Publications 2020

  1. ATLAS and D∅ LHCb and BaBar ALICE Accelerator-related Physics
  2. Neutrino Telescopes Gravitational Waves Cosmic Rays Dark Matter
  3. Theoretical Physics Detector R&D Astrophysics Miscellaneous

ATLAS/D0 

ATLAS Collaboration: G. Aad (et al.); A. Alfonsi, H. Arnold, P.J. Bakker, R. Balasubramanian, M. Bedognetti, S. Bentvelsen, M. de Beurs, G.J. Bobbink, C.D. Burgard, S. Caron, W.S. Chan, Y.S. Chow, A.P. Colijn, F. De Almeida Dias, V. Fabiani, P. Ferrari, F. Filthaut, C.A. Gottardo, N. de Groot, O. Igonkina, P. de Jong, P. Kluit, A.C. König, S. Manzoni, A.E. Mcdougall, B. Moser, P. Moskvitina, C. Nellist, F. Pasquali, L. Pedraza Diaz, A.K. Perrevoort, A. Pizzini, T. du Pree, J. Schouwenberg, H. Snoek, M. Stamenkovic, B. Stapf, J.J. Teoh, Veen, M.J, W. Verkerke, A.T. Vermeulen, J.C. Vermeulen, M. Vreeswijk, I. van Vulpen

  1. Search for top squarks in events with a Higgs or Z boson using 139 fb–1 of pp collision data at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 1080
    https://doi.org/10.1140/epjc/s10052-020-08469-8
  2. Evidence for tt̅tt̅ production in the multilepton final state in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 1085
    https://dx.doi.org/10.1140/epjc/s10052-020-08509-3
  3. Determination of jet calibration and energy resolution in proton-proton collisions at √s = 8 TeV using the ATLAS detector
    Eur. Phys. J. C 80 (2020) 1104
    https://dx.doi.org/10.1140/epjc/s10052-020-08477-8
  4. Search for heavy diboson resonances in semileptonic final states in pp collisions at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 1165
    https://dx.doi.org/10.1140/epjc/s10052-020-08554-y
  5. Alignment of the ATLAS Inner Detector in Run-2
    Eur. Phys. J. C 80 (2020) 1194
    https://dx.doi.org/10.1140/epjc/s10052-020-08700-6
  6. Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in √s = 13 TeV pp collisions using the ATLAS detector
    Eur. Phys. J. C 80 (2020) 123
    https://dx.doi.org/10.1140/epjc/s10052-019-7594-6
  7. Search for light long-lived neutral particles produced in pp collisions at √s = 13 TeV and decaying into collimated leptons or light hadrons with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 450
    https://dx.doi.org/10.1140/epjc/s10052-020-7997-4
  8. Performance of electron and photon triggers in ATLAS during LHC Run 2
    Eur. Phys. J. C 80 (2020) 47
    https://dx.doi.org/10.1140/epjc/s10052-019-7500-2
  9. Measurement of the tt̅ production cross-section and lepton differential distributions in eμ dilepton events from pp collisions at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 528
    https://dx.doi.org/10.1140/epjc/s10052-020-7907-9
  10. Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 616
    https://dx.doi.org/10.1140/epjc/s10052-020-8001-z
  11. Measurement of long-range two-particle azimuthal correlations in Z-boson tagged pp collisions at √s=8 and 13 TeV
    Eur. Phys. J. C 80 (2020) 64
    https://dx.doi.org/10.1140/epjc/s10052-020-7606-6
  12. Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 691
    https://dx.doi.org/10.1140/epjc/s10052-020-8050-3
  13. Transverse momentum and process dependent azimuthal anisotropies in √sNN =8.16 TeV p+Pb collisions with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 73
    https://dx.doi.org/10.1140/epjc/s10052-020-7624-4
  14. Search for a scalar partner of the top quark in the all-hadronic tt̅ plus missing transverse momentum final state at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 737
    https://doi.org/10.1140/epjc/s10052-020-8102-8
  15. Measurements of top-quark pair spin correlations in the eμ channel at √s = 13 TeV using pp collisions in the ATLAS detector
    Eur. Phys. J. C 80 (2020) 754
    https://dx.doi.org/10.1140/epjc/s10052-020-8181-6
  16. Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4 ℓ decay channel at √s = 13 TeV
    Eur. Phys. J. C 80 (2020) 942
    https://dx.doi.org/10.1140/epjc/s10052-020-8223-0
  17. Higgs boson production cross-section measurements and their EFT interpretation in the 4 ℓ decay channel at √s = 13 TeV with the ATLAS detector
    Eur. Phys. J. C 80 (2020) 957
    https://dx.doi.org/10.1140/epjc/s10052-020-8227-9
  18. Fluctuations of anisotropic flow in Pb-Pb collisions at √sNN = 5.02 TeV with the ATLAS detector
    J. High Energy Phys. 01 (2020) 051
    https://dx.doi.org/10.1007/JHEP01(2020)051
  19. Measurement of J/ψ production in association with a W± boson with pp data at 8 TeV
    J. High Energy Phys. 01 (2020) 095
    https://dx.doi.org/10.1007/JHEP01(2020)095
  20. Measurement of differential cross sections for single diffractive dissociation in √s = 8 TeV pp collisions using the ATLAS ALFA spectrometer
    J. High Energy Phys. 02 (2020) 042
    https://dx.doi.org/10.1007/JHEP02(2020)042
  21. Measurement of the Z(→ ℓ +)γ production cross-section in pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 03 (2020) 054
    https://dx.doi.org/10.1007/JHEP03(2020)054
  22. Search for new resonances in mass distributions of jet pairs using 139 fb–1 of pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 03 (2020) 145
    https://dx.doi.org/10.1007/JHEP03(2020)145
  23. Measurement of isolated-photon plus two-jet production in pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 03 (2020) 179
    https://dx.doi.org/10.1007/JHEP03(2020)179
  24. Measurement of differential cross sections and W+/W cross-section ratios for W boson production in association with jets at √s = 8 TeV with the ATLAS detector
    J. High Energy Phys. 05 (2020) 077
    https://doi.org/10.1007/JHEP05%282018%29077
  25. Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb–1 of data collected with the ATLAS detector
    J. High Energy Phys. 06 (2020) 046
    https://dx.doi.org/10.1007/JHEP06(2020)046
  26. Search for dijet resonances in events with an isolated charged lepton using √s = 13 TeV proton-proton collision data collected by the ATLAS detector
    J. High Energy Phys. 06 (2020) 151
    https://dx.doi.org/10.1007/JHEP06(2020)151
  27. Measurements of the production cross-section for a Z boson in association with b-jets in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 07 (2020) 044
    https://dx.doi.org/10.1007/JHEP07(2020)044
  28. Search for the HH → b̅b b̅b process via vector-boson fusion production using proton-proton collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 07 (2020) 108
    https://doi.org/10.1007/JHEP07%282020%29108
  29. Observation of the associated production of a top quark and a Z boson in pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 07 (2020) 124
    https://dx.doi.org/10.1007/JHEP07(2020)124
  30. Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at √s = 8 TeV
    J. High Energy Phys. 08 (2020) 051
    https://doi.org/10.1007/JHEP08%282020%29051
  31. Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking
    J. High Energy Phys. 08 (2020) 080
    https://doi.org/10.1007/JHEP08%282020%29080
  32. Measurements of inclusive and differential cross-sections of combined tt̅γ and tWγ production in the eμ channel at 13 TeV with the ATLAS detector
    J. High Energy Phys. 09 (2020) 049
    https://doi.org/10.1007/JHEP09%282020%29049
  33. Search for direct production of electroweakinos in final states with missing transverse momentum and a Higgs boson decaying into photons in pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 10 (2020) 005
    https://doi.org/10.1007/JHEP10%282020%29005
  34. Search for tt̅ resonances in fully hadronic final states in pp collisions at √s = 13 TeV with the ATLAS detector
    J. High Energy Phys. 10 (2020) 061
    https://doi.org/10.1007/JHEP10%282020%29061
  35. Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using √s = 13 TeV proton-proton collisions recorded by ATLAS in Run 2 of the LHC
    J. High Energy Phys. 10 (2020) 062
    https://doi.org/10.1007/JHEP10%282020%29062
  36. Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in √s = 13 TeV pp collisions with the ATLAS detector
    J. High Energy Phys. 10 (2020) 112
    https://doi.org/10.1007/JHEP10%282020%29112
  37. Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector
    J. High Energy Phys. 11 (2020) 005
    https://doi.org/10.1007/JHEP11%282020%29005
  38. Reconstruction and identification of boosted di-τ systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS
    J. High Energy Phys. 11 (2020) 163
    https://dx.doi.org/10.1007/JHEP11(2020)163
  39. ATLAS data quality operations and performance for 2015-2018 data-taking
    J. Instr. 15 (2020) P04003
    https://dx.doi.org/10.1088/1748-0221/15/04/P04003
  40. Performance of the ATLAS muon triggers in Run 2
    J. Instr. 15 (2020) P09015
    https://doi.org/10.1088/1748-0221/15/09/P09015
  41. Operation of the ATLAS trigger system in Run 2
    J. Instr. 15 (2020) P10004
    https://dx.doi.org/10.1088/1748-0221/15/10/P10004
  42. Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger
    J. Instr. 15 (2020) P11016
    https://doi.org/10.1088/1748-0221/15/11/p11016
  43. Searches for lepton-flavour-violating decays of the Higgs boson in √s = 13 TeV pp collisions with the ATLAS detector
    Phys. Lett. B 800 (2020) 135069
    https://dx.doi.org/10.1016/j.physletb.2019.135069
  44. Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb–1 of pp collisions at √s = 13 TeV with the ATLAS experiment
    Phys. Lett. B 800 (2020) 135082
    https://dx.doi.org/10.1016/j.physletb.2019.135082
  45. Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 801 (2020) 135114
    https://dx.doi.org/10.1016/j.physletb.2019.135114
  46. Search for non-resonant Higgs boson pair production in the bb ℓνℓν final state with the ATLAS detector in pp collisions at √s = 13 TeV
    Phys. Lett. B 801 (2020) 135145
    https://dx.doi.org/10.1016/j.physletb.2019.135145
  47. Search for the Higgs boson decays H → ee and H → eμ in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 801 (2020) 135148
    https://dx.doi.org/10.1016/j.physletb.2019.135148
  48. Z boson production in Pb-Pb collisions at √sNN= 5.02 TeV measured by the ATLAS experiment
    Phys. Lett. B 802 (2020) 135262
    https://dx.doi.org/10.1016/j.physletb.2020.135262
  49. Evidence for electroweak production of two jets in association with a Zγ pair in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 803 (2020) 135341
    https://dx.doi.org/10.1016/j.physletb.2020.135341
  50. Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb-Pb collisions at √sNN = 5.02 TeV with the ATLAS detector
    Phys. Lett. B 807 (2020) 135595
    https://dx.doi.org/10.1016/j.physletb.2020.135595
  51. Measurement of the azimuthal anisotropy of charged-particle production in Xe + Xe collisions at √sNN =5.44 TeV with the ATLAS detector
    Phys. Rev. C 101 (2020) 024906
    https://dx.doi.org/10.1103/PhysRevC.101.024906
  52. Combined measurements of Higgs boson production and decay using up to 80 fb–1 of proton-proton collision data at √s= 13 TeV collected with the ATLAS experiment
    Phys. Rev. D 101 (2020) 012002
    https://dx.doi.org/10.1103/PhysRevD.101.012002
  53. Search for direct stau production in events with two hadronic τ-leptons in √s = 13 TeV pp collisions with the ATLAS detector
    Phys. Rev. D 101 (2020) 032009
    https://dx.doi.org/10.1103/PhysRevD.101.032009
  54. Searches for electroweak production of supersymmetric particles with compressed mass spectra in √s= 13 TeV pp collisions with the ATLAS detector
    Phys. Rev. D 101 (2020) 052005
    https://dx.doi.org/10.1103/PhysRevD.101.052005
  55. Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at √s = 13 TeV
    Phys. Rev. D 101 (2020) 052007
    https://dx.doi.org/10.1103/PhysRevD.101.052007
  56. Search for long-lived neutral particles produced in pp collisions at √s = 13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer
    Phys. Rev. D 101 (2020) 052013
    https://dx.doi.org/10.1103/PhysRevD.101.052013
  57. Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s = 13 TeV pp collisions with the ATLAS detector
    Phys. Rev. D 101 (2020) 072001
    https://dx.doi.org/10.1103/PhysRevD.101.072001
  58. Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying into b-quarks at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 102 (2020) 032004
    https://doi.org/10.1103/PhysRevD.102.032004
  59. Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D. 102 (2020) 032006
    https://doi.org/10.1103/PhysRevD.102.032006
  60. Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at √s= 13 TeV
    Phys. Rev. D 102 (2020) 112006
    https://dx.doi.org/10.1103/PhysRevD.102.112006
  61. Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. D 102 (2020) 112008
    https://dx.doi.org/10.1103/PhysRevD.102.112008
  62. Search for Magnetic Monopoles and Stable High-Electric-Charge Objects in 13 TeV Proton-Proton Collisions with the ATLAS Detector
    Phys. Rev. Lett. 124 (2020) 031802
    https://dx.doi.org/10.1103/PhysRevLett.124.031802
  63. Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. Lett. 124 (2020) 082301
    https://dx.doi.org/10.1103/PhysRevLett.124.082301
  64. Measurement of the Lund Jet Plane Using Charged Particles in 13 TeV Proton-Proton Collisions with the ATLAS Detector
    Phys. Rev. Lett. 124 (2020) 222002
    https://dx.doi.org/10.1103/PhysRevLett.124.222002
  65. Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at √s = 13 TeV
    Phys. Rev. Lett. 125 (2020) 051801
    https://doi.org/10.1103/PhysRevLett.125.051801
  66. CP Properties of Higgs Boson Interactions with Top Quarks in the tt̅H and tH Processes Using H → γγ with the ATLAS Detector
    Phys. Rev. Lett. 125 (2020) 061802
    https://doi.org/10.1103/PhysRevLett.125.061802
  67. Dijet resonance search with weak supervision using √s = 13 TeV pp collisions in the ATLAS detector
    Phys. Rev. Lett. 125 (2020) 131801
    https://dx.doi.org/10.1103/PhysRevLett.125.131801
  68. Search for Higgs boson decays into a Z boson and a light hadronically decaying resonance using 13 TeV pp collision data from the ATLAS detector
    Phys. Rev. Lett. 125 (2020) 221802
    https://dx.doi.org/10.1103/PhysRevLett.125.221802
  69. Search for heavy resonances decaying into a photon and a hadronically decaying Higgs boson in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Rev. Lett. 125 (2020) 251802
    https://dx.doi.org/10.1103/PhysRevLett.125.251802
  70. Observation and measurement of forward proton scattering in association with lepton pairs produced via the photon fusion mechanism at ATLAS
    Phys. Rev. Lett. 125 (2020) 261801
    https://dx.doi.org/10.1103/PhysRevLett.125.261801
  71. Combination of searches for Higgs boson pairs in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 800 (2020) 135103
    https://doi.org/10.1016/j.physletb.2019.135103
  72. Measurement of the tt̅ production cross-section in the lepton+jets channel at √s = 13 TeV with the ATLAS experiment
    Phys. Lett. B 801 (2020) 135797
    https://doi.org/10.1016/j.physletb.2020.135797
  73. Test of CP invariance in vector-boson fusion production of the Higgs boson in the H→ ττ channel in proton-proton collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 805 (2020) 135426
    https://doi.org/10.1016/j.physletb.2020.135426
  74. A search for the Zγ decay mode of the Higgs boson in pp collisions at √s = 13 TeV with the ATLAS detector
    Phys. Lett. B 809 (2020) 135754
    https://doi.org/10.1016/j.physletb.2020.135754
  75. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum
    Phys. Dark Univ. 27 (2020) 100371
    https://dx.doi.org/10.1016/j.dark.2019.100371
  76. S. Otten, K. Rolbiecki, S. Caron, J-S. Kim, R. Ruiz De Austri, J. Tattersall
    DeepXS: Fast approximation of MSSM electroweak cross sections at NLO
    Eur. Phys. J. C 80 (2020) 12
    https://dx.doi.org/10.1140/epjc/s10052-019-7562-1
  77. R. Balasubramamian, B. Blossier
    Decay constant of Bs and B*s mesons from Nf=2 lattice QCD
    Eur. Phys. J. C 80 (2020) 412
    https://dx.doi.org/10.1140/epjc/s10052-020-7965-z
  78. M. van Beekveld, S. Caron, R. Ruiz de Austri
    The current status of fine-tuning in supersymmetry
    J. High Energy Phys. 01 (2020) 147
    https://dx.doi.org/10.1007/JHEP01(2020)147
  79. P. Fratric
    Integrating agent-based modelling with copula theory: Preliminary insights and open problems
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12139 (2020) 212
    https://dx.doi.org/10.1007/978-3-030-50420-5_16
  80. MICE Collaboration: M. Bogomilov (et al.), F. Filthaut
    Demonstration of cooling by the Muon Ionization Cooling Experiment
    Nature 578 (2020) 53
    https://dx.doi.org/10.1038/s41586-020-1958-9
  81. G. Busoni (et al.), D. Salek
    Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter
    Phys. Dark Univ. 27 (2020) 100365
    https://dx.doi.org/10.1016/j.dark.2019.100365
  82. J. Alison (et al.), S. Manzoni
    Higgs boson potential at colliders: Status and perspectives
    Rev. Phys. 5 (2020) 100045
    https://dx.doi.org/10.1016/j.revip.2020.100045
  83. N. de Groot, S. Castells
    Identifying hadronic charmonium decays in hadron colliders
    SciPost Physics Core 2 (2020)
    https://dx.doi.org/10.21468/scipostphyscore.2.2.008

D Collaboration: V. M. Abazov (et al.); S. J. de Jong

  1. Studies of X(3872) and ψ(2S) production in pp̅ collisions at 1.96 TeV
    Phys. Rev. D 102 (2020) 072005
    https://dx.doi.org/10.1103/PhysRevD.102.072005

LHCb/BaBar

LHCb Collaboration: R. Aaij (et al.),  A. Snoch, E. Dall’Occo, J.A.deVries, K. Heijhoff, M. Mulder, M. Schubiger, A. Pellegrino, A. Vitkovskiy, E. Jans, J. van Tilburg,  L.J.Bel, M. van Beuzekom, W. Hulsbergen, D. Hynds, H. S. Kuindersma, I. Kostiuk, K. Carvalho Akiba, M. Lucio Martinez. P. Koppenburg, C. Sanchez Gras, C. Vazquez Sierra, E.Govorkova, J. S. Butter, M.Merk, G. Raven, N. Tuning, R. Greim,R.Hart, S. Benson, S. Ferreres Sole, S.Esen

  1. 2 Measurement of Ξcc++ production in pp collisions at √s = 13 TeV
    Chin. Phys. C 44 (2020) 022001
    https://dx.doi.org/10.1088/1674-1137/44/2/022001
  2. Allen: A high level trigger on GPUs for LHCb
    Comput. Softw. Big Sci. 4 (2020) 7
    https://dx.doi.org/10.1007/s41781-020-00039-7
  3. Measurement of ψ(2S) production cross-sections in proton-proton collisions at √s = 7 and 13 TeV
    Eur. Phys. J. C 80 (2020) 185
    https://dx.doi.org/10.1140/epjc/s10052-020-7638-y
  4. Measurement of the ηc(1S) production cross-section in pp collisions at √s = 13 TeV
    Eur. Phys. J. C 80 (2020) 191
    https://dx.doi.org/10.1140/epjc/s10052-020-7733-0
  5. Search for CP violation in Ξ +c → pKπ+ decays using model-independent techniques
    Eur. Phys. J. C 80 (2020) 986
    https://dx.doi.org/10.1140/epjc/s10052-020-8365-0
  6. Precision measurement of the Ξcc++ mass
    J. High Energy Phys. 02 (2020) 049
    https://dx.doi.org/10.1007/JHEP02(2020)049
  7. Observation of the semileptonic decay B+→ p̅pμ+νμ
    J. High Energy Phys. 03 (2020) 146
    https://dx.doi.org/10.1007/JHEP03(2020)146
  8. Measurement of CP violation in B0→ D*± D* decays
    J. High Energy Phys. 03 (2020) 147
    https://dx.doi.org/10.1007/JHEP03(2020)147
  9. Test of lepton universality with Λb0→ pK+ decays
    J. High Energy Phys. 05 (2020) 040
    https://dx.doi.org/10.1007/JHEP05(2020)040
  10. Measurement of CP observables in B±→ DK± and B±→ Dπ± with D → KS0 K± π decays
    J. High Energy Phys. 06 (2020) 058
    https://dx.doi.org/10.1007/JHEP06(2020)058
  11. Measurement of the Λ0b→ J/ψΛ angular distribution and the Λ0b polarisation in pp collisions
    J. High Energy Phys. 06 (2020) 110
    https://dx.doi.org/10.1007/JHEP06(2020)110
  12. Search for the lepton flavour violating decay B+→ K+μτ+ using Bs2*0 decays
    J. High Energy Phys. 06 (2020) 129
    https://dx.doi.org/10.1007/JHEP06(2020)129
  13. Observation of a new baryon state in the Λb0π+π mass spectrum
    J. High Energy Phys. 06 (2020) 136
    https://dx.doi.org/10.1007/JHEP06(2020)136
  14. Precision measurement of the B+c meson mass
    J. High Energy Phys. 07 (2020) 123
    https://dx.doi.org/10.1007/JHEP07(2020)123
  15. Study of the ψ2(3823) and χc1(3872) states in B+→ ( J/ψπ+π)K+ decays
    J. High Energy Phys. 08 (2020) 123
    https://dx.doi.org/10.1007/JHEP08(2020)123
  16. Searches for low-mass dimuon resonances
    J. High Energy Phys. 10 (2020) 156
    https://dx.doi.org/10.1007/JHEP10(2020)156
  17. Search for the doubly heavy Ξbc0 baryon via decays to D0pK
    J. High Energy Phys. 11 (2020) 095
    https://dx.doi.org/10.1007/JHEP11(2020)095
  18. Strong constraints on the b → sγ photon polarisation from B0→ K*0 e+ e decays
    J. High Energy Phys. 12 (2020) 081
    https://dx.doi.org/10.1007/JHEP12(2020)081
  19. Measurement of branching fraction ratios for B+→ D*+DK+, B+→ D*–D+K+, and B0→ D*–D0K+decays
    J. High Energy Phys. 12 (2020) 139
    https://dx.doi.org/10.1007/JHEP12(2020)139
  20. Measurement of the shape of the Bs0→ Ds*–μ+νμ differential decay rate
    J. High Energy Phys. 12 (2020) 144
    https://dx.doi.org/10.1007/JHEP12(2020)144
  21. Updated measurement of decay-time-dependent CP asymmetries in D0→ K+K and D0→ π+π decays
    Phys. Rev. D 101 (2020) 012005
    https://dx.doi.org/10.1103/PhysRevD.101.012005
  22. Amplitude analysis of the B+→ π+π+π decay
    Phys. Rev. D 101 (2020) 012006
    https://dx.doi.org/10.1103/PhysRevD.101.012006
  23. Determination of quantum numbers for several excited charmed mesons observed in B→ D*+ππ decays
    Phys. Rev. D 101 (2020) 032005
    https://dx.doi.org/10.1103/PhysRevD.101.032005
  24. Measurement of |Vcb| with Bs0→ Ds(*)- μ+νμ decays
    Phys. Rev. D 101 (2020) 072004
    https://dx.doi.org/10.1103/PhysRevD.101.072004
  25. Measurement of the branching fraction of the decay Bs0→ K0S K0S
    Phys. Rev. D 102 (2020) 012011
    https://dx.doi.org/10.1103/PhysRevD.102.012011
  26. Search for CP violation and observation of P violation in Λb0→ p ππ+π decays
    Phys. Rev. D 102 (2020) 051101
    https://dx.doi.org/10.1103/PhysRevD.102.051101
  27. First observation of the decay B0→ D00 K+π
    Phys. Rev. D 102 (2020) 051102
    https://dx.doi.org/10.1103/PhysRevD.102.051102
  28. First branching fraction measurement of the suppressed decay Ξc0→ πΛc+
    Phys. Rev. D 102 (2020) 071101
    https://dx.doi.org/10.1103/PhysRevD.102.071101
  29. Study of the lineshape of the χc1(3872) state
    Phys. Rev. D 102 (2020) 092005
    https://dx.doi.org/10.1103/PhysRevD.102.092005
  30. Amplitude analysis of the B+→ D+DK+ decay
    Phys. Rev. D 102 (2020) 112003
    https://dx.doi.org/10.1103/PhysRevD.102.112003
  31. Measurement of the relative branching fractions of B+→ h+h’+h’ decays
    Phys. Rev. D 102 (2020) 112010
    https://dx.doi.org/10.1103/PhysRevD.102.112010
  32. First observation of the decay Λb0→ ηc(1S) p K
    Phys. Rev. D 102 (2020) 112012
    https://dx.doi.org/10.1103/PhysRevD.102.112012
  33. Observation of Several Sources of CP Violation in B+→ π+π+π Decays
    Phys. Rev. Lett. 124 (2020) 031801
    https://dx.doi.org/10.1103/PhysRevLett.124.031801
  34. Search for A’→μ+μ Decays
    Phys. Rev. Lett. 124 (2020) 041801
    https://dx.doi.org/10.1103/PhysRevLett.124.041801
  35. First observation of excited Ωb states
    Phys. Rev. Lett. 124 (2020) 082002
    https://dx.doi.org/10.1103/PhysRevLett.124.082002
  36. Isospin amplitudes in Λb0→ J/ψΛ(Σ0) and Ξb0→ J/ψΞ0(Λ) decays
    Phys. Rev. Lett. 124 (2020) 111802
    https://dx.doi.org/10.1103/PhysRevLett.124.111802
  37. Measurement of fs / fu Variation with Proton-Proton Collision Energy and B-Meson Kinematics
    Phys. Rev. Lett. 124 (2020) 122002
    https://dx.doi.org/10.1103/PhysRevLett.124.122002
  38. Search for the Rare Decays B0s→ e+e and B0→ e+e
    Phys. Rev. Lett. 124 (2020) 211802
    https://dx.doi.org/10.1103/PhysRevLett.124.211802
  39. Observation of New Ξc0 Baryons Decaying to Λc+ K
    Phys. Rev. Lett. 124 (2020) 222001
    https://dx.doi.org/10.1103/PhysRevLett.124.222001
  40. Measurement of CP-Averaged Observables in the B0→ K*0μ+μ Decay
    Phys. Rev. Lett. 125 (2020) 011802
    https://dx.doi.org/10.1103/PhysRevLett.125.011802
  41. Observation of Enhanced Double Parton Scattering in Proton-Lead Collisions at √sNN =8.16 TeV
    Phys. Rev. Lett. 125 (2020) 212001
    https://dx.doi.org/10.1103/PhysRevLett.125.212001
  42. Strong constraints on the K0S→ μ+μ branching fraction
    Phys. Rev. Lett. 125 (2020) 231801
    https://dx.doi.org/10.1103/PhysRevLett.125.231801
  43. A model-independent study of resonant structure in B+→ D+DK+ decays
    Phys. Rev. Lett. 125 (2020) 242001
    https://dx.doi.org/10.1103/PhysRevLett.125.242001
  44. Observation of structure in the J/ψ-pair mass spectrum
    Sci. Bull. 65 (2020) 1983
    https://dx.doi.org/10.1016/j.scib.2020.08.032
  45. Search for the doubly charmed baryon Ξcc+
    Sci. China Phys. Mech. Astron. 63 (2020) 221062
    https://dx.doi.org/10.1007/s11433-019-1471-8
  46. S. Petrucci, R. Matev, R. Aaij
    Scalable monitoring data processing for the LHCb software trigger
    Epj Web Conf. 245 (2020) 01039
    https://dx.doi.org/10.1051/epjconf/202024501039
  47. A. F. Prieto (et al.), M. van Beuzekom
    Phase I Upgrade of the Readout System of the Vertex Detector at the LHCb Experiment
    IEEE Trans. Nucl. Sci. 67 (2020) 732
    https://dx.doi.org/10.1109/TNS.2020.2970534
  48. C. Abellan Beteta (et al.), A. Mauri
    Monitoring radiation damage in the LHCb Tracker Turicensis
    J. Instr. 15 (2020) P08016
    https://dx.doi.org/10.1088/1748-0221/15/08/P08016
  49. K. Heijhoff (et al.)
    Timing performance of the LHCb VELO Timepix3 Telescope
    J. Instr. 15 (2020) P09035
    https://dx.doi.org/10.1088/1748-0221/15/09/p09035
  50. L. Anderlini (et al.), H. Kuindersma
    Muon identification for LHCb Run 3
    J. Instr. 15 (2020) T12005
    https://dx.doi.org/10.1088/1748-0221/15/12/T12005
  51. E. Govorkova, C. Hasse, R. Matev, N. Nolte, S. Ponce, G. Raven, S. Stahl
    A new scheduling algorithm for the LHCb upgrade trigger application
    J. Phys. Conf. Ser. 1525 (2020) 012052
    https://dx.doi.org/10.1088/1742-6596/1525/1/012052
  52. M. Veronesi
    Measurements of the CKM angle γ at LHCb
    Nuovo Cimo C 43 (2020) 52
    https://dx.doi.org/10.1393/ncc/i2020-20052-1
  53. K. Govorkova
    φs status and prospects at LHCb
    PoS Beauty2019 (2020) 005
    https://dx.doi.org/10.22323/1.377.0005
  54. M. Schubiger
    CP violation and mixing in charm decays at LHCb
    PoS Beauty2019 (2020) 051
    https://dx.doi.org/10.22323/1.377.0051
  55. P. Koppenburg
    Beauty 2019 Conf. summary
    PoS Beauty2019 (2020) 058
    https://dx.doi.org/10.22323/1.377.0058

BaBar Collaboration: J. Lees (et al.); G. Raven

  1. Resonances in e+e annihilation near 2.2 GeV
    Phys. Rev. D 101 (2020) 012011
    https://dx.doi.org/10.1103/PhysRevD.101.012011
  2. Search for lepton-flavor-violating decays D0→ X0e±μ*
    Phys. Rev. D 101 (2020) 112003
    https://dx.doi.org/10.1103/PhysRevD.101.112003
  3. Search for Rare or Forbidden Decays of the D0 Meson
    Phys. Rev. Lett. 124 (2020) 071802
    https://dx.doi.org/10.1103/PhysRevLett.124.071802
  4. Measurements of the Absolute Branching Fractions of B±→ K± Xcc̅
    Phys. Rev. Lett. 124 (2020) 152001
    https://dx.doi.org/10.1103/PhysRevLett.124.152001
  5. Search for a Dark Leptophilic Scalar in e+e Collisions
    Phys. Rev. Lett. 125 (2020) 181801
    https://dx.doi.org/10.1103/PhysRevLett.125.181801
  6. Precision measurement of the B(Υ(3S)→τ+τ )/B(Υ(3S)→μ+μ) ratio
    Phys. Rev. Lett. 125 (2020) 241801
    https://dx.doi.org/10.1103/PhysRevLett.125.241801

ALICE/STAR

ALICE Collaboration: S. Acharya (et al.); C. Bedda, D. Caffarri, P. Christakoglou, L.V.R. Doremalen, A. Dubla, A. Grelli, M.R. Haque, S. Jaelani, Z. Khabanova, N. van der Kolk, P.G. Kuijer, M. van Leeuwen, A.P. Mohanty, T. Peitzmann, S. Qiu, I. Ravasenga, M.H.P. Sas, G. Simatovic, R.J.M. Snellings, B.A. Trzeciak, L. Vermunt, H. Yokoyama, H.J.C. Zanoli

  1. Production of ω mesons in pp collisions at √s=7 TeV
    Eur. Phys. J. C 80 (2020) 1130
    https://dx.doi.org/10.1140/epjc/s10052-020-08651-y
  2. Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at √s = 13 TeV
    Eur. Phys. J. C 80 (2020) 167
    https://dx.doi.org/10.1140/epjc/s10052-020-7673-8
  3. Multiplicity dependence of π, K, and p production in pp collisions at √s = 13 TeV
    Eur. Phys. J. C 80 (2020) 693
    https://doi.org/10.1140/epjc/s10052-020-8125-1
  4. (Anti-)deuteron production in pp collisions at √s = 13 TeV
    Eur. Phys. J. C 80 (2020) 889
    https://doi.org/10.1140/epjc/s10052-020-8256-4
  5. Azimuthal correlations of prompt D mesons with charged particles in pp and p-Pb collisions at √sNN = 5.02 TeV
    Eur. Phys. J. C 80 (2020) 979
    https://dx.doi.org/10.1140/epjc/s10052-020-8118-0
  6. Studies of J/ψ production at forward rapidity in Pb-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 02 (2020) 041
    https://dx.doi.org/10.1007/JHEP02(2020)041
  7. Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 02 (2020) 077
    https://doi.org/10.1007/JHEP02%282020%29077
  8. Underlying Event properties in pp collisions at √s = 13 TeV
    J. High Energy Phys. 04 (2020) 192
    https://doi.org/10.1007/JHEP04%282020%29192
  9. Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 05 (2020) 085
    https://doi.org/10.1007/JHEP05%282020%29085
  10. Coherent photoproduction of ρ0 vector mesons in ultra-peripheral Pb-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 06 (2020) 035
    https://doi.org/10.1007/JHEP06%282020%29035
  11. Non-linear flow modes of identified particles in Pb-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 06 (2020) 147
    https://dx.doi.org/10.1007/JHEP06(2020)147
  12. Non-linear flow modes of identified particles in Pb-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 06 (2020) 147
    https://doi.org/10.1007/JHEP06%282020%29147
  13. Measurement of nuclear effects on ψ(2S) production in p-Pb collisions at √sNN = 8.16
    J. High Energy Phys. 07 (2020) 237
    https://doi.org/10.1007/JHEP07%282020%29237
  14. Z-boson production in p-Pb collisions at √sNN =8.1 TeV and Pb-Pb collisions at √sNN =5.02 TeV
    J. High Energy Phys. 09 (2020) 076
    https://doi.org/10.1007/JHEP09%282020%29076
  15. Constraining the Chiral Magnetic Effect with charge-dependent azimuthal correlations in Pb-Pb collisions at √sNN = 2.76 and 5.02 TeV
    J. High Energy Phys. 09 (2020) 160
    https://doi.org/10.1007/JHEP09%282020%29160
  16. J/ψ production as a function of charged-particle multiplicity in p-Pb collisions at √sNN = 8.16 TeV
    J. High Energy Phys. 09 (2020) 162
    https://doi.org/10.1007/JHEP09%282020%29162
  17. J/ψ elliptic and triangular flow in Pb-Pb collisions at √sNN = 5.02 TeV
    J. High Energy Phys. 10 (2020) 141
    https://doi.org/10.1007/JHEP10%282020%29141
  18. Unveiling the strong interaction among hadrons at the LHC
    Nature 588 (2020) 232
    https://dx.doi.org/10.1038/s41586-020-3001-6
  19. Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at √sNN = 5.02 TeV
    Phys. Lett. B 800 (2020) 135043
    https://dx.doi.org/10.1016/j.physletb.2019.135043
  20. Measurement of strange baryon-antibaryon interactions with femtoscopic correlations
    Phys. Lett. B 802 (2020) 135223
    https://dx.doi.org/10.1016/j.physletb.2020.135223
  21. Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of K*(892)0 and φ(1020) mesons
    Phys. Lett. B 802 (2020) 135225
    https://dx.doi.org/10.1016/j.physletb.2020.135225
  22. Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies
    Phys. Lett. B 802 (2020) 135227
    https://dx.doi.org/10.1016/j.physletb.2020.135227
  23. Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Lett. B 804 (2020) 135377
    https://dx.doi.org/10.1016/j.physletb.2020.135377
  24. Measurement of the (anti-)3He elliptic flow in Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Lett. B 805 (2020) 135414
    https://dx.doi.org/10.1016/j.physletb.2020.135414
  25. Υ production in p-Pb collisions at √sNN=8.16 TeV
    Phys. Lett. B 806 (2020) 135486
    https://dx.doi.org/10.1016/j.physletb.2020.135486
  26. Multiplicity dependence of K*(892)0 and φ(1020) production in pp collisions at √s = 13 TeV
    Phys. Lett. B 807 (2020) 135501
    https://dx.doi.org/10.1016/j.physletb.2020.135501
  27. Global baryon number conservation encoded in net-proton fluctuations measured in Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Lett. B 807 (2020) 135564
    https://dx.doi.org/10.1016/j.physletb.2020.135564
  28. Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Rev. C 101 (2020) 034911
    https://dx.doi.org/10.1103/PhysRevC.101.034911
  29. Global polarization of ΛΛ̅ hyperons in Pb-Pb collisions at √sNN = 2.76 and 5.02 TeV
    Phys. Rev. C 101 (2020) 044611
    https://dx.doi.org/10.1103/PhysRevC.101.044611
  30. Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at √sNN = 5.02 TeV
    Phys. Rev. C 101 (2020) 044907
    https://dx.doi.org/10.1103/PhysRevC.101.044907
  31. Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Rev. C 101 (2020) 064901
    https://dx.doi.org/10.1103/PhysRevC.101.064901
  32. K*(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV
    Phys. Rev. C 102 (2020) 024912
    https://dx.doi.org/10.1103/PhysRevC.102.024912
  33. Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC
    Phys. Rev. Lett. 124 (2020) 092301
    https://dx.doi.org/10.1103/PhysRevLett.124.092301
  34. Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions
    Phys. Rev. Lett. 125 (2020) 012301
    https://dx.doi.org/10.1103/PhysRevLett.125.012301
  35. Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb-Pb collisions at the LHC
    Phys. Rev. Lett. 125 (2020) 022301
    https://doi.org/10.1103/PhysRevLett.125.022301
  36. Measurement of the low-energy antideuteron inelastic cross section
    Phys. Rev. Lett. 125 (2020) 162001
    https://doi.org/10.1103/PhysRevLett.125.162001
  37. Production of (anti-)3He and (anti-)3H in p-Pb collisions at √sNN = 5.02 TeV
    Phys. Rev. C 101 (2020) 044906
    https://doi.org/10.1103/PhysRevC.101.044906
  38. Measurement of isolated photon-hadron correlations in √sNN = 5.02 TeV pp and p-Pb collisions
    Phys. Rev. C 102 (2020) 044908
    https://doi.org/10.1103/PhysRevC.102.044908
  39. Elliptic and triangular flow of (anti)deuterons in Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Rev. C 102 (2020) 055203
    https://doi.org/10.1103/PhysRevC.102.055203
  40. Dielectron production in proton-proton and proton-lead collisions at √sNN = 5.02 TeV
    Phys. Rev. C 102 (2020) 055204
    https://doi.org/10.1103/PhysRevC.102.055204
  41. Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at √sNN = 2.76 TeV
    Phys. Lett. B 804 (2020) 135375
    https://doi.org/10.1016/j.physletb.2020.135375
  42. Investigation of the p-Σ0 interaction via femtoscopy in pp collisions
    Phys. Lett. B 805 (2020) 135419
    https://doi.org/10.1016/j.physletb.2020.135419
  43. Centrality and transverse momentum dependence of inclusive J/ψ production at midrapidity in Pb-Pb collisions at √sNN = 5.02 TeV
    Phys. Lett. B 805 (2020) 135434
    https://doi.org/10.1016/j.physletb.2020.135434
  44. Multiplicity dependence of J/ψ production at midrapidity in pp collisions at √s = 13 TeV
    Phys. Lett. B 810 (2020) 135758
    https://doi.org/10.1016/j.physletb.2020.135758
  45. Search for a common baryon source in high-multiplicity pp collisions at the LHC
    Phys. Lett. B 811 (2020) 135849
    https://doi.org/10.1016/j.physletb.2020.135849
  46. S. Muhuri (et al.), A. van den Brink, M. van Leeuwen, T. Peitzmann
    Fabrication and beam test of a silicon-tungsten electromagnetic calorimeter
    J. Instr. 15 (2020) P03015
    https://dx.doi.org/10.1088/1748-0221/15/03/P03015
  47. H. A. Andrews (et al.), M. van Leeuwen
    Novel tools and observables for jet physics in heavy-ion collisions
    J. Phys. G 47 (2020) 065102
    https://dx.doi.org/10.1088/1361-6471/ab7cbc
  48. A. Dubla, U. Gursoy, R. Snellings
    Charge-dependent flow as evidence of strong electromagnetic fields in heavy-ion collisions
    Mod. Phys. Lett. A 35 (2020) 2050324
    https://dx.doi.org/10.1142/S0217732320503241
  49. C. Ligtenberg, H. van der Graaf, F. Hartjes, K. Heijhoff, P. Kluit, N. van der Kolk, G. Raven, J. Timmermans
    Performance of the GridPix detector quad
    Nucl. Instr. Meth. A 956 (2020) 163331
    https://doi.org/10.1016/j.nima.2019.163331
  50. N. van der Kolk
    FoCal: A highly granular digital calorimeter
    Nucl. Instrum. Meth. A 958 (2020) 162059
    https://dx.doi.org/10.1016/j.nima.2019.04.013
  51. J. R. Solie (et al.), T. Peitzmann
    Image quality of list-mode proton imaging without front trackers
    Phys. Med. Biol. 65 (2020)
    https://dx.doi.org/10.1088/1361-6560/ab8ddb
  52. M. H. P. Sas
    Light neutral meson production in the era of precision physics at the LHC
    PoS EPS-HEP2019 (2020) 303
    https://dx.doi.org/10.22323/1.364.0303

Other Accelerator-Related Physics

  1. HERMES Collaboration: A. Airapetian (et al.); L. Lapikás
    Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons
    J. High Energy Phys. 12 (2020) 010
    https://dx.doi.org/10.1007/JHEP12(2020)010
  2. J. Beacham (et al.), K. Jungmann
    Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report
    J. Phys. G 47 (2020) 010501
    https://dx.doi.org/10.1088/1361-6471/ab4cd2
  3. E. Kou, P. Urquijo, W. Altmannshofer, F. Beaujean, G. Bell, M. Beneke, I. I. Bigi, F. Bishara (et al.)
    The Belle II Physics Book
    Prog. Theor. Exp. Phys. 2020 (2020)
    https://dx.doi.org/10.1093/ptep/ptaa008
  4. M. Mrowietz, S. Bein, J. Sonneveld
    Implementation of the CMS-SUS-19-006 analysis in the MadAnalysis 5 framework (supersymmetry with large hadronic activity and missing transverse energy; 137 fb–1)
    Mod. Phys. Lett. A (2020) 2141007
    https://dx.doi.org/10.1142/s0217732321410078

eEDM:

  1. R. J. Marshman, A. Mazumdar, G. W. Morley, P. F. Barker, S. Hoekstra, S. Bose
    Mesoscopic Interference for Metric and Curvature (MIMAC) & Gravitational Wave Detection
    New J. Phys. 22 (2020) 083012
    https://dx.doi.org/10.1088/1367-2630/ab9f6c
  2. M. Denis, Y. Hao, E. Eliav, N. R. Hutzler, M. K. Nayak, R. G. Timmermans, A. Borschesvky
    Enhanced P,T-violating nuclear magnetic quadrupole moment effects in laser-coolable molecules
    J. Chem. Phys. 152 (2020) 084303
    https://dx.doi.org/10.1063/1.5141065

Neutrino Telescopes

ANTARES Collaboration: B. Baret (et al.); M. Andre, M. Anghinolfi, G. Anton, M. Ardid, J-J. Aubert, J. Aublin

  1. Model-independent search for neutrino sources with the ANTARES neutrino telescope
    Astropart. Phys. 114 (2020) 35
    https://dx.doi.org/10.1016/j.astropartphys.2019.06.003
  2. ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky
    Astrophys. J. 892 (2020) 92
    https://dx.doi.org/10.3847/1538-4357/ab7afb
  3. Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope
    Eur. Phys. J. C 80 (2020) 487
    https://dx.doi.org/10.1140/epjc/s10052-020-8015-6
  4. Constraining the contribution of Γ-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data
    Mon. Not. R. Astron. Soc. 500 (2020) 5614
    https://dx.doi.org/10.1093/mnras/staa3503
  5. Search for dark matter towards the Galactic Centre with 11 years of ANTARES data
    Phys. Lett. B 805 (2020)
    https://dx.doi.org/10.1016/j.physletb.2020.135439
  6. Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube
    Phys. Rev. D 102 (2020) 082002
    https://dx.doi.org/10.1103/PhysRevD.102.082002
  7. Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope
    Phys. Rev. D 102 (2020) 122007
    https://dx.doi.org/10.1103/PhysRevD.102.122007
  8. A. Garcia, R. Gauld, A. Heijboer, J. Rojo
    Complete predictions for high-energy neutrino propagation in matter
    J. Cosmol. Astropart. Phys. 09 (2020) 025
    https://dx.doi.org/10.1088/1475-7516/2020/09/025
  9. M. Bouwhuis, K. W. Bannister, J-P. Macquart, R. M. Shannon, D. L. Kaplan, J. D. Bunton, B. S. Koribalski, M. T. Whiting
    A search for fast-radio-burst-like emission from Fermi γ-ray bursts
    Mon. Not. R. Astron. Soc. 497 (2020) 125
    https://dx.doi.org/10.1093/mnras/staa1889

KM3NeT Collaboration: S. Aiello (et al.); S. Wolf, E. de Aiello (et al.), S. Basegmez du Pree, E. Berbee, M.C. Bouwhuis, R. Bruijn, Garcia Soto A., A. Heijboer, M. de Jong, P. de Jong, E.N. Koffeman, P. Kooijman, K. Melis, K.W. Melis, R. Muller, L. Nauta, B. OFearraigh, M. Post, D.F.W. Sambtleben, J. Seneca, J. Steijger, B. Strandberg, E. de Wolf

  1. gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes
    Comput. Phys. Commun. 256 (2020)
    https://dx.doi.org/10.1016/j.cpc.2020.107477
  2. The Control Unit of the KM3NeT Data Acquisition System
    Comput. Phys. Commun. 256 (2020) 107433
    https://dx.doi.org/10.1016/j.cpc.2020.107433
  3. Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units
    Eur. Phys. J. C 80 (2020) 99
    https://dx.doi.org/10.1140/epjc/s10052-020-7629-z
  4. Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling
    J. Instrum. 15 (2020)
    https://dx.doi.org/10.1088/1748-0221/15/11/P11027
  5. Event reconstruction for KM3NeT/ORCA using convolutional neural networks
    J. Instrum. 15 (2020)
    https://dx.doi.org/10.1088/1748-0221/15/10/P10005
  6. D. Real, D. Calvo, P. Musico, P. Jansweijer, S. Colonges, V. van Beveren, F. Carrio, G. Pellegrini (et al.)
    Reliability studies for the White Rabbit Switch in KM3NeT: FIDES and Highly Accelerated Life Tests
    J. Instr. 15 (2020) C02042
    https://dx.doi.org/10.1088/1748-0221/15/02/C02042
  7. D. Real (et al.)
    KM3NeT acquisition: the new version of the Central Logic Board and its related Power Board, with highlights and evolution of the Control Unit
    J. Instr. 15 (2020) C03024
    https://dx.doi.org/10.1088/1748-0221/15/03/C03024
  8. S. Hallmann, B. Strandberg
    Neutrino oscillation research with KM3NeT/ORCA
    PoS ICRC2019 (2020) 1019
    https://dx.doi.org/10.22323/1.358.1019
  9. A. Garcia, A. Heijboer
    High-energy neutrino event simulation at NLO in Genie for KM3NeT and other observatories
    PoS ICRC2019 (2020) 895
    https://dx.doi.org/10.22323/1.358.0895
  10. S. Biagi, R. Coniglione, J. Hofestadt, V. Kulikovskiy, M. Lincetto, K. Melis, D. Samtleben
    Dependence of the atmospheric muon rate on the sea water depth with first KM3NeT data
    PoS ICRC2019 (2020) 943
    https://dx.doi.org/10.22323/1.358.0943
  11. M. Adams, F. Bezrukov, J. Elvin-Poole, J. J. Evans, P. Guzowski, B. O. Fearraigh, S. Soldner-Rembold
    Direct comparison of sterile neutrino constraints from cosmological data, νe disappearance data and νμ→ νe appearance data in a 3+1 model
    Eur. Phys. J. C 80 (2020) 758
    https://dx.doi.org/10.1140/epjc/s10052-020-8197-y
  12. D. Mourard, S. Matheussen, S. Berry, G. Cimo, M. Cirasuolo, R. Van Der Meer, P. Padovani, E. De Wolf
    About policies for multi-wavelengths/multi-messenger astrophysics
    PoS Asterics2019 (2020) 055
    https://dx.doi.org/10.22323/1.357.0055

DUNE Collaboration: F. Bay, M.P. Decowski, F. Filthaut, P. de Jong, T. Miedema, M. Vermeulen

  1. Long-baseline neutrino oscillation physics potential of the DUNE experiment
    Eur. Phys. J. C 80 (2020) 978
    https://dx.doi.org/10.1140/epjc/s10052-020-08456-z
  2. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
    J. Instr. 15 (2020) P12004
    https://dx.doi.org/10.1088/1748-0221/15/12/P12004
  3. Volume I. Introduction to DUNE
    J. Instr. 15 (2020) T08008
    https://dx.doi.org/10.1088/1748-0221/15/08/T08008
  4. Volume III. DUNE far detector technical coordination
    J. Instr. 15 (2020) T08009
    https://dx.doi.org/10.1088/1748-0221/15/08/T08009
  5. Volume IV. The DUNE far detector single-phase technology
    J. Instr. 15 (2020) T08010
    https://dx.doi.org/10.1088/1748-0221/15/08/T08010
  6. Neutrino interaction classification with a convolutional neural network in the DUNE far detector
    Phys. Rev. D 102 (2020) 092003
    https://dx.doi.org/10.1103/PhysRevD.102.092003

Gravitational Waves

Virgo Collaboration: F. Acernese (et al.); R. Walet (et al.), M.K.M. Bader, N. van Bakel, A. Bertolini, M.van Beuzekom, B.A. Boom, J.F.J. van den Brand, C. Van Den Broeck, H.J. Bulten, S. Caudill, A. Ghosh, P. Gupta, R.J.G. Jonker, G. Koekoek, S. Koley, F. Linde, G. Nelemans, D. Nichols, S. Nissanke, P.T.H. Pang, L. van der Schaaf, B. Swinkels, K.W. Tsang, R. Walet

  1. The advanced Virgo longitudinal control system for the O2 observing run
    Astropart. Phys. 116 (2020) 102386
    https://dx.doi.org/10.1016/j.astropartphys.2019.07.005
  2. Advanced Virgo Status
    J. Phys.: Conf. Ser. 1342 (2020)
    https://dx.doi.org/10.1088/1742-6596/1342/1/012010
  3. Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector
    Phys. Rev. Lett. 125 (2020) 131101
    https://dx.doi.org/10.1103/PhysRevLett.125.131101
  4. K. Belczynski, J. Klencki, C. E. Fields, A. Olejak, E. Berti, G. Meynet, C. L. Fryer, D. E. Holz (et al.)
    Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes
    Astronomy & Astrophysics 636 (2020) A104
    https://dx.doi.org/10.1051/0004-6361/201936528
  5. M. Tringali
    Seismic array measurements at Virgo’s west end building for the configuration of a Newtonian-noise cancellation system
    Class. Quant. Grav. 37 (2020)
    https://dx.doi.org/10.1088/1361-6382/ab5c43
  6. A. Singha, S. Hild, J. Harms
    Newtonian-noise reassessment for the Virgo gravitational-wave observatory including local recess structures
    Class. Quant. Grav. 37 (2020) 105007
    https://dx.doi.org/10.1088/1361-6382/ab81cb
  7. A. Longo, S. Bianchi, W. Plastino, N. Arnaud, A. Chiummo, I. Fiori, B. Swinkels, M. Was
    Scattered light noise characterisation at the Virgo interferometer with tvf-EMD adaptive algorithm
    Class. Quant. Grav. 37 (2020) 145011
    https://dx.doi.org/10.1088/1361-6382/ab9719
  8. F. Badaracco (et al.)
    Machine learning for gravitational-wave detection: surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at Virgo
    Class. Quant. Grav. 37 (2020) 195016
    https://dx.doi.org/10.1088/1361-6382/abab64
  9. A. Allocca (et al.)
    Interferometer Sensing and Control for the Advanced Virgo Experiment in the O3 Scientific Run
    Galaxies 8 (2020) 85
    https://dx.doi.org/10.3390/galaxies8040085
  10. S. Antier (et al.)
    The first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run with GRANDMA
    Mon. Not. R. Astron. Soc. 492 (2020) 3904
    https://dx.doi.org/10.1093/mnras/stz3142
  11. M. W. Coughlin, T. Dietrich, S. Antier, M. Bulla, F. Foucart, K. Hotokezaka, G. Raaijmakers, T. Hinderer (et al.)
    Implications of the search for optical counterparts during the first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run: possible limits on the ejecta mass and binary properties
    Mon. Not. R. Astron. Soc. 492 (2020) 863
  12. M. W. Coughlin (et al.)
    Implications of the search for optical counterparts during the second part of the Advanced LIGO’s and Advanced Virgo’s third observing run: lessons learned for future follow-up observations
    Mon. Not. R. Astron. Soc. 497 (2020) 1181
    https://dx.doi.org/10.1093/mnras/staa1925
  13. I. Romero-Shaw (et al.)
    Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO-Virgo gravitational-wave transient catalogue
    Mon. Not. R. Astron. Soc. 499 (2020) 3295
    https://dx.doi.org/10.1093/mnras/staa2850
  14. K. W. Tsang, A. Ghosh, A. Samajdar, K. Chatziioannou, S. Mastrogiovanni, M. Agathos, C. Van Den Broeck
    A morphology-independent search for gravitational wave echoes in data from the first and second observing runs of Advanced LIGO and Advanced Virgo
    Phys. Rev. D 101 (2020) 064012
    https://dx.doi.org/10.1103/PhysRevD.101.064012
  15. A. Samajdar
    Constraints on Lorentz Invariance Violations from Gravitational Wave Observations
    8th Meeting on CPT and Lorentz Symmetry (2020) 77
    https://dx.doi.org/10.1142/9789811213984_0020
  16. D. Bersanetti, J. Casanueva Diaz, A. Allocca, H. Heitmann, D. Hoak, M. Mantovani, P. Ruggi, B. Swinkels
    New algorithm for the Guided Lock technique for a high-Finesse optical cavity
    Astropart. Phys. 117 (2020) 102405
    https://dx.doi.org/10.1016/j.astropartphys.2019.102405
  17. S. Sachdev (et al.), S. Caudill
    An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events
    Astrophys. J. Lett. 905 (2020)
    https://dx.doi.org/10.3847/2041-8213/abc753
  18. S. J. Kapadia (et al.), S. Caudill
    A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model
    Class. Quant. Grav. 37 (2020) 045007
    https://dx.doi.org/10.1088/1361-6382/ab5f2d
  19. S. Huttner, S. Danilishin, S. Hild, K. Strain
    Comparison of different sloshing speedmeters
    Class. Quant. Grav. 37 (2020) 085022
    https://dx.doi.org/10.1088/1361-6382/ab7bbb
  20. H. Jamali-Rad (et al.), V. van Beveren, J.F.J. van den Brand
    Continuous Subsurface Tomography over Cellular Internet of Things (IoT)
    IEEE Sens. J. 20 (2020) 10079
    https://dx.doi.org/10.1109/JSEN.2020.2992464
  21. D. Dobie, D. L. Kaplan, K. Hotokezaka, T. Murphy, A. Deller, G. Hallinan, S. Nissanke
    Constraining properties of neutron star merger outflows with radio observations
    Mon. Not. R. Astron. Soc. 494 (2020) 2449
    https://dx.doi.org/10.1093/mnras/staa789
  22. P. T. H. Pang, O. A. Hannuksela, T. Dietrich, G. Pagano, I. W. Harry
    Lensed or not lensed: determining lensing magnifications for binary neutron star mergers from a single detection
    Mon. Not. R. Astron. Soc. 495 (2020) 3740
    https://dx.doi.org/10.1093/mnras/staa1430
  23. O. A. Hannuksela, T. E. Collett, M. Caliskan, T. G. F. Li
    Localizing merging black holes with sub-arcsecond precision using gravitational-wave lensing
    Mon. Not. R. Astron. Soc. 498 (2020) 3395
    https://dx.doi.org/10.1093/mnras/staa2577
  24. G. Pagano, O. A. Hannuksela, T. G. F. Li
    LENSING GW: A PYTHON package for lensing of gravitational waves
    Astron. Astrophys. 643 (2020)
    https://dx.doi.org/10.1051/0004-6361/202038730
  25. M. Chianese, A. Coogan, P. Hofma, S. Otten, C. Weniger
    Differentiable Strong Lensing: Uniting Gravity and Neural Nets through Differentiable Probabilistic Programming
    Mon. Not. R. Astron. Soc. 496 (2020) 381
    https://dx.doi.org/10.1093/mnras/staa1477
  26. M. W. Coughlin, S. Antier, T. Dietrich, R. J. Foley, J. Heinzel, M. Bulla, N. Christensen, D. A. Coulter (et al.)
    Measuring the Hubble Constant with a sample of kilonovae
    Nature Commun. 11 (2020) 4129
    https://dx.doi.org/10.1038/s41467-020-17998-5
  27. C. Darsow-Fromm (et al.), S. Steinlechner
    Highly efficient generation of coherent light at 2128 nm via degenerate optical-parametric oscillation
    Opt. Lett. 45 (2020) 6194
    https://dx.doi.org/10.1364/OL.405396
  28. C. Hanna (et al.), S. Caudill
    Fast evaluation of multidetector consistency for real-time gravitational wave searches
    Phys. Rev. D 101 (2020) 022003
    https://dx.doi.org/10.1103/PhysRevD.101.022003
  29. A. Chen, N. K. Johnson-McDaniel, T. Dietrich, R. Dudi
    Distinguishing high-mass binary neutron stars from binary black holes with second- and third-generation gravitational wave observatories
    Phys. Rev. D 101 (2020) 103008
    https://dx.doi.org/10.1103/PhysRevD.101.103008
  30. P. T. Pang, R. K. Lo, I. C. Wong, T. G. Li, C. Van Den Broeck
    Generic searches for alternative gravitational wave polarizations with networks of interferometric detectors
    Phys. Rev. D 101 (2020) 104055
    https://dx.doi.org/10.1103/PhysRevD.101.104055
  31. R. Gray (et al.), A. Sur
    Cosmological inference using gravitational wave standard sirens: A mock data analysis
    Phys. Rev. D 101 (2020) 122001
    https://dx.doi.org/10.1103/PhysRevD.101.122001
  32. A. Samajdar, T. Dietrich
    Constructing Love-Q-Relations with Gravitational Wave Detections
    Phys. Rev. D 101 (2020) 124014
    https://dx.doi.org/10.1103/PhysRevD.101.124014
  33. J. E. Thompson, E. Fauchon-Jones, S. Khan, E. Nitoglia, F. Pannarale, T. Dietrich, M. Hannam
    Modeling the gravitational wave signature of neutron star black hole coalescences
    Phys. Rev. D 101 (2020) 124059
    https://dx.doi.org/10.1103/PhysRevD.101.124059
  34. Y. Asali, P. T. Pang, A. Samajdar, C. Van Den Broeck
    Probing resonant excitations in exotic compact objects via gravitational waves
    Phys. Rev. D 102 (2020) 024016
    https://dx.doi.org/10.1103/PhysRevD.102.024016
  35. S. V. Chaurasia, T. Dietrich, M. Ujevic, K. Hendriks, R. Dudi, F. M. Fabbri, W. Tichy, B. Brugmann
    Gravitational waves and mass ejecta from binary neutron star mergers: Effect of the spin orientation
    Phys. Rev. D 102 (2020) 024087
    https://dx.doi.org/10.1103/PhysRevD.102.024087
  36. A. Matas (et al.), T. Dietrich
    Aligned-spin neutron-star-black-hole waveform model based on the effective-one-body approach and numerical-relativity simulations
    Phys. Rev. D 102 (2020) 043023
    https://dx.doi.org/10.1103/PhysRevD.102.043023
  37. O. A. Hannuksela, K. C. Ng, T. G. Li
    Extreme dark matter tests with extreme mass ratio inspirals
    Phys. Rev. D 102 (2020) 103022
    https://dx.doi.org/10.1103/PhysRevD.102.103022
  38. S. Tait (et al.), J. Steinlechner
    Demonstration of the Multimaterial Coating Concept to Reduce Thermal Noise in Gravitational-Wave Detectors
    Phys. Rev. Lett. 125 (2020) 011102
    https://dx.doi.org/10.1103/PhysRevLett.125.011102
  39. M. W. Coughlin, T. Dietrich, J. Heinzel, N. Khetan, S. Antier, M. Bulla, N. Christensen, D. A. Coulter (et al.)
    Standardizing kilonovae and their use as standard candles to measure the Hubble constant
    Phys. Rev. Res. 2 (2020) 022006
    https://dx.doi.org/10.1103/PhysRevResearch.2.022006
  40. J. Steinlechner (et al.)
    Influence of deposition parameters on the optical absorption of amorphous silicon thin films
    Phys. Rev. Res. 2 (2020) 033308
    https://doi.org/10.1103/PhysRevResearch.2.033308
  41. P. T. Pang, T. Dietrich, I. Tews, C. Van Den Broeck
    Parameter estimation for strong phase transitions in supranuclear matter using gravitational-wave astronomy
    Phys. Rev. Res. 2 (2020) 033514
    https://dx.doi.org/10.1103/PhysRevResearch.2.033514
  42. S. L. Danilishin
    Advanced quantum-enhanced metrology for gravitational-wave detection
    Proc. SPIE Int. Soc. Opt. Eng. 11296 (2020) 112962K
    https://dx.doi.org/10.1117/12.2552683
  43. T. Akutsu (et al.), E. Tapia
    Compact integrated optical sensors and electromagnetic actuators for vibration isolation systems in the gravitational-wave detector KAGRA
    Rev. Sci. Instrum. 91 (2020) 115001
    https://dx.doi.org/10.1063/5.0022242
  44. C. Darsow-Fromm, L. Dekant, S. Grebien, M. Schroeder, R. Schnabel, S. Steinlechner
    NQontrol: An open-source platform for digital control-loops in quantum-optical experiments
    Rev. Sci. Instrum. 91 (2020) 35114
    https://dx.doi.org/10.1063/1.5135873
  45. T. Dietrich, M. W. Coughlin, P. T. Pang, M. Bulla, J. Heinzel, L. Issa, I. Tews, S. Antier
    Multimessenger constraints on the neutron-star equation of state and the Hubble constant
    Science 370 (2020) 1450
    https://dx.doi.org/10.1126/science.abb4317
  46. D. Brown (et al.), A. Freise
    PYKAT: Python package for modelling precision optical interferometers
    SoftwareX 12 (2020)
    https://dx.doi.org/10.1016/j.softx.2020.100613
  47. A. Jones, A. Freise
    Increased sensitivity of higher-order laser beams to mode mismatches
    Opt. Lett. 45 (2020) 5876
    https://dx.doi.org/10.1364/OL.403802

LIGO Scientific Collaboration and Virgo Collaboration: F. Acernese (et al.); M.K.M. Bader, N. van Bakel, A. Bertolini, M.van Beuzekom, B.A. Boom, J.F.J. van den Brand, C. Van Den Broeck, H.J. Bulten, S. Caudill, A. Ghosh, P. Gupta, R.J.G. Jonker, G. Koekoek, S. Koley, F. Linde, G. Nelemans, D. Nichols, S. Nissanke, P.T.H. Pang, L. van der Schaaf, B. Swinkels, K.W. Tsang, R. Walet.

  1. GW190425: Observation of a Compact Binary Coalescence with Total Mass 3. M
    Astrophys. J. Lett. 892 (2020) L3
    https://dx.doi.org/10.3847/2041-8213/ab75f5
  2. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object
    Astrophys. J. Lett. 896 (2020) L44
    https://dx.doi.org/10.3847/2041-8213/ab960f
  3. Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521
    Astrophys. J. Lett. 900 (2020) L13
    https://dx.doi.org/10.3847/2041-8213/aba493
  4. Model comparison from LIGO-Virgo data on GW170817’s binary components and consequences for the merger remnant
    Class. Quant. Grav. 37 (2020) 045006
    https://dx.doi.org/10.1088/1361-6382/ab5f7c
  5. A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals
    Class. Quant. Grav. 37 (2020) 055002
    https://dx.doi.org/10.1088/1361-6382/ab685e
  6. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
    Living Rev. Relativ. 23 (2020)
    https://dx.doi.org/10.1007/s41114-020-00026-9
  7. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo
    Phys. Rev. D 101 (2020) 084002
    https://dx.doi.org/10.1103/PhysRevD.101.084002
  8. GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses
    Phys. Rev. D 102 (2020) 043015
    https://dx.doi.org/10.1103/PhysRevD.102.043015
  9. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M
    Phys. Rev. Lett. 125 (2020)
    https://dx.doi.org/10.1103/PhysRevLett.125.101102
  10. A joint fermi-gbm and LIGO/Virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs
    Astrophys. J. 893 (2020)
    https://dx.doi.org/10.3847/1538-4357/ab7d3e

Einstein Collaboration:

  1. M. Maggiore (et al.) , C. Van Den Broeck
    Science Case for the Einstein Telescope
    J. Cosmol. Astropart. Phys. 03 (2020) 050
    https://dx.doi.org/10.1088/1475-7516/2020/03/050
  2. F. Amann (et al.), H.J. Bulten
    Site-selection criteria for the Einstein Telescope
    Rev. Sci. Instrum. 91 (2020) 9
    https://dx.doi.org/10.1063/5.0018414

LISA Collaboration:

  1. E. Barausse (et al.), E. , Bulten, J.W. van Holten, J.F.J. van den Brand, C. Van Den Broeck
    Prospects for Fundamental Physics with LISA
    Gen. Rel. Grav. 52 (2020) 81
    https://dx.doi.org/10.1007/s10714-020-02691-1

Cosmic Rays

Pierre Auger Collaboration: A. Aab (et al.), F. Canfora, H. Falcke, C. Hoijvat, J.R. Horandel, S.J. de Jong, G. De Mauro, M. Podhast, C. Timmermans, A. van Vliet

  1. Cosmic-ray anisotropies in right ascension measured by the Pierre Auger Observatory
    Astrophys. J. 891 (2020) 142
    https://dx.doi.org/10.3847/1538-4357/ab7236
  2. A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory
    Astrophys. J. 902 (2020) 105
    https://dx.doi.org/10.3847/1538-4357/abb476
  3. A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory
    Earth Space Sci. 7 (2020)
    https://dx.doi.org/10.1029/2019ea000582
  4. Direct measurement of the muonic content of extensive air showers between 2×1017 and 2×1018 eV at the Pierre Auger Observatory
    Eur. Phys. J. C 80 (2020) 751
    https://doi.org/10.1140/epjc/s10052-020-8055-y
  5. Search for magnetically-induced signatures in the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory
    J. Cosmol. Astropart. Phys. 06 (2020) 017
    https://dx.doi.org/10.1088/1475-7516/2020/06/017
  6. Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope
    J. Instr. 15 (2020) P09002
    https://dx.doi.org/10.1088/1748-0221/15/09/P09002
  7. Reconstruction of events recorded with the surface detector of the Pierre Auger Observatory
    J. Instr. 15 (2020) P10021
    https://dx.doi.org/10.1088/1748-0221/15/10/P10021
  8. Measurement of the cosmic-ray energy spectrum above 2.5x 1018 eV using the Pierre Auger Observatory
    Phys. Rev. D 102 (2020) 062005
    https://dx.doi.org/10.1103/PhysRevD.102.062005
  9. Features of the Energy Spectrum of Cosmic-Rays above 2.5×1018 eV Using the Pierre Auger Observatory
    Phys. Rev. Lett. 125 (2020) 121106
    https://dx.doi.org/10.1103/PhysRevLett.125.121106
  10. A. van Vliet, R. Alves Batista, J. R. Horandel
    Current constraints from cosmogenic neutrinos on the fraction of protons in UHECRs
    PoS ICRC2019 (2020) 1025
    https://dx.doi.org/10.22323/1.358.1025
  11. Particle Data Group Collaboration: P.A. Zyla (et al.), P. de Jong
    Review of Particle Physics
    Prog. Theor. Exp. Phys.CR 8 (2020) 083C01
    https://doi.org/10.1093/ptep/ptaa104
  12. GRAND Collaboration : J. Alvarez-Muniz (et al.), S.J. de Jong
    The Giant Radio Array for Neutrino Detection (GRAND): Science and Design
    Sci. China Phys. Mech. Astron. 63 (2020) 219501
    https://dx.doi.org/10.1007/s11433-018-9385-7

Dark Matter

XENON Collaboration: E. Aprile (et al.); J.R. Angevaare, S. Bruenner, A.P. Colijn, M.P. Decowski, P. Gaemers

  1. Energy resolution and linearity of XENON1T in the MeV energy range
    Eur. Phys. J. C 80 (2020) 785
    https://dx.doi.org/10.1140/epjc/s10052-020-8284-0
  2. Projected WIMP sensitivity of the XENONnT dark matter experiment
    J. Cosmol. Astropart. Phys. 11 (2020) 031
    https://dx.doi.org/10.1088/1475-7516/2020/11/031
  3. Excess electronic recoil events in XENON1T
    Phys. Rev. D 102 (2020) 072004
    https://dx.doi.org/10.1103/PhysRevD.102.072004

DARWIN Consortium: F. Agostini (et al.); J. Angevaare, P.A. Breur, S. Brunner, A.P Colijn, M.P. Decowski, P. Gaemers, A. Loya Villalpando

  1. Solar neutrino detection sensitivity in DARWIN via electron scattering
    Eur. Phys. J. C 80 (2020) 1133
    https://dx.doi.org/10.1140/epjc/s10052-020-08602-7
  2. Sensitivity of the DARWIN observatory to the neutrinoless double β decay of 136Xe
    Eur. Phys. J. C 80 (2020) 808
    https://dx.doi.org/10.1140/epjc/s10052-020-8196-z

Theoretical Physics

  1. J. J. Ethier, E. R. Nocera
    Parton Distributions in Nucleons and Nuclei
    Ann. Rev. Nucl. Part. Sci. (2020) 1
    https://dx.doi.org/10.1146/annurev-nucl-011720-042725
  2. M. L. Czakon (et al.), J. Scott
    Top quark pair production at complete NLO accuracy with NNLO+NNLL’ corrections in QCD
    Chin. Phys. C 44 (2020) 083104
    https://dx.doi.org/10.1088/1674-1137/44/8/083104
  3. B. Ruijl, T. Ueda, J. Vermaseren
    Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams
    Comput. Phys. Commun. 253 (2020) 107198
    https://dx.doi.org/10.1016/j.cpc.2020.107198
  4. F. Faura, S. Iranipour, E. R. Nocera, J. Rojo, M. Ubiali
    The Strangest Proton?
    Eur. Phys. J. C 80 (2020) 1168
    https://dx.doi.org/10.1140/epjc/s10052-020-08749-3
  5. R. Fleischer, R. Jaarsma, G. Koole
    Testing Lepton Flavour Universality with (Semi)-Leptonic D(s) Decays
    Eur. Phys. J. C 80 (2020) 153
    https://dx.doi.org/10.1140/epjc/s10052-020-7702-7
  6. R. Abdul Khalek (et al.)
    Phenomenology of NNLO jet production at the LHC and its impact on parton distributions
    Eur. Phys. J. C 80 (2020) 797
    https://dx.doi.org/10.1140/epjc/s10052-020-8328-5
  7. F. Scarpa, D. Boer, M. G. Echevarria, J-P. Lansberg, C. Pisano, M. Schlegel
    Studies of gluon TMDs and their evolution using quarkonium-pair production at the LHC
    Eur. Phys. J. C 80 (2020) 87
    https://dx.doi.org/10.1140/epjc/s10052-020-7619-1
  8. P. Christodoulidis, D. Roest, E. I. Sfakianakis
    Attractors, Bifurcations and Curvature in Multi-field Inflation
    J. Cosmol. Astropart. Phys. 08 (2020) 006
    https://dx.doi.org/10.1088/1475-7516/2020/08/006
  9. S. Abel, L. Buoninfante, A. Mazumdar
    Nonlocal gravity with worldline inversion symmetry
    J. High Energy Phys. 01 (2020) 003
    https://dx.doi.org/10.1007/JHEP01(2020)003
  10. M. Beneke, M. Garny, S. Jaskiewicz, R. Szafron, L. Vernazza, J. Wang
    Leading-logarithmic threshold resummation of Higgs production in gluon fusion at next-to-leading power
    J. High Energy Phys. 01 (2020) 094
    https://dx.doi.org/10.1007/JHEP01(2020)094
  11. G. Ridolfi, M. Ubiali, M. Zaro
    A fragmentation-based study of heavy quark production
    J. High Energy Phys. 01 (2020) 196
    https://dx.doi.org/10.1007/JHEP01(2020)196
  12. M. Postma, J. Van De Vis
    Source terms for electroweak baryogenesis in the vev-insertion approximation beyond leading order
    J. High Energy Phys. 02 (2020) 090
    https://dx.doi.org/10.1007/JHEP02(2020)090
  13. G. Cardoso, B. de Wit, S. Mahapatra
    Exact results for an STU-model
    J. High Energy Phys. 02 (2020) 127
    https://dx.doi.org/10.1007/JHEP02(2020)127
  14. M. van Beekveld, W. Beenakker, E. Laenen, C. D. White
    Next-to-leading power threshold effects for inclusive and exclusive processes with final state jets
    J. High Energy Phys. 03 (2020) 106
    https://dx.doi.org/10.1007/JHEP03(2020)106
  15. D. J. Scott, W. J. Waalewijn
    The leading jet transverse momentum in inclusive jet production and with a loose jet veto
    J. High Energy Phys. 03 (2020) 159
    https://dx.doi.org/10.1007/JHEP03(2020)159
  16. J. B. Amado, B. Carneiro da Cunha, E. Pallante
    Vector perturbations of Kerr-AdS5 and the Painleve VI transcendent
    J. High Energy Phys. 04 (2020) 155
    https://dx.doi.org/10.1007/JHEP04(2020)155
  17. P. Cal, D. Neill, F. Ringer, W. J. Waalewijn
    Calculating the angle between jet axes
    J. High Energy Phys. 04 (2020) 211
    https://dx.doi.org/10.1007/JHEP04(2020)211
  18. S. Gangal, J. R. Gaunt, F. J. Tackmann, E. Vryonidou
    Higgs Production at NNLL’+NNLO using Rapidity Dependent Jet Vetoes
    J. High Energy Phys. 05 (2020) 054
    https://dx.doi.org/10.1007/JHEP05(2020)054
  19. E. R. Nocera, M. Ubiali, C. Voisey
    Single Top Production in PDF fits
    J. High Energy Phys. 05 (2020) 067
    https://dx.doi.org/10.1007/JHEP05(2020)067
  20. A. S. Koshelev, K. Sravan Kumar, A. Mazumdar, A. A. Starobinsky
    Non-Gaussianities and tensor-to-scalar ratio in non-local R*-like inflation
    J. High Energy Phys. 06 (2020) 152
    https://dx.doi.org/10.1007/JHEP06(2020)152
  21. A. Lenz, G. Tetlalmatzi-Xolocotzi
    Model-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesons
    J. High Energy Phys. 07 (2020) 177
    https://dx.doi.org/10.1007/JHEP07(2020)177
  22. G. Bell, R. Rahn, J. Talbert
    Generic dijet soft functions at two-loop order: uncorrelated emissions
    J. High Energy Phys. 09 (2020) 015
    https://dx.doi.org/10.1007/JHEP09(2020)015
  23. D. Boer, U. D’Alesio, F. Murgia, C. Pisano, P. Taels
    J/ψ meson production in SIDIS: matching high and low transverse momentum
    J. High Energy Phys. 09 (2020) 040
    https://dx.doi.org/10.1007/JHEP09(2020)040
  24. A. Anabalon, B. de Wit, J. Oliva
    Supersymmetric traversable wormholes
    J. High Energy Phys. 09 (2020) 109
    https://dx.doi.org/10.1007/JHEP09(2020)109
  25. J. Fumagalli, M. Postma, M. Van Den Bout
    Matching and running sensitivity in non-renormalizable inflationary models
    J. High Energy Phys. 09 (2020) 114
    https://dx.doi.org/10.1007/JHEP09(2020)114
  26. R. Abdul Khalek, J. J. Ethier, J. Rojo, G. van Weelden
    nNNPDF2.0: quark flavor separation in nuclei from LHC data
    J. High Energy Phys. 09 (2020) 183
    https://dx.doi.org/10.1007/JHEP09(2020)183
  27. M. Boers, E. Pallante
    Conserved vector current in QCD-like theories and the gradient flow
    J. High Energy Phys. 10 (2020) 034
    https://dx.doi.org/10.1007/JHEP10(2020)034
  28. A. Basdew-Sharma, F. Herzog, S. Schrijnder van Velzen, W. J. Waalewijn
    One-loop jet functions by geometric subtraction
    J. High Energy Phys. 10 (2020) 118
    https://dx.doi.org/10.1007/JHEP10(2020)118
  29. P. Cal, K. Lee, F. Ringer, W. J. Waalewijn
    Jet energy drop
    J. High Energy Phys. 11 (2020) 012
    https://dx.doi.org/10.1007/JHEP11(2020)012
  30. S. Carrazza, E. Nocera, C. Schwan, M. Zaro
    PineAPPL: combining EW and QCD corrections for fast evaluation of LHC processes
    J. High Energy Phys. 12 (2020) 108
    https://dx.doi.org/10.1007/JHEP12(2020)108
  31. R. Beekveldt, M. Borinsky, F. Herzog
    The Hopf algebra structure of the R*-operation
    J. High Energy Phys. 20 (2020) 061
    https://dx.doi.org/10.1007/JHEP07(2020)061
  32. R. Oncala
    Dark matter bound state formation via emission of a charged scalar
    J. High Energy Phys. 2020 (2020)
    https://dx.doi.org/10.1007/JHEP02(2020)036
  33. T. Ueda, T. Kaneko, B. Ruijl, J. Vermaseren
    Further developments of FORM
    J. Phys. Conf. Ser. 1525 (2020) 012013
    https://dx.doi.org/10.1088/1742-6596/1525/1/012013
  34. K. van Dam, B. van Eijk, D.B.R.A. Fokkema, W.J.W. van Holten, A.P.L.S. de Laat, N.G. Schultheiss, J.J.M. Steijger, J.C. Verkooijen
    The HiSPARC Experiment
    Nucl. Instr. Meth. A 959 (2020) 163577
    https://doi.org/10.1016/j.nima.2020.163577
  35. M. Borinsky, G. V. Dunne
    Non-Perturbative Completion of Hopf-Algebraic Dyson-Schwinger Equations
    Nucl. Phys. B 957 (2020) 115096
    https://dx.doi.org/10.1016/j.nuclphysb.2020.115096
  36. C. P. Korthals Altes, H. Nishimura, R. D. Pisarski, V. V. Skokov
    Conundrum for the free energy of a holonomous gluonic plasma at cubic order
    Phys. Lett. B 803 (2020) 135336
    https://dx.doi.org/10.1016/j.physletb.2020.135336
  37. C. B. Marinissen, R. Rahn, W. J. Waalewijn
    …, 83106786, 114382724, 1509048322, 2343463290, 27410087742, … efficient Hilbert series for effective theories
    Phys. Lett. B 808 (2020) 135632
    https://dx.doi.org/10.1016/j.physletb.2020.135632
  38. R. J. Marshman, A. Mazumdar, S. Bose
    Locality and entanglement in table-top testing of the quantum nature of linearized gravity
    Phys. Rev. A 101 (2020) 052110
    https://dx.doi.org/10.1103/PhysRevA.101.052110
  39. C. Bravo-Prieto, D. Garcia-Martin, J. I. Latorre
    Quantum Singular Value Decomposer
    Phys. Rev. A 101 (2020) 062310
    https://dx.doi.org/10.1103/PhysRevA.101.062310
  40. T. W. van de Kamp, R. J. Marshman, S. Bose, A. Mazumdar
    Quantum Gravity Witness via Entanglement of Masses: Casimir Screening
    Phys. Rev. A 102 (2020) 062807
    https://dx.doi.org/10.1103/PhysRevA.102.062807
  41. A. Crivellin, C. Gross, S. Pokorski, L. Vernazza
    Correlating ε’/ε to hadronic B decays via U(2)3 flavour symmetry
    Phys. Rev. D 101 (2020) 015022
    https://dx.doi.org/10.1103/PhysRevD.101.015022
  42. N. Sato, C. Andres, J. Ethier, W. Melnitchouk
    Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions
    Phys. Rev. D 101 (2020) 074020
    https://dx.doi.org/10.1103/PhysRevD.101.074020
  43. C. P. Korthals Altes, H. Nishimura, R. D. Pisarski, V. V. Skokov
    Free energy of a Holonomous Plasma
    Phys. Rev. D 101 (2020) 094025
    https://dx.doi.org/10.1103/PhysRevD.101.094025
  44. L. Calibbi, A. Crivellin, F. Kirk, C. A. Manzari, L. Vernazza
    Z’ models with less-minimal flavour violation
    Phys. Rev. D 101 (2020) 095003
    https://dx.doi.org/10.1103/PhysRevD.101.095003
  45. I. Kolar, A. Mazumdar
    NUT charge in linearized infinite derivative gravity
    Phys. Rev. D 101 (2020) 124005
    https://dx.doi.org/10.1103/PhysRevD.101.124005
  46. J. de Vries, G. Falcioni, F. Herzog, B. Ruijl
    Two- and three-loop anomalous dimensions of Weinberg’s dimension-six CP-odd gluonic operator
    Phys. Rev. D 102 (2020) 016010
    https://dx.doi.org/10.1103/PhysRevD.102.016010
  47. K. S. Kumar, S. Maheshwari, A. Mazumdar, J. Peng
    Stable, nonsingular bouncing universe with only a scalar mode
    Phys. Rev. D 102 (2020) 024080
    https://dx.doi.org/10.1103/PhysRevD.102.024080
  48. J. van de Vis, R. Nguyen, E. I. Sfakianakis, J. T. Giblin, D. I. Kaiser
    Time scales for nonlinear processes in preheating after multifield inflation with nonminimal couplings
    Phys. Rev. D 102 (2020) 043528
    https://dx.doi.org/10.1103/PhysRevD.102.043528
  49. S. Dengiz, E. Kilicarslan, I. Kolar, A. Mazumdar
    Impulsive waves in ghost free infinite derivative gravity in anti-de Sitter spacetime
    Phys. Rev. D 102 (2020) 044016
    https://dx.doi.org/10.1103/PhysRevD.102.044016
  50. E. Maggio, L. Buoninfante, A. Mazumdar, P. Pani
    How does a dark compact object ringdown?
    Phys. Rev. D 102 (2020) 064053
    https://dx.doi.org/10.1103/PhysRevD.102.064053
  51. T. Binder, K. Mukaida, K. Petraki
    Rapid bound-state formation of Dark Matter in the Early Universe
    Phys. Rev. Lett. 124 (2020) 161102
    https://dx.doi.org/10.1103/PhysRevLett.124.161102
  52. R. Gauld, A. Gehrmann-De Ridder, E. Glover, A. Huss, I. Majer
    Predictions for Z-boson production in association with a b-jet at O(αs3)
    Phys. Rev. Lett. 125 (2020) 222002
    https://dx.doi.org/10.1103/PhysRevLett.125.222002
  53. R. Fleischer
    Probing New Physics with Leptonic Rare B Decays
    PoS CORFU2019 (2020) 021
    https://dx.doi.org/10.22323/1.376.0021
  54. E. Malami
    Exploring New Physics in B → π K Decays
    PoS CORFU2019 (2020) 025
    https://dx.doi.org/10.22323/1.376.0025
  55. E. Malami
    B0s→ Ds± K* decays: Can they reveal New Physics?
    PoS CORFU2019 (2020) 026
    https://dx.doi.org/10.22323/1.376.0026
  56. A. Perez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, J. I. Latorre
    Data re-uploading for a universal quantum classifier
    Quantum 4 (2020) 226
    https://dx.doi.org/10.22331/q-2020-02-06-226
  57. A. Buckley, D. Kar, K. Nordstrom
    Fast simulation of detector effects in Rivet
    SciPost Phys. 8 (2020) 025
    https://dx.doi.org/10.21468/SciPostPhys.8.2.025
  58. I. Baldes, F. Calore, K. Petraki, V. Poireau, N. L. Rodd
    Indirect searches for dark matter bound state formation and level transitions
    SciPost Phys. 9 (2020) 068
    https://dx.doi.org/10.21468/SciPostPhys.9.5.068
  59. J.W. van Holten
    Conformal symmetry and supersymmetry in Rindler space
    Universe 6 (2020) 144
    https://dx.doi.org/10.3390/universe6090144
  60. M. F. Lutz, U. Sauerwein, R. G. Timmermans
    On the axial-vector form factor of the nucleon and chiral symmetry
    Eur. Phys. J. C 80 (2020) 844
    https://dx.doi.org/10.1140/epjc/s10052-020-8417-5

Detector R&D

  1. P. Moschovakos, H. Boterenbrood, A. Koulouris, P. Nikiel, S. Schlenker
    A Software Suite for the Radiation Tolerant Giga-bit Transceiver – Slow Control Adapter
    17th Int. Conf. on Accelerator and Large Experimental Physics Control Systems (2020) WEPHA102
    https://dx.doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA102
  2. T. van der Reep, B. Looman, H. Chan, C. Hagen, H. van der Graaf
    Measurement of the transmission secondary electron yield of nanometer-thick films in a prototype Timed Photon Counter
    J. Instr. 15 (2020) P10022
    https://dx.doi.org/10.1088/1748-0221/15/10/P10022
  3. Y. Bilevych (et al.), J-P. Fransen, J. van der Graaf, F. Hartjes
    New results from GridPix Detectors
    J. Phys.: Conf. Ser. 1498 (2020)
    https://dx.doi.org/10.1088/1742-6596/1498/1/012012
  4. F. Dachs (et al.), M. van Beuzekom, B. van der Heijden, E. Heijne
    Transition radiation measurements with a Si and a GaAs pixel sensor on a Timepix3 chip
    Nucl. Instrum. Meth. A 958 (2020)
    https://dx.doi.org/10.1016/j.nima.2019.03.092
  5. C. Ligtenberg
    The gaseous QUAD pixel detector
    Nucl. Instrum. Meth. A 958 (2020)
    https://dx.doi.org/10.1016/j.nima.2019.162731
  6. J. Alozy (et al.), E. Heijne
    Studies of the spectral and angular distributions of transition radiation using a silicon pixel sensor on a Timepix3 chip
    Nucl. Instrum. Meth. A 961 (2020) 163681
    https://dx.doi.org/10.1016/j.nima.2020.163681
  7. Y. Zhao (et al.), Y. Guo, M. Tacca
    Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors
    Phys. Rev. Lett. 124 (2020) 171101
    https://dx.doi.org/10.1103/PhysRevLett.124.171101

Scientific Computing

  1. B. Bockelman (et al.), M. Salle
    WLCG Authorisation from X.509 to Tokens
    Epj Web Conf. 245 (2020) 03001
    https://dx.doi.org/10.1051/epjconf/202024503001
  2. E. P. Bos, C. D. Burgard, V. A. Croft, S. Hageboeck, L. Moneta, I. Pelupessy, J. J. Attema, W. Verkerke
    Faster RooFitting: Automated parallel calculation of collaborative statistical models
    Epj Web Conf. 245 (2020) 06027
    https://dx.doi.org/10.1051/epjconf/202024506027
  3. E. Patrick Bos, C. D. Burgard, V. A. Croft, I. Pelupessy, J. J. Attema, W. Verkerke
    Faster RooFitting: Automated parallel calculation of collaborative statistical models
    J. Phys. Conf. Ser. 1525 (2020) 012041
    https://dx.doi.org/10.1088/1742-6596/1525/1/012041

Astrophysics

  1. T. N. G. Trinh, O. Scholten, S. Buitink, U. Ebert, B. M. Hare, P. R. Krehbiel, H. Leijnse, A. Bonardi (et al.)
    Determining Electric Fields in Thunderclouds With the Radiotelescope LOFAR
    J. Geophys. Res. Atmos. 125 (2020)
    https://dx.doi.org/10.1029/2019jd031433
  2. P. Mitra (et al.)
    Reconstructing air shower parameters with LOFAR using event specific GDAS atmosphere
    Astropart. Phys. 123 (2020) 102470 https://dx.doi.org/10.1016/j.astropartphys.2020.102470
  3. K. Mulrey (et al.)
    On the cosmic-ray energy scale of the LOFAR radio telescope
    J. Cosmol. Astropart. Phys. 11 (2020) 017
    https://dx.doi.org/10.1088/1475-7516/2020/11/017
  4. J. Broderick (et al.)
    LOFAR 144-MHz follow-up observations of GW170817
    Mon. Not. R. Astron. Soc. 494 (2020) 5110
    https://dx.doi.org/10.1093/mnras/staa950
  5. F. de Gasperin (et al.)
    Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies
    Astron. Astrophys. 635 (2020) A150
    https://dx.doi.org/10.1051/0004-6361/201936844

Miscellaneous

  1. L. Brenner, R. Balasubramanian, C. Burgard, W. Verkerke, G. Cowan, P. Verschuuren, V. Croft
    Comparison of unfolding methods using RooFitUnfold
    Int. J. Mod. Phys. A 35 (2020) 2050145
    https://dx.doi.org/10.1142/S0217751X20501456
  2. AMS Collaboration: S. Aguilar (et al.), M. Basegmez-du Pree
    Properties of Neon, Magnesium, and Silicon Primary Cosmic-Rays Results from the Alpha Magnetic Spectrometer
    Phys. Rev. Lett. 124 (2020) 211102
    https://dx.doi.org/10.1103/physrevlett.124.211102
  3. K. van Dam
    Increased radioactivity during precipitation measured by the HiSPARC experiment
    Phys. Scripta 95 (2020)
    https://dx.doi.org/10.1088/1402-4896/ab93a6