Mathematics for structure functions
J.A.M. Vermaseren and S. Mocha
a NIKHEF Theory Group
Kruislaan 409, 1098 SJ Amsterdam, The Netherlands

1. Introduction

Over the years a particular type of mathematics has been developed for the evaluation of the integrals that occur in Feynman diagrams with loops. The solution of these integrals often involves the introduction of Feynman parameters and the manipulation of a special set of functions. Yet we are running into limitations imposed by the complexity of the problem. Hence most quantities that are important for comparing theoretical predictions and experimental observations have not been evaluated beyond two loops. Yet it is important that a number of these quantities will be computed at the three loop level. Among these are the QCD structure functions in deep inelastic scattering. Considering the accurate measurements at HERA and the need for precise parton distribution functions at the LHC this may currently be considered as one of the most important calculations to be done. The conventional techniques have thus far not led to any results. Hence the introduction of different techniques may be called for. One method for the evaluation of structure functions has been around from the beginning of QCD \cite{1,2}, but has been used only very occasionally and then not to the fullest of its potential. This method is the evaluation of the anomalous dimensions and/or the coefficient functions in Mellin space in such a way that all even or all odd moments are determined. When all even or all odd Mellin moments of a function are known the function of which these are the Mellin moments is uniquely determined \cite{3}. This is within a reasonable set of assumptions about behaviour of the functions involved. Hence a systematic method to obtain these Mellin moments would be sufficient to obtain the anomalous dimensions and/or the coefficient functions. This method has been applied several times in the past \cite{4,5,6}, but the original computation \cite{7} of the full set of two loop coefficient functions used a more conventional method. Here I will report on attempts to use this Mellin method even at the three loop level. This needs a very careful study of the functions involved. Much of this is new mathematics. We will address here harmonic sums, harmonic polylogarithms, Mellin transforms, inverse Mellin transforms and difference equations.

2. Harmonic sums

The basic functions that occur in Mellin space are the harmonic sums (HS) \cite{8,9,10}. These are defined by

\[S_m(N) = \sum_{i=1}^{N} \frac{1}{im} , \quad S_{-m}(N) = \sum_{i=1}^{N} \frac{(-1)^m}{im} , \quad (1) \]

while ‘higher’ sums can be defined recursively

\[S_{m_1,...,m_k}(N) = \sum_{i=1}^{N} \frac{1}{im_1} S_{m_2,...,m_k}(i) , \quad (2) \]

\[S_{-m_1,...,m_k}(N) = \sum_{i=1}^{N} \frac{(-1)^{m_1}}{im_1} S_{m_2,...,m_k}(i) . \quad (3) \]

The parameters \(m \) are called the indices, while \(N \) is called the argument. We define the weight of a sum by the sum of the absolute values of its indices. Whereas the two loop structure functions needed only sums of up to weight 4 \cite{11}, we expect the three loop coefficient functions to need sums of weight 6. There exists an alternative notation in which the indices take only the
values 1,0 and -1. In this notation a 0 indicates that the nearest nonzero index to the right of this zero should be raised by one in its absolute value. Hence

\[S_{0,1,0,0,-1}(N) = S_{2,-3}(N) = \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{(-1)^j}{i^2 j^3} \] (4)

In this notation one can see easily how many independent sums there are for a given weight. All functions of a given weight \(w \) have exactly \(w \) indices. All these indices can have the values 1,0,-1 with the exception of the last one, which can have only the values 1 and -1. Hence there are \(2^{w-1} \) independent sums of weight \(w \). One of the nice properties of these sums is that they form an algebra. This means that the product of two sums with the weights \(w_1 \) and \(w_2 \) respectively can be expressed as a sum of terms, each with a single harmonic sum of weight \(w = w_1 + w_2 \).

These sums show themselves in a variety of ways. The most immediate is the expansion of the \(\Gamma \)-function.

\[
\Gamma(-n+\epsilon) = \frac{(-1)^n}{\epsilon n!} \Gamma(1+\epsilon)(1+S_1(n)\epsilon + S_{1,1}(n)\epsilon^2 + S_{1,1,1}(n)\epsilon^3 + S_{1,1,1,1}(n)\epsilon^4 + \cdots) \] (5)

At the positive side one has a slightly messier expansion.

Another one is in sums of the type

\[
\sum_{i=1}^{n} (-1)^i \binom{n}{i} \frac{1}{n^3} = -S_{1,1,1}(n), \] (6)

In general we will need sums over these sums. This can be set up in a variety of ways. In some ways the multiple sums are so intertwined that we cannot resolve them. In other ways we can arrange that we have always one parameter sums, meaning that for instance the upper limit of the summation and the summation parameter itself are the only parameters in the problem and hence the upper limit is the only parameter in the answer. If our sums can be expressed as nested one-parameter sums we make a good chance to be able to resolve them. Some examples of such single parameter sums that can be handled are \[\text{[3]}: \]

\[
\sum_{i=1}^{n} \frac{S_{1,1}(i)S_{1}(n-i)}{i^m},
\]

\[
\sum_{i=1}^{n} (-1)^i \frac{S_{1,1}(i)S_{1}(n-i)}{i^m},
\]

\[
\sum_{i=1}^{n} (-1)^i \binom{n}{i} \frac{S_{1}(i)}{i^m},
\]

\[
\sum_{i=1}^{n} (-1)^i \binom{n}{i} \frac{S_{1}(i)S_{1}(n-i)}{i^m}.
\]

If we assume that each diagram can be expressed in terms of harmonic sums and we can bring a hierarchy among the diagrams in which the more complicated diagrams can be expressed as single sums over simpler diagrams, then the above condition is fulfilled.

3. Harmonic polylogarithms

In the end we would like to have functions of \(x = Q^2 Q/2P \cdot Q \) rather than just the Mellin moments. When the two-loop structure functions are computed directly as functions of \(x \), one runs into complicated integrals of which the solutions can be expressed in terms of dilogarithms and trilogarithms [12] of composite arguments. At the three loop level one could imagine that tetra- and penta-logarithms might do the job, but it turns out that these functions are not sufficient. Also the Nielsen polylogarithms [12] are not sufficient. Hence we need the so called harmonic polylogarithms (HP) [14] which are also closely related to multi dimensional polylogarithms [13].

\[H(0; x) = \ln x, \]

\[H(1; x) = \int_{0}^{x} \frac{dx'}{1 - x'} = -\ln(1 - x), \]

\[H(-1; x) = \int_{0}^{x} \frac{dx'}{1 + x'} = \ln(1 + x), \]

\[H(m; x) = \int_{0}^{x} dx' f(m; x') H(m_{w-1}; x'), \]

\[f(0; x) = \frac{1}{x}, \]

\[f(1; x) = \frac{1}{1 - x}. \]
\[
f(-1;x) = \frac{1}{1+x},
\]
\[
H(\tilde{m};x) = \frac{1}{w!} \ln^w x
\]

in which \(\tilde{m} \) stands for \(m_w, \ldots, m_1 \). One can deri

4. Mellin transforms

The Mellin transform is defined by

\[
M(f(x)) = \int_0^1 dx \, x^{N-1} f(x)
\]

It is not significant whether we use \(N - 1 \) or \(N - 2 \) in this definition. When we do such in

5. Difference equations

When we study diagrams as a function of \(N \), usually one cannot come up with a simple expres

\[
A_0(N)F(N) + A_1(N)F(N-1) + \cdots + A_n(N)F(N-n) + G(N) = 0
\]
case the solution can be written down as a single sum:

\[F(N) = (-1)^N \prod_{j=1}^{N} A_j(j) F(0) \]

and written as combinations of \(\Gamma\)-functions in \(N, i, j\) and \(\epsilon\).

Recently other authors have also obtained difference equations for the evaluation of diagrams. Tarasov \[17\] obtains equations in the dimension of space-time. Laporta \[18\] has a very promising and systematic approach that has similarities with the above method, except for that it does not involve the Mellin parameter \(N\). This results in a completely different approach to solving them.

When we define basic building blocks (BBB) as diagrams in which the momentum \(P\) of the parton flows only through a single line in the diagram, we have to worry about two BBB’s when we do a two loop calculation and 17 BBB’s when we do a three loop calculation. Of these 17 seven are two loop diagrams with one loop insertion. The two BBB’s at the two loop level result in first order difference equations. This was already noticed in \[9\]. The 17 BBB’s at the three loop level split into 4 first order equations, 12 second order equations and one third order equation. We have been able to set up all these equations. It is possible to define a hierarchy among the integrals in which a more complicated diagram \(F\) is related in this way to simpler diagrams inside the function \(G\). For example the equation for a ladder diagram may have two loop diagrams with a one loop insertion inside the function \(G\). The coefficients \(A_j\) are usually polynomials in \(N\) and \(\epsilon = 2 - D/2\). Let us assume that the function \(G\) can be expressed in terms of harmonic sums. For a number of types of these equations one can then make a constructive solution for the function \(F\). This is usually rather complicated and moreover, we did not find constructive methods for all the equations that we derived. There does however exist a quite good method that does the job for all equations. This method goes as follows:

- Divide the equation by \(N^q\) in which \(q\) is the highest power of \(N\) occurring in the coefficients \(A_j\).
- Synchronize the arguments of the sums in \(G\) and the denominators.
- Write \(S_{\bar{m}}(N)/N^p = S_{p,\bar{m}}(N) - S_{p,\bar{m}}(N-1)\) and similar forms when \((-1)^N\) is involved.
- Assume that \(F(N) = \sum c_i,n,\bar{m}\epsilon^i S_{\bar{m}}(N-n)\). We have to include powers of \(\zeta_3\), \(\zeta_4\) and \(\zeta_5\) as well, but let us ignore that here. We have to guess a bit what range of values we need for \(i\) and \(n\).
- We also bring the \(A_j(N)F(N-j)\) terms into the standard form with just a single \(S\)-sum without denominators.
- This defines a large number of equations in the \(c_{i,n,\bar{m}}\) which we solve. If the range in \(i\) and \(n\) was large enough we should find a solution. The maximum weight we use defines (among others) to what power in \(\epsilon\) our answer can be correct.
- There will still be a few free parameters left, as we have not fixed the boundary conditions yet. For an \(n\)-th order equation we will need \(n\) values. These can be computed with the Mincer program, as they concern fixed values of \(N\).
- The boundary conditions give a few more equations, and these fix all remaining constants. This then determines the function \(F\).

This method is rather general and relatively fast. For the cases for which we could compare it with the constructive method it was significantly faster. It allows us to solve all equations we run into provided we do not run out of computer resources (in our method of solution there is a limitation in the 32 bits version of FORM \[19\] that limits the equations to between 1000 and 2000 terms each. The 64 bit version has no realistic restriction in this respect. It would also be possible to choose a less efficient way of solving these equations if the need were to arise.)
Because we have to solve these equations all the way to weight 6 sums (of which there are 486 for each n) and for several values of n, these equations involve often a few thousand coefficients to be solved. Fortunately the system is rather sparse.

6. Status

We have used the equation solving program already to solve all equations that occur at the two loop level in which the two loop integral has all lines with integer powers, but one line has a power involving ϵ as is to be expected from three loop integrals of which one loop has been integrated already. In addition we have constructed all equations for the basic building blocks at the three loop level. Because it is still much work to program the whole hierarchy we are still far away from completing the computation of the simplest function G, solving the next function F, computing the next G, then the next F, etc. all the way to the most complicated diagrams. The most complicated nonplanar basic building block is determined by a third order difference equation, while the most complicated benz type diagram has a second order equation that contains about 200000 terms before the integrals in the G-function are evaluated. After evaluation it should simplify considerably of course. There are however no more fundamental problems left to obtain solutions for the basic building blocks.

The reduction for composite diagrams into basic building blocks follows a similar scheme. Take for instance the diagram

$$NO_{13} = \int \frac{1}{p_1^2 (P+p_1)^2 (P+p_2)^2} \frac{1}{p_2^2 p_3^2 p_4^2 p_5^2 p_6^2 p_7^2 p_8^2}$$

We derived a general formula for such diagrams that is relatively simple:

$$(N+a+b) \quad = \quad (N-1+n) \frac{2P\cdot Q}{Q\cdot Q}$$

This allows us to express the NO_{13} diagram into a simpler diagram by means of a simple recursion. Hence this can be solved, once we know the simpler diagram. We could either use the general program for difference equations for this, or write the solution as a single sum over this simpler diagram. This sum involves Γ-functions which have to be expanded (and give harmonic sums again) and in the end we can use some general procedures for such sums. The main problem is currently to derive all the equations and recursions that break all composite diagrams down into basic building blocks. This is just an enormous amount of work. After that all relations have to be programmed and tested which is another enormous amount of work.

REFERENCES

6

13. N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta Leopoldina (Halle) 90 (1909) 123.

18. S. Laporta, to be published.