fE A i

EURCPEAN MIDDLEWARE INITIATIVE

EUROPEAN MIDDLEWARE INITIATIVE

ARGUS EES - EXECUTION ENVIRONMENT SERVICE

Document version: 1.0.0
EMI Component Version: 0.0.10

Date: April 28, 2011

[ERA:

EUROPEAN MIDDLEWARE INITIATIVE

TITLE:
Argus EES - Execution Environment Service
Date: April 28, 2011

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant Agreement Nr.

INFSO-RI-261611.

README [+] Page 1
Execution Environment Service (EES)

FUNCTIONAL DESCRIPTION The EES is a pluggable, configurable authorisation
service similar to the Site Central Authorisation Service (SCAS). The role of
the EES is to ensure that an appropriate site—specific execution environment is
procured based on the site—agnostic obligations and attributes it receives as
input in the form of SAML2-XACML2 requests. It runs as a standalone service,
responding to requests from a Policy Enforcement Point (PEP) which have been
augmented with information from a Policy Decision Point (PDP).

From the outside, the EES can be viewed as an obligation transformer; for
example it can be used to transform a site-—-agnostic obligation for a local
account mapping to a site-specific obligation for on-demand virtual machine
deployment.

To integrate the EES with an existing Argus installation, a separate component
called the EES Obligation Handler should be configured in the PEP daemon. For
more details regarding integration in Argus, please see the documentation for
this component. The EES itself ships with a pre-configured transformer plug-in
which extracts PDP data from the SAML2-XACML2 environment attributes. This
plug—-in is not required when PDP data is not transmitted to the EES.

DAEMONS RUNNING ${prefix}/sbin/ees

INIT SCRIPTS AND OPTIONS (start|stop|restart|reload|status) ${prefix}/etc/ees
CONFIGURATION FILES WITH EXAMPLE OR TEMPLATE The EES is designed to be highly
customizable. Its configuration model allows policies to be expressed as state
machines in the Policy Description Language (PDL), whose branches end in
pre—-configured plug-in instances. A small example as well as an ees.conf
manpage is provided.

${prefix}/etc/ees.conf

LOGFILE LOCATIONS (AND MANAGEMENT) AND OTHER USEFUL AUDIT INFORMATION Syslog
available: yes No custom log file configurable yet

OPEN PORTS 6217

POSSIBLE UNIT TEST OF THE SERVICE A high-level test script (test _ees.sh) is
available.

WHERE IS SERVICE STATE HELD The EES uses plug—ins to connect to various other
middleware. The configuration file for the EES defines the plug-ins used, as
well as any dependant configuration files such as
/etc/grid-security/gridmapfile and gridmapdir.

An integral part of the EES is the Attribute and Obligations Store (AOS), which
is a component that allows plug—ins to query the (transient) SAML2-XACML2 data
received. This object store is exposed through a simple API. This data is
logged, but the intermediate state is not saved.

CRON JOBS None.

SECURITY INFORMATION The EES should run firewalled from the rest of the
network, only allowing the Argus PEPd access.

ACCESS CONTROL MECHANISM DESCRIPTION (AUTHENTICATION & AUTHORIZATION) Mandated
by plug-in and network configuration.

HOW TO BLOCK / BAN A USER Through Argus.

NETWORK USAGE Exposes a SOAP service that transforms SAML2-XACML2 requests.
FIREWALL CONFIGURATION The EES currently has no support for TLS connections.
System administrators should configure the EES host to only allow access to the
EES from the PEPd host.

SECURITY RECOMMENDATIONS

SECURITY INCOMPATIBILITIES

LIST OF EXTERNAL PACKAGES SAML2-XACML2-C-LIB

README [+] Page 2

OTHER SECURITY RELEVANT COMMENTS
UTILITY SCRIPTS
LOCATION OF REFERENCE INFORMATION FOR USERS Argus documentation

LOCATION OF REFERENCE INFORMATION FOR ADMINISTRATORS
https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/EES

EES(1) Execution Environment Service EES(1)

NAME

ees — An XACML webservice to create execution environments
SYNOPSIS

ees [configfile]
DESCRIPTION

ees runs the EES in the background unless debug mode was selected at compile time.

COMMAND-LINE OPTIONS
configfile
Will run the EES with the specified config.

SEE ALSO
ees.conf (5)

AUTHORS
ees was written by Aram Verstegen <aramv@nikhef.nl>, with help from Oscar Koeroo <oko-
eroo@nikhef.nl> and Mischa Salle <msalle@nikhef.nl>.

Mar 2011 1

EES.CONF(5) Execution Environment Service EES.CONF(5)

NAME

ees.conf — ees(1) configuration file

OVERVIEW
The ees configuration file language allows you to create logical trees of execution for EES configured plug-
ins.

EXAMPLES
plugin_1 = "ees_pluginl.mod"
"argv[1]"
"argv[2]"

plugin_2 = "ees_plugin2.mod"
plugin_3 = "ees_plugin3.mod"
Will execute plugin 1, 2 and 3 if each previous plugin run was successful policy_1:
plugin_1 -> plugin_2
plugin_2 -> plugin_3
Only runs plugin 2 if plugin 1 was successful policy_2:
plugin_1 -> plugin_2
plugin_3
Try plugin 2 after plugin 1, if plugin 2 fails, run plugin 3 and try plugin 2 again policy_3:

plugin_1 -> plugin_2 | plugin_3
plugin_3 -> plugin_2

SEE ALSO
ees(1)

Mar 2011 1

CGC
nabling Grids f

for E-scienc Tnformation Society
and Media

Table of contents

1. INTRODUCTION 4
1L PURPOSE. ...ttt ittt ettt eett ettt ettt e e e ettt e e st e e e eaabeeeabee e tbeeaaasseeessseeeseseaaasssseaasaeeassseaeasssseansseeassaeeassssaeeeaeeaaaannnes 4
1.2, DOCUMENT ORGANISATION....eceuvveeeurreesareeeasesesssssssesssssasssesassssssssssssssessssssssssssssssssssssssssesssesssssssssssessssssessssseesanns 4
1.3, APPLICATION AREA.....ueiieiuveeeeuteeesteeeeetseeeeseeessseeeatseseessaeeasssseessseeeasseeeaasseeasssseessaseessseeasssssesseseessaeeanssssesaaeeeaanns 4
1.4 REFERENCES. ... ctvteeittteeeitteeeeteeeeteeeetseeeeaseeeetteeeaatseeeeaseeeaasseaassseeesseseaassseasssseansseseessseesassseenssesenssaeeasssssasaaaaeaanns 4
1.5. DOCUMENT AMENDMENT PROCEDURE.......cceeeettrreeeeeeusseeeeeesesssesseesasssssseseessssssssasssssssessenssssssssesassssssessanssssseseensssnsnns 4
1.6, TERMINOLOGY ...t euetieeeutee e ettt e ettt e e eatee e et e e eeaaeeeeateeeeateeeeeaseeeeaseeeeaseseensseeeaeseeesseseensseeeeasseeesssseenssssaeeeeeeennssnssnnens 5

2. REQUIREMENTS OF THE EES 6
2 L PURPOSE. ..ottt e ettt ettt e e e ettt e e e e et e e e e e e e taaeeeeeeeeataeeeeeeetaaaeeeeeatraaeeeeaattaaeeeeaataaeaeeaaaaaaaaaaaaaaaaans 6
2.2 SCOPE. tee ettt e eutteeestteeee e eeateeeteeeeeaseeeeaaseeeatseaesesaeeeasseeeataaeassbee e eaaeeeatbee e tbeeeanbaeeabbeeeabeeeenbaeeabaeeetteeeastaeeanraeaeas 6
2.3, REQUIREMENTS. ...uuttteiutiieetteeeeitteeetteeetseeestseeessseeaassseeaassaeessseaeassseessssaasssesaasssseasssaeassseeeassssesssseesssssssssssaaeseananes 6
2.4, PRECONDITIONS.ccuttieeiuteeeetteeeetseeeeseeeeteseasseeeessseeasseeeasseeaessseeasseeaasssssessseesseeaasssseessssesssesenssesesssesenssesaaeeaann 6
2.5, POSTCONDITIONS.ttiettiieette e ettt e ettt e eeteeeeteeeetteeeeaaeeessaeeestseeeasseeesasaeeanssseenssseeassseeasssseenssseeassaeeassssseseeeeeaannses 7
2.6. COMMUNICATION PROTOCOLS.vveeeureeeeseeeaesseeesseseeesessaessseeasseseesseeeessseaessseeesssseesseseessseeasssseeseeseessssesseeeeeeaaans 7
2.7. PRIVILEGE SEPARATION.......eeeeiueeeeeseeeeseeeaetseeeasseseeessesasssseesseseessseeaseseaasssseassseeanseseesssseesssaeenseseenssessessseessseaeeeanns 7

3. DESCRIPTION OF THE EES 8
3.1. CoMPONENTS OF THE EESooiiiii ettt e e et e e e e e e e e e e e e e e e e e eas 9
3.2. EES INTERFACE COMPONENTS: EICS.....ciiiiiiiiiiiiiiie ettt ettt ettt e ittt e et eeaae e e stveeesntaeesaaaeeeaseaaanns 10
3.3. THE ATTRIBUTE AND OBLIGATION STORE.....cccuvtterveeesteeeaseseeessseasosesesssseessssessessassnns 10
3.4, EVALUATION IMANAGER.ceiueiiittieeetteeeeteeeeitteeeetteeeeteeeeeaseeeetseeeeaseeeeasseestsseessesenasseeantsseensseseenseeeanseesaaaeeaaanns 10
3.5. PLUG-IN MODULES AND MANAGER.cccutteeettteesteeeatseeenssesensseeassseeassesensseessssesassesanssssessssessssesasssssessessssssesanns 10

3.5 1. AdAItional MOAUIES...................c.oooeeeeeaeeeeeeeeeeeee et 11
3.0, FUTURE EXTENSIONS.eeiiutieeeteeeeetteeeeuseeeeseeeeeteeeeesseseessseeeseseeesseseesseeeasssseaassssenssseesnseseessssaessseeasssssssseaeeeeaaanns 12
3.6.1. Execution ERVIFORIMERE [IfE FIME............c.cccooiiiieiieiieiieeie ettt enaee s 12
3.6.2. Exclusive plugin invocation including setuid functionality..............ccccocovemoiioeniisieiniieieeeeee 12

4. EES APIS 12
Q1. EEF INTERFACE.....cuttiiiiiieeiee ettt et e ettt e ettt e ettt e e et e e eatbeeetbeeeessbeeesssaeassseeeassseesassaaassseeassssaeseaeessssssssssasaaaens 12
G2 EICS et e e et e e ee—ae e e t—e e ettt e aat—eeeataaeataeeeaaaeeeataeeateaeetreeenareeens 13

4.2.1. Unencrypted networked imVOCALION.c..cc.ccueeieieeeiiieeeieeie ettt se e ese e eae s 13
4.2.2. Networked invocation over TLS/SSL secure channel......................ccccoooeeeeecieoeeeeieeeeeeeeeeeeeeeeee 14
4.2.3. Unix-domain SOCKE AFIVEr..................ccccoooeeeeeeeeeeeeeeeeeee e 14
4.2.4. Named Pipe (FIFO)...........ccccuciiiiiniiiieicieitt ettt 14
4.3, THE AOS INTERFACE.......uttteeeeeeittreeeeeeiireeeeeeieitaeeeeeaeassseeseeaiasseseeeassssseseeaasreseeesaassssseeseeassseeeeeasassesesesseessesseees 14
O B Y 7 T OSSP PPUTSUPPP 14
3.2, FUNCEIONS. ... ettt e et e e et e e et e e et e e e et e e et e e e ts e e esaseeeeaeaeetseeeeennes 15
4.4, PLUG=IN MODULE INTERFACE. ... uuvteeeutteeiteeeeeuseeeeiseseaosseeaesseseassssaosssssasseseasssesssssessssseassssessssessssseenssesessssssssseens 16

5. APPENDICES 18

5.1. EXAMPLE PLUG-IN MODULE.uuveeeeuteeeeteeeeesseeeeseeeaseeeeessssaesseeeseeeeesesesesseeeasseseessesaesssesesseesenseseeessseeasreseeeeeeans 18

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 3/18

1. INTRODUCTION

1.1. PURPOSE

The purpose of this document is to give a detailed description of the EES, the Execution
Environment Service, with a focus on its external interfaces.

1.2. DOCUMENT ORGANISATION
This document is organized as follows
* Section 2 gives a short description of the requirements of the EES.

* Section 3 explains the context and responsibilities of the EES, and provides an overview of
its various components.

* Section 4 documents the APIs of the EEF, AOS and plug-ins insofar they are exposed to
external developers.

* Section 5 outlines an example plug-in module.

1.3. APPLICATION AREA

The audience for this document is developers of other AuthZ-FW components, such as the PDP,
and of the plug-in modules doing the actual work. The description of the internal implementation of
the EES is therefore beyond the scope of this document.

1.4. REFERENCES

Table 1: Table of references

R 1 | A. Anderson et al. SAML 2.0 profile of XACML v2.0, OASIS Standard, 1 February 2005,
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf

R2 | C. Laloie, SOAP Profile for XACML-SAML, Working Draft 01, 30 November 2007,
http.//switch.ch/erid/support/documents/xacmlsaml.pdf

R 3 | Authorization Service Design, 29 August 2008, https://edms.cern.ch/file/944192/1/EGEE-III-
JRAI-Security-Design vi.1.pdf

R4 EGEE Document Management Procedure, http://project-egee-iii-nal-ga.web.cern.ch/project-
EGEE-1II-NA1-QA/EGEE-11l/Procedures/DocManagmtProcedure/DocMngmt. htm

RS | EGEE glossary, hitp.//glossary.eu-egee.com/index.php?id=368

R 6 | POSIX/SUSV3, hitp://www.unix.org/version3/online. html

R 7 | Policy Description Language (PDL),
http://www.nikhef.nl/grid/lcaslcmaps/pdl_requirements.pdf

R 8 | RFC2307: An Approach for Using LDAP as a Network Information Service
http://datatracker.ietf.org/doc/rfc2307/

R9 | RFC2616: Hypertext Transfer Protocol — HTTP/1.1 hitp.//datatracker.ietf.org/doc/rfc2616/

R 10 | RFC2818: HTTP Over TLS http://datatracker.ietf.org/doc/rfc2818/

1.5. DOCUMENT AMENDMENT PROCEDURE

Amendments, comments and suggestions should be sent to the EGEE Authorization Service
Framework team mailinglist using the email address project-egee-authz-service(@cern.ch.

The procedures are documented in the EGEE “Document Management Procedure” [R 4].

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 4/18

1.6. TERMINOLOGY

This subsection provides the definitions of terms, acronyms, and abbreviations required to properly
interpret this document. A complete project glossary is provided in the EGEE glossary [R 5].

Glossary

AOS Attribute and Obligation Store

Argus The new gLite Authorization Framework, based on the Oasis XACML standard

EEF EES Execution Framework

EES Execution Environment Service

EI EES Interface

EIC EES Interface Component

LCMAPS Local Credential MAPping Service

OASIS Organization for the Advancement of Structured Information Standards

Obligation Handler Function that handles an obligation triggered by a specific Obligationld in an
XACML response message

PAP Policy Administration Point

PDL Policy Description Language

PDP Policy Decision Point

PEP Policy Enforcement Point

PEPd Policy Enforcement Point Daemon

PIP Policy Information Point

SAML Security Assertion Markup Language

XACML eXtensible Access Control Markup Language

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 5/18

2. REQUIREMENTS OF THE EES

2.1. PURPOSE

The purpose of the EES is to provide an appropriate site-specific execution environment based on
site-agnostic obligations and attributes it receives as input in the form of SAML2-XACML?2
requests that have been processed by the PDP for authorization. This service is developed as part of
Argus, the new gLite authorization framework, and as such will be communicating primarily with
the PEP daemon, but can also act as a standalone service.

2.2. SCOPE

The current EES design is focused on Unix- and POSIX-like execution environments. It does not
address non-POSIX environments, such as Microsoft Windows, although the basic design is
portable to any system.

2.3. REQUIREMENTS

Because the EES is a standalone service with various interaction interfaces, it can be developed
independently from other components in the Argus framework. As such, the language in which the
service is written is an implementation-specific internal detail. It should be able to satisfy the
following criteria, in no particular order:

* Should be portable across gLite supported platforms, i.e. POSIX
* Should be easy to maintain

* Should be able to serve concurrent requests

* Should perform its operations fast

* Should have a low memory footprint

* Should be able to use required (third party) dependencies

* Should be able to run with reduced privileges

* Functionality should be extendable through plugins

* Should allow interaction with, for example:

o Local Resource Management Systems (LRMS), either via direct API invocation or
through scripting

© Virtual Machine (framework)

2.4. PRECONDITIONS
Before the EES is called, we assume that:
e All attributes sent to the EES are verified and authentic.

This should be handled by either the PDP or by the PEPd. If this assumption does not hold,
it would be possible to do additional processing by adding a verification plug-in module to
the EES. In that case, attributes must be processed by this plug-in, which must verify and
authenticate all incoming attributes before other plug-ins run. Adding such a module is not
preferred when the EES is part of a full AuthZ-FW.

* Both (user) credentials and the task description have passed the site’s effective policy.

No additional policy information must be contained in the EES, as this would either
duplicate information with the risk of inconsistency, or give a site multiple control points.
The EES may of course be incapable of procuring the correct environment, at which point a
NotApplicable decision shall be returned.

The current design of the AuthZ-FW already ensures this precondition is met.

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 6/18

Furthermore, we recognize the following additional requirements:

* An optional list of ‘supported obligations’ by the enforcing PEP can be passed to the EES
in the environment of the message. When present, it is used by the EES and its modules to
make sure an environment compatible with the target task is created. It is also used to - in
effect - ‘negotiate’ the list of supported obligations, so that ‘more advanced’ PEP clients
can be served by older-version EES’s and vice versa.

If no such list is provided the EES will function, but may return obligations in a format that
cannot be processed by the PEP, even though obligations representing the same semantic
meaning in a different format could have been returned otherwise.

* Some modules will require that specific logical share selection has been done beforehand
by the PDP, based on the information available elsewhere in the AuthZ FW, i.e. in the PAP.
The effective policy on the logical share should be decided before the EES is invoked. If
this is not the case, the EES will need to use specific attributes to decide. The latter
behaviour is ultimately not a task for the EES.

2.5. POSTCONDITIONS
The EES returns a SAML2-XACML2 (see Section 2.6) response message that includes

* A decision. The decision will be Allow if an execution environment was procured without
incident. The decision will be Notdpplicable in case the requested environment could not
be procured. The decision will be Deny in case the user is explicitly banned by the site's
effective policy. When operating as part of Argus, the EES should never reach a decision of
Deny.

* A list of obligations. It is up to the receiving PEP to either enforce these obligations in an
appropriate way or to effectively deny access (since it cannot enforce a required
obligation).

2.6. COMMUNICATION PROTOCOLS

The EES is a service processing SAML2-XACML?2 messages that comply with the SAML2-
XACML2 profile as defined in the SAML 2.0 profile of XACML [R 1].

The plug-ins within the EES should be able to receive obligations that are communicated to the
PEP by the PDP. The PEP will send a request message to the EES and the EES communicates back
a response message. Unfortunately, since the XACML standard does not support expressing
Obligations in a request message, we propose to recreate the received Obligations in a request
message by using specific attribute fields in the Environment context. To discern these attributes
from the real Environment attributes the original Obligation attributes can be prefixed with a unique
identifier when added to the Environment context.

The EES itself is agnostic about communicated attributes. It will process valid SAML2-XACML2
messages and make the attributes they contain available to implementation-specific plug-ins.

Clients external to the EES service host will communicate with the EES using mutually
authenticated secure channels.

2.7. PRIVILEGE SEPARATION

The service will support privilege separation, e.g. by running the network communication and the
processing of the configuration files in a non-privileged context, while executing only a selected set
of plugins with elevated privileges. Elevated privileges can range from a dedicated or specially
assigned group and/or account to administrative (i.e. root) privileges which will be dropped during
normal operations.

There are use cases that require a specific system group or account to be enforced before the EES is
able to perform the requested task. For example Maui requires a specific group to be associated
with the process before allowing access to the Maui API. However it might be undesirable to run

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 7/18

the entire service as a member of this group. Other use cases are the possibility to hide credentials
for e.g. an LDAP password file or certificate for client authentication to LDAP or other service,
such as OpenNebula.

Switching of privileges can be achieved using the seteuid() and setegid() system calls specified by
POSIX. These system calls provide the option to switch effective and real privilege contexts, which
means privileges that were initially dropped can be restored when needed at a later time. To make
use of the seteuid() and setegid() calls for privilege separation, the EES needs to be started with
effective administrative (i.e. root) privileges.

User switching system calls are not well-defined in a multi-threaded environment. Hence, in the
concurrency model used by the EES, this functionality is only available when plugins are executed
exclusively (i.e. in the plugin initialize () function). This could be mitigated by making
use of a sudo- or suexec-like wrapper binary. See also Section 3.6.2.

3. DESCRIPTION OF THE EES

PAP

v

PDP [«>»| PEPd |[«—>|EES

LRMS Y

6 LSF

WMS —» CE—»| |Torque
2 7 OCClI

Condor

v
ul WN

Figure 1: Role of the EES in Argus, in the context of VM scheduling

VM frameworks

OpenNebula

The role of the EES is to ensure that an appropriate site-specific execution environment can be
procured that allows an already-authorized task to be executed on a site-local resource. The EES
can be used to provision these execution environments in the role of an Obligation Handler, or can
act as a Policy Information Point (PIP). In Figure 881 we outline the role of the EES within a
typical Argus setup.

From the ‘outside’ the EES appears as an ‘obligation transformer’. It takes execution-agnostic
attributes and obligations and makes sure that

* an environment which honours the effective policy is procured;

* new obligations are created that ensure the PEP can properly move the task into the
procured execution environment;

* any agnostic obligations that have been fully translated into a site-specific obligation are
removed, since the PEP has to be able to enforce all obligations present.

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 8/18

Examples of this procurement may be:

preparing or launching a virtual machine on a worker node;

the assignment of a site-local Unix UID or user name out of a pool based on the list of
FQANS (Fully Qualified Attribute Name) given by the VO;

the assignment of a site-local primary Unix GID or group name based on the obligation to
run a job in a particular logical share;

the assignment of a site-local LDAP group membership.

3.1. COMPONENTS OF THE EES
The EES is composed of the following components, see also Figure 2 and Sections 3.2 through 3.5:

The EES Interface (EI) — comprised of a set of EES interface components (EICs), which
can access the functionality contained within the EEF. For now these components include
binding to Unix domain- or HTTP(S) sockets. The EICs all use the EEF core API to invoke
the EES functionality, triggering the creation of a separate thread for each call.

The EES Execution Framework (EEF) — A thread-safe core ‘execution framework’
executing the business logic of the EES. This consists of:

© The Attribute and Obligation Store (AOS) — a common store of attributes and
obligations that is used by the EEF to maintain internal state between the handling of a
request message and formulating the response.

© The Evaluation Manager (EM) — A component that drives the business logic within
the EEF based on a configuration of plug-in modules. The set of rules resulting from
the configuration constitutes a site-local mapping policy.

© The Plugin Manager (PM) — This component will load, run and eventually unload a
set of plug-in modules based on the effective policy in the Evaluation Manager (EM).

© A set of thread-safe ‘plug-in modules’, each of which procures part of an execution
environment and in the process update the state of the thread-local AOS when needed.

EES
El ; EEF

1
i
1

_)‘ EIC .; —> Evaluation Manager
: Y

-)‘ EIC |) Plug

gin Manager

3 1 — _'} EEF AP 2 . 4 7

. Plugin Plugin Plugin

= 4 T & 3

invocation - ——
(-.) Assertion & Obligation Store

Figure 2: outline of the EES components

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 9/18

3.2. EES INTERFACE COMPONENTS: EICS

The EES can be invoked in several different ways, all resulting in the execution of the EES
Execution Framework (EEF). The different ways are implemented using loosely coupled drivers
which will be described in detail in Section 4.2. Here we just mention their basic functionality.

* Unencrypted networked invocation

We foresee that this invocation is only used in a trusted environment, for example when
Argus is deployed on a single host while Unix domain sockets or named pipes would not be
an option.

e Networked invocation over a TLS/SSL secure channel

This is similar to the previous invocation but using TLS/SSL secured connections. This will
be the preferred interface when used in a multi-host setup.

e Unix-domain socket driver

This will be a POSIX local IPC socket to which the EES is listening and a peer (the PEPd)
can bind.

* Named Pipe

Very similar to the Unix-domain socket, but using a named pipe. There is less information
about the peer, but has the advantage of being less platform-specific since it behaves as a
regular file and hence can be used by Java.

* Direct invocation of the framework through a library call (EEF Invocation API)

This method requires a program to load the EEF and call specific routines inside the EEF
core API to initiate execution. This API is described in Section 4.1.

This method is used by the other EICs as a ‘back-end’, but it is not supposed to be used
directly by third-party software.

3.3. THE ATTRIBUTE AND OBLIGATION STORE

The Attribute and Obligation Store (AOS) is a ‘public space’ where information on attributes and
obligations can be stored and retrieved during the course of handling a request. The plug-ins can
use it to inspect attributes and obligations, and is able to destroy obligations which have been fully
translated. After a run of the framework, the EEF uses it to construct the response message.

The AOS is initialized by the EEF. While plug-ins are initialized, they can use it to store global
data. Subsequently, when the EEF is handling a request, a new thread-local AOS is created, which
inherits the global data and is further filled using information passed in by the request message. For
this local AOS the previously global data is read-only.

After the response message is constructed, the thread-local AOS is cleaned and the thread will
terminate.

3.4. EVALUATION MANAGER

The Evaluation Manager ensures that the plug-ins are executed in the proper order. Multiple
policies can be expressed in the configuration file in the Policy Description Language (PDL) [R 7]
file format as used by LCMAPS. This is a human readable description of the possible state
transitions in the EEF, which can take into account various fallback options in case modules do not
complete successfully. The configuration file also provides the options and arguments to the plug-
ins.

3.5. PLUG-IN MODULES AND MANAGER

Without plug-in modules, the EES is an empty shell. Therefore, the following basic plug-in
modules are to be provided with the EES:

¢ Virtual machine framework

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 10/18

This module interacts with a virtualization framework to prepare, start, stop and clean up
virtual machines.

* Scripting language interface (Perl and/or Python)

Invoke a script using an embedded interpreter, so that a site can implement additional
logic to create specific site-local execution conditions such as interaction with batch
systems. The scripts will have access to the EEF API.

* Logical share to primary Unix group
This module serves the need for basic group-based scheduling that is common to basic

Torque, OpenPBS, and SGE configurations.

* Logical share to QoS/Account

Translate the logical share to a (Maui) QoS specification or a Maui Account, both of which
determine the relative priority of the scheduled task. When using the Maui scheduler, the
EES can dynamically create a new QoS class for the job. It may also set a new obligation
that will ensure the submitting CE will select the newly created QoS class or share for the
job when it is submitted. Maui and Torque allow such dynamic manipulation through a C
API, and the share can be pre-defined in the Maui configuration file.

For other batch systems such a module can either be developed independently, or the
generic scripting module can be used to implement this functionality.
* Attribute to Kerberos5 (or AFS) token

1t takes one or more attributes and obligations (usually this will be the Subject DN, but
may also be the UID that was set previously by another plug-in) and procure the
appropriate AFS and/or Kerberos tokens for it. These tokens are then set as obligations in
the AOS and thus must be enforced by the PEP.

* NIS/LDAP directory provisioning

Using the UID, the primary GID and the set of secondary GIDs, it ensures that the set of
GIDs is properly attached to the UID in the site central directory service. This service is
usually an LDAP directory using the NIS schema [R 8]. When needed, the entry will be
updated. Such functionality might be required in cluster environments to ensure that the
job will run on a worker node with the same set of GIDs as was used during the submission
on the head node of the cluster.

3.5.1. Additional modules

Some functionality which could be provided by EES modules, and which was formerly
implemented in LCMAPS plug-ins, is currently provided by the PEPd. Hence, when the EES is
deployed as part of Argus, there is no strict need for these modules within the EES. On the other
hand, when constructing a site-local policy, they may still be needed as building blocks. This
includes the following plug-ins:

* attribute mapping to a pool UID or username
* attribute mapping to a specific pre-set UID or username
* attribute mapping to primary GID or group name

* attribute mapping to secondary GID or group name

The attributes, associated with a user, on which mappings can be based, include:
* Subject DN
* VOMS FQANS

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 11/18

3.6. FUTURE EXTENSIONS

3.6.1. Execution Environment life time

Execution environments established by the EES do not expire by themselves. All plug-in modules
used in the EES must therefore time-stamp their information so that ‘external’ programs may be run
(periodically) to expire unused environments. The timestamping mechanism will depend on the
plug-in and the corresponding execution environment.

Hence, a possible future extension to the EES would be a management interface which can trigger
plugins to clean up procured resources using this timestamped information.

Moreover, if such a management interface itself incorporates access control via the AuthZ-FW,
end-entities could pre-procure, extend or release execution environments in accordance with task
requirements. Management of environments would also allow for environment re-use or cloning, so
that more complex or larger execution environments can be pre-staged at sites.

The design of a management interface fits well with having the EES running either as a daemon or
(in conjunction with a) hosted web service, providing an interface akin to what is currently
provided for the Globus Toolkit ‘Dynamic Accounts Service’.

Such an interface is not specified in this document but can be defined for future versions.

3.6.2. Exclusive plugin invocation including setuid functionality

Certain policies typically cannot be executed in a multi-threaded environment. This is, for example,
the case when part of a policy has to be executed under a different identity, since the behaviour of
the (effective) user id switching syscalls in a multi-threaded environment depends on the details of
the operating system. This could be mitigated by making use of a setuid () wrapper binary, like
sudo or Apache's suexec.

4. EES APIS

API interfaces are provided for the EEF, AOS and plug-in components. The AOS is only exposed
to plug-in components and the EEF. The Plug-in Manager and Evaluation Manager are internal
compontents of the EEF, and are not externally exposed.

4.1. EEF INTERFACE
The EEF API consists of the following functions:

EES RC EEF init (char* config file name,
void (*log func) (int, const char*, va list)
);

This function initializes the EEF which will try to parse the specified configuration file and load its
policy. After calling EEF init (), the rest of the API can be used.

log func is a pointer to a function with the signature:
void log func(int priority, const char* format, va list ap);

which is identical to the POSIX-specified function vsyslog (). The supplied log function will be
accessible from the framework in the EEF_1og () symbol.

Valid values for the internal return type EES RC are EES SUCCESS on success and
EES FAILURE on failure.

EES RC EEF startThreading(void) ;

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 12/18

After this function is called, the AOS will try to make use of thread-local storage instances. This
means that any data that needs to be globally available must have been inserted before this point.

EES RC EEF storeRequest (char* ExecutionRequestEntity);
This function will try parse the SAML2-XACML2 data, whose attributes are then stored in the

(possibly thread-local) AOS. The ExecutionRequestEntity field is a SAML2-XACML2
string as described in [R 1], which is the request message.

EES RC EEF run(void);

When this function is called, the EEF will try to enforce the policies specified in the configuration
file until a successful mapping has been created, or all defined policies are exhausted. Obligations
that have been fulfilled in this process will be removed from the AOS. New Obligations may be
added which the calling party must fulfil.

char* EEF retrieveResponse (void);
This function constructs a SAML2-XACML?2 response statement using all the data present in the
AOS. The return value of EEF_retrieveResponse () pointstoa SAML2-XACML?2 string as
described in [R 1], and is the SAML2-XACML2 response message of the EES. This function does
not affect the state of the AOS.
On successful execution, the value returned by EEF retrieveResponse () uses space

allocated on the heap and must be freed by the calling context. When execution was unsuccessful,
NULL will be returned.

EES RC EEF term(void);
This function terminates the EEF, cleaning up the AOS, Plugin Manager and Evalution Manager.

Furthermore two functions returning the major and minor EEF API versions will be implemented,
which will always succeed:

unsigned int EEF getMajorVersion(void);

unsigned int EEF getMinorVersion(void);

4.2. EICS

The EES Interface consists of a number of EES Interface Components (EICs). All of these different
EICs in the EI use the EEF API, as described in Section 4.1, to interact with the EEF. They will be
built as separate driver modules in order to easily deal with new types of transport layer and
communication protocols.

The initial version of the EES will be supplied with the driver modules, which have been introduced
in Section 3.5 and will be described in the following subsections in detail.

4.2.1. Unencrypted networked invocation

This will be an HTTP server (AF _INET or AF _INET6 socket). It will expect an HTTP POST of a
SAML2-XACML2 request. It will add a SAML attribute with the IP adress and port information of
the peer to this SAML2-XACML2 request, which will then be processed. The contents of the
original SAML2-XACML2 request will not be otherwise changed or used.

The response message will be returned as a HTTP response to the caller. If the EEF will fail, a
suitable SAML2-XACML2 response is formulated; in case the HTTP server will not be able to do
so a suitable HTTP status code will be returned [R 8].

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 13/18

4.2.2. Networked invocation over TLS/SSL secure channel

This will be a HTTPS server (AF INET or AF _INET6 socket) [R 9]. It will behave in the same way
as the HTTP server but using TLS/SSL secured connections in addition. The channel MUST be
mutually authenticated.

The X.509 credential information of the peer will be converted into a SAML attribute and inserted
in the SAML2-XACML2 request message.

4.2.3. Unix-domain socket driver

This will be a Unix-domain socket. When used within the Argus framework, it is likely that the
named pipe will be used instead of this driver, since the PEPd is written in Java, which has no
support for Unix-domain sockets; named pipes on the other hand behave as regular files.

When available the socket driver should get the SO PEERCRED option by calling
getsockopt(2) and insert the resulting UID, GID, and process ID information as a SAML
attribute into the SAML2-XACML2 request message.

See alsounix (7), socket(7) and socket(3).

4.2.4. Named pipe (FIFO)

This driver will be similar to the Unix-domain socket driver, but using named pipes instead. Access
control will have to be arranged by setting the right permissions on the file descriptor. This way of
communication will be available to Java applications talking to the EES and will probably be the
fastest way of communication. It will, however, be difficult in multi-threaded environments.

Seealso fifo (7) and mkfifo (3).

4.3. THE AOS INTERFACE

The AOS is a separate thread-safe subsystem within the EEF. In a multi-threaded setting each
thread will see a thread-local AOS. It will have a low-level and high-level API, both available to the
plug-in modules (and the EEF itself), but neither of them publicly available in the EEF-API. The
preferred way of communication will be through the high-level API, which will be described here.
The low-level is beyond the scope of this document and depends on the details of the AOS
implementation.

4.3.1. Types

The AOS wuses the opaque pointer types aos context t*, aos storage t* and
aos_attribute t* as handles. The type of context can be specified using the enum type
aos_context class_t and can take values:

e SUBJECT
e ACTION
* RESOURCE
e ENVIRONMENT
e NONE
e ANY
e OBLIGATION
Type ANY behaves as a wildcard type and can represent any of the other types.

The return value, of type EES_RC can either be EES SUCCESS or EES_FAILURE.

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 14/18

4.3.2. Functions

Context administration:

aos_context t* A0S createContext (aos context class t);

Creates a new AOS context variable on the heap and returns its pointer. Returns NULL on
failure.

EES RC AOS addContext (aos_context t*);

Adds the given AOS context to the (possibly thread-local) AOS and returns
EES SUCCESS if successful. Returns EES FAILURE on failure.

aos_context t* A0S getNextContext (aos context class t);

Returns the next context of specified type from the (possibly thread-local) AOS and returns
its pointer. Returns NULL on failure.

EES RC AOS rewindContexts(aos storage t*);

Rewinds the list of AOS contexts in the given storage and returns EES SUCCESS if
successful. Returns EES FAILURE on failure. If storage is NULL, the current thread-local
storage will be used.

EES RC AOS destroyContext (aos_storage t*, aos context t*);

Removes the specified context from the specified storage in the (possibly thread-local)
AOS. Returns EES SUCCESS if successful, EES FAILURE on failure. This method
should be used to destroy Obligations that have been fulfilled.

void AOS setContextObligation(aos context t*, char*);

Only valid for aos context t of type OBLIGATION. Sets the given obligation specified as
char*,

char* A0S getContextObligation (aos_context t*);

Returns the obligation name for the given aos_context t if this is of type OBLIGATION, or
NULL otherwise.

Attribute administration:

aos_attribute t* AOS createAttribute(void);

Creates a new AOS attribute variable on the heap and returns its pointer. Returns NULL on
failure.

EES RC AOS addAttribute(aos context t*, aos attribute t¥*);

Adds the given AOS attribute to the given aos_context in the (possibly thread-local) AOS.
Returns EES SUCCESS if successful, EES FAILURE on failure.

aos_attribute t* AOS getNextAttribute (aos context t¥*);

Returns the next attribute in the specified context from the (possibly thread-local) AOS, or
NULL on failure.

EES RC AOS rewindAttributes(aos context t*);

Rewinds the list of AOS attributes in the given context and returns EES SUCCESS if
successful. Returns EES FAILURE on failure.

EES RC AOS destroyAttribute(aos context t*,aos attribute t*);

Removes the specified attribute from the specified context in the (possibly thread-local)
AOS. Returns EES_SUCCESS if successful, EES FAILURE on failure.

Attribute field setters:

EES RC AOS setAttributeld(aos attribute t*, char* id);

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 15/18

Sets the identifier field of the given attribute to given char*. Returns EES SUCCESS if
successful, EES FAILURE on failure.

* EES RC AOS setAttributelssuer (aos attribute t*,char* issuer);

Sets the issuer field of the given attribute to given char*. Returns EES SUCCESS if
successful, EES FAILURE on failure.

* EES RC AOS setAttributeValue(aos attribute t*, void* wvalue,
size t size);

Sets the data field of the given attribute to given char*. Returns EES SUCCESS if
successful, EES FAILURE on failure.

* EES RC AOS setAttributeType (aos_attribute t*, char* type);

Sets the type field of the given attribute to given char*. Returns EES SUCCESS if
successful, EES FAILURE on failure.

Attribute field getters:

* char* AOS getAttributeld(aos attribute t*);
Returns the identifier field of the given attribute as char*, or NULL on failure.

* char* AOS getAttributelssuer(aos_attribute t¥*);
Returns the issuer field of the given attribute as char*, or NULL on failure .

* char* AOS getAttributeValueAsString(aos attribute t*);
Returns the data field of the given attribute as char*, or NULL on failure .

* 1int AOS getAttributeValueAsInt (aos_attribute t*);

Returns the data field of the given attribute as int.

4.4. PLUG-IN MODULE INTERFACE
Modules will be loaded on-demand using the dynamic linking loader interface (dlopen ()).
Modules MUST be re-entrant, they will only see the AOS corresponding to their thread.
Compliant modules must provide the following entry points:
* EES PL RC plugin initialize(int argc, char *argv([]);

This function is called once within (each instance of) the EEF, and is called before any
invocation of the plugin run() function.This function should only do basic
initialization, all the real functionality should be done by plugin run (), see below. All
plug-ins will be initialized before any plug-in will be run. Calls to the AOS at this stage
will reference a global instance, which is shared between all plugins. The global store is
only writable during this stage.

Should return EES PL_SUCCESS success, or EES PL FAILURE: failure
* EES PL RC plugin run(void);

Invokes the plug-in. The plug-in must process any attributes and obligations it recognises in
the Attributes and Obligation Store (AOS). It should add any site-local obligations that will
cause the procured environment to be selected. It must remove any obligations that have
been translated into an equivalent site-local obligation. It must not remove any attributes.

Should return EES PL_SUCCESS success, or EES PL FAILURE: failure
* EES PL RC plugin_ terminate (void);

Called once before the EEF terminates. No plug-in run invocation can or will be made after
this function has been called.

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 16/18

Should return EES PL_SUCCESS success, or EES PL FAILURE: failure

Furthermore two functions returning the major and minor plug-in API versions should be
implemented:

* unsigned int plugin getMajorVersion (void);
* unsigned int plugin getMinorVersion(void);

In addition, the following optional function will be understood by the Plug-in Manager:
* EES PL RC plugin verify(void);

This function is used to inform the EEF library that a run of this plug-in would leave the
AOS unchanged. Should return EES PL_SUCCESS if the AOS would remain untouched,
or EES PL FAILURE otherwise.

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 17/18

5. APPENDICES

5.1. EXAMPLE PLUG-IN MODULE
#include "eef plugin.h"

EES PL RC plugin initialize(int argc, char* argvl[]) {

/* parse options */

/* sanity checks */
EEF log (LOG_INFO, "$s: Initialized plugin posix enf with
options:\n", plugin name);

/* log options */

return EES PL SUCCESS;

EES PL RC plugin run() {
aos_context t context;
aos_attribute t attribute;
uid t target uid;
rewindContexts (NULL) ;
while ((_context = getNextContext (OBLIGATION, NULL))) {
if (strcmp (getContextObligationId(context), "uidgid") == 0) {
rewindAttributes (context);
while ((_attribute = getNextAttribute(context))) {
if (strcmp (getAttributeId(attribute), "posix-uid") == 0) {
_target uid = getAttributeValueAsInt(attribute);

}

downgradeEffectiveToRealUid (& real uid, & saved uid);

return EES PL SUCCESS;

/* terminate plugin */

EES PL RC plugin_ terminate () {
EEF log(LOG INFO, "plugin posix enf terminated\n");
upgradeEffectiveToRealUid (& real uid, & saved uid);

return O;

EGEE-III INFSO-RI-222667 © Members of EGEE-III collaboration DRAFT 18/18

