate by:
 - differently 'woven' carbon fiber?
 - temperature 'vias'?
 - Deformation of the hurdle may be due to radiation from the frame, a possible solution is optimizing the test setup by adding a heat shield
- It is difficult to predict the behavior of the module by means of a thermal model due to the many variables and uncertainties.
- There is an observable result in the creep test, when naively extrapolated there is a large effect (order 100 micron) → requires further study

24

Evacuate system

- For module I the displacement due to pump down is 25µm
- For module III, there is no significant movement due to pump down

Calibration LVDT sensor

- Calibration of LVDT sensors in a range of -1000 to +1000 μm
- Small influence of eddy currents on LVDT signal
- Standard deviation for calibration better than $10^{-4} \ \mu m$

26

•

Thermal model with convection

27