André Mischke ontvangt FOM-Projectruimtesubsidie

13 mei 2013

Nikhef-onderzoeker André Mischke heeft een Projectruimtesubsidie ontvangen van de Stichting voor Fundamenteel Onderzoek der Materie (FOM).

Dr. André Mischke ontving de subsidie voor het voorstel A charming way to disentangle initial- and final-state effects at the LHC.

De Projectruimte maakt kleinschalige projecten mogelijk voor fundamenteel onderzoek in de fysica met een vernieuwend karakter en een aantoonbare wetenschappelijke, industriële of maatschappelijke urgentie. Meer informatie over de projectruimtes vindt u op de website van FOM.

Over het voorstel

In cosmology, it is believed that matter, of which the whole universe and we are made, was created from a plasma of elementary particles during the early evolution of the universe. This Quark-Gluon Plasma (QGP) is characterised by an equilibrated system of free quarks and gluons that are normally confined inside the protons and neutrons that constitute atomic nuclei.

Over the last decade different experimental probes have been used to learn more about this peculiar state of matter. Particles that contain charm quarks, the so-called “charmed particles”, are very sensitive probes to study the properties of QGP matter. The ALICE experiment at the Large Hadron Collider has recently measured that the yield of charmed particles is strongly suppressed in head-on (central) lead-lead collisions with respect to expectations at large transverse momentum. This significant suppression indicates a strong interaction of the charmed particles with the QGP, a final-state effect. However, it has been shown that initial-state effects in the colliding nuclei, such as shadowing and gluon saturation, may have a large influence on the overall particle yield.

The objective of this proposal is to disentangle the initial- and final-state effects through the measurement of the production of charmed particles (charged D* mesons, to be precise) in proton-lead collisions with the ALICE experiment. The data for this measurement will be taken early next year, showing the urgency to soon start this project.

The results of this work will test the limits of the applicability of Quantum
Chromodynamics in this new energy domain and will provide essential contributions to the precise interpretation of the data from heavy-ion collisions and thus to the deeper understanding of the dynamical properties of QGP matter.