program

• 6 x 45 minutes, today and tomorrow
 – 1st hour: probability, statistics, least squares estimator
 – 2nd hour: non-linear problems, a straight line fit, the progressive fit
 – 3rd hour: interaction of particles with matter, tracking detectors
 – 4th hour: track fitting
 – 5th hour: track finding
 – 6th hour: vertex and decay tree fitting

• slides available at http://www.cern.ch/whulsber/topicallectures
subset of recent NIKHEF theses

- Cornelissen, Track fitting in the ATLAS experiment (2006)
- van Beuzekom, Identifying fast hadrons with silicon detectors (2006)
- Sokolov, Prototyping of Silicon Strip Detectors for the Inner Tracker of the ALICE Experiment (2006)
- van Tilburg, Track simulation and reconstruction in LHCb (2005)
- Heijboer, Track reconstruction and point source searches with ANTARES (2004)
- Visser, Muon tracks through ATLAS (2003)
- Woudstra, Precision of the ATLAS muon spectrometer (2002)
- van der Eijk, Track reconstruction in the LHCb experiment (2002)
- Hulsbergen, Track reconstruction and di-lepton production in Hera-B (2002)
- ...
Part 1

probability

least squares estimator
probability density function

- from wikipedia (stripped from the mathematical language I cannot understand)
 - the *probability density function* for a random variable X is the non-negative function $\mathcal{P} : \mathbb{R} \rightarrow \mathbb{R}$ such that the probability that $X \in [a, b]$ is
 \[
 \int_a^b \mathcal{P}(\xi) \, d\xi
 \]
 - alternative formulation: if Δt is an infinitely small number, the probability that X is included within the interval $(t, t + \Delta t)$ is equal to $\mathcal{P}(t) \Delta t$, or:
 \[
 \text{Pr}(t < X < t + dt) = \mathcal{P}(t) \Delta t
 \]
- notes
 - the value of $P(x)$ is *not* the *probability* for x; it is a *density*
 - since integrals over P represents a probability, $P(x)$ is normalized to unity
expectation value

• expectation value for a function \(g(x) \)

 \[
 E \left[g(x) \right]_\mathcal{P} = \int_{-\infty}^{\infty} g(x) \mathcal{P}(x) \, dx
 \]

• less common, shorter notation \(E \left[g(x) \right]_\mathcal{P} \equiv \langle g(x) \rangle_\mathcal{P} \)

• some relevant properties

 \[
 \langle g(x) + h(x) \rangle = \langle g(x) \rangle + \langle h(x) \rangle
 \]

 \[
 \langle a \, g(x) + b \rangle = a \, \langle g(x) \rangle + b \quad \text{for any } a, b \in \mathbb{R}
 \]
mean, variance

- mean of P

$$\mu_x \equiv \langle x \rangle \equiv \int_{-\infty}^{\infty} x P(x) \, dx$$

- variance

$$\sigma^2_x \equiv \text{var} \,(x) \equiv \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$$

- example, the gaussian distribution

$$P(x) \, dx = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right] \, dx$$

$$\langle x \rangle = \mu \quad \text{var} \,(x) = \sigma^2$$
multi-dimensional pdfs

- two-dimensional pdf for random variables (RVs) X and Y

$$P(t, s) \, dt \, ds = \Pr(t < X < t + dt \land s < Y < s + ds)$$

- can be generalized to any number of RVs

- covariance

$$V_{xy} \equiv \text{cov}(x, y) \equiv \langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle$$

- correlation coefficient

$$\rho_{x,y} \equiv \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x) \, \text{var}(y)}}$$

- note: $\text{cov}(x, y) = \text{cov}(y, x)$

$$\text{var}(x) = \text{cov}(x, x)$$

$$-1 \leq \rho_{x,y} \leq 1$$
covariance matrix

- covariance conveniently organized in matrix

\[
V(x, y, z, \cdots) = \begin{pmatrix}
V_{xx} & V_{xy} & V_{xz} & \cdots \\
V_{yx} & V_{yy} & V_{yz} & \cdots \\
V_{zx} & V_{zy} & V_{zz} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

- matrix V is symmetric and positive-definite (\(\det(V) \geq 0\))

- example: gaussian (normal) distribution in N dimensions

\[
\mathcal{P}(x_1, \ldots, x_N) \, dx_1 \cdots dx_N \propto \exp \left[\frac{1}{2} x^T V^{-1} x \right] \, dx_1 \cdots dx_N
\]

- where \(x = (x_1, \cdots, x_N)\) and V as above
linear transformations

- if F a linear transformation such that

 \[y = F \, x \quad \text{for vectors } x \in \mathbb{R}^n, y \in \mathbb{R}^m \text{ and matrix } F \in \mathbb{R}^{m \times n} \]

 then

 \[\langle y \rangle = F \, \langle x \rangle \quad \text{var}(y) = F \, \text{var}(x) \, F^T \]

- this is the familiar 'error propagation'

- if the transformation is not linear, e.g.
 \[y = f(x) \]

 the expressions above hold to first order in x with jacobian

 \[F_{ij} = \frac{\partial y_i}{\partial x_j} \]

- this is just an approximation: if you want the true variance of y, you need to calculate $\text{var}(f(x))$
linear transformation of Gaussian distribution

- example of linear transformation: for Gaussian $P(x)$

$$P(x_1, \ldots, x_n) \, dx_1 \cdots dx_n \propto \exp \left[\frac{1}{2} x^T V_x^{-1} x \right] \, dx_1 \cdots dx_n$$

- if $y = Fx$, then $P(y)$ is also Gaussian

$$P(y_1, \ldots, y_m) \, dy_1 \cdots dy_m \propto \exp \left[\frac{1}{2} y^T V_y^{-1} y \right] \, dy_1 \cdots dy_m$$

with $V_y = F V_x F^T$

- in other words
 - linear transformation of Gaussian PDF is still Gaussian PDF
 - if X is sum of Gaussian Rvs, X is itself a Gaussian RV
• example: x and y gaussian distributed with unit variance

• correlation tells about the sign of the direction of the slope and how squeezed the distribution is

• sizes of half the major and minor axis of the 'ellipse' correspond to eigenvalues of covariance matrix V
central limit theorem

- central limit theorem

Consider sum of \(N \) random variables

\[
S = x_1 + x_2 + \cdots + x_N
\]

If \(x_i \) independent and distributed according to a pdf \(\mathcal{P}(x) \) with finite mean \(\mu_x \) and variance \(V_x \), then

\[
\mu_S = N \mu_x \quad V_S = NV_x
\]

In the limit for large \(N \) the distribution for \(S \) approaches a normal distribution with mean \(\mu_S \) and variance \(V_S \).

- why is this important for us?

 - if error on measurement is sum of many small contributions, it is approximately gaussian distributed

 - if we extract \(<N \) parameters from \(N \) measurements, their errors are usually more Gaussian then those on original measurements
CLT in action

starting from an arbitrary PDF

input pdf

generated distribution of \((S - \mu_S) / \sqrt{V_S} \)

note: used finite number of samplings (10000). in reality distributions even more gaussian!
estimators

• suppose we have
 – a data set \(\{x_i\} \)
 – a model with unknown parameters \(\alpha \)
• a statistic is any function of the data that does not depend on \(\alpha \)
• an estimator for \(\alpha \) is a statistic whose value estimates \(\alpha \)
• some important properties of estimators
 – consistency: estimator is consistent if it approaches true value with more data
 – bias: difference between expectation value of estimate and \(\alpha \)
 – efficiency: ratio between variance of estimate and best possible variance of any estimate for \(\alpha \)
method of maximum likelihood

- given
 - set of independent measurements \(\{x_i\} \)
 - 'model' which gives the pdf for each \(x_i \): \(P_i(x_i; \alpha) \, dx_i \)

- define the **likelihood function**

\[
\mathcal{L}(\alpha; x) = \prod_i P_i(x_i; \alpha)
\]

- maximum likelihood estimate of \(\alpha \) is the value \(\alpha_{ML} \) for which \(\mathcal{L} \) is maximum

- it can be proven that if an efficient estimator exists, then \(\alpha_{ML} \) is efficient
 - that means that there exists no estimator with smaller variance
 - (that does not mean that there exists no estimator with smaller bias)
method of maximum likelihood

- in applications we usually deal with the log of the likelihood function, because it is easier to add than to multiply

\[
\ln \mathcal{L}(\alpha; x) = \sum_i \ln p_i(x_i; \alpha)
\]

- covariance matrix may be estimated from

\[
V = \left[E \left(-\frac{\partial^2 \ln \mathcal{L}}{\partial \alpha^2} \right) \right]^{-1}
\]

 - don't need to believe this now: will derive later for gaussian case

- most commonly, solution found with generic minimization algorithm, like MINUIT

- NOT HERE: we do not use MINUIT in track and vertex fitting
method of least squares

- consider N independent measurements with Gaussian PDF

\[P_i (m_i ; x) = \frac{1}{\sqrt{2\pi}} \exp \left[\frac{1}{2} \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2 \right] \]

- note: change of variable names
 - till now mostly followed PDG
 - from now on use notations closer to tracking literature
method of least squares

- consider N independent measurements with Gaussian PDF

$$
\mathcal{P}_i(m_i; x) = \frac{1}{\sqrt{2\pi}} \exp \left[\frac{1}{2} \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2 \right]
$$

- define the chi-square

$$
\chi^2 \equiv \sum_i \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2 = -2 \ln \mathcal{L} + \text{constant}
$$

- the value x-hat for which the chi-square is minimum is called the least squares estimator (LSE)

- as you can see above, if the measurements are distributed normally around their true values, the LSE is the maximum likelihood estimator
method of least squares

- so, minimizing the chi-square is well motivated for 'Gaussian' errors

- there is another motivation: the Gauss-Markov theorem states that for a linear model, the LSE is efficient for (almost) any error distribution
 - there is no linear estimator with smaller variance

- because it is a good illustration of the concepts we have just introduced, we now prove the Gauss-Markov theorem
 - first we rewrite the chi-square in matrix notation
 - then we linearize it, extract the LSE and its variance
 - finally, we prove the theorem
chi-square in matrix notation

- rewrite chi-square using covariance matrix for measurements

\[
\chi^2 = \sum_i \left(\frac{m_i - h_i(x)}{\sigma_i} \right)^2 = (m - h(x))^T V^{-1} (m - h(x))
\]

- condition that chi-square is minimum, can now be written as

\[
0 = \frac{d\chi^2}{dx} = -2 \frac{dh(x)^T}{dx} V^{-1} (m - h(x))
\]

- for N measurements and M parameters, derivative is NxM matrix
LSE for a linear model

- in many fit applications derivative of $h(x)$ varies slowly with respect to measurement errors
- therefore, consider linear measurement model

$$h(x) = h_0 + Hx$$

where the derivative matrix $H \equiv \frac{dh(x)}{dx}$ is constant

- condition that chi-square derivative vanishes, becomes

$$\frac{d\chi^2}{dx} = -2 H^T V^{-1} (m - h_0 - Hx) = 0$$

which has a solution

$$\hat{x} = \left(H^T V^{-1} H \right)^{-1} H^T V^{-1} (m - h_0)$$

- this is the LSE for linear models. it is called a **linear estimator**, because it is a linear function of the measurements
bias and variance of the LSE

- provided that the measurements are unbiased and have variance V

\[
\langle m \rangle = m^{\text{true}} = h_0 + H x^{\text{true}} \quad \text{var}(m) \equiv V
\]

- we find that the bias of the LSE is zero

\[
\langle \hat{x} - x^{\text{true}} \rangle = (H^T V^{-1} H)^{-1} H^T V^{-1} (\langle m \rangle - h_0 - H x^{\text{true}}) = 0
\]

- and that its variance is

\[
\text{var}(\hat{x}) = \text{var} \left((H^T V^{-1} H)^{-1} H^T V^{-1} (m - h_0) \right) \\
\text{drop constants} \\
= \text{var} \left((H^T V^{-1} H)^{-1} H^T V^{-1} m \right) \\
\text{var}(Ax) = A \text{var}(x) A^T \\
= (H^T V^{-1} H)^{-1} H^T V^{-1} \text{var}(m) V^{-1} H (H^T V^{-1} H)^{-1} \\
\text{var}(m)=V \\
= (H^T V^{-1} H)^{-1}
\]
other linear estimators

• we now simplify things a bit, without loss of generality
 - choose $h(x_0) = 0$ by absorbing constants in measurements
 - choose $V = 1$ by scaling measurements to have unit variance

• the LSE then becomes

$$
\hat{x} = (H^T H)^{-1} H^T m \quad \text{var}(x) = (H^T H)^{-1}
$$

• now take an arbitrary other linear estimator

$$\hat{x} = Am$$

• again, without loss of generality rewrite it as

$$\hat{x} = \left((H^T H)^{-1} H^T + B \right) m$$
Gauss-Markov theorem

- for the bias and variance of A we obtain

$$\langle \hat{x}' - x^{\text{true}} \rangle = BHx^{\text{true}}$$

$$\text{var}(\hat{x}') = (H^TH)^{-1} + BH(H^TH)^{-1} + (H^TH)^{-1}H^TB + BB^T$$

- so, if we require the estimator to be unbiased for any true x, then $BH=0$ and therefore

$$\text{var}(\hat{x}') = (H^TH)^{-1} + BB^T$$

- this completes our 'proof' of the Gauss-Markov theorem: if the data are unbiased and uncorrelated and the model is linear, then the LSE is unbiased and there is no linear unbiased estimator with smaller variance