gLExec: gluing grid computing to the Unix world

David Groep', Oscar Koeroo!, Gerben Venekamp'
'Nikhef, P.O. Box 41882, NL 1009 DB Amsterdam, The Netherlands

E-mail: grid-mw-security@nikhef.nl

Abstract.

The majority of compute resources in todays scientific grids are based on Unix and Unix-
like operating systems. In this world, user and user-group management are based around the
concepts of a numeric ‘user ID’ and ‘group ID’ that are local to the resource. In contrast,
grid concepts of user and group management are centered around globally assigned identifiers
and VO membership, structures that are independent of any specific resource. At the fabric
boundary, these ‘grid identities’ have to be translated to Unix user IDs. New job submission
methodologies, such as job-execution web services, community-deployed local schedulers, and
the late binding of user jobs in a grid-wide overlay network of ‘pilot jobs’, push this fabric
boundary ever further down into the resource. gLExec, a light-weight (and thereby auditable)
credential mapping and authorization system, addresses these issues. It can be run both on
fabric boundary, as part of an execution web service, and on the worker node in a late-binding
scenario. In this contribution we describe the rationale for glLExec, how it interacts with the
site authorization and credential mapping frameworks such as LCAS, LCMAPS and GUMS,
and how it can be used to improve site control and traceability in a pilot-job system.

1. Introduction
Inter-organizational and cross-domain Grid computing aims to facilitate coordinated resource
sharing by providing a uniform interface to systems managed by independent administrative
entities [1]. In order to identify users and user communities, many of the scientific Grid
infrastructures today use Public Key Infrastructure (PKI) technologies where both users and the
services they access mutually authenticate each other based on X.509 [2] public key certificates.
To facilitate single sign-on and delegation, most of the clients use the derived prozy certificates [3]
to authenticate. These proxy certificates may additionally carry attributes that express user-
community membership (Virtual Organization or VO membership, in the context of this paper),
where such attributes are cryptographically signed by an attribute authority representing the
community, e.g. as used in the VOMS [4] system. Together, these comprise a ’grid identity’.

Local services, in particular computing services offered on Unix [5] and Unix-like platforms,
use a different native representation of the user and group concepts. In the Unix domain, these
are expressed as (numeric) identifiers, where each user is assigned a user identifier (uid) and one
or more group identifiers (gid). At any one time, a single gid will be the ‘primary’ gid (pgid)
of a particular process. This pgid is initially used for group-level process (and batch system)
accounting. The uid and gid representation is local to each administrative domain.

glLExec is a program to make the required mapping between the grid world and the Unix
notion of users and groups, and has the capacity to enforce that mapping by modifying the uid
and gids of glLExec and any processes spawned through glLExec. For a service running under a

"generic’ uid, such as a web services container, it provides the way to escape from this container
uid. It may be used similarly by externally managed services run on a site’s edge, such as VO-
administered schedulers and job submission systems running at a site as edge services. Lastly,
in a late-binding scenario, the identity of the target job owner (i.e. the identity of the user that
submitted a specific work load) can be declared and set at the instant the job starts executing.

In this paper we describe the use cases that necessitated the development of gLExec,
the implementation boundary conditions, and the actual implementation of gLExec with the
supporting authorization and credential mapping frameworks. Policy issues that influence the
deployment of gLLExec are discussed.

2. Rationale for gLExec

Translating grid identities to local Unix identities has usually been performed at the fabric
boundary. At the time a grid job is submitted for execution to a computing service, the
client establishes a mutually authenticated network connection using X.509 credentials [2],
and authorization and credential mapping is done immediately, before the job is submitted
a local resource management system (LRMS) such as a batch system, and before any client-job
management is started. It is the mechanism implemented by, e.g., the pre-web services Globus
Toolkit’s globus-gatekeeper [15]. Various mechanisms today extend this basic functionality, such
as introduced via LCAS and LCMAPS [16, 17] in the edg-gatekeeper [16] and via GUMS [18] in
the PRIMA [19] extensions, but do not alter the basic methodology.

The combination of the gatekeeper and a job management system we call a site’s Grid
Computing Service (GCS, colloquially called ‘CE’)!: the set of software and systems that form
the interface between the Grid and a site’s local computing facilities and computing elements
(representations of the batch queues).

However, a GCS can be implemented in different ways that do not necessarily allow for the
mapping to be completed at the time of initial authentication, either because the authenticating
process is not capable of setting the Unix identity for the client (being run under a non-superuser
account), or because the identity used to submit the actual workload is not yet known at
submission time (‘late binding’). In these cases, an external utility is needed to perform this
mapping, needing super-user privileges to change the uid and gid of the process: a utility such
as gLExec. In this paper we have identified three scenarios explicitly:

Non-privileged context acceptance (site-CE) The process that accepts and authenticates
the connection does not have sufficient privileges to change Unix identity, e.g., because it
runs in a web services container environment with a uid larger than zero. All services that
accept and authenticate connections are under site control. The job flow in this scenario is
shown in Fig. 1a.

Site-local VO scheduler (VO-CE) The process that accepts the connections is not under
site control, but is non-site-managed code that runs as an unprivileged user. This ‘site-
local scheduler’ accepts incoming job requests and subsequently submits jobs to the site’s
local compute environment, as shown in Fig. 1b.

Traditionally, such a site-local scheduler or job monitor has been run with the credentials
of the original user, as in the case of the gridmanager in Condor-G [20], but in larger
deployments this leads to an unacceptable load on the system running the site-local
schedulers, as it incurs a load of at least one running process per user per workload source.

1 such a service is colloquially referred to as a ‘CE’, meaning in this sense a physical or virtual machine on which
such a system is running. Unfortunately this clashes with the GLUE [6] definition of Compute Element (CE) and
in the current context would cause a relatively large amount of consternation. Throughout this paper CE is also

used in its colloquial meaning.

Site Boundary

A Site Boundary B

CE User Job User Job
User Job i Unix uid specific . Unix uid specific
run by Site to User Grid Workload Management to User
Z with g%nenc Systems

ui

gLexec User Job User Job

. Unix uid specific Unix uid specific
Grid Workload Management to User

Systems

Figure 1. Flow of a grid job through the Grid Computing Service and the LRMS for the Site-CE scenario
(A) and the VO-CE scenario (B). White boxes represent processes run under control of the site, gray boxes are
processes run by a (generic) VO uid on the Grid Computing Service system, and dashed boxes represent processes
or Jobs run or held with a Unix uid associated uniquely to the User owning the workload of this Job.

VO Workload Management
System or Job Queue

7 User Job
7 with credentials 7

Site Boundary

Site-CE, VO-CE
or traditional
gatekeeper
mechanism

Grid Workload Management
Systems

§ UuserJob
% Unix uid specific 4
¥ to User

Figure 2. Flow of a grid job through the Grid Computing Service and the LRMS for the pilot job scenario.
The Pilot Job can be submitted to the LRMS in various ways that are not relevant to the scenario. Shading as
in Fig. 1.

The ability to change Unix identity allows the use of community schedulers that can serve
multiple users within the same local scheduler process, whilst retaining the characteristics
of per-user job submission by changing Unix identity before any workload is presented to
the site batch system.

Here, it is assumed that a trust relationship exists between the individuals or organization
running the community scheduler on the site, and the site’s management.

Late binding (gLExec-on-WN) Late binding refers to the submission model where a generic
‘pilot job’ retrieves the actual workload only once resources are allocated to it, i.e., at the
time the pilot job has started execution on a computer system — using a job slot on a worker
node (WN), in case of systems managed by a local resource management system (LRMS)
— as shown in Fig 2.

A pilot job (placeholder job) is a compute job that will not in itself do any work, but
instead will retrieve the actual workload from a pre-determined location provided to it at
submission time. The submission of pilot jobs can be done either by the user, or by a third
party on behalf of a user or group of users. Only in the latter case will an identity switch
likely be considered necessary to assert the actual workload’s owner to the site and provide
Unix-level insulation between workloads from different users on a multi-user system.

In the gLExec-on-WN case, its use is cooperative: it relies on the pilot job on complying
with the invocation policy, and in its respecting the result of the authorization decision
made in gLExec.

In each of these cases, an external utility is needed, but the way in which that utility is
deployed (with or without super-user privileges) is open. There are four possible deployment
models, whose choice is largely orthogonal to the scheduling scenario:

Identity-mapping (IM) model To exploit the account mapping capabilities of gLExec, the
executable must be run with super-user privileges. This can be accomplished by having the
glL.Exec binary owned by the super-user and enabling the setuid bit in the file’s mode on a
set-uid capable file system. The local credential change on execution of the client program
enables isolation between processes run — and files accessed — by different grid identities,
and allows distinguishing between the invoking process and the clients started by it.

Non-privileged (NP) model The gLExec binary can be installed without any special
privileges. In this case, the authorization and logging facilities of glLExec can still be used,
but the actual credential mapping enforcement stage is omitted. In this mode, inter-process
and file isolation is not possible. Also, this mode is not suitable for the site-CE and VO-CE
scenarios, since the client program will run with the same uid and gid as the GCS and could
thus manipulate it, and this manipulation would extend beyond the VO or user that - in
case of a pilot job submission - knowlingly induced the possibility for such manipulation.

Site-isolation (SI) model The gLExec binary is made setuid, but to a dedicated ‘execution
account’ instead of the super-user, and only the authentication and authorization modules
are retained in the configuration (enforcement modules to apply the credential change
usually require super-user privileges that are not available in this case). In this mode,
inter-job isolation is not possible, but by virtue of the setuid local credential change the
client will not be able to tamper with the starting process. This mode is appropriate for
canned job submission, where only known programs are executed and inter-job isolation is
less relevant.

No-Op model In case only simple invocation-compatibility is required without the need for
authorization or credential mapping, a no-op wrapper that executes the specified client
directly can replace gLExec (the ‘no-op model’).

It is clear that to attain proper job isolation and tracability only the ”Identity Mapping” mode
is appropriate. However, there may be operational or policy reasons why having a program that
is setuid to root on worker nodes is considered inappropriate. When gLExec is used as part
of the site-CE or VO-CE scenario, its invocation bing entirely site controlled and its powers
limited to a specific (set of) dedicated nodes, such operational and policy considerations are
usually weighed differently.

2.1. Implicit versus Specified Local Credential Determination

The local credential to be used for the execution of a particular job can either be supplied
as part of the job description, or can be determined implicitly from the grid identity used to
submit it. Although the former provides more flexibility, the latter is the most prevalent in
current implementations. Only recently have job submission languages allowed the expressed
on a local user name preference (in particular JSDL [21], WS-GRAM RSL [8]) with multi-user
Grid Computing Services.

All current gLLExec versions, and the LCAS and LCMAPS frameworks described below, use
implicit credential mapping to offset the lack of target-user information in the job submission.
The local credential in this mode is derived from the identity and attributes used to establish
the job submission security context, and may additionally include mapping obligations specified
through any external LCMAPS modules.

If explicit credential mapping is desired, the LCMAPS framework, and thereby gl.LExec, can
collaborate with the Work Space Service (WSS) [9] to allow the use of designated ’execution

environments’, by virtue of sharing a common back-end interface in LCMAPS. This scenario
should be considered if gl.LExec is used as part of a site’s Grid Computing Service.

3. Requirements

As the interface between the grid world and the local site, gLExec should address the grid security
requirements [22], both in helping the general security architecture to meet these requirements,
and in its own design and implementation.

3.1. Access control in gLExec
In glLExec there are three control points where limitations can be applied:

invoker identity —not all processes or users are necessarily allowed to change Unix identity. To
prevent abuse and inadvertent disclosure of site policies, gLExec invocation can be limited
to specific uids. Further restrictions can be defined when central authorization services are
used based on the credential used to authenticate to the service (either the host or a VO or
user credential), or on the source’s network address.

target Unix identity — it is generally desirable to limit the allowed range of Unix identities to
a subset of the uid space. In particular, limitations are usually imposed such that mappings
to privileged (uid 0) or system (uids below? 100) accounts are not allowed.

target Grid identity — this limitation implements the grid authorization system as
conventionally used in site access control, i.e., authorization decisions as commonly used
on the CE today. These policy decisions are based on the grid identity of the User
and any attributes carried by the user including their VO-asserted attributes, in general
cryptographically protected assertions in the form of Attribute Certificates [23] bound to
the grid identity of the user, that are issued and signed by the Attribute Authority of the
VO. These are then carried along as an extension in the proxy certificate [3] delegated by
the user, such as in the VOMS [4] system.
Target Grid identity authorization in gl.Exec is identical to the site access control
functionality required in the gatekeeper scenarios. gLExec thus shares common site access
control and credential mapping frameworks used for other grid components (gatekeeper,
GridFTP server, and the GSI-enabled ssh server) in the gLlite software stack: LCAS and
LCMAPS, described later in this paper.

3.2. Centralized versus Machine-local Configuration

In large deployments, it may be advantageous to use a single, centralized point where all policy
and credential mapping state is kept. This is especially useful in case multiple GCS systems are
used, or when the compute and Grid storage services share a common set of POSIX-style file
systems that rely on uid and gid access controls, e.g. the Network File System NFS. Similarly,
this mapping consistency is relevant in cluster computing scenarios, where consistency in uids
and gids on the worker nodes and on the batch server is required, or where processes on worker
nodes may communicate amongst themselves based on uid/gid authentication (such as in many
implementations of MPI [24]).

In the gLLExec-on-WN scenario a machine-local mapping may be more appropriate, since the
number of pool accounts that needs to be available at any one time can be equal to the number
of Job Slots available on that specific machine. This obviates the need for the large number of
pool accounts that would be needed in case the mapping would span an entire cluster or Unix

2 The conventions used to designate system accounts is dependent on the Unix Operating System flavour and
distribution

system management domain. Once a job terminates and the Job Slot is released, the associated
pool account can be re-used for the next job.

Either model must be implementable, and to this end the policy, any persistent state used
in mapping, and the enforcement should be distributable over more than one system. In
the framework discussed below, this can be achieved by distributing the various functionality
modules of LCAS and LCMAPS over machine-local, cluster-local, or site-wide services.

3.3. Persistency of credential mapping

Any pool-account or pool-group credential association established by gL.LExec through LCMAPS
is semi-persistent: the uid or gid will not be automatically released. This persistency for the
duration of the job is required since the mapping engine may need to be invoked repeatedly to
steer the local process execution from the grid level (e.g. forced renewal of proxy credentials,
management of input and output sandbozes) and job management at the local site. Consistency
of mapping between multiple invocation of the mapping engines and glL.Exec on any specific
system must therefore be ensured.

However, longer-term persistency that allows re-use of a user’s data and software stored in
local POSIX-style file systems (long-term persistency) can have important side effects. The
ability to store data encourages the submission of jobs leveraging the implicit assumption
that data is preserved between job executions on a specific site. For this reason, long-term
persistency is uncommon in larger-scale production environments, and local account state clean-
out processes are employed to dissociate the mapping and remove any persistent state related
to the account at the site.

4. Implementation

glExec is a stand-alone executable that can validate incoming grid credentials, make an
authorization decision based on the credentials and the program to be executed, establish a
mapping between the grid identity and a local Unix credential mapping, and subsequently
execute the specified binary program with these Unix credentials.

glLExec uses the authorization and mapping systems of the glite site access control system:
the Local Centre Authorization Service (LCAS) and the Local Credential Mapping Service
(LCMAPS). Authorization and credential mapping steps are separated, since the binary
authorization decision is stateless and can potentially be computed faster than the mapping
to a site-local credential. Secondly, it is important that a negative authorization decision does
not change the internal state of the site — whereas a state change is a likely in case of credential
mapping, e.g. when assigning dynamic or pool accounts. The LCAS and LCMAPS systems are
described in mode detail elsewhere [26].

The gLExec code is derived from the gsexec, which in turn is derivative of the suezec [12]
sources, and has been modified to interface to the LCAS authorization service and the LCMAPS
credential mapping service. Contrary to suexec, glExec also uses a run-time configuration file,
to be made writeable for the super-user only. This protected configuration file contains selected
security settings of gLExec. This is needed for a realistic large-scale deployment scenario in a
grid where sites are autonomous but are not able or willing to re-build code from source.

The security features of suerec that are compatible with the grid use cases discussed in
this paper have been retained, whereas checks solely required for the CGI use case have been
removed. New control points have been introduced where needed.

no hard constraints on the path of the command executed — suexec only allows the
execution of commands in the current directory, i.e., leading forward slashes and relative
paths containing the parent directory are prohibited in suexec. This restriction has been
lifted in gLExec, but the LCAS RSL access control plug-in provides an alternative extended
mechanism to restrict the execution of commands.

no closure of open file descriptors — gLExec will retain open file descriptors across the
invocation and uid change, and the target user job will avail over any open files, including the
standard input, output and error streams and pipes of the parent process. This semantics
is used by in the Site-CE scenario (e.g. by the CREAM CE [28]), and by the Condor-G [20]
glide-in system. In the gl.Exec-on-WN scenario, pilot jobs should close any inappropriate
files before invocation.

checks on user and group id of those allowed to invoke gLExec — in suexec only the
(pre-defined) owner of the httpd process is allowed to invoke suexec. gL.Exec replaces this
with a (super-user only) configurable white list of users allowed to invoke gL.LExec, to allow
specific processes (in the Site-CE scenario) or a range of accounts (in the gLExec-on-WN
scenario) to invoke gL.Exec.

changes to environment cleaning — in suerec the environment is reset to include only a
single pre-defined path. gl.Exec can preserve a configurable set of environment variables
(defined in the protected configuration file), but will always unset the LD_* variables and
will re-set PATH to a value defined at compile-time. The HOME variable will be re-set to
the one of the target uid.

As part of the execution, a delegated proxy credential may be copied to the filesystem in the
target user’s uid space. The use of a copy instead of a delegation of the proxy is appropriate in
this case, as the credential does not leave the machine across a gLExec invocation (the source of
proxy should of course be appropriately delegated). File type and ownership requirements are
checked for both source and target location to ensure this mechanism cannot be abused.

Other than for the user proxy, gLExec does not provide a mechanism to transfer files between
the invoker of gLExec and the target process. The retention of open file descriptors across the
gLExec invocation, and the guaranteed mapping consistency between repeated invocations of
LCMAPS with the same grid identity, provide the elements on which such a facility can be built.

In order to allow logging of the child’s process execution times, a fork-execv construction
can be used in place of the simple execv used in the original suexec code. gLExec will then
waitpid(2) on the child and log the the return code of the child, and the real, user, and
system time spent by the child, to syslog. This behaviour is configurable via the protected
configuration file.

4.1. gLEzec semantics with respect to the operating system environment

When used in the gLExec-on-WN scenario, it is important that the process tree and session
affinity is not broken by the use of gLExec, and that gLExec appropriately accumulates times for
its child processes. Batch systems rely on this process tree to track and trace processes that are
executing on a particular node, and assume that resource usage information about all processes
started as part of one job are accumulated by the parent process (using wait or waitpid [27]).
However, glLExec cannot ensure that the user processes started by it appropriately wait on any
processes they start subsequently.

5. Policy considerations

In general, the policy considerations to deploy gl.LExec in the Site-CE scenario is comparable
to those faced when deploying a network gatekeeper with super-user privileges. Given this
similarity, such considerations are not discussed in this paper.

In the late binding scenario where the pilot jobs are submitted by a third party (‘the VO’)
and can bind to workloads submitted by a variety of users, novel security policy issues may
arise. E.g., at the site level it is not obvious who is responsible for the workload running on a
particular WN at any one time. The knowledge on workload ownership is distributed between
the site (who sees the owner of the pilot job), state kept within the pilot job (the workload it

is bound to), and information kept by the third party responsible for submitting the pilot job
and its instructions (the third-party’s management framework, usually a VO). Depending on
site-local circumstances, this distribution of knowledge may or may not be acceptable,

The use of gLLExec in the VO-CE scenario, and by the pilot job for gl.LExec-on-WN, involves
declaring the grid identity of the target user directly to the site, and aims to address this issue.
In either case, the use of glLExec is cooperative as it assumes the responsible VO-CE or pilot job
will truthfully call gLExec and respect gLExec’s decision to run or refuse a particular target user
job. This cooperation cannot be a-priori enforced by technical means, and relies on appropriate
policy agreements between the site and the VO or user. Failure to comply with the policy can be
established a posteriori by inspection of accounting logs maintained the batch system (VO-CE
scenario) or the process accounting logs on the worker nodes (gLExec-on-WN scenario).

Without local credential mapping, as performed by gLExec, it is hard to impossible to
distinguish at the process and system call level between the pilot job and the executables and
script run by the pilot job on behalf of a third user. Even if the start of a user job is declared
by the pilot job to the system via a logging mechanism, individual processes that are not part
of the processes tree of the pilot job or otherwise ‘escape’ will be using the same local uid and
gid as the pilot job. Since multiple pilot jobs may be executing on the same system (in case
a single system offers multiple independent job slots), it cannot be determined which user is
responsible for any behaviour observed on the system, files will be shared, and the target user
has access to the pilot job data, including any proxy credentials of the pilot job. By using
glL.Exec in Identity Mapping mode, each target user is contained in its own uid and gid domain,
and standard operating-system mechanisms can be used for auditing, accounting and logging of
such processes. In combination with audit capabilities available in systems that meet Evaluation
Assurance Level 3 of ISO/IEC 15408 [29], this can provide enough information to associate any
individual action on a WN to a specific grid identity.

In the gLExec-on-WN scenario, using gLExec in identity mapping mode does entail running a
super-user setuid binary. Such a deployment obviously poses its own security risks and associated
policy isses. The tradeoff between the different risks and responsibilities ultimately remains a
site-local decision.

6. Deployment
The LCAS and LCMAPS subsystems, responsible for most of the authorization and mapping
functionality in gLExec, were introduced in the middleware deployed by the EU DataGrid [30]
project in its 2.0 release in 2003, in conjunction with a modified version of the Globus
gatekeeper (edg-gatekeeper) and GSI-enabled wu-ftpd server (edg-gridftpd) [17]. The code base
was subsequently forked for use both in the middleware deployed by the LHC Computing
Grid Project [31] in 2004 with frozen functionality, and in the gLite [25] software stack of
the EGEE [32] project where it has been further developed. It has been included as a
standard component by the aforementioned deployment projects in order to support fine grained
authorization and resource management based on VOMS attributes.

glLExec is available as a released component in glite version 3.1 and higher. A pre-release
version of gLExec has been deployed on production-level resources at the Fermi National
Accelerator Laboratory (FNAL) in the gLExec-on-WN scenario [33]. In conjunction with the
GUMS system it is used to enable explicit job separation and identification of the user responsible
for any specific job on a worker node. Since the initial deployment of a gl.LExec version in October
2006, no major obstacles were encountered.

Following the deployment of gLExec at FNAL it is current (August 2007) being introduced
as a component in the Virtual Data Toolkit [34] for use on the Open Science Grid [35].

gL.Exec is also used as part of the CREAM CE system for a Site-CE scenario. The CREAM
CE is based on web services and implemented in Java. The CE system itself therefore runs in

an unprivileged JVM container, and uses gL.LExec to switch uid in the Unix domain before it
submits jobs to the LRMS.

7. Related work
Mapping between grid identities and local Unix credentials has been part of all computational
grid services, usually handled as part of the service accepting the incoming request.

The Globus [1] pre-web services gatekeeper provides an integrated authorization and mapping
system based on a many-to-one grid-mapfile, where one or more X.509 subject names were
associated with a single Unix uid. The credential mapping is an integral part of establishing
the network connection and the SSL/TLS handshake, and is combined inside a single daemon
process running with elevated privileges.

The grid-mapfile many-to-one mapping was extended by McNab via the gridmapdir
mechanism [7]. Pool accounts provide a unique one-to-one mapping without the need to pre-
assign unique uids to each grid identity: it is assigned only once a mapping is actually requested,
and is then persistent until cleared explicitly. The format of the grid-mapfile used for the
gridmapdir system is backwards-compatible with the one used by Globus. The pool account
system is used in the mapping framework on which gLExec is based.

The WS-GRAM service [8] that is part of Globus Toolkit version 4 does not change local
identity as part of the network daemon, running entirely inside a Java virtual machine (JVM).
The WS-GRAM service performs a lookup of the local Unix identity (many-to-one using a grid
mapfile, or an explicit many-to-many mapping using the Work Space Service [9]) whilst running
inside the JVM. It then uses sudo [10] to change identity from the generic userid used to run
the JVM to the designated local identity. It is limited to a fixed set of accounts per grid subject
name, listed in the grid-mapfile, whereas gl.Exec and the LCMAPS framework instead provide
an implicit mapping, based on the grid credentials provided.

A change of credentials is also employed in the suexec ancillary program to Apache
httpd [11, 12]. When used with httpd, suexec allows running CGI [13] programs as the owner of
the CGI program, instead of the user id under which the httpd program is run.

For integration with the GridSite system [14], a like program gsezec was developed. Derived
from Apache’s suerec code base, it enables the use of grid credentials to determine local Unix
identity to programs launched via Apache’s httpd and the mod_gridsite module, including the
use of pool accounts. It is designed to act as a drop-in replacement for suexec. gLExec in turn is
derived from gsexrec and augments its functionality by providing the pluggable authorization and
credential mapping frameworks LCAS and LCMAPS, and by allowing for the preservation of
file descriptors across the gl.LExec invocation. This changes the invocation semantics of gLExec
with respect to suexec and gsezxec, but allows a wider range of use cases that do not involve the
use of a web server.

The sudo program [10] allows permitted users to execute commands as the super-user or,
in general, a different user on the local system. Execution privileges are granted based on the
local userid of the current user and, optionally, on knowledge of both the local user’s password
and the specific executable that will be invoked. Conceptually providing functionality similar
to gLExec, it only uses local, not grid identities for access control.

8. Future Directions
It has been recognised that additional functionality is beneficial in an LCAS and LCMAPS
deployment scenario where the authorization decision is made is a highly distributed way, i.e.,
by using gLExec on many WNs inside a site instead of on a relatively low number of Grid
Computing Service systems.

Since almost all of the grid functionality of gLExec is implemented via the LCAS and
LCMAPS systems, future work includes development of site-central LCAS and LCMAPS

‘services’, and authorization modules (LCAS) and acquisition modules (LCMAPS) to
communicate therewith. The PRIMA module developed to communicate with the GUMS [18]
system is a conceptual example of the desired behaviour. However, since GUMS relies on a site-
local copy of all membership data of all VOs supported at a particular site (i.e. the VO attributes
are passed along as strings and not as VOMS attribute certificates in the communication
protocol), whereas the VOMS attribute validation model used in gLite is based around validation
of the incoming signed attribute certificates, an alternative is needed that matches the latter
paradigm. Since similar information is exchanged in both the GUMS and the glite case, a
common communications protocol is being pursued that will allow either system to be used
interchangeably. Current work, in collaboration with the developers of the Globus Toolkit, the
VO Privilege Project and the glite team, aims to converge on a common protocol and library
based on the SAML-XACML binding. Once the VO attributes passed to the site central service
remain cryptographically protected, the glLite and GUMS validation models converge and also
GUMS could rely on the incoming assertions and thus would no longer need to cache all VO
information locally.

With the availability of an authorization communications protocol for LCAS and LCMAPS,
also cross-site central ban lists can be supported, allowing improved emergency response to
compromised grid identities and VO attributes. It remains to be seen how far the protocol can
be used for communications with a generalized credential validation service.

It should however be noted that also in the absence of a site-central service for policy
configuration, all glLExec deployment scenarios, including the gL.Exec-on-WN scenario, can be
realized in a consistent and secure way.

9. Summary and Conclusions

To integrate resources that use Unix-like semantics for user management and access control in
a grid environment, site-local authorization and credential mapping are required. The gLExec
system, used in combination with the LCAS site-local authorization system and the LCMAPS
local credential mapping service, provides an integrated solution for site access control to grid
resources. With the introduction of gLLExec, the submission model can be extended from the
traditional gatekeeper models, where authorization and credential mapping only take place at
the site’s ‘edge’.

Retaining consistency in access control, glLExec allows a larger variety of job submission
and management scenarios that include per-VO schedulers on the site and the late binding of
workload to job slots in a scenario where gl.LExec in invoked by pilot jobs on the worker node.

Future extensions of the LCAS and LCMAPS system to use central authorization and
mapping services over a standard protocol will further improve deployability and enable better
control over the site access control policies in effect.

Acknowledgements

This work makes use of results produced by the Enabling Grids for E-sciencE project, a project

co-funded by the European Commission (under contract number INFSO-RI-031688) through

the Sixth Framework Programme. Full information is available at http://www.eu-egee.org.
This work is part of the research programme of the Foundation for Fundamental Research

on Matter (FOM), which is financially supported by the Netherlands Organisation for Scientific

Research (NWO).

References
[1] Foster I, Kesselman C and Tuecke S The Anatomy of the Grid: Enabling Scalable Virtual Organizations
International J. Supercomputer Applications, 15(3), 2001

ISO/IEC JTC 1 and ITU-T Information Technology — Open Systems Interconnection — The Directory:
Authentication Framework ISO/IEC International Standard 9594-8, ITU-T Recommendation X.509

Tuecke S, Welch V, Engert D, Pearlman L and Thompson M Internet X.509 Public Key Infrastructure (PKI)
Prozy Certificate Profile REFC 3820

Alfieri R, Cecchini R, Ciaschini V, dell’Agnello L, Frohner A, Lorenty K, Spataro F, From gridmap-file
to VOMS: managing authorization in a Grid environment Future Generation Computer Systems 21 (4)
549-558 (2005)

Ritchie D M and Thompson K The Uniz Time-sharing System C. ACM 17(7) 365-370

Andreozzi S, et al. 2007 GLUE Schema Specification Version 1.3 GLUE Working Group, 2007

McNab A Grid-based access control for Unix environments, Filesystems and Web Sites Proceedings of
Computing in High Energy and Nuclear Physics, La Jolla, California, USA, March 2003 (TUBT008,
ePrint ¢s.DC/0306030)

Feller M, Foster I and Martin S GT4 GRAM: A Functionality and Performance Study submitted to TeraGrid
2007 Conference, Madison, Wisconsin, USA (http://www.globus.org/alliance/publications/papers/TGO07-
GRAM-comparison-final.pdf, accessed August 22, 2007)

Keahey K, Foster I, Freeman T, Zhang X and Galron D Virtual Workspaces in the Grid Proceedings of
Europar 2005, Lisbon, Portugal, September, 2005

Miller T C Sudo Main Page http://www.gratisoft.us/sudo/ (accessed August 21, 2007)

The Apache HTTP Server Project http://httpd.apache.org/ (accessed August 22, 2007)

suEXEC Support http://httpd.apache.org/docs/trunk/suexec.html (accessed August 22, 2007)

CGI - Common Gateway Interface http://www.w3.org/CGI/ (accessed August 22, 2007)

McNab A The GridSite Web/Grid security system Software: Practice and Experience 35(9) 827-834

Foster I, Kesselman C, Tsudik G and Tuecke S A Security Architecture for Computational Grids Proc. 5th
ACM Conference on Computer and Communications Security Conference, 1998, pp. 83-92

Alfieri R, et al. Managing Dynamic User Communities in a Grid of Autonomous Resources in Proceedings
of the Computing in High Energy and Nuclear Physics conference, 24-28 March 2003, La Jolla, California,
USA (TUBTO005, ePrint ¢s.DC/0306004)

Roblitz T, et al. Autonomic Management of Large Clusters and Their Integration into the Grid Journal of
Grid Computing 2 247260 (2004)

The VO Privilege Project Grid User Management System http://computing.fnal.gov/docs/products/voprivilege/

(accessed August 21, 2007)

Lorch M Transition to Role-based Assignment of Local User-Ids http://computing.fnal.gov/docs/products/
voprivilege/documents/transition-to-privilege.html, November 2005 (accessed August 21, 2007)

Frey J, Tannenbaum T, Foster I, Livny M and Tuecke S Condor-G: A Computation Management Agent for
Multi-Institutional Grids Journal of Cluster Computing volume 5 237-246 (2002)

Anjomshoaa A, Brisard F, Drescher M, Fellows D, Ly A, McGough S, Pulsipher D, and Savva A Job
Submission Description Language (JSDL) Specification v1.0 GFD.56

Venekamp G EGEE JRA3 Activity wuser requirements EGEE-JRA3-TEC-485295 (version 1.0)
(https://edms.cern.ch/document/485295) (accessed August 29, 2007)

Farrell S and Housley R An Internet Attribute Certificate Profile for Authorization RFC 3281

Dongarra J J, Otto S W, Snir M and Walker D A message passing standard for MPP and workstations
Commun. ACM 39 (7), 84-90

Lightweight Middleware for Grid Computing http://www.glite.org/ (accessed August 22, 2007)

Groep D, Koeroo O, Venekamp G Grid Site Access Control and Credential Mapping to the Unix domain
Nikhef PDP Technical Report (http://www.nikhef.nl/grid/lcaslcmaps/) (to appear)

The Open Group Single Uniz Specification Version 2.0 Unix98, 1998

Andreetto P, et al. CREAM: A simple, Grid-accessible, Job Management System for local Computational
Resources in Proceedings of the Computing in High Energy and Nuclear Physics conference, Mumbay,
India, February 2006 (to appear)

The Common Criteria Recognition Arrangement members Common Criteria for Information Technology
Security Evaluation CCMB-2006-09-001 and ISO/IEC 15408 (http://www.commoncriteriaportal.org/,
accessed August 22, 2007)

EU DataGrid project http://www.edg.org/ (accessed August 22, 2007)

LHC Computing Grid project http://www.cern.ch/lcg/ (accessed August 22, 2007)

Enabling Grids for E-Science project http://www.eu-egee.org/ (accessed August 22, 2007)

Yocum D, Sfiligoi I and Petravick D Addressing the Pilot Security Problem With gL FExec Proceedings of the
Computing in High Energy and Nuclear Physics conference, Victoria, Canada, September 2007 (to appear)

Virtual Data Toolkit http://vdt.cs.wisc.edu/ (accessed August 22, 2007)

Open Science Grid http://www.opensciencegrid.org/ (accessed August 22, 2007)

