A Neural Solution for the Level 2 Trigger in Gamma Ray Astronomy

S. Khatchadourian, J-C. Prevotet

ETIS

23 avril 2007
Contents

1 The HESS Project
2 Future: The HESS2 experiment
3 Algorithms for the L2 trigger system
 - Approach based on Hillas parameters
 - Approach based on a neural system
4 Results
5 Conclusion and perspectives
Context

The HESS Project

- Objectives
 - Detection of High-energy gamma rays
 - Collecting interesting events (gammas) and reject all others (Protons, Muons)

- Based on 4 Cherenkov Telescopes located in Namibia
 - Cherenkov light
 - As a high energy cosmic ray particle hits the atmosphere it creates an extensive air shower by interaction with the atmosphere.
Examples of collected images

- After HESS1 trigger, only binary information available for each Pixel → A decision regarding the nature of a particle is difficult to make
- The HESS collaboration has decided to improve the performances of this project in a new version (HESS 2)
Objectives
→ Improve the HESS1 experiment by
 • Adding a new HESS2 event class (E from 10GeV to 50GeV)
 • Increasing sensitivity for E~50 to 100GeV
 • Improving resolution for E>100GeV

Means
→ A Very Large Cherenkov Telescope added in the center of the 4 existing ones
 • Much more collected information
 • Possible Stereoscopy
Issues
→ Huge amount of data to be processed on-line
 • 240 GBauds in approximately $10 \mu s$

Envisaged solution
→ Efficient Trigger system to minimize the data flow
→ Adding a Level 2 trigger to make a decision about the interest of a physical event
Examples of simulated images (HESS2)

- Observations

- Finest granularity
 → 2048 pixels (instead of 960 pixels)

- More Information
 → 3 levels of energies per pixels (instead of 2)
The global HESS2 Trigger System

- The trigger System is Composed of 2 levels:
 - L1: eliminates the NSB
 - L2: classifies particles (G,M,P)
- Input data are stored in an analog memory (SAM)
- L1 applies threshold on the images and delivers a L1A/L1R signal (100 KHz).
- PreL2 thresholds the L1A images and transmits the resulting images to L2.
- L2 implements more complex processing on the input images and generates a L2A/L2R signal (3.5 KHz).
The Level2 Trigger

- **Goal:**
 - Implement pattern recognition algorithms to accept photons and reject all other particles
 - Generation of a L2A/L2R signal

- **Structure:**
 - Multilevel processing chain
 - Pipelining
 - Multiple decisions
 - Latency
 - A window of $10 \mu s$ is available to compute all the algorithms.

- **Two approaches:**
 - Filter based on Hillas parameters (classical method)
 - Neural System
The rejection block

- Common to both approaches
- Goal:
 → Reject all images that contain less than 4 active pixels
 → Because it is difficult to make a decision with such poor information
1st classical approach: Utilization of Hillas parameters

Principles

→ According to the particles signature, the idea is to adjust a bidimensional ellipse on the image.

→ Compute the COG, length, width, surface, area and α.

→ According to the obtained parameter values, classify the particles in 3 classes (G,M,P).

![Diagram showing the adjustment of a bidimensional ellipse and classification process.](image-url)
2nd approach: The Neural solution

- **Input**
 - Images containing more than 4 pixels

- **Composed of 2 stages**
 - Preprocessing
 - Neural classifier
 - L2A/R generation

Diagram:

- **Rejection**
- **Preprocessing**
- **Hillas**
 - L2A/L2R
- **RN**
 - L2A/L2R
Neural solution (preprocessing)

- **Assertion**
 → 99% of all images are contained in a 21*21 square.

- **Role**
 → Find the biggest cluster within an entire image
 → Isolate a ROI
 → Center the particle signature within the square
Neural solution (classifier)

- **Structure**
 - Classical Multi-layer Perceptron
 - 441 inputs corresponding to 21*21 pixels (ROI)
 - 3 outputs corresponding to the 3 classes to identify
 - Gamma
 - Muon
 - Proton

- **Neural Networks Properties**
 - Powerful computational model
 - Inherent parallelism \Rightarrow Suitable for hardware implementation
Comparisons between both approaches in terms of rejection rate
→ Mean on all energies
→ On the same data
→ NN System
→ Hillas Parameters

Performances of NN are better than those of Hillas parameters.

<table>
<thead>
<tr>
<th></th>
<th>Gamma</th>
<th>Muon</th>
<th>Proton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural solution</td>
<td>80%</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>Hillas filter</td>
<td>60%</td>
<td>56%</td>
<td>37%</td>
</tr>
</tbody>
</table>
Conclusion

- Hillas approach is satisfactory
 → Fast computation
 → But strong cuts in the final decision
- The neural approach has already shown efficient results in Physics experiments
 «The H1 Neural Network Trigger Project» ACAT 2000
- Promising results in the HESS2 project but
 → Pre-processing has to be improved
 - Dimension reduction of the parameters space
 - Faster computation of the NN
- Challenging hardware implementation
 → Strong real time constraints (10\(\mu\)s) to execute the neural system (preprocessing + NN)
 → Need of a massive paralell architecture
Towards an « intelligent preprocessing »
→ Exploiting images properties to help the NN in its tasks
 • Geometrical moments (Zernike, Hu moments)
 • Pattern recognition (particle signature identification)
→ Reduce the dimension of the input space (PCA. . .)
→ Get information from the Hillas parameters
→ Other algorithms
 • SVM

Hardware implementation of the L2 algorithms
→ Develop an optimal (massively parallel) hardware architecture to implement
 • Preprocessing
 • Classifier
→ Target implementation chip such as FPGAs
 • Very fast circuits
 • Flexible