Where to Get GPU Software¶
To use the GPUs installed in the (2) stoomboot nodes available through the “gpu” queue, and the interactive stbc-g1, stbc-g2 and wn-lot-008 nodes, software that supports GPUs is required.
CUDA¶
The drivers for the GPUs and following versions of the the NVIDIA CUDA libraries are installed:
9.2
10.2
11.4
The relevant version of the cuDNN library is also installed.
Python + GPU¶
To get access to Python software in an environment that supports using the GPUs, it is recommended to use conda to create a virtual environment, activate it and install the software you need.
virtualenv¶
Create and activate a new virtual environment
Activate the virtual environment using:
$> conda create --prefix /data/your_project/your_username/gpu_venv python=3.9
$> conda activate /data/your_project/your_username/gpu_venv
(gpu_venv) $>
Installing Python packages inside the virtualenv¶
To install additional software inside the virtualenv, after activating
it, use conda
to install it; e.g.:
(gpu_venv) $> conda install tensorflow=2.6.2
(gpu_venv) $> conda install pytorch=1.10.0
Sometimes different builds are available, e.g. for different python versions, CUDA versions or for CPU. These can be selected by specifying the exact build:
(gpu_venv) $> conda search tensorflow
tensorflow 2.6.2 cpu_py37h2b38087_0 conda-forge
tensorflow 2.6.2 cpu_py38hbed0dc1_0 conda-forge
tensorflow 2.6.2 cpu_py39h1b7c303_0 conda-forge
tensorflow 2.6.2 cuda102py37h80be449_0 conda-forge
tensorflow 2.6.2 cuda102py38h4357c17_0 conda-forge
tensorflow 2.6.2 cuda102py39h87695c4_0 conda-forge
tensorflow 2.6.2 cuda110py37h4801193_0 conda-forge
tensorflow 2.6.2 cuda110py38h1096b06_0 conda-forge
tensorflow 2.6.2 cuda110py39h016931e_0 conda-forge
tensorflow 2.6.2 cuda111py37h557cc93_0 conda-forge
tensorflow 2.6.2 cuda111py38h862ebb2_0 conda-forge
tensorflow 2.6.2 cuda111py39h50553a9_0 conda-forge
tensorflow 2.6.2 cuda112py37hada678f_0 conda-forge
tensorflow 2.6.2 cuda112py38ha230376_0 conda-forge
tensorflow 2.6.2 cuda112py39h9333c2f_0 conda-forge
(gpu_venv) $> conda install tensorflow=2.6.2=cuda112py39h9333c2f_0
Using the software¶
Once things are installed, they can be used directly:
(gpu_venv) $> python
Python 3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:20:46)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')]