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experiments at the Large Hadron Collider (LHC) at CERN. And contributes to the construction, 
installation and operation of the detectors for neutrinos, dark matter particles and high energetic 
cosmic radiation. In addition, Nikhef is active in the research of gravitational waves with the Virgo 
detector.  
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making helpful, insightful comments. 
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destroying the Front ETA. 
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Abstract 
The sensitivity of future gravitational wave detectors is limited by Newtonian noise between 2 Hz 
and 20 Hz. Newtonian noise effects can be predicted by measuring seismic vibrations around the 
detector, using a grid of accelerometers. These accelerometers require a high sensitivity of <
1 ng/√Hz at the indicated frequencies. This can be achieved by tuning the accelerometer to a low 
resonance frequency. A low frequency, low cost accelerometer may be accomplished by using a 
MEMS (Micro Electro Mechanical System) accelerometer equipped with anti-spring technology. 

Any accelerometer consists of a mass-spring oscillator. The displacement of the mass, due to seismic 
vibrations, is a measure for the frame acceleration. In the MEMS all mechanical parts are etched in 
its thin silicon device layer (the 𝑥𝑥,y-plane). The mass is suspended to the frame by four sets of curved 
cantilever springs, such that it oscillates in, say, the 𝑦𝑦-direction. By compressing these springs in the 
𝑥𝑥-direction, the stiffness and, with it, the resonance frequency of the oscillator can be reduced, 
which is called the “Anti-spring effect”. The compression is obtained from so-called Electro Thermal 
Actuator (ETA) beams. These V-shaped beams expand due to Joule heating, when a current is sent 
through them. The moving beam tip is pushing the spring into its designed compressed position. Its 
design should meet the required displacement and spring force. 

In this project the electro-thermal and mechanical characteristics of the present ETAs are measured 
and modeled in order to get a better understanding of their behavior, which may help to improve 
future MEMS accelerometer designs. Both quasi-static and dynamic (pulsed) actuation of the ETAs 
delivered useful information for this goal.  

Using an electro-thermal quasi-static numerical model, the resistivity of the highly boron doped 
silicon (~6 ⋅ 1018 carriers/cm3) as a function of temperature up to 1123 K is estimated, based on 
the measurement of the ETA resistance as a function of the electrical power in air. This estimation 
requires knowledge of the thermal conductivity of both silicon and air as a function of temperature, 
which were taken from literature. The resulting resistivity curve shows a peak at 971 K, and fits well 
within corresponding curves for other doping levels, obtained from literature. The modeled and 
measured resistance in vacuum have a maximum difference of about 40 Ω. From the voltage step 
response, thermal time constants in air and vacuum are obtained, which agreed and disagreed with 
the estimated thermal time constants respectively. 

Quasi-static and dynamic actuation results in the tip displacement of both single and dual (parallel) 
actuated ETA systems as a function of applied power, both for unloaded and a range of increasing 
spring-loaded ETAs, up to the beam its plasticity and buckling limits. Below these limits the results 
match fairly well the analytical Thermo-mechanical model. The model requires knowledge of the 
Young’s modulus and thermal expansion coefficient of silicon as a function of temperature, which 
were taken from literature. Several types of limiting behavior has been observed and understood: 
several buckling modes, plastic deformation and melting. 

MEMS designers can benefit from this knowledge when optimizing the ETAs, anti-reverse system and 
pumping mechanism. 

Several aspects of this report are promising and require further research. 

  



 

List of symbols 
Symbol Description Unit 

Δ𝜙𝜙𝑏𝑏 Phase shift of the light beams − 

Δ𝜔𝜔 Angular bandwidth = 𝐷𝐷𝑎𝑎
𝑚𝑚𝑎𝑎

 s−1 

Δ𝐿𝐿𝜀𝜀 Beam expansion or compression m 
Δ𝐿𝐿𝑚𝑚 Test mass displacement m 
Δ𝑇𝑇 Temperature increase K 
𝛼𝛼 Thermal expansion coefficient K−1 
𝛼𝛼0 Chosen initial angle between horizontal and spring base − 
𝛼𝛼𝑠𝑠 Correction factor for the spring curvature − 
𝛿𝛿 Tip displacement of the beam m 
𝜀𝜀 Strain − 
𝜀𝜀𝑏𝑏 Bending strain − 
𝜀𝜀𝑅𝑅 Emissivity of silicon − 
𝜀𝜀𝑠𝑠 Stretching strain − 
𝜀𝜀𝑇𝑇 Thermal strain − 
𝜃𝜃 Angle between horizontal and neutral beam axis − 
𝜃𝜃0 Angle between horizontal and spring base − 
𝜃𝜃𝑅𝑅 Angle of the arc − 
𝜃𝜃(𝑙𝑙) Angle between horizontal and spring along the 𝑙𝑙-axis − 
𝜅𝜅0 Rotational spring constant Nm 
𝜆𝜆 Wavelength of the beam m 
𝜌𝜌 Resistivity of silicon Ωm 
𝜌𝜌𝑑𝑑 Silicon density kgm−3 
𝜎𝜎 Stefan-Boltzmann constant Wm−2K−4 
𝜏𝜏 Thermal time constant s 
𝜙𝜙 Angle between spring base and tip − 
𝜔𝜔 Angular frequency s−1 

𝜔𝜔0 Natural angular frequency = �𝑘𝑘𝑎𝑎
𝑚𝑚𝑎𝑎

= 2𝜋𝜋𝑓𝑓0 s−1 

𝑎𝑎 Acceleration ms−2 
𝐴𝐴 Surface area of the cross-section m2 
𝐴𝐴𝑝𝑝 Cross-section area of the added silicon piece m2 
𝐶𝐶1,𝐶𝐶2 Differential constants m 
𝐶𝐶𝑠𝑠 Specific heat of silicon Jkg−1K−1 
𝑑𝑑𝑥𝑥 Spring compression distance m 
𝑑𝑑𝑚𝑚 Molecule diameter m 
𝐷𝐷𝑎𝑎 Damping constant of the accelerometer kgs−1 
𝐸𝐸 Young’s modulus Pa 
𝑓𝑓0 Natural frequency s−1 
𝐹𝐹 Force N 



 

𝐹𝐹𝑣𝑣 Vertically applied force on the beam N 
𝐹𝐹𝑥𝑥 Horizontal force acting on the spring N 
𝐹𝐹𝑦𝑦 Vertical force acting on the spring N 
𝐹𝐹𝑦𝑦,0 Vertical force acting on the spring in uncompressed state N 
𝐹𝐹𝑦𝑦,1 Vertical force acting on the spring in compressed state N 
𝐹𝐹𝑁𝑁𝑁𝑁 Force caused by Newtonian noise N 
𝑔𝑔 Distance between beam and substrate m 
𝑔𝑔𝑠𝑠 Gap size between the sub-beams m 
𝐺𝐺 Gravitational constant Nm2kg−2 
ℎ Beam height m 
ℎ𝑠𝑠 Gravitational wave strain amplitude − 
𝐼𝐼 Current A 
𝐼𝐼𝑥𝑥 Second moment of area m4 
𝐼𝐼𝑠𝑠 Source current A 
𝐽𝐽 Current density Am2 

𝑘𝑘 Eigenvalue = � 𝑃𝑃0
𝐸𝐸𝐼𝐼𝑥𝑥

 m−1 

𝑘𝑘𝑎𝑎 Spring constant of the accelerometer Nm−1 
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 Thermal conductivity of air Wm−1K−1 
𝑘𝑘𝑏𝑏 Beam stiffness Nm−1 
𝑘𝑘𝐵𝐵 Boltzmann constant JK−1 
𝑘𝑘𝑠𝑠 Thermal conductivity of silicon Wm−1K−1 
𝑘𝑘𝑦𝑦 Spring constant in the 𝑦𝑦-direction Nm−1 
𝑘𝑘𝑦𝑦,0 Uncompressed spring constant in the 𝑦𝑦-direction Nm−1 
𝑘𝑘𝑦𝑦,1 Compressed Spring constant in the 𝑦𝑦-direction Nm−1 
𝑙𝑙𝑚𝑚𝑚𝑚𝑝𝑝 Mean free path m 
𝐿𝐿 Half-span of the beam m 
𝐿𝐿𝜀𝜀 Initial beam length m 
𝐿𝐿𝑏𝑏 Fixed-fixed beam length m 
𝐿𝐿𝑎𝑎 Length of the interferometer arm m 
𝐿𝐿𝑙𝑙 Total spring length m 
𝐿𝐿𝑝𝑝 Length of the added silicon piece m 
𝐿𝐿𝑅𝑅 Arc length of a circle m 
𝐿𝐿𝑠𝑠 Horizontal length of the spring m 
𝐿𝐿(𝑦𝑦) Arc length at 𝑦𝑦 from the neutral axis m 
𝑚𝑚 Mass kg 
𝑚𝑚𝑎𝑎 Accelerometer mass kg 
𝑚𝑚𝑠𝑠 Mass of ‘seismic motion particle’ kg 
𝑚𝑚𝑡𝑡 Mass of the test mass kg 
𝑀𝑀0 Moment acting on fixed beam end Nm 
𝑀𝑀𝐿𝐿 Moment acting on the spring tip Nm 
𝑀𝑀𝑠𝑠 Moment at spring base Nm 



 

𝑀𝑀(𝑙𝑙) Moment along the 𝑙𝑙-axis Nm 
𝑂𝑂 Effective surface area of beam segment m2 
𝑝𝑝 Pressure Pa 
𝑃𝑃 Horizontally applied force on the beam N 
𝑃𝑃0 Inline force at fixed beam end N 
𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸 Power dissipated in the ETA W 
𝑟𝑟 Distance between test mass and particle m 
𝑅𝑅 Resistance Ω 

𝑅𝑅𝑏𝑏𝑎𝑎𝑏𝑏𝑘𝑘 Resistance of Back ETA Ω 
𝑅𝑅𝑏𝑏,𝑛𝑛 Resistance of contact 𝑛𝑛 Ω 
𝑅𝑅𝐸𝐸𝑇𝑇𝐸𝐸 Resistance of an ETA Ω 
𝑅𝑅𝑚𝑚𝑎𝑎𝑟𝑟𝑛𝑛𝑡𝑡 Resistance of Front ETA Ω 
𝑅𝑅𝑝𝑝 Resistance of the added silicon piece Ω 
𝑅𝑅𝑅𝑅 Radius of a circle m 
𝑆𝑆 Shape conduction factor − 

𝑇𝑇(𝑥𝑥) Temperature K 
𝑇𝑇0 Transversal force acting on fixed beam end N 
𝑇𝑇∞ Substrate temperature K 
𝑇𝑇𝑛𝑛 Temperature at 𝑥𝑥𝑛𝑛 K 
𝑢𝑢(𝑥𝑥) Longitudinal displacement of the beam at 𝑥𝑥 m 
𝑈𝑈 Voltage V 
𝑈𝑈𝑠𝑠 Source voltage V 
𝑤𝑤 Beam width m 
𝑤𝑤1 Middle sub-beam width m 
𝑤𝑤𝑎𝑎 Total ETA beam width m 
𝑤𝑤𝑒𝑒 Effective ETA beam width m 
𝑤𝑤(𝑥𝑥) Transversal displacement of the beam at 𝑥𝑥 m 
𝑥𝑥 𝑥𝑥-coordinate along the 𝑥𝑥-axis m 
𝑥𝑥𝑚𝑚 Frame displacement m 
𝑥𝑥�𝑚𝑚 Complex amplitude of frame displacement m 
𝑥𝑥𝐿𝐿 𝑥𝑥-coordinate at the end of the 𝑙𝑙-axis m 
𝑥𝑥𝑚𝑚 Mass displacement m 
𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙  Relative mass displacement = 𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚 m 
𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙  Complex amplitude of relative mass displacement m 
𝑥𝑥(𝑙𝑙) 𝑥𝑥-coordinate along the 𝑙𝑙-axis m 
𝑦𝑦 Vertical distance from neutral beam axis m 
𝑦𝑦𝐿𝐿  𝑦𝑦-coordinate at the end of the 𝑙𝑙-axis m 
𝑦𝑦𝑠𝑠 Vertical position of spring tip m 
𝑦𝑦(𝑙𝑙) 𝑦𝑦-coordinate along the 𝑙𝑙-axis m 

𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧𝑏𝑏 Differential constants K 
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1 Introduction 
The concept of gravitational waves has been proposed by Albert Einstein in 1916 [1], based on his 
theory of General Relativity. This theory describes gravity as a curvature of space-time. An 
asymmetric spinning mass or a binary system of masses creates a ripple of space-time, which 
propagates outwards into space as a wave, see figure 1.  

 

Figure 1. Computer simulation of the gravitational waves caused by a collision of two black holes. [2] 

This wave can curve space-time, altering the gravity, hence the name gravitational wave. The 
amplitude of gravitational waves depends on the strength of the ‘source’ and the distance traveled 
by the wave. Rotation speed, mass, degree of asymmetry and mutual distance (binary system) 
determine the strength of the ‘source’. As the gravitational wave travels through space-time, the 
amplitude decreases linearly with the traveled distance. On 14 September 2015 [3] the first 
gravitational wave has been detected. This date marks the start of gravitational wave astronomy, 
enabling us to observe gravitational phenomena in the universe, including black holes and events 
form the early universe, beyond the cosmic background radiation limit.  

1.1 Virgo 
Virgo is one of the existing gravitational wave detectors. It is essentially a Michelson interferometer 
with two long arms of three kilometer each, sited in Italy, near Pisa, see figure 2.  

 

Figure 2. Left: Aerial view of the Virgo interferometer. [4] Right: Schematic of the Virgo interferometer. [5] 

In a Michelson interferometer a laser beam is split by a beam splitter into two beams. The two 
beams both reflect back, on so-called test mass mirrors, to the beam splitter. Both beams are split 
back into the laser and into the photodiode. The photodiode measures the intensity of the incident 
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beam. If one (or both) of the test mass mirrors has a displacement Δ𝐿𝐿𝑚𝑚, there will be an optical path 
difference between the beams, ensuring a phase difference. As the beams interfere with a phase 
difference, the intensity of the incident beam will become less. This is a measure for the difference in 
distance traveled by the two light beams. On top of a standard Michelson interferometer does the 
one used by Virgo contain a so-called input mirror in every arm and a recycling mirror. The input 
mirror reflects some of the photons in an arm back to the test mass mirrors. This ensures that a 
photon receives a bigger phase difference, for it travels the same distance several times in this cavity. 
The optical length of the arms is extended to 100 km [5], when using the input mirrors. The recycling 
mirror sends the beam that is split, from the beam splitter, into the laser back to the beam splitter. 
Adding the input and recycling mirrors can increase the power of the beams in the cavity up to 
50 kW. 

The phase difference is given by: 

Δ𝜙𝜙 =
8𝜋𝜋 ⋅ Δ𝐿𝐿𝑚𝑚

𝜆𝜆
 (1.1) 

Where Δ𝐿𝐿𝑚𝑚 is the relative displacement of the two test masses, Δ𝐿𝐿𝑚𝑚,1−Δ𝐿𝐿𝑚𝑚,2
2

 and 𝜆𝜆 the wavelength of 
the beam. Gravitational waves cause a relative displacement of the test masses. For a given 
gravitational wave strain amplitude, ℎ𝑠𝑠, the resulting displacement is: 

Δ𝐿𝐿𝑚𝑚 =
ℎ𝑠𝑠 ⋅ 𝐿𝐿𝑎𝑎

2
 (1.2) 

 
Where 𝐿𝐿𝑎𝑎 is the arm length of the interferometer. The expected strains are in the order of 10−22. 
This means Virgo must be able to measure a displacement of Δ𝐿𝐿𝑚𝑚 ≈ 10−19 m. Substituting formula 
(1.2) in (1.1) gives an expression for the phase difference and the strain caused by the gravitational 
wave: 

Δ𝜙𝜙 = �
4𝜋𝜋 ⋅ 𝐿𝐿𝑎𝑎
𝜆𝜆

� ⋅ ℎ𝑠𝑠 (1.3) 

 
In 2011 the upgrade of the Virgo detector started. The new “Advanced Virgo” will be ten times more 
sensitive than Virgo, giving it the opportunity to measure strains in the order of 10−23. This would 
mean that gravitational waves with lower amplitudes can be measured, thus extending the reach of 
the detector. A bigger reach provides more detectable events and data to be obtained. 

1.2 Effect of seismic motion on the detector signal 
For an accurate measurement of gravitational waves, the test masses must be suspended in such a 
way that they do not move. Because the strains that will be measured by Advanced Virgo are in the 
order of 10−23, even the smallest seismic motion would have a huge negative effect on the accuracy 
of the measurement, this is called seismic noise. To reduce the seismic noise, mechanical filters are 
used that attenuate the seismic noise for frequencies above a few Hz. Therefore, the test masses will 
not move by direct mechanical interaction with the ground. 
Besides seismic noise, seismic motion also creates another type of noise called Newtonian noise. This 
noise is caused by the gravitational attraction between masses, given by Newton’s law of gravitation: 

𝐹𝐹𝑁𝑁𝑁𝑁 = 𝐺𝐺 ⋅
𝑚𝑚𝑠𝑠 ⋅ 𝑚𝑚𝑡𝑡

𝑟𝑟2
 (1.4) 
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Where 𝑚𝑚𝑠𝑠 is the mass of a ‘seismic motion particle’, 𝑚𝑚𝑡𝑡 is the mirror mass, 𝑟𝑟 the distance between 
them. When a seismic wave passes the test mass, it will swing due to the attraction of the particles 
coming closer to the test mass, see figure 3.  

 

Figure 3. Illustration of the Newtonian noise effect on a test mass when a seismic wave passes by. [6] 

The swing of the test mass suggests that a gravitational wave is measured, though this is not the 
case. 
The sensitivity of the Virgo detector is too low to be effected by the Newtonian noise but, Advanced 
Virgo has a higher sensitivity, and Newtonian noise is expected to have effect on the detector signal 
during bad weather conditions. The sensitivity curve of Advanced Virgo is presented in figure 4. It 
shows that at high seismic activity the sensitivity of Advanced Virgo will be limited by Newtonian 
noise, between 2 Hz and 20 Hz. 

 

Figure 4. The estimated noise for Advanced Virgo. At high seismic activity will the sensitivity of Advanced Virgo be limited by 
the Newtonian noise. [6] 

1.3 Nikhef MEMS accelerometer project 
To tackle the Newtonian noise problem of Advanced Virgo, a large grid of accelerometers could be 
placed around the interferometer. The seismic data retrieved from these accelerometers can be used 
to predict the Newtonian noise effect on the gravitational wave measurement, and correct for it, 
such that this noise effect is decently cancelled. This requires the accelerometers to be sensitive at 
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low frequency (2 Hz - 20 Hz). Because a large number of accelerometers is required they need to be 
low in price.  
A Micro Electro Mechanical System (MEMS) accelerometer may be a valuable option. This is an  
accelerometer on a silicon chip of a few millimeters in size. These accelerometers require a high 
sensitivity of < 1 ng/√Hz at the indicated frequencies. To achieve this sensitivity, the accelerometer 
requires a low-frequent, low-damped mass-spring system. This is achieved by including negative 
stiffness in the system and by operating it in vacuum. The negative stiffness is obtained using so-
called Anti-spring technology. In the MEMS all mechanical parts are etched in its thin silicon device 
layer (the x-y plane). The mass is suspended to the frame by four sets of curved cantilever springs, 
such that it oscillates in, the y-direction. By compressing these springs in the x- direction, the stiffness 
and, with it, the resonance frequency of the oscillator can be reduced, which is called the “Anti-
spring effect”. For the Anti-spring effect to work, the springs must be compressed. The compression 
is obtained from so-called Electro Thermal Actuator (ETA) beams, the subject of this report.  

For the next generation MEMS designs, is it desirable to know the electro-thermal and mechanical 
characteristics of the ETAs on the present MEMS accelerometer chips, both at atmospheric pressure 
and in vacuum, for a better understanding of their behavior, which may help to improve future 
MEMS accelerometer designs. The electrical characteristics can be determined by measuring the 
resistance of the ETA, because it is a measure for the ratio of the voltage and current and, moreover, 
is the best measure for the temperature of the ETA. The resistance will be plotted as a function of 
power, for this also is a measure for the ratio of the voltage and current and the ETA displacement is 
connected to the dissipated power. The mechanical characteristics are determined by measuring the 
displacement of the ETA by certain amounts dissipated power and establishing the buckling behavior. 
These measurements will show the (maximum) capabilities of the ETA. This information could help 
improve the design of new compression systems.  
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2 Theory, models and MEMS design 
This chapter will describe the mathematical representation of an accelerometer response. 
Furthermore, will this chapter show two Nikhef MEMS designs, which are used in the measurements. 
Finally, a short derivation of the used models for estimation and comparison is included in this 
chapter, together with some properties of silicon used in the models. 

2.1 Accelerometer theory 
An accelerometer consists of a mass suspended to a frame, by a spring or set of springs, and a sensor 
which measures their relative displacement. If the frame gets accelerated, the mass will be delayed 
in accelerating due to its inertia. The delay causes a relative displacement between the mass and the 
frame, which is a measure of the acceleration of the frame below the resonance frequency. An 
accelerometer can be modelled by a mass 𝑚𝑚𝑎𝑎, with a viscous damper 𝐷𝐷𝑎𝑎, which is attached to a 
frame by a spring with stiffness 𝑘𝑘𝑎𝑎, see figure 5. 

 

Figure 5. Schematic representation of an accelerometer. 

This mass can be moved by the acceleration of the frame. The relative displacement 𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙  of the mass 
can be described as the displacement of the frame 𝑥𝑥𝑚𝑚 subtracted from the displacement of the mass 
𝑥𝑥𝑚𝑚: 𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙 = 𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚. A mathematical description can be set up by summing all the forces acting upon 
the mass:   

𝑚𝑚𝑎𝑎�̈�𝑥𝑚𝑚 = −𝑘𝑘𝑎𝑎𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙 − 𝐷𝐷𝑎𝑎�̇�𝑥𝑎𝑎𝑒𝑒𝑙𝑙  (2.1) 

 
This is just the equation of motion of the mass. For a harmonic motion, 𝑥𝑥 = 𝑥𝑥� ⋅ 𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡, it can be solved 
giving the transfer function: 
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�
𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙
�̈�𝑥�𝑚𝑚

� =
1
𝜔𝜔02

⋅
1

��1 −𝜔𝜔2

𝜔𝜔02
�
2

+ �𝜔𝜔 ⋅ Δ𝜔𝜔
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(2.2) 

Where 𝜔𝜔0 and Δ𝜔𝜔 are the natural angular frequency and angular bandwidth respectively and 𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙  
and �̈�𝑥�𝑚𝑚 the complex relative displacement amplitude and the complex frame acceleration amplitude 

respectively. The angular bandwidth is the interval between the intersection at 1
√2

 under the 

resonance peak. The derivation of equation (2.2) can be found in appendix A.1 

 

Figure 6. Illustration of the response of the accelerometer at 𝑓𝑓0 = 10 Hz and 𝑓𝑓0 = 100 Hz, with 𝛥𝛥𝜔𝜔 = 0,01 Hz. The 
response for 𝑓𝑓 < 𝑓𝑓0 increases with 1

𝑚𝑚02
. 

The sensitivity is dependent on the natural frequency of the mass-spring system, as illustrated by 
equation (2.2). If the natural frequency decreases, the sensitivity will become higher for all 
frequencies below the natural frequency, as shown in figure 6. 

2.2 Lay-out of the Nikhef MEMS design 
Nikhef has chosen to make the accelerometers on MEMS chips, which are relatively cheap and can 
be made quite accurate and fast. Two MEMS accelerometer designs are available, each with different 
ETA actuation possibilities. The Nikhef MEMS design has a flat square mass that is suspended to the 
frame by four sets springs, each on every corner. The relative displacement of the mass is measured 
with sensing comb capacitors pairs. 

The Nikhef accelerometer MEMS devices are etched out of Silicon-on-Insulator (SOI) wafers, at 
MESA+. This wafer consists of a silicon substrate (or handle) wafer of 400 µm and a silicon device 
layer wafer of 50 µm with between them a layer of silicon oxide (BOX layer) of 4 µm. The silicon 
wafer is highly doped (~6 ⋅ 1018 carriers/cm3 [7]) with Boron (p-type), which makes the silicon a 
conductor. All the structures present in the MEMS design are etched out of the device layer. The 
silicon oxide layer beneath the device layer is removed underneath the structures that are intended 
to move. These structures have a perforated design, so the etching fluid can reach all the silicon 
oxide. Structures that are designed to be stuck to the substrate layer (anchored), will not contain the 
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perforation. The mass is etched out of all the three layers, such that at the end of the etching process 
the mass is only suspended by the springs. A schematic of the cross section of the accelerometer 
MEMS is shown in figure 7. 

 

Figure 7. Schematic cross-sectional view of the accelerometer design. [8] 

2.2.1 G1.4 MEMS design 
The G1.4 MEMS design consist of a mass of 30 mg, suspended by 16 curved cantilever springs (four 
on each corner). Each of these spring have a total length of 1762,53 µm, a width of 8,66 µm and are 
designed to have an arc angle of 1 rad. A schematic of the complete G1.4 MEMS design is shown in 
figure 8. The quadrants are indicated with a ‘Q’ followed by a number. 

 

Figure 8. Schematic of the G1.4 MEMS design. 
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The mass position can be readout using sensing capacitor comb pairs. The sensing combs, shown in 
figure 9, are variable gap capacitors, which measure the mass displacement in the 𝑦𝑦-direction. Any 
mass displacement will change the distance between each pair of opposing comb fingers, causing a 
change in capacitance, which is measured continuously.  

 

Figure 9. Schematic of the upper half of the sensing combs on the top left side of the mass. 

The actuation combs can be used to apply a force on the mass in 𝑦𝑦-direction. The variable area 
actuation combs are shown in figure 10. By applying a DC voltage over the actuation combs, the two 
opposing combs attract each other, with a force proportional to the square of the voltage. One of the 
actuation combs is attached to the mass and the other to the substrate, so a force will act on the 
mass when the actuation combs are actuated.  

 

Figure 10. Schematic of the left half of the actuation combs on the upper side of the mass. 

To prevent the capacitor combs from sticking together by Van der Waals bonding, the mass has been 
limited in its maximum displacement, both 𝑥𝑥- and 𝑦𝑦-direction. This limitation is achieved by the use 
of so-called stops, see figure 11. The stops restrict the in-plane displacement of the mass to 4 µm, 
such that the capacitor combs will not touch each other. The stops are designed with the smallest 
possible contact area, so the mass will not stick to the stops by Van der Waals bonding. 
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Figure 11. Schematic of a stop at the top left corner. 

The Shuttle, shown in figure 12, is connected to the curved cantilever springs. Manually, the Shuttle 
can be moved in the direction of the springs, using a small needle in the hole in the Shuttle. This 
compresses the springs, which subsequently function as Anti-springs.  

  

Figure 12. Schematic of the G1.4 pushing mechanism. 

The Anti-spring effect only lasts if the springs stay in their compressed state. In order to maintain the 
compressed state, an anti-reverse system is implemented in the pushing mechanism, see figure 13. If 
a hook, connected to the shuttle, passes a tooth during the movement of the Shuttle, it cannot go 
back over the tooth, due to the shape of the tooth. This prevents the shuttle from going back to its 
initial state, thus keeping the spring compressed. The anti-reverse system has five teeth, so a 
maximum of five locked spring compressions can be achieved, see appendix F for all Shuttle locks. 
When the Shuttle is in its fifth lock, the springs are compress about 35 µm. The forces required for 
each Shuttle lock are shown in figure 16. 

Shuttle 

Bucket 

Curved 
cantilever 
springs 
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springs 
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Figure 13. Schematic of the anti-reverse system. 

The final MEMS design will be in vacuum and produced in great numbers, so it is impossible to 
manually compress all the curved cantilever springs. Therefore, two V-shaped ETAs are used to 
compress the curved cantilever springs, see figure 14, which can be actuated separately. Actuation of 
the ETAs is done by applying a current through the beam. Due to the current the ETA heats up, 
causing it to expand and compress the springs. The ETAs consist of three 2,9 mm long sub-beams 
placed under an angle of 2°. These beams are connected with perpendicular placed reinforcing 
beams. The three sub-beams combined, including perforation, give the ETA a width of 38,1 µm. The 
reinforcing beams prevent buckling of the sub-beam, enabling a stronger actuation force. The ETA 
closest to the mass, the so-called Front ETA, is connected to the Bucket, see figure 15, of the pushing 
mechanism of the MEMS. Behind the Front ETA is the so-called Back ETA. The Back ETA helps the 
Front ETA push the shuttle, so the Front ETA is less likely to buckle because force is divided over two 
ETAs. If the Back ETA expands it touches the protrusion of the Front ETA, see figure 14, thus pushing 
the Front ETA towards the shuttle. 

 

Figure 14. Schematic of the G1.4 thermal actuators. 

Due to the force of the springs acting on the ETA and the thermal limit of silicon, the ETAs have a 
maximum displacement which they are capable to reach. Unfortunately, the fifth anti-reverse tooth 
cannot be reached by the maximum ETA displacement. To reach it, a pumping mechanism is 
implemented in the pushing mechanism, see figure 15. 

Shuttle hooks 

Anti-reverse/Shuttle teeth 

Back ETA 
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Figure 15. Schematic of the pumping mechanism. 

When the first anti-reverse tooth of the Shuttle is reached, it will stay at that position (first locked 
shuttle state), even when the Front ETA is deactivated. The Front ETA is connected to the bucket, so 
when the Front ETA relaxes it withdraws the bucket. During this withdraw, the shuttle hook will pass 
the first Bucket tooth. When the Front ETA is actuated again, the bucket will now push the shuttle 
using the first tooth rather than the bucket side. Therefore, the shuttle can be pushed further for the 
same Front ETA expansion. The pumping mechanism has two teeth. The first bucket tooth is locked 
after the first Shuttle state is reached, the second bucket tooth is locked after the third Shuttle state 
is reached. 

The guidance and curved cantilever springs apply a force to an expanding Front ETA, due to the 
stiffness of the springs. The stiffness of the curved cantilever springs can be modeled using the spring 
profile model (see chapter 2.3 and appendix G.1). The fixed-fixed beam stiffness formula can be used 
for estimating the stiffness of the guidance springs: 

𝑘𝑘𝑏𝑏 =
12𝐸𝐸𝐼𝐼𝑥𝑥
𝐿𝐿𝑏𝑏3

 (2.3) 

Where 𝐸𝐸 is the Young’s modulus, 𝐼𝐼𝑥𝑥 the second moment of area and 𝐿𝐿𝑏𝑏 the fixed-fixed beam length. 

The Shuttle guidance springs consist of, in total, six parallel fixed-fixed beams with 𝐿𝐿𝑏𝑏 = 490 µm and 
𝑤𝑤 = 6 µm per spring. This means that equation (2.3) needs to be multiplied by 6 to estimate the 
total stiffness of the Shuttle guidance springs. The two Bucket guidance springs are two fixed-fixed 
beams in series with  𝐿𝐿𝑏𝑏 = 277 µm and 𝑤𝑤 = 7 µm per spring. This reduces the stiffness of the 
springs by a factor 2, meaning equation (2.3) needs to be dived by 2 to estimate the stiffness of one 
Bucket guidance spring. The total Bucket guidance spring stiffness is 2 times equation (2.3) divided by 
2. Knowing the stiffness of the present springs, the load lines (force that is needed for a certain 
displacement) of the five Shuttle locks can be estimated. The Electro-thermal (see chapter 2.4.1 and 
appendix G.2) and Thermo-mechanical model (see chapter 2.4.2 and appendix G.3) can give an 
estimation of the loaded ETA tip displacement at a certain electric power. The load lines and loaded 
tip displacements are presented in figure 16. For example, if a curved cantilever spring compression 
of 17 µm is required in Shuttle lock 0 (blue solid line), an electrical power of 499 mW (pink dashed 
line) needs to be applied to the ETA, for at that point the force applied on and delivered by the ETA is 
the same. 

Bucket teeth 
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Figure 16. Load lines of the five Shuttle locks accompanied with the loaded tip displacements of a single ETA, at 
atmospheric pressure. The vertical rises of the solid lines are the point where the Bucket touches the Shuttle. The end of 
the solid lines is the point where the Shuttle is in the lock shown in the legend. 

2.2.2 G1.5 MEMS design 
The principle of the G1.5 MEMS design is the same as the G1.4: a centered mass of 10 mg is 
suspended by 16 curved cantilever beams, which can be compressed by V-shaped ETAs, lowering the 
spring constant in the 𝑦𝑦-direction. The biggest differences between the G1.5 MEMS design and the 
G1.4 MEMS design are: the size and the number of capacitor combs, the shape of the mass, the 
shape of the stops and the combined ETA actuation. In the G1.5 MEMS design both ETAs are 
connected to the same bonding pads. Therefore, they cannot be actuated separately. 

2.3 Anti-spring theory and modeling 
The accelerometer MEMS is designed to measure low frequency (2 – 20 Hz) seismic noise so, the 
sensitivity must be as high as possible for low frequencies. As shown by equation (2.2), this can be 

done by lowering the natural angular frequency, 𝜔𝜔0 = �𝑘𝑘
𝑚𝑚

, namely by decreasing the spring constant 

and/or increasing the mass. The mass is limited by the size of the MEMS chip, so it is tried to lower 
the spring constant of the system with Anti-springs, see figure 17. 

 

Figure 17. Microscope picture of the curved cantilever beam springs used in the G1.4 accelerometer MEMS with the Shuttle 
on the left side and the mass on the right side. 

Figure 18 shows a sketch of the forces and moment acting on a single curved cantilever spring, both 
uncompressed and compressed. This sketch will be used for deriving a formula to show the working 
principle of the Anti-springs. 
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Figure 18. A single curved cantilever spring with forces and moments acting upon it.. A: the initial, uncompressed state of 
the spring. B: the compressed state of the spring. 

The spring constant in the 𝑦𝑦-direction, 𝑘𝑘𝑦𝑦, of the curved cantilever spring is: 

𝑘𝑘𝑦𝑦 =
𝐹𝐹𝑦𝑦
𝑦𝑦𝑠𝑠
≈

12𝐸𝐸𝐼𝐼𝑥𝑥
𝐿𝐿𝑠𝑠3

 (2.4) 

Where 𝐹𝐹𝑦𝑦 is the vertical force acting the spring, 𝑦𝑦𝑠𝑠 the vertical position of the spring tip and 𝐿𝐿𝑠𝑠 the 
horizontal length of the spring. The sum of the forces and moments acting on the spring base for an 
uncompressed spring is: 

2𝑀𝑀𝑠𝑠 − 𝐹𝐹𝑦𝑦,0𝐿𝐿𝑠𝑠 = 0 (2.5) 

Where 𝑀𝑀𝑠𝑠 is the moment acting on the spring base and tip and 𝐹𝐹𝑦𝑦,0 the vertical force acting on the 
spring in the uncompressed state. The spring bending due to the moments acting on the spring is 
inhibited by the rotational stiffness, 𝜅𝜅0, at the clamping of the spring, for the spring base holds:  

𝜅𝜅0 =
𝑀𝑀𝑠𝑠

𝜙𝜙
 (2.6) 

Where 𝜙𝜙 the angle between spring base and tip. For small angles holds that 𝜙𝜙 ≈ 𝑦𝑦𝑠𝑠
𝐿𝐿𝑠𝑠

, combining this 

with the substitution of equation (2.4) and (2.5) in (2.6) gives:  

A 

B 
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𝜅𝜅0 = 𝑘𝑘𝑦𝑦,0𝐿𝐿𝑠𝑠2 ≈
6𝐸𝐸𝐼𝐼𝑥𝑥
𝐿𝐿𝑠𝑠

 (2.7) 

Where 𝑘𝑘𝑦𝑦,0 is the uncompressed spring constant in the 𝑦𝑦-direction. Equation (2.7) shows that for 
very small spring compressions the rotational stiffness barely changes and therefore the moments 
will not change. If the curved cantilever is compressed in the 𝑥𝑥-direction direction, by a horizontal 
force, 𝐹𝐹𝑥𝑥, The sum of the forces and moments acting on the spring base for a compressed spring is: 

2𝑀𝑀𝑠𝑠 − 𝐹𝐹𝑦𝑦,1𝐿𝐿𝑠𝑠 − 𝐹𝐹𝑥𝑥𝑦𝑦𝑠𝑠 = 0 (2.8) 

Where 𝐹𝐹𝑦𝑦,1 is the vertical force acting on the spring in compressed state. Substituting equation (2.6) 
and (2.7) in (2.8) gives: 

𝑘𝑘𝑦𝑦,0𝐿𝐿𝑠𝑠2 =
𝐹𝐹𝑦𝑦,1𝐿𝐿𝑠𝑠2

𝑦𝑦𝑠𝑠
+ 𝐹𝐹𝑥𝑥𝐿𝐿𝑠𝑠 (2.9) 

Rewriting equation (2.9) gives an expression for the compressed spring constant, 𝑘𝑘𝑦𝑦,1: 

𝑘𝑘𝑦𝑦,1 = 𝑘𝑘𝑦𝑦,0 −
𝐹𝐹𝑥𝑥
𝐿𝐿𝑠𝑠

 (2.10) 

Equation (2.10) shows that the spring constant in the 𝑦𝑦-direction of a curved cantilever spring can be 
decreased by applying a compression in the 𝑥𝑥-direction. 

Equation (2.10) does not tell us what spring compression distance, 𝑑𝑑𝑥𝑥, is needed to reach the 
required horizontal compression force, 𝐹𝐹𝑥𝑥. 𝑑𝑑𝑥𝑥 depends on the springs initial curvature. The precise 
description of the deformed profile of the spring can be set up by considering the balance of 
moments in every point 𝑙𝑙 along the spring, where 𝑙𝑙 is the curvilinear coordinate, running from the 
spring base (𝑙𝑙 = 0) to the tip (𝑙𝑙 = 𝐿𝐿𝑙𝑙), see figure 19: 

𝑀𝑀(𝑙𝑙) = −𝐹𝐹𝑦𝑦 ⋅ �𝑥𝑥𝐿𝐿 − 𝑥𝑥(𝑙𝑙)� + 𝐹𝐹𝑥𝑥 ⋅ �𝑦𝑦𝐿𝐿 − 𝑦𝑦(𝑙𝑙)� − 𝑀𝑀𝐿𝐿 (2.11) 

Where 𝑀𝑀(𝑙𝑙) is the moment along the 𝑙𝑙-axis, 𝑥𝑥𝐿𝐿 and 𝑦𝑦𝐿𝐿  are the 𝑥𝑥-coordinate and 𝑦𝑦-coordinate, 
respectively, at 𝑙𝑙 = 𝐿𝐿𝑙𝑙, 𝑥𝑥(𝑙𝑙) and 𝑦𝑦(𝑙𝑙) are the 𝑥𝑥-coordinate and 𝑦𝑦-coordinate, respectively, along the 
𝑙𝑙-axis and 𝑀𝑀𝐿𝐿 the moment acting on the spring tip.  

 

Figure 19. Schematic of a curved cantilever spring. [9] 

𝑀𝑀𝐿𝐿 
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Equation (2.11) can be rewritten as a second order differential equation in the local angle, 𝜃𝜃(𝑙𝑙), 
along the 𝑙𝑙-axis: 

𝑑𝑑2𝜃𝜃(𝑙𝑙)
𝑑𝑑𝑙𝑙2

=
𝐹𝐹𝑦𝑦 ⋅ cos�𝜃𝜃(𝑙𝑙)� − 𝐹𝐹𝑥𝑥 ⋅ sin�𝜃𝜃(𝑙𝑙)�

𝐸𝐸𝐼𝐼𝑥𝑥
 (2.12) 

The derivation of equation (2.12) can be found in appendix A.2.  

Equation (2.12) is numerically solved using Excel, with boundary conditions 𝜃𝜃0 = −𝜃𝜃(𝐿𝐿) = 𝛼𝛼0 where 
𝛼𝛼0 is the chosen initial angle between horizontal and spring base. This results in a certain tip 
displacement, given the load forces. Use of the built-in Solver capabilities of Excel gives the possibility 
to evaluate the vertical spring constant and horizontal force after any horizontal compression, see 
figure 20. 

 

Figure 20. Spring constant in the 𝑦𝑦-direction of, and horizontal force on a curved cantilever spring versus the compression in 
𝑥𝑥-direction of a single spring. 

The initial radius of curvature of the spring is chosen such that the required spring constant reduction 
is obtained at a compression of about 35 µm. 

2.4 Electro-Thermal Actuator theory and modeling 
The compression of the curved cantilever springs is done using an Electro-Thermal Actuator beam. A 
voltage can be applied over this beam, which generates a current due to the resistance of the beam. 
The current flowing through the beam generates a power in the beam, causing the beam to heat up 
(Joule heating). The high temperature forces the anchored beam to expand, but because the beam is 
anchored internal stress will be created inside the beam. If the internal stress is high enough the 
beam will buckle in the first mode, see figure 21.  
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Figure 21. Schematics of the first 3 modes of buckling accompanied with the corresponding formula for the critical load. 
[10] 

The direction of buckling can be chosen by giving the beam a slight offset in the preferred direction. 
Due to the first mode buckling of the beam, the apex is pushed outwards, which exerts a force that 
can compress the curved cantilever springs, as illustrated in figure 22. 

  

Figure 22. Working principle of a V-shaped ETA.  
Top: The initial state of the ETA with a slight offset to control the direction of first mode buckling. Bottom: The apex is 
pushed outward due to Joule heating caused by the applied voltage over the beam. [11] 

By compressing the springs, more force will act on the tip of the ETA, causing the inline force of the 
beam to become larger. When the inline force is larger than the critical load, the ETA will buckle in 
the second mode. The critical load of a single ETA can be estimated by using the equation for second 
mode of buckling in figure 21. At room temperature this gives 𝑃𝑃2 = 149 mN. 

The mathematical analysis of the working principle of the V-shaped ETA beam can be split into 2 
parts: the Electro-Thermal part, with the current as input and the temperature as output, and the 
Thermo-Mechanical part, with the average temperature increase as input and the beam tip 
displacement as output. Both of these parts are described by [11] and [12] respectively. Their 
description will be used as inspiration for the modelling of the ETA. 

A schematic zoom in of an ETA shows three sub-beams connected by reinforcing beams, see figure 
23. The three sub-beams all have their own width and are separated mutually by gaps. The Thermo-
mechanical model, that will be described below, requires the knowledge of the second moment of 

𝐹𝐹 

𝐼𝐼 
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area, 𝐼𝐼𝑥𝑥, of a simple solid beam. The ETA has a for more complex beam structure, so an effective 𝐼𝐼𝑥𝑥 
needs to be determined for the model. This can be done by calculating 𝐼𝐼𝑥𝑥 for the entire width, 
subtracting 𝐼𝐼𝑥𝑥 for the middle sub-beam with the gaps and adding the 𝐼𝐼𝑥𝑥 of the middle sub-beam. 
Formula wise the effective second moment of area, 𝐼𝐼𝑥𝑥,𝑒𝑒𝑚𝑚𝑚𝑚, can be calculated by: 

 

Figure 23. A schematic zoom in of an ETA accompanied with the sub-beam and gap widths. 

𝐼𝐼𝑥𝑥,𝑒𝑒𝑚𝑚𝑚𝑚 =
ℎ

12
⋅ (𝑤𝑤𝑎𝑎3 − (𝑤𝑤1 + 2 ⋅ 𝑔𝑔𝑠𝑠)3 + 𝑤𝑤13) (2.13) 

Where ℎ the beam height, 𝑤𝑤𝑎𝑎 the total ETA beam width, 𝑤𝑤1 the middle sub-beam width and 𝑔𝑔1 the 
gap size between the sub-beams. The Electro-thermal model uses the effective width, 𝑤𝑤𝑒𝑒, which is 
the summed width of the three sub-beams, 𝑤𝑤1, 𝑤𝑤2 and 𝑤𝑤3. 

2.4.1 Electro-Thermal model 
The heat transfer in a stationary beam in thermal equilibrium is described schematically in figure 24. 
It shows a section of a solid beam and a nearby substrate, with mutual distance 𝑔𝑔. The beam is 
divided into three small segments, with the middle segment having a length of Δ𝑥𝑥 = 𝑥𝑥2 − 𝑥𝑥1 and 
temperature 𝑇𝑇. Joule heating and a conduction in silicon at the positive temperature slope at 𝑥𝑥2 
cause the heat generation of the middle segment. Convection to the substrate through air, 
conduction in silicon at the negative temperature slope at 𝑥𝑥1 and radiation contribute to the heat 
loss of the middle segment. This model considers the quasi-static case, where the temperature is 
independent of time and only a function of 𝑥𝑥. Energy conservation results into equation (2.14). 

 

Figure 24. Heat transfer of a small beam segment Δ𝑥𝑥. 
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𝑤𝑤ℎ �𝑘𝑘𝑠𝑠(𝑇𝑇2)
𝑑𝑑𝑇𝑇2
𝑑𝑑𝑥𝑥 −𝑘𝑘𝑠𝑠(𝑇𝑇1)

𝑑𝑑𝑇𝑇1
𝑑𝑑𝑥𝑥 � + Δ𝑥𝑥 �

𝐼𝐼2𝜌𝜌(𝑇𝑇)
𝑤𝑤ℎ − 𝑤𝑤𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �

𝑇𝑇(𝑥𝑥) + 𝑇𝑇∞
2 �

𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞
𝑔𝑔 − 𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4�� = 0 (2.14) 

Where 𝑘𝑘𝑠𝑠 and 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 are the thermal conductivity of silicon and air respectively, 𝑇𝑇𝑛𝑛 is the temperature 
at 𝑥𝑥𝑛𝑛, 𝐼𝐼 the current, 𝑆𝑆 the shape factor, 𝑇𝑇(𝑥𝑥) the temperature of the middle segment of the beam, 
𝑇𝑇∞ the substrate temperature, 𝑔𝑔 the distance between beam and substrate, ℎ the beam height, 𝑤𝑤 
the beam width, 𝜀𝜀𝑅𝑅 the emissivity of silicon, 𝜎𝜎 the Stefan-Boltzmann constant and 𝑂𝑂 the effective 
surface area of the middle segment. Between the beam and the substrate there is a temperature 
gradient. This means that 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 will change along the gradient. It is chosen to use the average of 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 
at 𝑇𝑇(𝑥𝑥) and 𝑇𝑇∞ in equation (2.14), for 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 as function of temperature can assumed to be linear (see 
appendix B.2). Dividing equation (2.14) by Δ𝑥𝑥 and taking the limit for Δ𝑥𝑥 = 0, results into this second 
order differential equation: 

𝑑𝑑2𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥2 =

1
𝑘𝑘𝑠𝑠(𝑇𝑇)�

(𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞)𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑇𝑇(𝑥𝑥) + 𝑇𝑇∞

2 �

𝑔𝑔ℎ +
𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4�

𝑤𝑤ℎ −
𝐼𝐼2𝜌𝜌(𝑇𝑇)
(𝑤𝑤ℎ)2 − �

𝑑𝑑𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

⋅
𝑑𝑑𝑘𝑘𝑠𝑠(𝑇𝑇)
𝑑𝑑𝑇𝑇 � (2.15) 

 

This equation can be solved numerically, given the boundary conditions 𝑇𝑇(0) = 𝑇𝑇∞, 𝑑𝑑𝑇𝑇(𝐿𝐿)
𝑑𝑑𝑥𝑥

= 0.The 
numerical equation (2.15) is discussed in appendix A.3.1. The equation is implemented in an Excel 
worksheet. A typical model result from temperature profile of a beam half in air and in vacuum, with 
the same maximum temperature, is shown in figure 25. 

 

Figure 25. A typical model result from Electro-thermal model of the temperature profile of a beam half in air and in vacuum. 
The figure shows the temperature as function of the 𝑥𝑥-coordinate of the beam. 

Besides a temperature profile can the model also predict the resistance behavior as function of 
power of a single beam. A typical model result from this in air an vacuum is shown in figure 26. 

This model is inspired by [11], in which the material properties 𝑘𝑘𝑠𝑠, 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜌𝜌 are assumed to be 
independent on temperature. In that case, in absence of radiation (𝜀𝜀𝑅𝑅 = 0), equation (2.15) 
simplifies to: 

𝑑𝑑2𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥2

𝑘𝑘𝑠𝑠 −
(𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞) ⋅ 𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎

𝑔𝑔ℎ
+

𝐼𝐼2𝜌𝜌
(𝑤𝑤ℎ)2 = 0 (2.16) 

Using the boundary conditions 𝑇𝑇(0) = 𝑇𝑇(2𝐿𝐿) = 𝑇𝑇∞, this has the analytical solution: (see appendix 
A.3.2): 
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𝑇𝑇(𝑥𝑥) = 𝑇𝑇∞ +
𝐽𝐽2𝜌𝜌
𝑘𝑘𝑠𝑠 𝑏𝑏2

⋅ �1 +
𝑒𝑒−2𝑏𝑏𝐿𝐿 − 1

𝑒𝑒2𝑏𝑏𝐿𝐿 − 𝑒𝑒−2𝑏𝑏𝐿𝐿
⋅ 𝑒𝑒𝑏𝑏𝑥𝑥 −

𝑒𝑒2𝑏𝑏𝐿𝐿 − 1
𝑒𝑒2𝑏𝑏𝐿𝐿 − 𝑒𝑒−2𝑏𝑏𝐿𝐿

⋅ 𝑒𝑒−𝑏𝑏𝑥𝑥� (2.17) 

 

Where, 𝑏𝑏 = �𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘𝑠𝑠𝑔𝑔ℎ

. Equation (2.17) is used to verify the numerical scheme mentioned above. 

 

Figure 26. A typical model result from Electro-thermal model of the resistance as function of power of a single beam in air 
and in vacuum. 

2.4.1.1 Shape factor 
The heat conduction through air to the substrate is not only done via the bottom of the beam (figure 
27A), but also the sides (figure 27B). Moreover, neighboring ETA sub-beams make the heat 
conduction even more complex (figure 27C). It is quite difficult to find an analytic expression for the 
heat conduction through air via the sides. So, the conduction from the sides is accounted for by a 
shape conduction factor 𝑆𝑆 > 1, which can be calculated using 2D or 3D finite element modeling.  

 

Figure 27. Illustration of the heat conduction through air to the substrate at 𝑆𝑆 = 1 and 𝑆𝑆 > 1.  
A: The heat conduction to the substrate at  𝑆𝑆 = 1 is completely through the bottom of the beam. B: At 𝑆𝑆 > 1, is the heat 
conduction to the substrate partially via the side. The higher 𝑆𝑆, the more heat conduction via the side. C: Schematic cross-
section view of the accelerometer MEMS used ETA beam. With FEM modelling is determined that 𝑆𝑆 = 2,33. 
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For the three-beam ETA, 𝑆𝑆 is determined by a 2D FEM model (done by Eric Hennes), with result 𝑆𝑆 =
2,33. It is assumed that the reinforcing beams have no effect on 𝑆𝑆 and 𝑆𝑆 is independent on 
temperature, thus making 𝑆𝑆 constant over the entire beam. 

2.4.2 Thermo-Mechanical model 
The analytical ETA beam model described in [12] is adopted. A sketch of the geometry and symbols 
used is shown in figure 28. Because of the symmetry, only half the beam needs to be modelled. 

 

Figure 28. The geometry and loads of a V-shaped beam actuator. [12] 

There are 3 strains which play a role in the ETA beam analysis: bending strain, 𝜀𝜀𝑏𝑏, total inline 
strain, 𝜀𝜀𝑠𝑠, and thermal strain, 𝜀𝜀𝑇𝑇: 

𝜀𝜀𝑏𝑏 = 𝑦𝑦 ⋅
𝑑𝑑2𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥2

 (2.18) 

 
Where 𝑦𝑦 is the vertical distance from neutral beam axis and 𝑤𝑤(𝑥𝑥) the transversal displacement of 
the beam along the neutral 𝑥𝑥-axis.  

𝜀𝜀𝑠𝑠 =
𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

+
1
2
⋅ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

 (2.19) 

 
Where 𝑢𝑢(𝑥𝑥) is the longitudinal displacement of the beam along the neutral 𝑥𝑥-axis. The thermal strain 
is given by: 

𝜀𝜀𝑇𝑇 = 𝛼𝛼(𝑇𝑇) ⋅ Δ𝑇𝑇(𝑥𝑥) (2.20) 

 
Where 𝛼𝛼 is the thermal expansion coefficient, which is dependent on temperature (see appendix 
B.1.3) and Δ𝑇𝑇 the temperature increase, which is dependent on the 𝑥𝑥-coordinate on the beam. To 
use equation (2.20) in the model, the average of all the 𝜀𝜀𝑇𝑇 along the beam will be used as input. The 
derivation of the strains can be found in appendix A.4.1. 
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Equation (2.18) shows that in the center of the beam, there is no effect of the bending strain. At the 
top the beam the bending strain is the largest and positive thus giving an expansion. At the bottom of 
the beam the bending strain is the smallest and negative thus giving a compression. 

Considering the forces and moment acting on the beam shows that the beam base exerts an inline  
force 𝑃𝑃0 on the beam, that counters the force that is caused when the free expansion of the beam is 
inhibited. The strain due to 𝑃𝑃0 equals − 𝑃𝑃0

𝐸𝐸𝐸𝐸
, where 𝐴𝐴 is the surface area of the cross-section. For 𝑦𝑦 =

0, this gives a connection between the total average strain, the external force and the average 
thermal strain: 

𝜀𝜀𝑠𝑠 = −
𝑃𝑃0
𝐸𝐸𝐴𝐴

+ 𝛼𝛼 ⋅ Δ𝑇𝑇�������� (2.21) 

 
Balancing the moments in any point 𝑥𝑥 along the beam gives: 

−𝐸𝐸𝐼𝐼𝑥𝑥 ⋅
𝑑𝑑2𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= 𝑃𝑃0 ⋅ 𝑤𝑤(𝑥𝑥) + 𝑇𝑇0 ⋅ 𝑥𝑥 + 𝑀𝑀0 (2.22) 

 
Where 𝑇𝑇0 and 𝑀𝑀0 are the transversal force and moment acting on the fixed beam end respectively. 
Equation (2.22) is a differential equation which can be solved for the clamping boundary conditions 
and the relations for 𝑃𝑃0 and 𝑇𝑇0 with 𝐹𝐹, found in appendix A.4.2. The solution to equation (2.22) 
reads: 

𝑤𝑤(𝑥𝑥) = �tan𝜃𝜃 −
𝐹𝐹𝑣𝑣

2𝑘𝑘2𝐸𝐸𝐼𝐼𝑥𝑥 cos𝜃𝜃
� ⋅ �

sin𝑘𝑘𝑥𝑥
𝑘𝑘

+
(cos𝑘𝑘𝐿𝐿 − 1) ⋅ (cos𝑘𝑘𝑥𝑥 − 1)

𝑘𝑘 sin𝑘𝑘𝐿𝐿
− 𝑥𝑥� (2.23) 

Where 𝜃𝜃 is the angle between horizontal and neutral beam axis, 𝐹𝐹𝑣𝑣 is the vertically applied force on 

the beam, 𝐿𝐿 the half-span of the beam and the eigenvalue 𝑘𝑘 is defined as 𝑘𝑘 = � 𝑃𝑃0
𝐸𝐸𝐼𝐼𝑥𝑥

 . 𝑘𝑘 can be 

calculated from the solution to equation (2.21), after substituting equation (2.19) and (2.23). This 
solution gives a transcendental equation which contains the applied beam tip force 𝐹𝐹𝑣𝑣, the average 
thermal strain of the beam 𝛼𝛼Δ𝑇𝑇������ and 𝑘𝑘.  For each value of 𝐹𝐹𝑣𝑣 and 𝛼𝛼Δ𝑇𝑇������ can 𝑘𝑘 be numerically obtained 
by solving the transcendental equation: 

𝑐𝑐(𝑘𝑘,𝐹𝐹𝑣𝑣 ,𝛼𝛼Δ𝑇𝑇������) = 0 (2.24) 

The complete equation (2.24) can be found in appendix A.4.3. 

The tip displacement 𝛿𝛿 of the beam can be calculated by dividing the transversal displacement on 
𝑥𝑥 = 𝐿𝐿 by cos𝜃𝜃, giving: 

𝛿𝛿 =
𝑤𝑤(𝐿𝐿)
cos𝜃𝜃

= �tan𝜃𝜃 −
𝐹𝐹𝑣𝑣

2𝑘𝑘2𝐸𝐸𝐼𝐼𝑥𝑥 cos𝜃𝜃
� ⋅ �

2 tan �𝑘𝑘𝐿𝐿2 � − 𝑘𝑘𝐿𝐿
𝑘𝑘 cos𝜃𝜃

� (2.25) 

A typical result from the Thermo-mechanical model of the tip displacement in air and vacuum is 
shown in figure 29. 



22 
 

 

Figure 29. A typical result from the Thermo-mechanical model. The figure shows the tip displacement as function of power. 

2.5 Material properties 
As described do the models require 𝑘𝑘𝑠𝑠(𝑇𝑇), 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇), 𝛼𝛼(𝑇𝑇), 𝜌𝜌(𝑇𝑇) and 𝐸𝐸(𝑇𝑇) (presented in appendix B). 
All of these symbols except 𝜌𝜌(𝑇𝑇), for highly doped silicon, is found in literature. The resistivity of the 
used silicon is specified to be between 0,005 Ωcm and 0,02 Ωcm [8] at room temperature. For the 
wafers used at Nikhef, the resistivity at room-temperature is measured. However, the resistivity at 
elevated temperatures is not precisely known in this doping regime. 𝜌𝜌(𝑇𝑇) can be roughly guessed 
based on known curves at neighboring carrier concentrations, see figure 30. 

 

Figure 30. Resistivity of doped silicon versus temperature at different concentrations of carriers/cm3 (1013 to 6,2 ⋅ 1019). 
[13] [14] [15] [16] 
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When the temperature increases, it is expected that the resistivity of the silicon will rise until it ‘hits’ 
the intrinsic part after which the resistivity will drop. In this project it is tried to indirectly measure 
𝜌𝜌(𝑇𝑇), by matching the Electro-thermal model with the measured resistance. (The measured 𝜌𝜌(𝑇𝑇) is 
already present in figure 30 as the yellow line at doping concentration ~6 ⋅ 1018 carriers/cm3) 

  



24 
 

3 Measurement setup and methods 
This chapter will describe the measurement methods used for measuring the resistance and 
displacement of the ETAs of both MEMS designs. It contains a few electrical schemes and explains 
the operation of the Python photo processing module. Also, this chapter gives a small rundown of 
the used vacuum setup.  

3.1 Quasi-static ETA resistance measurement 
The ETAs are designed to compress the curved cantilever springs when they expand. The required 
expansion is obtained by electrically heating the ETA from a voltage source. The power is obtained 
from a source voltage and current, 𝑈𝑈𝑠𝑠 and 𝐼𝐼𝑠𝑠 respectively, according to: 

𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸 = 𝑈𝑈𝑠𝑠 ⋅ 𝐼𝐼𝑠𝑠 (3.1) 

A voltage source is used to actuate all the ETAs, during this project. The total ETA resistance, 𝑅𝑅𝐸𝐸𝑇𝑇𝐸𝐸, 
can be calculated according to Ohm’s law by 𝑈𝑈𝑠𝑠

𝐼𝐼𝑠𝑠
.  

To connect the MEMS chip to an electrical source or meter, the chip is placed in a chip carrier. The 
chip carrier has 84 connection, with 21 on each side. To bond each end of the ETA to the carrier, a 
small aluminum wire is wringed on an ETA bonding pad and on a golden connector on the carrier, 
using a MechEL/MEI 907 wedge bonder [17]. On the edge of the chip, carrier wires can be soldered 
to the corresponding connectors. 

During the bonding of the aluminum wires a contact resistance, 𝑅𝑅𝑏𝑏, is introduced, because the wires 
are wringed on the native insulating silicon oxide layer with a thickness of several nanometer. This 
layer prevents full electrical contact between the wire and the bonding pad, thus creating a 
resistance. This contact resistance is not negligible and will add up to the measured resistance. The 
values of contact resistances vary mutually. Also does the resistance change when a current flows 
through it (see chapter 4.1.3). Therefore, it is difficult to find an exact value for 𝑅𝑅𝑏𝑏. 

The Back ETA bonding pad on the G1.4 MEMS design, has an extra silicon piece to extend the length 
of the bonding pad (anchor), on account of the possibility of separate ETA actuation, see figure 8 and 
figure 31. Due to this added piece of silicon, the total measured resistance of the Back ETA will go up. 
The resistance of this piece at room temperature, 𝑅𝑅𝑝𝑝, can be estimated according to: 

𝑅𝑅𝑝𝑝 = 𝜌𝜌(𝑇𝑇∞) ⋅
𝐿𝐿𝑝𝑝
𝐴𝐴𝑝𝑝

 (3.2) 

Where 𝐿𝐿𝑝𝑝 and 𝐴𝐴𝑝𝑝 are the length and cross-section area of the silicon piece respectively.  
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Figure 31. Microscope picture of the lengthened G1.4 Back ETA bonding pad, with dimensions. 

An electrical scheme of the ETAs of both MEMS designs can be set up. Though the G1.5 MEMS design 
only has two bonding pads, it is bonded with three aluminum wires (two on one pad and one on the 
other). The electrical schemes are presented in figure 32. 

 

 

Figure 32. The electrical schemes of the ETAs of both MEMS designs, accompanied with two source and meter connection 
possibilities. 

The connection C is always the reference point during the ETA measurements and a voltage source is 
connected to A, B or both (depending on which ETA is being actuated in the G1.4). If the voltage 
source is connected between A and C (blue schematic), the following holds: 
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𝑅𝑅𝐸𝐸 = 𝑅𝑅𝑏𝑏,1 + 𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑏𝑏𝑎𝑎𝑏𝑏𝑘𝑘 𝑅𝑅𝑏𝑏,1 
𝑅𝑅𝐵𝐵 = 𝑅𝑅𝑏𝑏,2 + 𝑅𝑅𝑚𝑚𝑎𝑎𝑟𝑟𝑛𝑛𝑡𝑡  𝑅𝑅𝑏𝑏,2 

𝑅𝑅𝐶𝐶 = 𝑅𝑅𝑏𝑏,3 𝑅𝑅𝑏𝑏,3 +
𝑅𝑅𝑚𝑚𝑎𝑎𝑟𝑟𝑛𝑛𝑡𝑡 ⋅ 𝑅𝑅𝑏𝑏𝑎𝑎𝑏𝑏𝑘𝑘
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𝑉𝑉1
𝐼𝐼

= 𝑅𝑅𝐸𝐸 + 𝑅𝑅𝐶𝐶,  𝑉𝑉2
𝐼𝐼

= 𝑅𝑅𝐶𝐶  (3.3) 

if the voltage source is connected between B and C (green schematic), the following holds: 

 𝑉𝑉1
𝐼𝐼

= 𝑅𝑅𝐶𝐶,  𝑉𝑉2
𝐼𝐼

= 𝑅𝑅𝐵𝐵 + 𝑅𝑅𝐶𝐶  (3.4) 

Assuming 𝑅𝑅𝑏𝑏𝑎𝑎𝑏𝑏𝑘𝑘 = 𝑅𝑅𝑚𝑚𝑎𝑎𝑟𝑟𝑛𝑛𝑡𝑡, 𝑅𝑅𝑏𝑏,3 = 𝑅𝑅𝑏𝑏,2 or 𝑅𝑅𝑏𝑏,1 and 𝑅𝑅𝑝𝑝 is correctly estimated at room temperature, all 
the resistances can be calculated from the measurements at room temperature. Unfortunately it is 
impossible to directly measure contact resistance 𝑅𝑅𝑏𝑏,1 and 𝑅𝑅𝑏𝑏,2 on the G1.4 MEMS, due to the fact 
that the ETA resistance is always in series with 𝑅𝑅𝑏𝑏,1 or 𝑅𝑅𝑏𝑏,2. 𝑅𝑅𝑏𝑏,1 or 𝑅𝑅𝑏𝑏,2 can be estimated by 
measuring 𝑅𝑅𝑏𝑏,3 and using the earlier made assumptions. 𝑅𝑅𝑏𝑏,3 can be measured using both schematics 
from figure 32. Because of the high impedance, 𝑅𝑅𝑉𝑉, of the voltage meter, almost no current flows 
through it, thus can be assumed that all the current flows through 𝑅𝑅𝑏𝑏,3 and 𝑅𝑅𝑏𝑏,3 ≪ 𝑅𝑅𝑉𝑉. Formula wise 
this can be shown as: 

𝐼𝐼𝑅𝑅𝑐𝑐,3 = 𝐼𝐼 ⋅
𝑅𝑅𝑉𝑉

𝑅𝑅𝑏𝑏,3 + 𝑅𝑅𝑉𝑉
= 𝐼𝐼 ⋅

1
𝑅𝑅𝑏𝑏,3
𝑅𝑅𝑉𝑉

+ 1
≈ 𝐼𝐼. (3.5) 

 
On the G1.5 ETA the contact resistances 𝑅𝑅𝑏𝑏,1 and 𝑅𝑅𝑏𝑏,2 can be measured directly using both 
schematics.  

A constant voltage source, Agilent E3648A, is used for the quasi-static measurements. The voltage 
over and the current through the ETA is measured with a Tenma 72-2040 multimeter and a Voltcraft 
98 multimeter respectively (specifications have not been found). Direct resistance measurement is 
also done with a Tenma 72-2040. 

3.2 Pulsed ETA resistance measurement 
One of the disadvantages of quasi-static actuation is the constant current through the ETA, which 
beside the ETA also heats up the substrate. This causes the substrate to expand, cancelling out the 
expansion of the ETA. Second, the ETA could melt, because after the required tip displacement there 
is still a power being dissipated. If the dissipated power is too much, the ETA melts. These 
disadvantages can be avoided by pulsed actuation. This limits the time a current goes through the 
ETA, so it heats up till the required tip displacement is reached and deactivates after. The pulse time 
and height needs to be taken into account, for a too long/high pulse could still melt the ETA. The 
pulse time needs be larger than the mechanical and thermal time constant, but shorter than the time 
it takes for the thermal-runaway effect (see figure 42). The thermal time constant both in air and 
vacuum is estimated in appendix C. To measure the ETA resistance the voltage over the total system 
and the voltage over a shunt resistance is measured using an oscilloscope. The electrical circuit is 
drawn schematically in figure 33. 
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Figure 33. Schematic of the electrical circuit for pulsed actuation measurement. 

Channel 1 measures the total voltage over the system, 𝑈𝑈𝑡𝑡𝑟𝑟𝑡𝑡(𝑡𝑡), and channel 2 measures the voltage 
over the shunt resistance, 𝑈𝑈𝑠𝑠ℎ𝑢𝑢𝑛𝑛𝑡𝑡(𝑡𝑡). These can be used to calculate the voltage over and the current 
through the ETA: 

𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸(𝑡𝑡) = 𝑈𝑈𝑡𝑡𝑟𝑟𝑡𝑡(𝑡𝑡) −𝑈𝑈𝑠𝑠ℎ𝑢𝑢𝑛𝑛𝑡𝑡(𝑡𝑡),  𝐼𝐼𝐸𝐸𝑇𝑇𝐸𝐸(𝑡𝑡) = 𝑈𝑈𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡)
𝑅𝑅𝑠𝑠ℎ𝑢𝑢𝑢𝑢𝑢𝑢

 (3.6) 

Subsequently, Ohm’s law and equation (3.1) can be used to calculate the resistance of and power 
dissipated in the ETA as function of time. 

The pulses are given using the Tabor Electronics 50MHz Single / Dual Channel Pulse Generator model 
8500 [18]. The pulsed voltage signals are measured with a Tektronix TDS3034 oscilloscope [19] and a 
10 Ω ± 5% resistance is placed in series with the ETA. 

3.3 ETA mechanical behavior measurement 
When an ETA heats up it expands. Being fixed between two anchors (bonding pads), it will buckle 
into its first mode. The ETA has a slight V-shape with angle 2° to ensure the tip displacement is in the 
direction of the curved cantilever springs (see figure 12 and 14). It is measured with a microscope 
with built-in digital camera. 

The microscope has 2,5x 5x and 20x objectives. The eyepiece has a magnification of 10, so the 
maximum microscope magnification is 200x. The camera pictures of the ETA are used to measure its 
shape and tip displacement during actuation and after locking. For the tip displacement a Python 
photo processing module is used, made by Boris Boom, which estimates the distance in pixels 
between two selected parallel light-dark transitions. See for instance the edges behind the red and 
blue vertical lines in figure 34. The module makes a fit from the average of the first derivative of the 
light intensity around both sides of the horizontal blue line (see bottom of figure 34). Subsequently, 
the maximum around the selected parallel light-dark transitions is selected by the module and 
subtracted, giving the distance in number pixels between the selected parallel light-dark transitions. 
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Figure 34. Layout of the photo processing module. Top: the grayscale of the taken picture with the first selected edge (blue) 
and the second selected edge (red). Bottom: the plot of the edges along the horizontal blue line. The module will calculate 
the distance in pixels between the peak closest to the blue line and the peak closest to the red line. 

The resolution of the module is calculated by measuring the number pixel distance of a known width 
in µm. The determined transfer from pixels to µm is 0,14 µm

pixel
.  

The pictures of the G1.5 #11 Q2 ETA pair are taken with a Future Optics MDC2000 [20]. The rest of 
the pictures are taken with a Moticam BTU10 [21]. 

3.4 Vacuum setup  
The MEMS will be operated in vacuum, for this decreases the damping of the system. When 
produced the MEMS will be evacuated and covered with an nontransparent lid. This means that the 
ETAs will be actuated in vacuum, without optical observance. To investigate the effect of vacuum on 
the ETAs, a vacuum setup is made. This setup consists of a pot with a hole on which the vacuum 
pump can be connected. The connected vacuum pump is a HiPace® 80 [22]. In the lid is a TECHSPEC® 
Fused Silica Window placed [23], through which can be looked with a microscope. On the bottom 
side of the lid screw holes are made which can be used to hang up a MEMS in front of the window. A 
connector is put on the lid which connects the wires from the MEMS with the sources and meters 
outside the vacuum system. The pressure in the vacuum system is measured with a Pfeiffer Vacuum 
MPT 200 AR [24], which measures pressures below 2 ⋅ 10−3 mbar with ± 25 % accuracy. As the 
measurements in the vacuum setup will be done in the same way as described before, there will be 
no changes in the electrical circuit of the ETAs. Pictures of the vacuum system can be found in 
appendix E. 

The thermal conductivity of air is not directly depended on the pressure. It depends on the mean free 
path of the air molecules. If the mean free path becomes longer than the distance between the ETA 
and the substrate, the thermal conductivity will decrease, because the molecules cannot make a 
successful collision with the substrate. The mean free path, 𝑙𝑙𝑚𝑚𝑚𝑚𝑝𝑝, is given by [25]: 

𝑙𝑙𝑚𝑚𝑚𝑚𝑝𝑝 =
𝑘𝑘𝐵𝐵 ⋅ 𝑇𝑇

√2 ⋅ 𝜋𝜋 ⋅ 𝑝𝑝 ⋅ 𝑑𝑑𝑚𝑚
2 (3.6) 

 
Where 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑇𝑇 is the temperature, 𝑝𝑝 is the pressure and 𝑑𝑑𝑚𝑚 is the diameter 
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of the molecules. Using the 𝑙𝑙𝑚𝑚𝑚𝑚𝑝𝑝 ⋅ 𝑝𝑝 values found in [25], the average air molecule diameter can be 
calculated using equation (3.6). This gives 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 = 3,6 ⋅ 10−10 m. The mean free path versus pressure 
is shown in figure 35. 

 

Figure 35. Mean free path of air versus pressure, at 𝑇𝑇 = 293,15 K and 𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟 = 3,6 ⋅ 10−10 m. 

At a mean free path of 4 µm, which is the gap size between the ETA and the substrate, is the 
required pressure 18 mbar. It is suspected that at pressures lower than 18 mbar the thermal 
conductivity of air drops, for the mean free path becomes longer than the gap size. The pressure at 
which the final MEMS design will be produced is around 2 ⋅ 10−2 mbar. Figure 35 shows that the 
mean free path is for that pressure is about 3,5 mm. It is assumed that the thermal conductivity of 
air can be neglected, because the mean free path is larger than the total length of the ETA. 
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4 Measurement results 
This chapter will present the results from the measurements performed on the ETAs. It will consist of 
the quasi-static and dynamic actuation results of the resistance and displacement, both as a function 
of electrical power. Some of the results will be compared to or explained by the made models.  

4.1 Resistance measurements 
The resistance measurements consist of the measured resistance of the whole ETA, both quasi-
statically and pulsed, and the resistance of the contacts. The resistance of the ETA is measured at 
atmospheric pressure and in vacuum. Measurement of the contact resistance is done only at 
atmospheric pressure, for it is believed that the vacuum will not affect the contact resistances.  

4.1.1 Quasi-static G1.4 actuation measurement in air 
The G1.4 MEMS design has the possibility to actuate both ETAs separately, so the resistance as 
function of power of both G1.4 #01 Q1 ETAs is measured. These results are presented in figure 36.  

 

Figure 36. G1.4 #01 Q1 Front and Back ETA resistance versus power. 

The resistance behavior as function of power of both the Front and Back ETA is as expected. As 
shown in figure 26, at low power is the ETA still at room temperature, thus there is no change in 
resistance until the temperature of the ETA increases significantly. Above 20 mW the Front ETA 
resistance rises till 385 Ω at 650 mW. As earlier predicted in chapter 3.1, the Back ETA resistance is 
higher than the Front ETA resistance. The difference in resistance is approximately 10 Ω over the 
whole power range.  

The resistance at room temperature of the Front and Back ETA of all the quadrants is measured 
directly. The results are presented in table 1. 
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Table 1. Data from the direct resistance measurement of the G1.4 #01 MEMS.  

G1.4 #01 Q1 Q2 Q3 Q4 
Front R [Ω] 276,4 281,8 273,0 277,7 
Back R [Ω] 286,7 280,3 285,4 289,3 
Difference R [Ω] 10,3 -1,5 12,4 11,6 

 
The resistance value of Q2 has not been used, due to the plastic deformation of the Front ETA beam 
before the measurement. The average difference, 11,4 Ω, can be ascribed to the anchor extension of 
the Back ETA, whose resistance is predicted to be 11,8 Ω, using equation (3.2). 

4.1.2 Quasi-static G1.5 actuation measurement in air 
The total resistance of the G1.5 #11 Q2 ETA pair versus power is presented in figure 37.  

 

Figure 37. G1.5 #11 Q2 ETA pair total resistance versus power. For comparison, the G1.4 #01 Q1 ETA pair total resistance is 
added to the figure. 

It shows the varying of the resistance at a power < 10−4 mW. This is ascribed to the accuracy of the 
meters in combination with the very small current and voltage they had to measure. Between 
10−4 mW and 10−2 mW the resistance is about constant, which is expected because the rise in 
temperature is negligible at this power, thus there is little to no increase in resistance. Between 
10−2 mW and  200 mW the resistance drops by almost 20 Ω. When comparing the resistance of the 
G1.5 to the G1.4 in this power range, it becomes clear that the resistance drop is an effect from the 
contact resistance, because the G1.4 and G1.5 ETAs are identical. Apparently the constant resistance 
decreases reversibly with the power, for all six measurements show the same drop. The drop in 
constant resistance is even higher than the drop of the G1.5 ETAs resistance, because the ETAs 
should already be increasing its resistance from 40 mW, but instead it increases from 200 mW. 
Above 200 mW the G1.5 ETAs resistance rises till 180 Ω at 1200 mW, which is a rise of 
approximately 37 Ω. This would suggest a rise in 74 Ω for a single ETA at 600 mW. Comparing this to 
figure 36 the suggested rise results is 350 Ω, which does not correspond with the measurement. 
There is a possibility that the G1.4 MEMS is bonded earlier than the G1.5 MEMS, causing the silicon 
oxide layer between the bonding pad and wire to be thinner on the G1.4 MEMS in comparison to the 
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G1.5 MEMS. Therefore, the contacts on the G1.5 have a higher resistance, which could explain the 
difference in resistance in figure 37. 

4.1.3 Measurement of contact resistance 
The contact resistances 𝑅𝑅𝑏𝑏,1 and 𝑅𝑅𝑏𝑏,2 of the G1.5 #11 Q1 ETA are measured for increasing power. This 
measurement is done three times and the results are presented in figure 38.  

 

Figure 38. G1.5 #11 Q1 ETA pair contact resistance 𝑅𝑅𝑐𝑐,1 and 𝑅𝑅𝑐𝑐,2 versus power. 

The initial values for the contact resistances are 𝑅𝑅𝑏𝑏,1 = 14 Ω and 𝑅𝑅𝑏𝑏,2 = 80 Ω. This could indicate 
that the G1.5 #11 Q1 ETA pair is actuated before this measurement, because when power is 
dissipated in a contact, it lowers its resistance. When two bonding wires are connected to the same 
electric source, the most current flows through the contact with the least resistance causing the 
resistance to go down, due to power dissipation. Therefore, the current flow through this contact 
increases, lowering the resistance even more. Eventually, this ends with one low resistance contact 
and one (relatively) high resistance contact. After 1300 mW power dissipation in the contacts their 
resistances 𝑅𝑅𝑏𝑏,1 and 𝑅𝑅𝑏𝑏,2 drop to 5 Ω and 14 Ω respectively. This shows that high power dissipation in 
the contacts lowers their resistance irreversibly. Another power dissipation of 1300 mW partially 
destroyed/melted the contacts, because the resistance of both contacts increases. Red glowing of 
the contacts is observed at 200 mW during the last measurement. This probably completely 
destroyed/melted the contacts, because the resistance drops fast above 200 mW.  

It is possible that the contact resistance is reversible if the power dissipated in the contact is much 
lower than 1300 mW, which is the case during the ETA actuation. For example, the resistance of 𝑅𝑅𝑏𝑏,2 
drops from 80 Ω to 60 Ω during ETA actuation and rises back to 80 Ω again when the ETA is 
deactivated. This could be an explanation for the resistance drop in figure 37. No measurement has 
been done of the contact resistance at lower dissipated power to find the power till the contact 
resistances have reversible behavior.  
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The characteristic of the G1.4 #01 Q1 Front and Back ETA indicate that their contact resistances are 
constant. So, the value of 𝑅𝑅𝑏𝑏,3 at room temperature of the G1.4 #01 Q1 can be measured directly, 
see table 2.  

Table 2. Data from the 𝑅𝑅𝑐𝑐,3 measurement of the G1.4 #01 Q1. 

Measurement 1 2 3 4 5 6 
𝑅𝑅𝑏𝑏,3 [Ω] 5,22 5,22 5,20 5,21 5,21 5,20 

 
The average value, 𝑅𝑅𝑏𝑏,3 = 5,21 Ω, is approximately the same value 𝑅𝑅𝑏𝑏,1 has during the 2nd 

measurement shown in figure 38. So, it is likely that the G1.4 #01 Q1 ETA pair is actuated earlier and 
the contact resistances have been decreased to the lowest resistance without destroying them. 

4.1.4 Unloaded quasi-static G1.4 actuation measurement in air and vacuum 
For the complete electrical behavior of an ETA beam, at atmospheric pressure and vacuum, are the 
G1.4 #01 Q3 and Q2 Back ETA measured until they melted, see figure 39. This measurements shows 
that the maximum resistance for 𝑝𝑝 = 1000 mbar and 𝑝𝑝 = 1,8 ⋅ 10−5 mbar is at 1230 mW and 
131 mW respectively.

 

Figure 39. G1.4 #01 Q3 and Q2 Back ETA resistance versus power at different pressures, accompanied with the Electro-
thermal model results for a single ETA at atmospheric pressure and in vacuum. 

The resistance behavior as function of power is the same at different pressures, as it is constant at 
low power, will rise until the maximum is reached and drop after the maximum, due to the intrinsic 
wall. The resistance in vacuum rises faster than at atmospheric pressure. This can be explained by the 
fact that an ETA in vacuum loses no heat through air to the substrate, thus it gets hotter at lower 
power, meaning a higher resistance at lower power. The difference in maximum resistance can be 
explained by the temperature profile of the ETA beam, which is dependent on the presence of air. 
The Electro-thermal model can give an estimation of a temperature profile of a beam in air and 

250

275

300

325

350

375

400

425

450

475

500

525

550

1E+0 1E+1 1E+2 1E+3 1E+4

R [Ω]

P [mW]

Measured Q3, p = 1000 mbar
Measured Q2, p = 1,8E-5 mbar
Electro-thermal model in air
Electro-thermal model in vacuum



34 
 

vacuum, at the same maximum temperature, see figure 25. The figure shows that the profile in air at 
the center of the beam (𝑥𝑥 = 1,45 mm) is much more flat than in vacuum. This indicates that the 
temperature profile in air has much more beam pieces, 𝑑𝑑𝑥𝑥, which have a temperature that is close to 
the maximum temperature. As the total resistance of the beam is the sum of all small resistances, 
𝑑𝑑𝑅𝑅, which are all depended on temperature, is the maximum resistance in air always higher than in 
vacuum. 

4.1.5 Pulsed G1.5 actuation measurement in air 
During the pulsed actuation is tried to lock the shuttle in all the shuttle locks. Each time a pulse of 
25 ms is used to actuate the ETA. The results of the complete shuttle locks with the G1.5 #11 Q2 ETA 
pair at 𝑝𝑝 = 1000 mbar are presented in figure 40. 

 

Figure 40. G1.5 #11 Q2 ETA pair, both ETA resistance vs. time (during pulse) at 𝑝𝑝 = 1000 mbar from 1st Shuttle lock to 
maximum Shuttle displacement. UETA shown in the legend is the average voltage over the ETA between 15 ms and 24 ms 
during the pulse. 

The thermal time constant, 𝜏𝜏, can be estimated by determining the time where the resistance is 
0,63 ⋅ (𝑅𝑅𝑒𝑒 − 𝑅𝑅𝑎𝑎) + 𝑅𝑅𝑎𝑎, with 𝑅𝑅𝑒𝑒 the average resistance between 𝑡𝑡 = 15 ms and 𝑡𝑡 = 24 ms and 𝑅𝑅𝑎𝑎 the 
resistance at 𝑡𝑡 = 0 ms. The results of 𝜏𝜏 for the 6 pulses in air is shown in figure 41. The estimation of 
the time constants in air and vacuum, see appendix C, and a comparison to the estimated time 
constant made in [26] are also shown. The temperature of the beam is calculated by determining the 
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average current between 𝑡𝑡 = 15 ms and 𝑡𝑡 = 24 ms and using it as input for the Electro-thermal 
model, which gives the average temperature. 

 

Figure 41. The measured 𝜏𝜏 as function of temperature, accompanied with the estimated 𝜏𝜏 in air and vacuum. The estimated 
𝜏𝜏 is compared to the one estimated in [26]. 

The measured 𝜏𝜏 in air agrees with the estimated 𝜏𝜏 from appendix C and [26]. 

The initial resistance of the ETA at maximum shuttle displacement is 10 Ω lower in comparison to the 
other initial resistances. It is not understood why the resistance is less.  

The power in a single ETA that is used to lock the Shuttle in all states is compared to the estimated 
power required for the locks (see figure 16). This is presented in table 3. 

Table 3. Used and estimated power in a single ETA for Shuttle locking. 

Lock 𝑃𝑃𝑢𝑢𝑠𝑠𝑒𝑒𝑑𝑑  [mW] 𝑃𝑃𝑒𝑒𝑠𝑠𝑡𝑡𝑎𝑎𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑  [mW] 
1 662 550 
2 425 400 
3 555 510 
4 453 440 
5 579 570 

 
It shows that the used power is higher than the estimated power, up to 20%. This indicates that the 
estimated stiffness of the springs is false and another equation needs to be used or that one of the 
models is incorrect.  

The ETA beam could still be actuated after reaching the maximum shuttle displacement. The voltage 
over the ETA during the pulse is raised until the ETA broke to observe the reaction to a pulse of high 
voltage, these results are shown in figure 42.  
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Figure 42. G1.5 #11 Q2 ETA pair, both ETA resistance vs. time (during pulse) at 𝑝𝑝 = 1000 mbar. 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 shown in the legend is 
quite difficult to determine if the resistance keeps varying. This could be the explanation why 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 of the yellow line is 
lower than 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 of the grey line, while the opposite is expected. 

It shows that at higher voltage the thermal time constant becomes less. Estimating the time constant 
for 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 = 26,54 V gives 𝜏𝜏 ≈ 1,9 ms. At 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 = 26,54 V the resistance slowly drops above 7 ms. By 
raising the voltage this effect, called Thermal-runaway, becomes stronger. The applied pulsed voltage 
over the ETA beam remains constant during the pulse. This means that the current through the beam 
must vary to maintain that voltage as the resistance of the beam varies. At a certain temperature the 
maximum resistivity (chapter 2.5) of the ETA beam is reached. By increasing the temperature, at the 
point of maximum resistivity, the resistance of the beam will drop. To maintain a constant voltage 
the current flowing through the beam must increase, causing the beam to heat up even more. 
Therefore, the resistance will drop further, which leads to an even higher current. Eventually this 
ends up as a vicious circle, until the ETA beam melts.  
Thermal Run-away is a great example to prefer pulsed actuation over quasi-static actuation. The 
pulse time can restrain the Thermal Run-away. For example, the resistance of the line 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 =
27,75 V would eventually drop more, melting the ETA, if the pulse duration was longer, but is now 
restrained due to the pulse ending in time.  

4.1.6 Pulsed G1.4 actuation measurement in vacuum 
To determine the effect of lower pressure on the time constant, 𝜏𝜏, a pulsed actuation measurement 
is done on the unloaded G1.4 #01 Q1 Back ETA at 𝑝𝑝 = 1,5 ⋅ 10−5 mbar. The length of each pulse is 
150 ms. The results of this measurement are presented in figure 43.  
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Figure 43. G1.4 #01 Q1, Back ETA resistance vs. time (during pulse) at 𝑝𝑝 = 1,5 ⋅ 10−5 mbar. UETA shown in the legend is the 
average voltage over the ETA between 100 ms and 145 ms during the pulse. 

The resistance shows the same dynamic behavior at low pressure and atmospheric pressure. The key 
difference is 𝜏𝜏, which becomes longer at lower pressure. 𝜏𝜏 can be estimated the same way as 
described before, with 𝑅𝑅𝑒𝑒 the average resistance between 𝑡𝑡 = 100 ms and 𝑡𝑡 = 145 ms and 𝑅𝑅𝑎𝑎 the 
resistance at 𝑡𝑡 = 0 ms. The results of 𝜏𝜏 in vacuum for the 7 pulses are shown in figure 41. The 
modeled/measured 𝜏𝜏 do not agree with both estimated 𝜏𝜏. It seems as if the Electro-thermal model 
predicted a wrong average temperature, which could mean that the estimated resistivity does not 
work for vacuum modeling. Because the resistance of both the G1.5 (multiplied by 2) and G1.4 are 
about the same, the same temperature range is expected. Furthermore, can the deviant results be 
explained by a falsely estimated 𝜏𝜏. It is quite interesting that 𝜏𝜏 drops above 450 K as both 
estimations predict the opposite. Lowering the pressure to 1,5 ⋅ 10−5 mbar causes 𝜏𝜏 to be 7 times as 
high compared to atmospheric pressure.  

4.2 Displacement measurements 
The displacement measurements consist of the measured tip displacements of a single ETA, both 
dual and single actuation. The tip displacement is measured at atmospheric pressure and in vacuum.  

4.2.1 G1.5 dual ETA, Shuttle displacement measurement without Bucket locks in air 
By using all the Bucket locks the G1.5 #11 Q2 ETA pair Shuttle is locked in its 5th lock, see figure 40. To 
check if the Bucket locks are necessary, both ETAs of the G1.5 #11 Q4 ETA pair are actuated without 
turning off the voltage supply. With a constant voltage over the ETAs, they will not withdraw to the 
initial state, thus not locking in the Bucket locks. The results are presented in figure 44.  
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Figure 44. G1.5 #11 Q4 ETA pair, displacements versus power, with no bucket locking. The Back ETA is not photographed 
during this measurement and therefore not present in the graph. The maximum shuttle displacement is 23,84 µm, due to 
the buckling of the ETA beams. 

It shows that it is not possible to lock the Shuttle in its 5th lock without using the Bucket locks 
(pumping mechanism). The maximum displacement reached by the Shuttle is 23,84 µm at 
1861 mW, locking the Shuttle in the 2nd lock. At higher power the force acting on both ETA beams 
becomes too high, causing the beams to buckle. The buckling is shown in figure 44 as the decrease in 
displacement above 1861 mW, for the ETA beams are deforming and pulling the Bucket back. A 
picture of the buckled ETA beams is shown in figure 45. 

 

Figure 45. Buckling of the G1.5 #11 Q4 ETA pair. Without the Bucket lock do the ETA beams buckle after the 2nd Shuttle lock.  

The inline force of a single ETA is calculated using the Electro-thermal and Thermo-mechanical model 
giving 𝑃𝑃0 = 141 mN at 931 mW. This corresponds to the estimated critical load for a single ETA. 

No measurement has been done while the Bucket is locked in the 1st Bucket lock. So, there could be a 
possibility that the curved cantilever springs can be compressed completely while using both ETA 
beams without the 2nd Bucket lock.  
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4.2.2 G1.4 Front ETA, Shuttle displacement measurement in air 
The G1.4 #01 Q1 Front ETA is actuated to check if the Front ETA alone can compress the curved 
cantilever springs to its maximum. During this actuation all the Bucket locks are used (standard 
actuation). The displacement of the Front ETA is measured quasi-static until it almost locked the 
Shuttle in a Shuttle lock. Then, the voltage supply is turned off and the Front ETA is actuated with 
pulses until it locks the Shuttle. The quasi-static measurement until the Front ETA almost locks the 
Shuttle in the 5th Shuttle lock is presented in figure 46. 

 

Figure 46. G1.4 #01 Q1, displacements versus power. The Bucket is locked in the 2nd Bucket lock and the Shuttle is being 
actuated to almost the 5th Shuttle lock. 

The Shuttle is almost locked in the 5th Shuttle lock and there is no sign of buckling, meaning it could 
be possible to lock the Shuttle in the 5th Shuttle lock by only using the Front ETA. The Shuttle is 
locked in the 5th Shuttle lock using a 25 ms pulse with 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 = 16,79 V, see figure 47. 

 

Figure 47. Locking of the Shuttle in the 5th Shuttle lock. Left: the final position of the Shuttle hooks of the quasi-static 
measurement shown in figure 46. Right: the Shuttle hook is locked in the 5th Shuttle lock after a 25 ms pulse with 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 =
16,79 V. 

This means Back ETA is not necessary to compress the curved cantilever springs to its maximum. It 
can be used as a buffer so the Front ETA will not have to deal with all the force by itself. But, by 
removing the Back ETA there could be more space to make a firmer Front ETA that is less likely to 
buckle at higher forces.  
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As a single Front ETA is able to lock the Shuttle in the 5th Shuttle lock by using all the Bucket locks, it is 
interesting to know if the Front ETA can also do this by only using the 1st Bucket lock. The G1.4 #01 
Q2 Front ETA is actuated quasi-statically without turning of the voltage supply. If the voltage supply is 
always on, the Front ETA will not withdraw and lock in the 2nd Bucket lock. The results are presented 
in figure 48. 

 

Figure 48. G1.4 #01 Q2 Front ETA, displacements versus power. The Bucket is locked in the 1st Bucket lock and the Shuttle is 
being actuated from the 1st to the 5th Shuttle lock. The maximum Shuttle displacement is 17,36 µm from the 1st Shuttle 
lock, due to the buckling of the beam. The displacement ‘jump’ from 484 mW to 521 mW is caused by “stick slip”. Due to 
the rough surface of silicon do the Shuttle hooks have friction when touching the Shuttle locks. Sometimes this causes the 
Shuttle to get stuck. When enough force is applied the Shuttle will be pushed over the rough surface until the friction 
becomes less. At that point does the Shuttle suddenly ‘jumps’ to a new position.  

Without the 2nd Bucket lock it is not possible lock the Shuttle in the 5th Shuttle lock. The Front ETA 
buckled after the 4th Shuttle lock. The maximum Shuttle displacement reached, from the 1st Shuttle 
lock, is 17,36 µm at 947 mW. The inline force is calculated using the Electro-thermal and Thermo-
mechanical model giving 𝑃𝑃0 = 142 mN. This corresponds to the estimated critical load for a single 
ETA. Comparing to the in chapter 4.2.1 calculated inline force, both values are about the same. This 
gives an average inline force of 𝑃𝑃0 = 142 mN, rounded up, at 939 mW. 

4.2.3 G1.4 Back ETA displacement measurement in air and vacuum 
Buckling of the ETA beams occurs when a force acts upon them. The force from the curved cantilever 
springs, the Shuttle suspension and Bucket suspension (see chapter 2.2.1) all contribute to the force 
acting on the Beams. By destroying the Front ETA, the Back ETA has no external force acting upon it. 
This means the Back ETA can expand to its maximum until it melts. The displacement as function of 
power of the G1.4 #01 Q3 and Q2 Back ETA is measured at atmospheric pressure and in vacuum 
respectively. These results are presented in figure 49. 
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Figure 49. G1.4 #01 Q3 and Q2 Back ETA displacement versus power at different pressures, accompanied with the Thermo-
mechanical model results for a single ETA at atmospheric pressure and in vacuum. 

The displacement in vacuum needs significantly less power (about 10 times less) than at atmospheric 
pressure. The low power requirement come with the disadvantage that a slight offset in the power 
effects the displacement more than it would at atmospheric pressure.  

4.3 Model comparison 
The measurements from figure 39 and figure 49 compared to the model, because these are the most 
complete quasi-static measurements of a single ETA. It is required to know the resistivity of the 
silicon for the Electro-thermal model, because this is crucial for the heat generation inside the beam. 
Because there is no information on the resistivity of the used silicon, figure 39 is used to estimate the 
resistivity of the used silicon. The measured contact and extra silicon piece resistance are subtracted 
from the total measured Back ETA resistance. It is assumed that these small resistances do not 
depend on temperature and will therefore negatively influence the resistivity estimation. It is 
attempted to match the Back ETA resistance, after subtraction, as function of power as good as 
possible, with the data at 𝑝𝑝 = 1000 mbar, using the Electro-thermal model in Excel.  

The estimated resistivity of the used silicon is shown in figure 50 and table 6 in appendix B.1.4.  

 

Figure 50. Estimated silicon resistivity versus temperature. The resistivity is estimated by matching the resistance as much 
as possible in the model with figure 39. 
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The resistance as function of power that is obtained from the model is shown in figure 39. It shows 
that the modeled values are in agreement with the measured results. The resistance obtained from 
the model holds better for the measurement in air than in vacuum, as is expected due to the 
matching operation done to find the temperature dependence of the resistivity. The maximum 
difference between modeled resistance and measurement in vacuum is about 40 Ω. It is possible 
that the heat conduction through air in the Electro-thermal model has effected the estimated 
resistivity. A better model could be made if the resistivity is estimated for an ETA in vacuum instead 
of air. 

The Thermo-mechanical model requires an average temperature increase as input, if the thermal 
expansion coefficient is constant. This is not the case for the used silicon, see appendix B.1.3, so, the 
average of the thermal expansion coefficient multiplied with the temperature increase at point 𝑥𝑥 
� 𝛼𝛼(𝑇𝑇) ⋅ Δ𝑇𝑇(𝑥𝑥)���������������� � on the beam is used as input. The model results in the tip displacement of the Back 
ETA versus power at 𝑝𝑝 = 1000 mbar and 𝑝𝑝 = 1,8 ⋅ 10−5 mbar, shown in figure 49. The models and 
the measurement data show that the displacement is a S-shape curve. The Thermo-mechanical 
model in air agrees with the measurement results till 35,4 µm at 915 mW. At powers above 
915 mW and in vacuum does the model not completely agreement with the measurement results. 
Nevertheless, does the model give a good estimation of the displacement as function of power and 
do the modeled results show the same curve as the measured values. The deviant modeled results 
could possibly be a result of an incorrect estimated resistivity and/or chosen 𝐼𝐼𝑥𝑥,𝑒𝑒𝑚𝑚𝑚𝑚. At 𝑝𝑝 =
1000 mbar could the Back ETA have lost some of its heat to the remains of the Front ETA when 
coming closer to it, see figure 51, resulting in less displacement.  

          

Figure 51. G1.4 #01 Q3 ETA pair. The Back ETA comes closer to the Front ETA, which causes heat transfer from the Back ETA 
to the remains of the Front ETA. Picture taken at 𝑃𝑃 = 1,35 W. 

The used thermal conductivity of silicon is for silicon without doping. It could be possible that the 
doped silicon has a different thermal conductivity than non-doped silicon, which could explain the 
deviating model results. Besides this, an unknown factor that has an effect on the displacement 
could have been absent from the Thermo-mechanical model.  
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5 Further observations 
This chapter presents any further observations that are done during the resistance and displacement 
measurements. 

5.1 ETA beam vibration 
The Front ETA, from the G1.4 #01 Q1 ETA pair, is actuated with pulses, till it could not push the 
Shuttle any further, after it reached the 5th Shuttle lock. At 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 = 17,39 V the Front ETA vibrated, 
see figure 52. 

 

Figure 52. Vibration of the Front ETA at 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 = 17,39 V. 

It seems as if the Front ETA is at the point where it begins to buckle. The high temperature of the ETA 
causes it to expand, as it comes closer to the substrate more heat is transferred from the ETA to the 
substrate causing it to cool down and compress. Therefore less heat can be transferred to the 
substrate, so the ETA heats up again. This process is continued till the power dissipated in the ETA is 
changed by a lower or higher voltage. At higher voltage the Front ETA buckles in the 2nd mode, see 
figure 53. It is possible that the vibration of the Front ETA is the indication for the beginning of the 
buckling. The connection point between the Front ETA and the Bucket is rotating due to the buckling. 
By adding two extra connection points to the Front ETA, the rotation could be prevented, making the 
ETA more able to withstand the 2nd mode buckling. 

 

Figure 53. The 2nd mode buckling of the Front ETA at 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 = 21,06 V. 

5.2 Local buckling 
The silicon ETA beams plastically deform at temperatures above 900 K [27]. These deformations 
cannot be reversed and makes the ETAs not function anymore. Part of plastic deformation is the local 
buckling of the beam. This is observed at the G1.5 #11 Q2 ETA pair, when the ETAs were being 
actuated till they broke, see figure 54.  

 

Figure 54. The local buckling in both ETAs at 𝑈𝑈𝐸𝐸𝑇𝑇𝐸𝐸 > 27 𝑉𝑉. 

The critical local buckling load on a single sub-beam can be calculated using the critical load equation 
for a beam shown in figure 55, which is: 
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Figure 55. Schematic of the beam fixed on one end and translation free on the other [28]. 

𝑃𝑃0 =
𝜋𝜋2𝐸𝐸𝐼𝐼𝑥𝑥
𝐿𝐿𝑏𝑏2

 (5.1) 

For a single sub-beam at room temperature with 𝐿𝐿𝑏𝑏 = 206 µm and 𝐼𝐼𝑥𝑥 = 2,1 ⋅ 10−21 m4, gives 
equation (5.1): 𝑃𝑃0 = 84 mN. Meaning that for three sub-beams 𝑃𝑃0 = 253 mN, which is higher than 
the critical second mode buckling load, so local buckling will happen after second mode buckling. To 
reduce the local buckling effect, the support beams could be placed under an angle, see figure 56. 
The force acting upon the support beams will be better distributed, reducing the effect of local 
buckling. 

 

Figure 56. Possible support beam design to prevent local buckling. 

5.3 Unactuated Back ETA displacement 
During the quasi-static actuation of the G1.4 #01 Q1 Front ETA, the Back ETA displaced 1,50 µm at a 
dissipated power in the Front ETA of 572 mW. This indicates that heat is transferred from the Front 
ETA to the Back ETA. During dual ETA actuation this is very beneficial, due to the reduced (electrical) 
power that is needed to displace the Back ETA.  

5.4 ETA beam glowing 
The G1.4 #01 Q2 Back ETA, is measured in vacuum till it reached its maximum displacement. At 
𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸 = 186 mW the ETA has a red glow, shown in figure 57.  

 

Figure 57. Red glowing of the Back ETA in vacuum at 𝑃𝑃𝐸𝐸𝑇𝑇𝐴𝐴 = 186 mW. 

At this point the displacement of the Back ETA became less, which indicates that the ETA is buckling. 
Because of the high temperature of the ETA the buckling resulted in the plastic deformation of the 
ETA 
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6 Conclusions 
Measurement of the ETA resistance as a function of the electrical power combined with the Electro-
thermal quasi-static numerical model in air, allows estimation of the highly boron doped silicon (~6 ⋅
1018 atoms/cm3) as a function of temperature up to 1123 K. The resulting resistivity curve shows a 
peak at 971 K, and fits well within corresponding curves for other doping levels. The modeled and 
measured resistance in vacuum have a maximum difference of about 40 Ω.  

From the voltage step response, 𝜏𝜏 as function of temperature in air and vacuum are obtained. 
Measurements in air agreed with the estimated 𝜏𝜏. The order of magnitude for the measurements in 
vacuum agree with the estimated 𝜏𝜏. The measured 𝜏𝜏 in vacuum are higher than in air, which is 
expected. The calculated temperature dependency of 𝜏𝜏 in vacuum does not agree with the estimated 
𝜏𝜏 as function of temperature. 

The contact resistance measurement as function of power shows a decreasing resistance when 
increasing the power. This nonreversible effect can decrease the contact resistance from 80 Ω to 5 Ω 
over a power range up to 1300 mW. The resistance varies mutually between the contest resistances. 
The average measured contact resistance at room temperature on the G1.4 MEMS device is 5,21 Ω. 
It is thought that the difference in contact resistance at room temperature of the G1.4 and G1.5 is 
due to the time between arrival and bonding is shorter for the G1.4, causing the G1.5 to have thicker 
insulating layer. 

Quasi-static and dynamic actuation measurements provide the tip displacement of both single and 
dual (parallel) actuated ETA systems as a function of applied power, both for mechanically unloaded 
ETAs and a range of increasing spring-loaded ETAs, up to the plasticity and buckling limits. This has 
shown that the complete Shuttle locking procedure can be done with only a single ETA, if the 
complete pumping system is used. This means that dual ETA actuation is not necessary for complete 
curved cantilever spring compression. 

The results of the Thermo-mechanical quasi-static analytical model in air agree with the 
measurements for an unloaded single ETA, up to a maximum tip displacement of 35,4 µm at 
915 mW.  

The measured power for spring-loaded ETAs needed to reach each Shuttle lock, were measured to be 
up to 20% higher than estimated. 

The critical buckling load of a single ETA is calculated for the power at which buckling is observed to 
be 142 mN at 939 mW. This corresponds to the estimated value of 149 mN. Similarly, it is estimated 
that the local buckling will occur at 252 mN inline force. It is assumed that this estimation is correct, 
because the calculated critical load for second mode buckling corresponds to the estimated one. The 
critical local buckling load is higher than the critical buckling load, so local buckling will happen after 
second mode buckling. 

It is observed that a Back ETA receives heat from an actuated Front ETA. When a power of 572 mW 
is dissipated in only the Front ETA, the Back ETA displaced 1,5 µm.  
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7 Discussion and suggestions 
All the future ETAs should be bonded with two bonding wires on every bonding pad. By doing this, 
the ETAs can be measured using ‘Four-terminal sensing’. This technique is used to measure 
resistance accurately without the resistances of the wires and contact resistances (if constant and 
mutually the same) effecting the measurement.  

The contact resistance as function of all its dependencies should be understood. It should be 
measured at what power the irreversible effect of the contact resistances appears and when the 
contact resistances have the lowest value. Then, the required power can be applied over the contacts 
to reduce the contact resistance, so it will have less effect on the ETA resistance. Beside this, could 
the information gathered from those measurement possibly describe deviant ETA resistance 
phenomena. 

The Back ETA actuation is effected by the remains of the Front ETA. To have a complete unaffected 
measurement of the resistance and the displacement of the Back ETA, a MEMS design should be 
made with only one ETA to push the Shuttle or one separate unloaded ETA. Such a design would 
decrease the amount of heat that is lost to the surroundings, thus giving a better characterization of 
a single ETA only.  

The resistivity temperature dependence of highly doped silicon is estimated indirectly using the 
Electro-thermal model. This estimation is a matching operation between the model and the 
measured values and comes with inaccuracies, because the assumed to be correct material 
properties could be false. This could explain the 40 Ω difference in modeled and measured resistance 
of vacuum. This encourages a direct measurement of the resistivity, which can be done by placing a 
MEMS device in a temperature controlled oven and measure its resistance using Four-terminal 
sensing. The challenge of this measurement is connecting a suitable wire that does not melt before 
silicon melts. 

The Back ETA design has a heat sink at the tip. The models are made for a simple uniform beam. For 
a more accurate estimation of the behavior of a single ETA should the heat sink be added to the 
model. 

An ETA exchanges heat to the surroundings (other ETA, Bucket, etc.), besides the substrate. The 
Electro-thermal model should be improved by adding an extra heat loss factor, which takes the heat 
exchange to the surroundings into account. 

The current model for thermal time constant estimation has some deviancies when modeling for a 
vacuum situation. Therefore, a better, more complete model of the thermal time constant of a beam 
should be made.  
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A Appendix: Derivations 
This appendix will describe the derivations of some of the used equations in this report. 

A.1 Accelerometer response derivation 
A schematic representation of an accelerometer is shown in figure 58. 

 

Figure 58. Schematic representation of an accelerometer. 

The mass inside the frame will be moved by an acceleration of the frame. The relative displacement 
𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙  of the mass can be described as the displacement of the frame 𝑥𝑥𝑚𝑚 subtracted from the 
displacement of the mass 𝑥𝑥𝑚𝑚: 𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙 = 𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚. Newton’s law of motion 

𝑚𝑚𝑎𝑎 = Σ𝐹𝐹 (A.1) 

shows that the acceleration of the mass is due to the damping force and the spring force, giving: 

𝑚𝑚𝑎𝑎�̈�𝑥𝑚𝑚 = −𝑘𝑘𝑎𝑎𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙 − 𝐷𝐷𝑎𝑎�̇�𝑥𝑎𝑎𝑒𝑒𝑙𝑙 (A.2) 

Rewriting equation (A.2) gives: 

𝑚𝑚𝑎𝑎 ⋅ ��̈�𝑥𝑎𝑎𝑒𝑒𝑙𝑙 + �̈�𝑥𝑚𝑚� = −𝑘𝑘𝑎𝑎𝑥𝑥𝑎𝑎𝑒𝑒𝑙𝑙 − 𝐷𝐷𝑎𝑎�̇�𝑥𝑎𝑎𝑒𝑒𝑙𝑙 (A.3) 

Solving differential equation (A.3) for harmonic motion, 𝑥𝑥 = 𝑥𝑥� ⋅ 𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡, gives: 

𝑚𝑚𝑎𝑎 ⋅ �−𝜔𝜔2 ⋅ 𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙 + �̈�𝑥�𝑚𝑚� ⋅ 𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡 = −𝑘𝑘𝑎𝑎𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙 ⋅ 𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡 − 𝑎𝑎𝜔𝜔𝐷𝐷𝑎𝑎𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙 ⋅ 𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡  (A.4) 

Dividing equation (A.4) by 𝑚𝑚𝑎𝑎 and 𝑒𝑒𝑎𝑎𝑖𝑖𝑡𝑡, gives: 

−𝜔𝜔2 ⋅ 𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙 + �̈�𝑥�𝑚𝑚 = −𝜔𝜔0
2 ⋅ 𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙 − 𝑎𝑎𝜔𝜔 ⋅ Δ𝜔𝜔 ⋅ 𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙  (A.5) 

Factorizing equation (A.5) gives: 

�̈�𝑥�𝑚𝑚 = 𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙 ⋅ (−𝜔𝜔0
2 − 𝑎𝑎𝜔𝜔 ⋅ Δ𝜔𝜔 + 𝜔𝜔2) (A.6) 

Rewriting equation (A.6) gives: 
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𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙
�̈�𝑥�𝑚𝑚

=
1

(𝜔𝜔2 − 𝜔𝜔0
2) − 𝑎𝑎𝜔𝜔 ⋅ Δ𝜔𝜔

 (A.7) 

Equation (A.7) can be multiplied by 
− 1
𝜔𝜔02

− 1
𝜔𝜔02

, giving: 

𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙
�̈�𝑥�𝑚𝑚

= −
1
𝜔𝜔0

2 ⋅
1

�1 − 𝜔𝜔2

𝜔𝜔0
2� + �𝑎𝑎𝜔𝜔 ⋅ Δ𝜔𝜔

𝜔𝜔0
2 �

 (A.8) 

Absolute values of equation (A.8) give the response of the accelerometer: 

�
𝑥𝑥�𝑎𝑎𝑒𝑒𝑙𝑙
�̈�𝑥�𝑚𝑚

� =
1
𝜔𝜔0

2 ⋅
1

��1 − 𝜔𝜔2

𝜔𝜔0
2�

2
+ �𝜔𝜔 ⋅ Δ𝜔𝜔

𝜔𝜔0
2 �

2
 

(A.9) 
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A.2 Spring profile derivation 
The forces acting upon a curved cantilever spring are shown in figure 59. 

 

Figure 59. Schematic of a curved cantilever spring. [9] 

A profile of a single curved cantilever spring can be set up by an expression for the moment along a 
curvilinear axis, 𝑙𝑙, on the spring, see figure 59. The expression for the moment along the 𝑙𝑙-axis is: 

𝑀𝑀(𝑙𝑙) = −𝐹𝐹𝑦𝑦 ⋅ �𝑥𝑥𝐿𝐿 − 𝑥𝑥(𝑙𝑙)� + 𝐹𝐹𝑥𝑥 ⋅ �𝑦𝑦𝐿𝐿 − 𝑦𝑦(𝑙𝑙)� −𝑀𝑀𝐿𝐿 (A.10) 

The Euler beam theory gives the total moment along the 𝑙𝑙-axis: 

𝑀𝑀(𝑙𝑙) = 𝐸𝐸𝐼𝐼𝑥𝑥 ⋅
𝑑𝑑2𝑤𝑤(𝑙𝑙)
𝑑𝑑𝑙𝑙2

 (A.11) 

For small angles the spring makes with the 𝑥𝑥-axis, is the angle approximately equal to the slope, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑙𝑙

, 
of the spring. Applying this to equation (A.11) gives: 

𝑀𝑀(𝑙𝑙) = 𝐸𝐸𝐼𝐼𝑥𝑥 ⋅ �
𝑑𝑑𝜃𝜃(𝑙𝑙)
𝑑𝑑𝑙𝑙

−
𝑑𝑑𝜃𝜃0
𝑑𝑑𝑙𝑙 �

 (A.12) 

Combining equation (A.12) and (A.10) give a differential equation: 

𝐸𝐸𝐼𝐼𝑥𝑥 ⋅
𝑑𝑑𝜃𝜃(𝑙𝑙)
𝑑𝑑𝑙𝑙

− 𝐸𝐸𝐼𝐼𝑥𝑥 ⋅
𝑑𝑑𝜃𝜃0
𝑑𝑑𝑙𝑙

= −𝐹𝐹𝑦𝑦 ⋅ �𝑥𝑥𝐿𝐿 − 𝑥𝑥(𝑙𝑙)� + 𝐹𝐹𝑥𝑥 ⋅ �𝑦𝑦𝐿𝐿 − 𝑦𝑦(𝑙𝑙)� − 𝑀𝑀𝐿𝐿 (A.13) 

Differentiating equation (A.13) removes the constants, giving: 

𝐸𝐸𝐼𝐼𝑥𝑥 ⋅
𝑑𝑑2𝜃𝜃(𝑙𝑙)
𝑑𝑑𝑙𝑙2

= 𝐹𝐹𝑦𝑦 ⋅
𝑑𝑑𝑥𝑥(𝑙𝑙)
𝑑𝑑𝑙𝑙

− 𝐹𝐹𝑥𝑥 ⋅
𝑑𝑑𝑦𝑦(𝑙𝑙)
𝑑𝑑𝑙𝑙

 (A.14) 

The relation between the 𝑦𝑦-axis and 𝑥𝑥-axis to the 𝑙𝑙-axis are: 

𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑙𝑙 ⋅ cos�𝜃𝜃(𝑙𝑙)� 
𝑑𝑑𝑦𝑦 = 𝑑𝑑𝑙𝑙 ⋅ sin�𝜃𝜃(𝑙𝑙)� 

(A.15) 

Combining equation (A.14) and (A.15) give: 

𝑀𝑀𝐿𝐿 



53 
 

𝑑𝑑2𝜃𝜃(𝑙𝑙)
𝑑𝑑𝑙𝑙2

=
𝐹𝐹𝑦𝑦 ⋅ cos�𝜃𝜃(𝑙𝑙)� − 𝐹𝐹𝑥𝑥 ⋅ sin�𝜃𝜃(𝑙𝑙)�

𝐸𝐸𝐼𝐼𝑥𝑥
 (A.16) 

A.3 Electro-Thermal model derivation 
A.3.1 Numerical 
The heat transfer of a clamped-clamped beam is described schematically in figure 60. Heat loss by 
radiation is neglected, because heat loss to the substrate has more contribution to the heat transfer 
than radiation.  

 

Figure 60. Heat transfer of a clamped-clamped beam. 

The equation for the heat transfer situation in figure 60 is: 

𝑤𝑤ℎ �𝑘𝑘𝑠𝑠(𝑇𝑇2)
𝑑𝑑𝑇𝑇2
𝑑𝑑𝑥𝑥 −𝑘𝑘𝑠𝑠(𝑇𝑇1)

𝑑𝑑𝑇𝑇1
𝑑𝑑𝑥𝑥 � + Δ𝑥𝑥 �

𝐼𝐼2𝜌𝜌(𝑇𝑇)
𝑤𝑤ℎ − 𝑤𝑤𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �

𝑇𝑇(𝑥𝑥) + 𝑇𝑇∞
2 �

𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞
𝑔𝑔 − 𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4�� = 0 (A.48) 

Equation (A.48) must first be dived by Δ𝑥𝑥: 

𝑤𝑤ℎ �𝑘𝑘𝑠𝑠(𝑇𝑇2)𝑑𝑑𝑇𝑇2𝑑𝑑𝑥𝑥 −𝑘𝑘𝑠𝑠(𝑇𝑇1)𝑑𝑑𝑇𝑇1𝑑𝑑𝑥𝑥 �
Δ𝑥𝑥 +

𝐼𝐼2𝜌𝜌(𝑇𝑇)
𝑤𝑤ℎ −𝑤𝑤𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 �

𝑇𝑇(𝑥𝑥) + 𝑇𝑇∞
2 �

𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞
𝑔𝑔 − 𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4� = 0 (A.49) 

By taking the limit of Δ𝑥𝑥 to 0 gives the derivative of 𝑘𝑘𝑠𝑠(𝑇𝑇) ⋅ 𝑑𝑑𝑇𝑇
𝑑𝑑𝑥𝑥

: 

𝑑𝑑
𝑑𝑑𝑥𝑥

�𝑘𝑘𝑠𝑠(𝑇𝑇) ⋅
𝑑𝑑𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥

� + 𝐽𝐽2𝜌𝜌(𝑇𝑇) − 𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) ⋅
𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞

𝑔𝑔ℎ
− 𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4� = 0 (A.50) 

Differentiating equation (A.50) using the chain rule gives: 

𝑑𝑑𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥

⋅
𝑑𝑑𝑘𝑘𝑠𝑠(𝑇𝑇)
𝑑𝑑𝑥𝑥

+ 𝑘𝑘𝑠𝑠(𝑇𝑇) ⋅
𝑑𝑑2𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 𝐽𝐽2𝜌𝜌(𝑇𝑇) − 𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) ⋅
𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞

𝑔𝑔ℎ
− 𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4� = 0 (A.51) 
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As 𝑘𝑘𝑠𝑠(𝑇𝑇) is as function of temperature and not position, 𝑘𝑘𝑠𝑠(𝑇𝑇) should be differentiated to 
temperature: 

𝑑𝑑𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥 ⋅ �

𝑑𝑑𝑘𝑘𝑠𝑠(𝑇𝑇)
𝑑𝑑𝑇𝑇 ⋅

𝑑𝑑𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥 � + 𝑘𝑘𝑠𝑠(𝑇𝑇) ⋅

𝑑𝑑2𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥2 + 𝐽𝐽2𝜌𝜌(𝑇𝑇) − 𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) ⋅

𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞
𝑔𝑔ℎ − 𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4� = 0 (A.52) 

Rewriting equation (A.52) gives an expression for the second derivative of 𝑇𝑇(𝑥𝑥): 

𝑑𝑑2𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥2 =

1
𝑘𝑘𝑠𝑠(𝑇𝑇) ⋅ �

(𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞) ⋅ 𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇)
𝑔𝑔ℎ − 𝐽𝐽2𝜌𝜌(𝑇𝑇) − �

𝑑𝑑𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

⋅
𝑑𝑑𝑘𝑘𝑠𝑠(𝑇𝑇)
𝑑𝑑𝑇𝑇 � − 𝜀𝜀𝑅𝑅𝜎𝜎𝑂𝑂�𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇∞4� (A.53) 

A.3.2 Analytical 
By assuming 𝑘𝑘𝑠𝑠, 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜌𝜌 are constant, in absence of radiation (𝜀𝜀𝑅𝑅 = 0), equation (A.53) will give 
the equation set up by [11]: 

𝑑𝑑2𝑇𝑇(𝑥𝑥)
𝑑𝑑𝑥𝑥2

𝑘𝑘𝑠𝑠 −
(𝑇𝑇(𝑥𝑥) − 𝑇𝑇∞) ⋅ 𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎

𝑔𝑔ℎ
+ 𝐽𝐽2𝜌𝜌 = 0 (A.54) 

The solution to differential equation (A.54) is [11]: 

𝑇𝑇(𝑥𝑥) = 𝑇𝑇∞ +
𝐽𝐽2𝜌𝜌
𝑘𝑘𝑠𝑠𝑏𝑏2

+ 𝑧𝑧1𝑒𝑒𝑏𝑏𝑥𝑥 + 𝑧𝑧2𝑒𝑒−𝑏𝑏𝑥𝑥 (A.55) 

In equation (A.55) the substitution 𝑏𝑏2 = 𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘𝑠𝑠𝑔𝑔ℎ

 is made. Using the boundary conditions 𝑇𝑇(0) =

𝑇𝑇(2𝐿𝐿) = 𝑇𝑇∞, 𝑧𝑧1, 𝑧𝑧2 can be solved: 

𝑧𝑧1 =
𝐽𝐽2𝜌𝜌
𝑘𝑘𝑠𝑠𝑏𝑏2

⋅
𝑒𝑒−2𝑏𝑏𝐿𝐿 − 1

𝑒𝑒2𝑏𝑏𝐿𝐿 − 𝑒𝑒−2𝑏𝑏𝐿𝐿
 

𝑧𝑧2 = −
𝐽𝐽2𝜌𝜌
𝑘𝑘𝑠𝑠𝑏𝑏2

⋅
𝑒𝑒2𝑏𝑏𝐿𝐿 − 1

𝑒𝑒2𝑏𝑏𝐿𝐿 − 𝑒𝑒−2𝑏𝑏𝐿𝐿
 

(A.56) 

Substituting equations (A.56) in equation (A.55) gives the analytic solution: 

𝑇𝑇(𝑥𝑥) = 𝑇𝑇∞ +
𝐽𝐽2𝜌𝜌
𝑘𝑘𝑠𝑠 𝑏𝑏2

⋅ �1 +
𝑒𝑒−2𝑏𝑏𝐿𝐿 − 1

𝑒𝑒2𝑏𝑏𝐿𝐿 − 𝑒𝑒−2𝑏𝑏𝐿𝐿
⋅ 𝑒𝑒𝑏𝑏𝑥𝑥 −

𝑒𝑒2𝑏𝑏𝐿𝐿 − 1
𝑒𝑒2𝑏𝑏𝐿𝐿 − 𝑒𝑒−2𝑏𝑏𝐿𝐿

⋅ 𝑒𝑒−𝑏𝑏𝑥𝑥� (A.57) 

 

A.4 Thermo-mechanical model derivation 
A.4.1 Strains 
A.4.1.1 Bending strain 
When a beam is exposed to a moment, 𝑀𝑀, on both sides, it will bend. While bending, the beam will 
get a circular arc shape, shown in figure 61. 
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Figure 61. Schematic representation of a bending beam piece. [29] 

The length at the neutral axis of the beam, 𝐿𝐿𝑅𝑅, stays the same length when the beam bends. The arc 
length of a circle is per definition: 

𝐿𝐿𝑅𝑅 = 𝑅𝑅𝑅𝑅 ⋅ 𝜃𝜃𝑅𝑅 (A.17) 

Using equation (A.17) gives an expression for the arc length of the red piece in figure 61: 

𝐿𝐿(𝑦𝑦) = (𝑅𝑅𝑅𝑅 + 𝑦𝑦) ⋅ 𝜃𝜃𝑅𝑅 (A.18) 

Combining equation (A.17) and (A.18) gives: 

𝐿𝐿(𝑦𝑦) = (𝑅𝑅𝑅𝑅 + 𝑦𝑦) ⋅
𝐿𝐿𝑅𝑅
𝑅𝑅𝑅𝑅

= 𝐿𝐿𝑅𝑅 ⋅ �1 +
𝑦𝑦
𝑅𝑅𝑅𝑅
� (A.19) 

The local strain is defined as the expansion or compression divided by the initial length: 

𝜀𝜀 =
Δ𝐿𝐿𝜀𝜀
𝐿𝐿𝜀𝜀

 (A.20) 

An expression for the bending strain can be set up by combining equation (A.19) and (A.20): 

𝜀𝜀𝑏𝑏 =
Δ𝐿𝐿𝜀𝜀
𝐿𝐿𝜀𝜀

=
𝐿𝐿(𝑦𝑦) − 𝐿𝐿𝑅𝑅

𝐿𝐿𝑅𝑅
=
𝐿𝐿𝑅𝑅 + 𝐿𝐿𝑅𝑅 ⋅

𝑦𝑦
𝑅𝑅𝑅𝑅

− 𝐿𝐿𝑅𝑅
𝐿𝐿𝑅𝑅

=
𝑦𝑦
𝑅𝑅𝑅𝑅

 (A.21) 

A small bent beam piece, 𝑑𝑑𝐿𝐿, can be described by equation (A.17) as: 

𝑑𝑑𝑙𝑙 = 𝑅𝑅𝑅𝑅 ⋅ 𝑑𝑑𝜃𝜃𝑅𝑅 →
1
𝑅𝑅𝑅𝑅

=
𝑑𝑑𝜃𝜃𝑅𝑅
𝑑𝑑𝑙𝑙

 (A.22) 

For small values of 𝑑𝑑𝑙𝑙 can the estimation 𝑑𝑑𝑙𝑙 ≈ 𝑑𝑑𝑥𝑥 be made, giving: 

1
𝑅𝑅𝑅𝑅

=
𝑑𝑑𝜃𝜃𝑅𝑅
𝑑𝑑𝑙𝑙

≈
𝑑𝑑𝜃𝜃𝑅𝑅
𝑑𝑑𝑥𝑥

 (A.23) 

A beam has a transversal displacement, 𝑤𝑤, when the beam bends. For a small piece of a beam 𝑑𝑑𝑤𝑤 
can be described as: 

𝑑𝑑𝑤𝑤 = 𝑑𝑑𝑥𝑥 ⋅ tan(𝜃𝜃𝑅𝑅) (A.24) 

At small values for 𝜃𝜃𝑅𝑅 the estimation tan(𝜃𝜃𝑅𝑅) ≈ 𝜃𝜃𝑅𝑅 can be made, giving: 

+𝑦𝑦 

+𝑥𝑥 
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𝑑𝑑𝑤𝑤
𝑑𝑑𝑥𝑥

= tan(𝜃𝜃𝑅𝑅) ≈ 𝜃𝜃𝑅𝑅 (A.25) 

Combining equation (A.22) and (A.25) gives the relation between 𝑅𝑅 and 𝑤𝑤: 

1
𝑅𝑅𝑅𝑅

=
𝑑𝑑𝜃𝜃𝑅𝑅
𝑑𝑑𝑥𝑥

=
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

 (A.26) 

Substituting equation (A.26) in equation (A.21) gives: 

𝜀𝜀𝑏𝑏 = 𝑦𝑦 ⋅
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

 (A.27) 

 

A.4.1.2 Stretching strain 
The stretching of a small piece, 𝑑𝑑𝑥𝑥, of a beam clamped on both sides is shown in figure 2. 

 

Figure 62. Schematic representation of the stretching of a small beam piece, 𝑑𝑑𝑥𝑥, of a beam clamped on both sides. 

The length of resulting beam piece, 𝑑𝑑𝑙𝑙, can be described using Pythagoras theorem: 

𝑑𝑑𝑙𝑙 = ��𝑑𝑑𝑥𝑥 + 𝑢𝑢(𝑥𝑥 + 𝑑𝑑𝑥𝑥) − 𝑢𝑢(𝑥𝑥)�2 + �𝑤𝑤(𝑥𝑥 + 𝑑𝑑𝑥𝑥) −𝑤𝑤(𝑥𝑥)�2 (A.28) 

Combining equation (A.20) and (A.28) gives an expression for the stretching strain: 

𝜀𝜀𝑠𝑠 =
Δ𝐿𝐿𝜀𝜀
𝐿𝐿𝜀𝜀

=
𝑑𝑑𝑙𝑙 − 𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥

=
��𝑑𝑑𝑥𝑥 + 𝑢𝑢(𝑥𝑥 + 𝑑𝑑𝑥𝑥) − 𝑢𝑢(𝑥𝑥)�2 + �𝑤𝑤(𝑥𝑥 + 𝑑𝑑𝑥𝑥) −𝑤𝑤(𝑥𝑥)�2

𝑑𝑑𝑥𝑥
− 1 

(A.29) 

If the 𝑑𝑑𝑥𝑥 in equation (A.29) is brought within the square root, the derivate of 𝑢𝑢(𝑥𝑥) and 𝑤𝑤(𝑥𝑥) appear: 

𝜀𝜀𝑠𝑠 = ��1 +
𝑢𝑢(𝑥𝑥 + 𝑑𝑑𝑥𝑥) − 𝑢𝑢(𝑥𝑥)

𝑑𝑑𝑥𝑥 �
2

+ �
𝑤𝑤(𝑥𝑥 + 𝑑𝑑𝑥𝑥) −𝑤𝑤(𝑥𝑥)

𝑑𝑑𝑥𝑥 �
2

− 1 (A.30) 

Rewriting equation (A.30) gives: 
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𝜀𝜀𝑠𝑠 = ��1 +
𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

+ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

− 1 (A.31) 

Expanding equation (A.31) gives: 

𝜀𝜀𝑠𝑠 = �1 + �
𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

+ 2
𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

+ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

− 1 (A.32) 

As both 𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

 and 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

≪ 1, a first order Taylor series (�1 + 𝛾𝛾 ≈ 1 + 1
2
𝛾𝛾) of equation (A.32), gives: 

𝜀𝜀𝑠𝑠 =
𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

+
1
2
⋅ ��

𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

+ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

� (A.33) 

The effect of stretching is much more significant for the transversal displacement as for the 

longitudinal displacement, thus 𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

≪ 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

, giving: 

𝜀𝜀𝑠𝑠 =
𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

+
1
2
⋅ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

 (A.34) 

 

A.4.1.3 Thermal strain 
The thermal strain in a beam is given by: 

𝜀𝜀𝑇𝑇 = 𝛼𝛼 ⋅ Δ𝑇𝑇���� (A.35) 

A.4.1.4 Total strain 
The stretching strain (or total strain) of the beam can be described by combining all the strains acting 
on the beam and accounting for the reaction for 𝑃𝑃0 that compensated the expansion of the beam: 

𝜀𝜀𝑠𝑠 = 𝛼𝛼 ⋅ Δ𝑇𝑇���� − 𝑦𝑦 ⋅
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−
𝑃𝑃0
𝐸𝐸𝐴𝐴

 (A.36) 
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A.4.2 Transversal displacement 
The beam model used by [12] to describe the Thermo-Mechanical behavior of the V-shaped ETA is 
shown in figure 63. Because of the geometric symmetry, only half the beam is modeled. 

 

Figure 63. The geometry and loads of a V-shaped beam actuator. [12] 

 The use of the Euler beam theory results in an equation for all the moments acting on the beam: 

−𝐸𝐸𝐼𝐼 ⋅
𝑑𝑑2𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= 𝑃𝑃0 ⋅ 𝑤𝑤(𝑥𝑥) + 𝑇𝑇0 ⋅ 𝑥𝑥 + 𝑀𝑀0 (A.37) 

The solution to equation (A.37) is: 

𝑤𝑤(𝑥𝑥) = 𝐶𝐶1 ⋅ (cos(𝑘𝑘𝑥𝑥) + 𝑎𝑎 ⋅ sin(𝑘𝑘𝑥𝑥)) + 𝐶𝐶2 ⋅ (cos(𝑘𝑘𝑥𝑥) + 𝑎𝑎 ⋅ sin(𝑘𝑘𝑥𝑥)) −
𝑇𝑇0
𝑃𝑃0
⋅ 𝑥𝑥 −

𝑀𝑀0

𝑃𝑃0
 (A.38) 

Five boundary conditions are needed to solve the complete Thermo-mechanical model [12]: 

𝑤𝑤(0) = 0 

𝑑𝑑𝑤𝑤(0)
𝑑𝑑𝑥𝑥

= 0 

𝑑𝑑𝑤𝑤(𝐿𝐿)
𝑑𝑑𝑥𝑥

= 0 

𝑢𝑢(0) = 0 

𝑢𝑢(𝐿𝐿) = 𝑤𝑤(𝐿𝐿) ⋅ tan (𝜃𝜃) 

(A.39) 

Combining equation (A.38) with the first three boundary conditions from equation (A.39) gives: 
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𝐶𝐶1 =
1
2
⋅
𝑇𝑇0 ⋅ (cos(𝑘𝑘𝐿𝐿) 𝑎𝑎 + sin(𝑘𝑘𝐿𝐿) − 𝑎𝑎)

sin(𝑘𝑘𝐿𝐿) ⋅ 𝑘𝑘𝑃𝑃0𝑎𝑎
 

𝐶𝐶2 = −
1
2
⋅
𝑇𝑇0 ⋅ (− cos(𝑘𝑘𝐿𝐿) 𝑎𝑎 + sin(𝑘𝑘𝐿𝐿) + 𝑎𝑎)

sin(𝑘𝑘𝐿𝐿) ⋅ 𝑘𝑘𝑃𝑃0𝑎𝑎
 

𝑀𝑀0 =
𝑇𝑇0 ⋅ (cos(𝑘𝑘𝐿𝐿) − 1)

sin(𝑘𝑘𝐿𝐿) ⋅ 𝑘𝑘
 

(A.40) 

The reaction forces acting at the fixed beam end can be expressed as [12]: 

𝑃𝑃0 = 𝑃𝑃 ⋅ cos(𝜃𝜃) +
𝐹𝐹𝑣𝑣
2
⋅ sin(𝜃𝜃) 

𝑇𝑇0 = 𝑃𝑃 ⋅ sin(𝜃𝜃) −
𝐹𝐹𝑣𝑣
2
⋅ cos(𝜃𝜃) 

(A.41) 

Substituting equation (A.41) and (A.40) in equation (A.38) gives the expression for the transversal 
displacement of the beam: 

𝑤𝑤(𝑥𝑥) = �tan𝜃𝜃 −
𝐹𝐹𝑣𝑣

2𝑘𝑘2𝐸𝐸𝐼𝐼 cos𝜃𝜃
� ⋅ �

sin𝑘𝑘𝑥𝑥
𝑘𝑘

+
(cos𝑘𝑘𝐿𝐿 − 1) ⋅ (cos𝑘𝑘𝑥𝑥 − 1)

𝑘𝑘 sin𝑘𝑘𝐿𝐿
− 𝑥𝑥� (A.42) 

A.4.3 Transcendental equation 
The first order differential equation which results in the transcendental equation, 𝑐𝑐(𝑘𝑘,𝐹𝐹𝑣𝑣 ,Δ𝑇𝑇����), can be 
set up from equation (A.34) and (A.36) for 𝑦𝑦 = 0: 

𝑑𝑑𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥

+
1
2
⋅ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2

−  𝛼𝛼 ⋅ Δ𝑇𝑇���� +
𝑃𝑃0
𝐸𝐸𝐴𝐴

= 0 (A.43) 

Integrating along the half-span, 𝐿𝐿, of the beam gives: 

�𝑢𝑢(𝐿𝐿) − 𝑢𝑢(0)� + �
1
2
⋅ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2𝐿𝐿

0
−  𝛼𝛼 ⋅ Δ𝑇𝑇���� ⋅ 𝐿𝐿 +

𝑃𝑃0
𝐸𝐸𝐴𝐴

⋅ 𝐿𝐿 = 0 (A.44) 

Applying the last two boundary conditions of equation (A.39) gives: 

𝑤𝑤(𝐿𝐿) ⋅ tan(𝜃𝜃) + �
1
2
⋅ �
𝑑𝑑𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥 �

2𝐿𝐿

0
−  𝛼𝛼 ⋅ Δ𝑇𝑇���� ⋅ 𝐿𝐿 +

𝑃𝑃0
𝐸𝐸𝐴𝐴

⋅ 𝐿𝐿 = 0 (A.45) 

Solving the integral in equation (A.45) after substituting equation (A.42) gives the transcendental 
equation: 

𝑐𝑐(𝑘𝑘,𝐹𝐹𝑣𝑣 ,Δ𝑇𝑇����) =
𝑘𝑘2𝐼𝐼𝑥𝑥𝐿𝐿
𝐴𝐴

+ 𝛼𝛼Δ𝑇𝑇����𝐿𝐿 +
1
2
�tan𝜃𝜃 −

𝐹𝐹𝑣𝑣
2𝑘𝑘2𝐸𝐸𝐼𝐼𝑥𝑥 cos𝜃𝜃

�
2

⋅ �𝐿𝐿 �1 +
1

cos(𝑘𝑘𝐿𝐿) + 1
� −

3 tan �1
2𝑘𝑘𝐿𝐿�
𝑘𝑘 �+ tan𝜃𝜃 ⋅ �

2
𝑘𝑘

tan �
𝑘𝑘𝐿𝐿
2
� − 𝐿𝐿�

⋅ �tan 𝜃𝜃 −
𝐹𝐹𝑣𝑣

2𝑘𝑘2𝐸𝐸𝐼𝐼𝑥𝑥 cos𝜃𝜃
� 

(A.46) 

or, 
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𝑐𝑐(𝑘𝑘,𝐹𝐹𝑣𝑣 ,Δ𝑇𝑇����) =
𝑘𝑘2𝐼𝐼𝑥𝑥𝐿𝐿
𝐴𝐴

+ 𝛼𝛼Δ𝑇𝑇����𝐿𝐿 +
1
2
�tan 𝜃𝜃 −

𝐹𝐹𝑣𝑣
2𝑘𝑘2𝐸𝐸𝐼𝐼𝑥𝑥 cos𝜃𝜃

�
2
⋅ �𝐿𝐿 +

𝑘𝑘𝐿𝐿 − 2 sin𝑘𝑘𝐿𝐿
𝑘𝑘 ⋅ (cos𝑘𝑘𝐿𝐿 + 1)�

+ tan𝜃𝜃 ⋅ �
2
𝑘𝑘

tan �
𝑘𝑘𝐿𝐿
2
� − 𝐿𝐿� ⋅ �tan𝜃𝜃 −

𝐹𝐹𝑣𝑣
2𝑘𝑘2𝐸𝐸𝐼𝐼𝑥𝑥 cos𝜃𝜃

� 
(A.47) 

Equation (A.46) and equation (A.47) are equal to the transcendental equation given by [12]. 

 

  



61 
 

B Appendix: Material properties 
This appendix will show the required material properties of silicon and air. 

B.1 Silicon properties 
B.1.1 Thermal conductivity 

 

Figure 64. Thermal conductivity of silicon versus temperature at 101325 Pa. 

Thermal conductivity data obtained from: [30] 

Table 4. Thermal conductivity of silicon data at 101325 Pa. 

𝑇𝑇 [K] 𝑘𝑘𝑠𝑠 [W/mk] 
250 191 
300 148 
350 119 
400 98,9 
500 76,2 
600 61,9 
800 42,2 

1000 31,2 
1200 25,7 
1400 23,5 
1600 22,1 
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B.1.2 Young’s modulus 

 

Figure 65. Young's moduli of silicon at different resistivity. [31] 

Young’s moduli Data obtained from: [31] 
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B.1.3 Thermal expansion coefficient 

 

Figure 66. Thermal expansion coefficient of silicon versus temperature. 

The equation presented in figure 66 (black line) holds between 120 K and 1500 K. 

Thermal expansion data obtained from: [32] 

Table 5. Thermal expansion coefficient of silicon. [32] 

𝑇𝑇 [K] 𝛼𝛼 [ ⋅ 10−6 K−1 ] 𝑇𝑇 [K] 𝛼𝛼 [ ⋅ 10−6 K−1 ] 
5 0,6 ⋅ 10−4 280 2,432 
10 0,48 ⋅ 10−3 300 2,616 
20 −0,29 ⋅ 10−2 400 3,253 
40 −0,164 500 3,614 
60 −0,400 600 3,842 
80 −0,472 700 4,016 
100 −0,399 800 4,151 
120 −0,057 900 4,185 
140 0,306 1000 4,258 
160 0,689 1100 4,323 
180 1,061 1200 4,384 
200 1,406 1300 4,442 
220 1,715 1400 4,500 
240 1,986 1500 4,556 
260 2,223 1600 4,612 
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B.1.4 Resistivity 

 

Figure 67. Estimated silicon resistivity versus temperature. 

The estimation of the resistivity is done by iteratively changing the resistivity at a certain 
temperature till the resistance obtained from the Electro-thermal model matched the measured 
resistance of the G1.4 Back ETA in air and in vacuum. Before the resistance is matched 𝑅𝑅𝑝𝑝 and 2 ⋅ 𝑅𝑅𝑏𝑏 
are subtracted from the Back ETA resistance, because it is assumed that these do not depend on 
temperature and will negatively influence the resistivity estimation. 

Table 6. Estimated silicon resistivity data. 

𝑇𝑇 [K] 𝜌𝜌 [⋅ 10−2 Ωcm] 
293,00 1,09 
340,77 1,12 
448,64 1,26 
559,81 1,49 
693,22 1,82 
793,27 2,12 
859,97 2,40 
937,79 2,59 
971,14 2,60 
993,38 2,38 

1033,00 2,09 
1123,00 1,60 
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B.1.5 Specific heat 

 

Figure 68. Specific heat of silicon as function of temperature. 

Specific heat data obtained from: [32] 

B.2 Thermal conductivity air 

 

Figure 69. Thermal conductivity of air versus temperature. 

Data obtained from: [33], [34], [35] 

  

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600

Cs [Jkg-1K-1]

T [K]

ka = 5,79E-05T + 1,03E-02

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,11

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

ka [W/mK]

T [K]

A Heat Transfer Textbook
www.thermopedia.com/content/553/
Introduction To Heat Transfer
Linear (Introduction To Heat Transfer)



66 
 

C Appendix: Thermal time constant estimation 
This appendix will explain how the thermal time constant of the beam is estimated using a simple 
model, both in air and in vacuum. 

C.1 Air 
The time constant in air of a beam can be estimated using the beam schematic presented in figure 
70. 

 

Figure 70. Schematic of the energy flow in a beam part of length 𝑑𝑑𝑥𝑥 in air. 

Formula wise the energy flow can be described as: 

𝐸𝐸𝑎𝑎𝑛𝑛 − 𝐸𝐸𝑟𝑟𝑢𝑢𝑡𝑡 = 𝐸𝐸𝑎𝑎𝑛𝑛𝑡𝑡𝑒𝑒𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙 (C.1) 

The beam is heated by an electric current and assuming all the heat is transferred to the substrate 
through air, gives an expression for the heat transfer at time interval 𝑑𝑑𝑡𝑡: 

𝐼𝐼2𝜌𝜌 ⋅ 𝑑𝑑𝑥𝑥
𝑤𝑤ℎ

⋅ 𝑑𝑑𝑡𝑡 −
𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤 ⋅ 𝑑𝑑𝑥𝑥 ⋅ Δ𝑇𝑇

𝑔𝑔
⋅ 𝑑𝑑𝑡𝑡 = 𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑𝑤𝑤ℎ ⋅ 𝑑𝑑𝑥𝑥 ⋅ Δ𝑇𝑇 (C.2) 

Where 𝐶𝐶𝑠𝑠 is the specific heat of silicon and 𝜌𝜌𝑑𝑑 is the density of silicon. Equation (C.2) can be divided 
by 𝑑𝑑𝑥𝑥 ⋅ 𝑑𝑑𝑡𝑡 giving: 

𝐼𝐼2𝜌𝜌
𝑤𝑤ℎ

−
𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤 ⋅ Δ𝑇𝑇

𝑔𝑔
= 𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑𝑤𝑤ℎ ⋅

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

 (C.3) 

Assuming 𝑇𝑇∞ ≪ 𝑇𝑇, Δ𝑇𝑇 can be written as 𝑇𝑇, giving: 

𝐼𝐼2𝜌𝜌
𝑤𝑤ℎ

−
𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤 ⋅ 𝑇𝑇

𝑔𝑔
= 𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑𝑤𝑤ℎ ⋅

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

 (C.4) 

A first order differential equation appears. Rewriting equation (C.4) gives: 

𝑐𝑐𝑏𝑏 ⋅
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

+ 𝑏𝑏𝑏𝑏 ⋅ 𝑇𝑇 − 𝑎𝑎𝑏𝑏 = 0 (C.5) 
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with 

𝑎𝑎𝑏𝑏 =
𝐼𝐼2𝜌𝜌
𝑤𝑤ℎ

 

𝑏𝑏𝑏𝑏 =
𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤
𝑔𝑔

 

𝑐𝑐𝑏𝑏 = 𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑𝑤𝑤ℎ 

(C.6) 

The solution to equation (C.5) is: 

𝑇𝑇(𝑡𝑡) =
𝑎𝑎𝑏𝑏
𝑏𝑏𝑏𝑏

+ 𝑧𝑧𝑏𝑏 ⋅ 𝑒𝑒
−𝑏𝑏𝑐𝑐𝑏𝑏𝑐𝑐

⋅𝑡𝑡
 (C.7) 

Equation (C.7) has the standard form of exponential function 𝑒𝑒−
𝑢𝑢
𝜏𝜏, thus giving: 

𝜏𝜏 =
𝑐𝑐𝑏𝑏
𝑏𝑏𝑏𝑏

=
𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑ℎ𝑔𝑔
𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎

 (C.8) 

𝜏𝜏 is estimated for room temperature till 𝑇𝑇 = 1400 K (𝜌𝜌𝑑𝑑 obtained from [36]). This is shown in figure 
41. 

C.2 Vacuum 
The time constant in vacuum of a beam can be estimated by describing half the beam where a 
quarter of the beam contains temperature 𝑇𝑇 and the other quarter temperature 𝑇𝑇∞, see figure 71. 

 

Figure 71. Schematic of the energy flow in a beam with length 𝐿𝐿 in vacuum, dived in two halves. 

Using Formula (C.1) a description for the heat transfer in figure 71 can be made: 

𝐼𝐼2𝜌𝜌 ⋅ 1
2 𝐿𝐿

𝑤𝑤ℎ
⋅ 𝑑𝑑𝑡𝑡 −

𝑘𝑘𝑠𝑠𝑤𝑤 ⋅ ℎ ⋅ Δ𝑇𝑇
1
2 𝐿𝐿

⋅ 𝑑𝑑𝑡𝑡 = 𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑𝑤𝑤ℎ ⋅
1
2
𝐿𝐿 ⋅ Δ𝑇𝑇 (C.9) 

Dividing by 𝑑𝑑𝑡𝑡 and assuming 𝑇𝑇∞ ≪ 𝑇𝑇, equation (C.9) can be written as: 

𝐼𝐼2𝜌𝜌 ⋅ 1
2 𝐿𝐿

𝑤𝑤ℎ
−
𝑘𝑘𝑠𝑠𝑤𝑤 ⋅ ℎ ⋅ 𝑇𝑇

1
2 𝐿𝐿

= 𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑𝑤𝑤ℎ ⋅
1
2
𝐿𝐿 ⋅

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

 (C.10) 

A first order differential equation appears. Rewriting equation (C.10) gives: 
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𝑓𝑓𝑏𝑏 ⋅
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

+ 𝑒𝑒𝑏𝑏 ⋅ 𝑇𝑇 − 𝑑𝑑𝑏𝑏 = 0 (C.11) 

with 

𝑑𝑑𝑏𝑏 =
𝐼𝐼2𝜌𝜌
𝑤𝑤ℎ

⋅
1
2
𝐿𝐿 

𝑒𝑒𝑏𝑏 =
𝑘𝑘𝑠𝑠𝑤𝑤 ⋅ ℎ

1
2 𝐿𝐿

 

𝑓𝑓𝑏𝑏 = 𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑𝑤𝑤ℎ ⋅
1
2
𝐿𝐿 

(C.12) 

The solution to equation (C.11) is: 

𝑇𝑇(𝑡𝑡) =
𝑑𝑑𝑏𝑏
𝑒𝑒𝑏𝑏

+ 𝑧𝑧𝑏𝑏 ⋅ 𝑒𝑒
−𝑒𝑒𝑐𝑐𝑚𝑚𝑐𝑐

⋅𝑡𝑡
 (C.13) 

Equation (C.13) has the standard form of exponential function 𝑒𝑒−
𝑢𝑢
𝜏𝜏, thus giving: 

𝜏𝜏 =
𝑓𝑓𝑏𝑏
𝑒𝑒𝑏𝑏

=
𝐶𝐶𝑠𝑠𝜌𝜌𝑑𝑑
𝑘𝑘𝑠𝑠

⋅
1
4
𝐿𝐿2 (C.14) 

𝜏𝜏 is estimated for room temperature till 𝑇𝑇 = 1400 K. This is shown in figure 41. 
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D Appendix: Modeling parameters 
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E Appendix: Vacuum setup pictures 

 

Figure 72. Picture of the vacuum measurement setup. 

 

 

Figure 73. Picture of the vacuum pot. Left: side view. Right: top view. The MEMS inside the carrier can be seen through the 
window. 
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F Appendix: Shuttle locking pictures 

 

Figure 74. Microscope picture of the five shuttle locks. 

1 Shows the Shuttle hooks and teeth without any lock; 
2 Shows the first Shuttle lock; 
3 Shows the second Shuttle lock; 
4 Shows the third Shuttle lock; 
5 Shows the fourth Shuttle lock; 
6 Shows the fifth Shuttle lock. 
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G Appendix: Model operation 
In this appendix is explained how the models operate in Excel and what formulas and codes are used 
for the three models used in this report. For every model the same cell colors are used to point out if 
a value in a cell can be changed or if it needs to be untouched, indicated by orange and yellow 
respectively. 

G.1 Spring profile model 
The force on the spring tip in 𝑥𝑥- and 𝑦𝑦-direction can be calculated for certain 𝑥𝑥- and 𝑦𝑦-displacements 
of the spring tip using equation (2.12). This equation can only be solved numerically. The numerical 
solution can be described formula wise as: 

𝜃𝜃𝑎𝑎 = 𝜃𝜃𝑎𝑎−1 + 𝜃𝜃′𝑎𝑎−1 ⋅ 𝑑𝑑𝑙𝑙  𝜃𝜃′𝑎𝑎 = 𝜃𝜃′𝑎𝑎−1 + 𝜃𝜃′′𝑎𝑎−1 ⋅ 𝑑𝑑𝑙𝑙 (F.1) 

With 𝑎𝑎 = 2,3, … ,𝑛𝑛. This is illustrated in figure 75.  

 

Figure 75. Illustration of the working principle of the numerical spring profile model. 

The initial conditions 𝜃𝜃1, 𝜃𝜃′1 and 𝜃𝜃′′1 are required to use equation (F.1). 𝜃𝜃1 can be chosen in this 
model and 𝜃𝜃′′1 is acquired from equation (2.12) at 𝑙𝑙1. 𝜃𝜃′1 must be calculated using the solver 
capabilities of Excel, for the boundary conditions 𝜃𝜃1 = −𝜃𝜃𝑛𝑛 = 𝛼𝛼0. The following Macro is used to 
determine 𝜃𝜃′1: 

Sub Calc_sp_pf() 
    SolverReset 
    SolverOk SetCell:="$B$29", MaxMinVal:=3, ValueOf:=0, ByChange:= _ 
    "$F$4,$B$34,$B$35", Engine:=1, EngineDesc:="GRG Nonlinear" 
    SolverAdd CellRef:="$B$30", Relation:=2, FormulaText:="0" 
    SolverAdd CellRef:="$B$31", Relation:=2, FormulaText:="0" 
    SolverOptions AssumeNonNeg:=False 
    SolverSolve Userfinish:=True 
End Sub 
 
The cells B29, B30 and B31 are the error of the input and the data from the model for 𝜃𝜃𝑛𝑛, 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 
respectively. F4 is 𝜃𝜃′1 and B34 and B35 are 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 respectively. The solver in Excel tries to get the 
error values as closely to zero as possible, by trying different values for 𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦 and 𝜃𝜃′1. If the error 
values are almost zero, Excel places the values for 𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦 and 𝜃𝜃′1 in their respective cells and 
numerically calculates the spring profile. 
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The variable input cells are presented in figure 76. 𝜃𝜃1 can be changed by altering the number behind 
𝛼𝛼0. Dimensions and other properties of the spring can be set by altering the numbers in the orange 
cells. In the “Input” table in figure 76 can 𝜃𝜃𝑛𝑛, 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 be set, which are used in the calculation of 
the spring profile. The “Data” table show the current 𝜃𝜃𝑛𝑛, 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 of the spring. The “Error” table 
subtracts the “Data” from the “Input”. If all the orange cells are set, the “Calculate spring profile” 
button can be pushed. If this button is pushed, Excel calculates the spring profile. The “Output” table 
shows 𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦, 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦. The spring profile of the spring can be determined from the angles along the 
axis by using formula (A.15). In figure 77 are the results presented for a compression the 𝑥𝑥-direction 
of 10 µm. 

 

Figure 76. Input and output cells of the spring profile model, in Excel. 

 

Figure 77. Spring profile model results for a compression in the 𝑥𝑥-direction of 10 µm. 
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The spring profile can be calculated for several compressions an different angles. If the spring 
constant in the 𝑦𝑦-direction is extracted from the model at certain displacements, it will show the 
decrease of the spring constant at larger displacements. 

G.2 Electro-thermal model 
The temperature profile of a beam, 𝑇𝑇(𝑥𝑥), can be determined for certain currents using equation 
(2.15). This equation can only be solved numerically. The working principle of this numerical model is 
the same as described for the Spring profile model (see figure 75), but now the required initial 
conditions are 𝑇𝑇1, 𝑇𝑇′1 and 𝑇𝑇′′1. 𝑇𝑇1 is the substrate temperature and 𝑇𝑇′′1 is acquired from equation 
(2.15). Using the solver for boundary conditions 𝑇𝑇1 = 𝑇𝑇∞,𝑇𝑇′′𝑛𝑛 = 0, 𝑇𝑇′1 can be calculated. The 
variable input cells of the model are presented in figure 78. 

 

Figure 78. Input and output cells of the Electro-thermal model, in Excel. 

The dimensions and properties of the beam can be changed in the first three tables. The heat 
transfer due to radiation is optional in this model, but has not been used for the models in this 
report. The only input of this model is the current flowing through the beam and the resistivity of the 
used material. The resistivity can be altered in the table hidden under the temperature profile graph, 
see figure 79. If the “Calculate beam temperature profile” button is pushed, Excel calculates 𝑇𝑇′1 for 
𝑇𝑇′′𝑛𝑛 = 0. The following Macro is used for the calculation: 

 

Figure 79. Resistivity table in the Electro-thermal model. 
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Sub Calc_I() 
    Dim dT0    As Double 
    Dim check1 As Boolean 
    Dim check2 As Double 
    Dim check3 As Double 
    Dim n      As Integer 
     
    Range("B34").Value = "Excel is solving." 
     
    SolverReset 
     
    For i = 0 To 39 
     
     dT0 = Range("G3").Value 

SolverOk SetCell:="$B$23", MaxMinVal:=3, ValueOf:=0, 
ByChange:="$G$3", Engine:=1 _ 

      , EngineDesc:="GRG Nonlinear" 
     SolverOptions Assumenonneg:=False 
     SolverSolve UserFinish:=True 
     
     check1 = IsNumeric(Range("B23")) 
     check2 = Range("G3").Value 
     
     If check1 = True And check2 > 0 Then 
         
        check3 = Abs(Range("B23")) 
         
        If check3 < 1 Then 
         SolverFinish KeepFinal:=1 
         Exit For 
        Else 
         SolverFinish KeepFinal:=2 
         Range("G3").Value = dT0 * 0.99 
        End If 
     Else 
        SolverFinish KeepFinal:=2 
         
        If check2 < 0 Then 
            Range("G3").Value = dT0 * 1.1 
        Else 
            Range("G3").Value = dT0 * 0.95 
         End If 
     End If 
     
     Range("B33").Value = i 
     
    Next i 
     
    Range("B33").Value = i 
    Range("B34").Value = "Solving done." 
     
    If i > 39 Then 

MsgBox "Couldn't solve in 40 iterations" & Chr(10) & Chr(10) & "Try 
again or solve manually" 

     End If 
End Sub 
 
Cell G3 is 𝑇𝑇′1 and cell B23 is 𝑇𝑇′′𝑛𝑛. The Solver in Excel often overestimates the initial value of the first 
derivative of the temperature at higher currents (> 30 mA). This overestimation causes the value of 
𝑇𝑇′′𝑛𝑛 to be so large that it is too large for Excel to use it for calculation (overflow). If this is the case 
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the Macro discards the Solver solution and multiplies the earlier value with 1,1 or 0,95. The 
multiplication depends on the solution of the solver: if the Solver solution is numeric but negative 
(underestimation) it is required to multiply the earlier value by 1,1, if the Solver solution is numeric 
but positive (overestimation) it is required to multiply the earlier value by 0,95, these numbers are 
acquired by trial and error. By doing this 𝑇𝑇′1 will converge to the right value, making it easier for the 
Solver to solve. This converge is limited to 40 iterations, because sometimes Excel cannot find a 
solution. If this is the case a message box will appear saying: “Couldn’t solve in 40 iterations. Try 
again or solve manually.“ If trying again does not give a solution, 𝑇𝑇′1 can be set manually, by trial and 
error, till 𝑇𝑇′′𝑛𝑛 is as closely to zero as possible. If the desirable value of 𝑇𝑇′′𝑛𝑛 is reached, the model 
outputs the resistance, voltage, power, average and maximum temperature, 𝛼𝛼 ⋅ Δ𝑇𝑇�������� and a graph of 
the temperature profile and resistivity profile, see figure 80.  

 

Figure 80. Beam temperature profile given by the Electro-thermal model at 𝐼𝐼 = 30 mA. 

G.3 Thermo-mechanical model 
The transversal displacement of a beam can be calculated using analytic equation (2.23). 

The variable input cells of the model are presented in figure 81. The dimensions and properties of 
the beam can be changed in the first two tables. In the “Input” table can the force acting on the 
beam be altered and can be chosen if only Δ𝑇𝑇���� is used as an input or 𝛼𝛼 ⋅ Δ𝑇𝑇��������, which can be extracted 
from the Electro-thermal model, by selecting the button behind the respective cell. If the button 
“Solve 𝛿𝛿” is clicked, Excel calculates the value of 𝑘𝑘 for which transcendental equation 𝑐𝑐 (A.46) 
reaches zero as closely as possible. The following Macro is used for the calculation: 
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Figure 81. Input and output cells of the Thermo-mechanical model, in Excel. 

Sub Solver_d__F() 
SolverOk SetCell:="$B$23", MaxMinVal:=3, ValueOf:=0, ByChange:="$B$22", 
Engine:=1, EngineDesc:="GRG Nonlinear" 

    SolverSolve UserFinish:=True 
End Sub 
 
If the value of 𝑘𝑘 is calculated by Excel, the tip displacement of the beam is calculated using equation 
(2.25) and shown in the “Tip displacement” table. After calculation the model also gives the shape of 
the beam, shown in figure 82. 

 

Figure 82. Beam shape given by the Thermo-mechanical model. 
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