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Abstract

We describe the implementation of output code optimization in the open source computer
algebra system Form. This implementation is based on recently discovered techniques of
Monte Carlo tree search to find efficient multivariate Horner schemes, in combination with
other optimization algorithms, such as common subexpression elimination. For systems for
which no specific knowledge is provided it performs significantly better than other methods
we could compare with. Because the method has a number of free parameters, we also show
some methods by which to tune them to different types of problems.



1 Introduction

One of the uses of computer algebra is to prepare potentially large formulas for frequent
numerical evaluation. This is particularly the case in particle physics. The most widespread
way to compute reactions in particle physics is by means of perturbative field theory. Even at
the one loop level (usually the second term in the perturbative expansion) one may encouter
large numbers of Feynman diagrams, each resulting in a lengthy formula1. Such calculations
are undertaken to compare theories with experimental results. Hence such formulas have
to be integrated over the region of sensitivity of the detectors that measure these reactions.
This region is called the experimental acceptance and the only technique that is available to
integrate over it is Monte Carlo integration. One may have to evaluate the formulas millions
of times to obtain accurate results. Hence it is important to have a representation of the
formulas that is as short as possible, even if this involves a non-negligible cost during the
computer algebra phase of the calculation.

Optimizing the output of the formulas can be done in two different ways. The first is
domain specific. This means that specific knowledge about the behavior of the formulas is
provided to make the formulas shorter. An example is an equation in two variables x and
y, but it is known that x + y and x − y are more natural variables and make the formulas
shorter. For the second way either there is no domain specific knowledge, or it is too much
work to obtain it. In that case the formula has to be treated by generic means. It should
be clear that usually the best results are obtained when domain specific knowledge is applied
first, followed by a generic method to clean up what is left.

In computer algebra the challenge is to make a system for the optimization of the output of
expressions in the absence of domain specific knowledge. In addition this system should work
reasonably fast, which we interpret as subquadratic in the length of the input expression. In
the recent past several methods have been published in which two of the authors reported on
new techniques to improve upon existing methods [2, 3, 4]. It turns out that an optimization
method based on Monte Carlo tree search [5, 6], a recent search method from artificial intel-
ligence and game theory, performs best on the benchmarks that were tested. This method
has caused much excitement in the field of game theory, because it has improved the strength
of Go playing computer programs from advanced beginner to medium level players, and on
small (9x9) boards they have reached top level strength. Application of this technique to the
field of formula simplification has led to sufficiently positive results that we have decided to
implement it in the computer algebra language Form [7] in such a way that all its users can
benefit from it.

Since this is such a new field, we do not yet have extensive experience with applications
and how different types of formulas need different values for the controlling parameters. Hence
we have made an implementation in which the user has access to these parameters and can
tune them to whole categories of formulas. This means that at the moment we have a number
of default settings which may be changed by the user. In later versions we may try to have
the program tune these parameters for individual formulas automatically.

The outline of the paper is as follows. In section 2 we explain the algorithms that are
used for the simplification. The syntax of the Form implementation is explained in section 3
including all parameters that can be set. In section 4 we discuss a number of examples.

1In special cases other techniques can be used that lead to surprisingly simple formulas [1], but in general
these are not applicable.
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Section 5 is dedicated to studying the effects of some parameters and the determination
of good settings for a number of formulas. We finish with remarks about potential future
development. All programs that we use can be obtained from the Form website at ref.[8].

2 Code optimization algorithms

2.1 Horner’s method

For optimizing polynomials in a single variable, the textbook algorithm called Horner’s
method gives an efficient form for evaluating it [9]. It can be written as follows:

a(x) =
n∑

i=0

aix
i = a0 + x(a1 + x(a2 + x(. . .+ x · an))). (1)

If the polynomial is of degree n and dense, this form takes n multiplications and n additions
to calculate its value.

It is possible to generalize Horner’s method for multivariate polynomials, but this gener-
alization is not unique. First, one of the variables in the polynomial is selected and Eq. (1) is
applied, thereby treating the other variables as constants. Next, a different variable is chosen
and Horner’s rule is applied again on the parts not containing the first variable. This method
is repeated until all variables have been selected. As an example, we consider the polynomial
a(x, y, z) = y − 3x + 5xz + 2x2yz − 3x2y2z + 5x2y2z2 and chose the variable x first, then y
and finally z. This results in the following representation:

a(x, y, z) = y + x(−3 + 5z + x(y(2z + y(z(−3 + 5z))))). (2)

This representation takes 8 multiplications and 5 additions to evaluate, while the original
form takes 18 multiplications and 5 additions. This behavior is generic: Horner’s method
reduces the number of multiplications and leaves the number of additions constant.

For the multivariate Horner method it is important in which order the variables are
processed. Different orders may lead to huge differences in the number of operations used
to evaluate a polynomial [2]. Classically, simple greedy algorithms like sorting the variables
by number of occurrences are used to determine the order [10]. Recently, two of the authors
of this paper describedan algorithm based on Monte Carlo tree search to determine more
efficient orders [4].

2.1.1 Occurrence order

In the occurrence order all variables are ordered with respect to their number of occurrences
in the polynomial. The variable that appears most often is the first variable in the order [10].
At every step in the multivariate Horner’s method this results in the largest decrease in the
number of operations, because it is the most-occurring variable that is factored out of the
polynomial. This greedy approach usually gives good results.

Another simple order is the reverse occurrence order. As the name suggests, this or-
der contains the variables sorted with resprect to the number of occurrences, but with the
least-occurring variable first. This method usually results in Horner schemes that use more
operations than the normal occurrence order to evaluate the polynomial. However, since the
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most-occurring variables are now within the innermost parentheses, more common subex-
pressions appear, i.e., expressions that appear in multiple places in the polynomial. For the
polynomial of Eq. (2) one such common subexpression is −3 + 5z.

These common subexpressions can be detected by a method called common subexpression
elimination (CSE), see section 2.2, and be calculated beforehand. This algorithm of applying
a reverse occurrence order Horner scheme followed by CSE may outperform the analogous
algorithm with the normal occurrence order, if lots of common subexpressions exist. The
difference in performance between these two algorithms depends primarily on the structure
of the input polynomial.

2.1.2 Monte Carlo tree search

Recently, the authors of this paper proposed a method to find more efficient Horner schemes
by using Monte Carlo tree search (MCTS) [4]. The different variable orders are represented
by a search tree. The root node indicates that no variables have been selected. This root
node has n children where n is the number of variables. Traversing down an edge corresponds
to choosing a variable. A node at depth d in the tree represents that choices are made for the
first d variables in the order. Such a node has n− d children: one for every variable that has
not been selected yet. The MCTS method searches through this tree in an asymmetric way,
where most-promising branches are traversed first. Fig. 1 shows an example of the traversed
part of the MCTS tree after 1 000 iterations while looking for an efficient Horner scheme for
a polynomial in 15 variables.
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Figure 1: The traversed part of an MCTS tree in the search for a good Horner scheme.

The essence of the MCTS method is the assumption that good solutions are clustered in
branches of the search tree. This means that if a reasonable solution is found in one of the
branches, there is a good chance that there are more good (and possibly better) solutions in
the same branch. Hence, in the case that a reasonable solution is found it may pay to search
its neighborhood for better solutions. This is called exploitation. At the same time one
should try the untried branches to see whether they have particularly good or bad solutions,
because the branches tried so far may not have the best solutions. This process is called
exploration. A good MCTS program divides its time between exploiting previously found
favorable branches and exploring branches about which little is known.

To determine where to look in the search tree for better solutions several criteria exist.
The most-used selection formula is the UCT (upper confidence level for trees) criterion [5],

UCTi = 〈xi〉+ 2Cp

√
2 log n

ni
, (3)
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and the child with the highest UCT value is selected. Here 〈xi〉 is the average score of child i
over the previous traversals, ni is the number of times child i has been visited before, and n
is the number of times the node itself has been visited. Cp is a problem-dependent constant
that should be determined empirically.

If one enters a node that has never been visited before, the remaining decisions are all
random. This means that one can come to a solution very fast after which one can evaluate
the quality of this solution. In the game of Go, for example, this idea of selecting random
moves until the game is over and the outcome can the determined might seem like complete
madness at first. On the other hand: if there is a good move, one expects that the average
score in the branch with this move will be higher than in the other branches and it pays
to look a bit better in this branch. Of course there is the risk that a branch with a very
good move is missed because an earlier random continuation was particularly bad. Hence one
should never exclude branches completely and this is the role of the second term in Eq. (3);
eventually the branch will be selected again.

A complete description of MCTS in general and its applications can be found in Ref. [11],
while a more detailed description of MCTS for Horner schemes including pseudocode is in
Ref. [4].

As mentioned above, for MCTS to work we need clustering of good and bad solutions.
Hence the selection of the tree structure is dominantly important. In the case of Horner
schemes the choice of whether the outermost variable or the innermost is selected first can
make all the difference, in the same way as using occurrence order or reverse occurrence order
does. We found that this choice depends on the formula to be optimized. A clear example of
this is given in section 5.

2.2 Common subexpression elimination

Large expressions may contain many common subexpressions, in other words, subexpressions
that appear in the equation multiple times. A small example of this is the subexpression
−3 + 5z in Eq. (2). These can be replaced by a temporary variable to reduce the number of
operations, as the following code shows:

Z1 = −3 + 5z
a = y + x(Z1 + x(y(2z + y(zZ1)))).

(4)

This code uses only 7 multiplications and 4 additions, while the original expression after
applying Horner’s method uses 8 multiplications and 5 additions.

Common subexpressions can be detected and eliminated by the method of common subex-
pression elimination (CSE) in time linear in the size of the input expression [12]. First, the
expression is represented as a binary tree with the operators as inner nodes and the variables
and numbers as leaves. The two children of an operator denote its left and right operand.
The left panel of Fig. 2 shows an example of a binary expression tree for the polynomial
w2y + w2z + wx+ wy + wz.

This expression tree is traversed and each subtree is assigned a number starting with the
leaves. Equal subtrees are assigned equal numbers, since these represent common subexpres-
sions. An associative array (e.g., a hash table or balanced binary tree) [13] is used to map
subexpressions (i.e., a number, a variable or an operator combined with the identifiers of its
two operands) to the identifiers. When moving up in the tree, this map facilitates checking
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fast whether a subtree is encountered before or should be assigned a new identifier. The right
panel of Fig. 2 shows the labeling of the subtrees after CSE.

This CSE method works particularly well in combination with Horner’s method if the
variables that appear often in common subexpressions are chosen as innermost variables in
the Horner order. In this way, many common subexpressions appear and the cost of evaluation
is greatly reduced.

However, this method can also miss many common subexpressions. We consider again the
polynomial w2y+w2z+wx+wy+wz, which can be represented as a binary expression tree
in multiple ways of which two of them are shown in Fig. 3. When using CSE, the common
subexpression y + z is missed in the right representation, but is detected in the left one.
Unfortunately, it seems impossible to detect such structures in time linear in the size of the
input expression.

2.3 Greedy optimizations

CSE is not able to detect all forms of common subexpressions as is illustrated by Fig. 3.
Therefore another method is needed to detect them and reduce the evaluation cost even
further. To do so, equal operators are merged first. Two nodes in the expression tree are
merged if they contain equal operators and they are each other’s parent and child. The new
node has as children all children of merged nodes. Note that the expression tree is not a
binary tree anymore after operators are merged. This merging process is shown in Fig. 4.

After merging equal operators the evaluation code is generated. The lines of this code are
called intermediate expressions. We demand that these intermediate expressions contain only
operators of one single type, i.e., either additions or multiplications. Producing code of this
form has already been suggested in Ref. [14] for applying Breuer’s growth algorithm. The
resulting code for the merged tree of Fig. 4 is the left hand side of Eq. (5).

Z1 = w2 Z1 = w2

Z2 = y + z Z2 = y + z
Z3 = Z1 ∗ Z2 −→ Z3 = Z1 ∗ Z2

Z4 = x+ y + z Z4 = x+ Z2

Z5 = w ∗ Z4 Z5 = w ∗ Z4

a = Z3 + Z5 a = Z3 + Z5

(5)

After writing the code in this way, every expression is scanned through and the number
of occurrences of certain small subexpressions is counted. The subexpressions counted are of
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Figure 2: A binary expression tree for the polynomial w2y + w2z + wx + wy + wz and the
labeling of the nodes after CSE.
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Figure 3: Two different binary expression trees for representing the polynomial w2y +w2z +
wx+ wy + wz. Only in the left one, CSE detects the common subexpression y + z.
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Figure 4: An expression tree of w2y + w2z + wx + wy + wz before (left) and after (right)
merging operators.

the form
xn, x · y, c · x, x+ c, x+ y or x− y. (6)

In these small subexpressions x and y are either variables of the polynomial (w, x, y, z in
Eq. (5)) or intermediate variables (Zi in Eq. (5)), and c is a coefficient. For each interme-
diate expression we loop over all pairs of terms and count the corresponding subexpressions.
This takes time proportional to the sum of the squares of the lengths of the intermediate
expressions, and is therefore much slower than CSE.

Next, the subexpressions that occur multiple times are determined, because replacing
them by new intermediate expressions reduces the total number of operations of the evaluation
code. A fraction of these optimizations, that give the largest decrease in evaluation cost, is
performed and subsequently a new list of optimizations is generated. This process is repeated
until no more optimizations are found.

This algorithm is different from Breuer’s growth algorithm [14, 15], where a larger subex-
pression that generates a bigger decrease in cost is determined. Finding that subexpression is
computationally harder than counting our small subexpressions, and this has to be calculated
repeatly. We believe the two methods are more or less equivalent though, since the larger
substitution may be viewed as a chain of small ones, but have no proof of this.
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2.4 Partial factorization

The algorithm of greedy optimizations is good for detecting a lot of common subexpressions.
It does not find optimizations of the following form though:

Z1 = y ∗ z
Z1 = x ∗ y ∗ z Z2 = z2

Z2 = x ∗ z2 −→ Z3 = 2 + Z1 + Z2

a = 2 ∗ x+ y + Z1 + Z2 Z4 = x ∗ Z3

a = y + Z4

(7)

Here, the variable x is factored out of a number of terms, thereby reducing the number of
operations. These kind of optimizations are done by the partial factorization method. For
each intermediate expression and the intermediate expressions in its operands, the number of
occurrences of each variable is counted. If a variable occurs two or more times, the code is
optimized analogous to Eq. (7). In our code optimization algorithms, this method of partial
factorization is intertwined with the greedy optimizations, so that both methods optimize the
evaluation code in turns. This generally gives good resulting code.

This partial factorization method has some similarities with the hypergraph method that
performs syntactic factorizations [3]. In this method a polynomial a is factorized as a = b · c,
such that the number of terms in a is the product of the numbers of terms in b and c. The
factors b and c have to be more or less independent for this to happen. In this case the
substitution rule of Eq. (7) often finds the corresponding factorization after a few iterations
intertwined with the greedy optimizations. This is shown by the sequence underneath.

Z1 = w ∗ y Z5 = y + z Z5 = y + z
Z2 = w ∗ z Z6 = w ∗ Z5 Z6 = w ∗ Z5 Z5 = y + z
Z3 = x ∗ y −→ Z7 = y + z −→ Z8 = x ∗ Z5 −→ Z9 = w + x
Z4 = x ∗ z Z8 = x ∗ Z7 a = Z6 + Z8 a = Z5 ∗ Z9

a = Z1 + Z2 + Z3 + Z4 a = Z6 + Z8

(8)

2.5 Recycling variables

The algorithms to reduce the number of operations (Horner schemes followed by CSE, greedy
optimizations and/or partial factorizations) usually result in evaluation code that contains
a huge number of intermediate variables, namely one per intermediate expression. Many of
them are only used in a small part of the code and can be discarded afterwards. Reusing
these variables often greatly reduces the number of temporary variables, which leads to more
efficient code and faster compile times when compiling it with traditional compilers.

To generate the final code and recycle the variables, the intermediate expressions are sorted
in depth-first order [12]. The directed acyclic graph of intermediate expressions is traversed
with a depth-first search and an expression is added to the code after all its children are
traversed. Next, the life ranges of all expressions are determined by looking at their first
and last appearances. Subsequently, new expressions are renumbered to the lowest available
number at that stage. This method of renumbering variables is known as linear scan register
allocation [16] and works much faster for large numbers of variables than the traditional graph
coloring algorithms used in many compilers. After appying this final step, the code of Eq. (5)
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becomes the following
Z1 = w2 Z1 = w2

Z2 = y + z Z2 = y + z
Z3 = Z1 ∗ Z2 −→ Z1 = Z1 ∗ Z2

Z4 = x+ Z2 Z2 = x+ Z2

Z5 = w ∗ Z4 Z2 = w ∗ Z2

a = Z3 + Z5 a = Z1 + Z2

(9)

and only two temporary variables are used to evaluate the polynomial.

3 FORM implementation

3.1 Calling optimization routines

There are several statements that concern the optimization of an expression and its writing.
New options of the Format statement determine whether optimization is applied and how
this is done. Regular output can be printed with the Print statement. If the format is
set correctly the output is optimized. Such output does not affect the stored version of the
expressions that are optimized. It is only the output that takes this representation.

This output, however, is usually not what the user intends. Things are different when the
#optimize instruction is used. This optimizes a single expression and replaces the original
formula by the new one and keeps all temporary statements like the ones in the r.h.s. of
Eq. (9) in memory. This can only be done for one expression at a time. As soon as a
second expression is optimized the results of the previous optimization are lost and so is the
entire previous expression. The reason for this behavior is explained below. The optimized
expression and its supportive statements can be written to the standard output or a file
with the #write instruction. This last method is very powerful and allows the automatic
construction of complete programs.

The #write instruction has in the format string the new specifier %O which writes the
intermediate statements that are prepared by the most recent #optimize instruction. It uses
the current format settings (as for fortran or C) and the current settings for the extra symbols.
Additionally, when for instance %5O is specified, all lines in the output will have 5 spaces at
the start of the line. The format specifier %E can write the optimized expression.

To declare the array for the temporary variables, the user can access the maximum
and minimum range of the array used in the optimized code by the preprocessor variables
optimmaxvar and optimminvar , respectively.

Finally, there is a #clearoptimize instruction that clears the optimization buffer and
removes the optimized expression.

If an expression contains brackets, the outsides of the brackets are not treated in the
optimizations. This can be used to create simultaneous optimizations as in the second example
in the next section.

3.2 Interaction with extra symbols

Some operations in Form have been implemented only for multivariate polynomial expres-
sions and the same may hold for some procedures that have been constructed by users. To
facilitate this Form version 4.0 has been equipped with the statement ToPolynomial that
replaces all objects (like functions or dotproducts) by system defined symbols, called extra
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symbols. It is also possible to undo this substitution at a later stage with the FromPolynomial
statement. The ExtraSymbol statement controls the output representation of the extra sym-
bols in the case they have to be printed.

The implementation of code optimization needs the notion of systems defined intermediate
variables. We define these temporary variables as extra symbols in addition to the ones that
may exist already.

The definitions of the extra symbols that are introduced by the ToPolynomial statement
are unique as in

Z1_ = g(x)

Z2_ = g(y)

Z3_ = f(x)

and hence we can store them in rather simple and semi permanent buffers.
The intermediate variables introduced during optimization can be reused as we explained

before and hence the definitions of the corresponding extra symbols are not unique as in

Z1_=x + y;

Z2_=y*Z1_;

Z1_=Z1_ + z;

Z1_=z*Z1_;

Z3_=x^2;

Z1_=Z1_ + Z3_ + Z2_;

F=2*Z1_;

where the definitions of Z1_ and Z2_ are overwritten (in the case of Z1_ even more than once).
This, in combination with the potential number of generated statements is the reason that
this category of extra symbols is stored in a different, more temporary way. We allocate a
special buffer for them and because of its potential size, we do not want to allocate more
than a single buffer. If there would be more than a single one, there would be additional
complications concerning the numbering of the variables in the different buffers: are they
independent, causing several instances of Z1_, or should they be numbered consecutively?
We have opted for a single buffer, but with a mechanism for optimization of more than one
object at the same time.

3.3 Optimization options of the Format statement

The Format statement has a number of options to control the code optimization. The easiest
to use are the following:

O0 Switches off all optimizations and prints the output the normal Form way. This is the
default.

O1 Activates the lowest level of optimization. It is very fast, i.e., linear in the size of the
expression, and gives reasonably efficient code.

O2 Activates the medium level of optimization. This is slower than the previous setting, but
usually gives better results.
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O3 Activates the highest level of optimization. It can be rather slow, but usually gives even
better results.

These levels of optimization refer to some default settings of all controlling parameters.
These default values are in Tab. 1. It is also possible to set each parameter individually to
fine-tune the optimization process. The parameters that can be set are divided in several
categories. First, it is possible to set which Horner schemes are tried:

Horner=(Occurrence | MCTS) Determines whether a (possibly reverse) occurrence or-
der Horner scheme is used or whether MCTS is employed to find Horner schemes.

HornerDirection=(Forward | Backward | ForwardOrBackward | For-
wardAndBackward) For the occurrence order, forward selects the normal one and
backward selects the reverse one. ForwardOrBackward and ForwardAndBackward try
both. For MCTS, forward starts selecting the first variables in the Horner scheme and
backward starts with the last ones. ForwardOrBackward tries both of these schemes.
ForwardAndBackward fill the order from both sides simultaneously, resulting in more
options, but also a much larger search tree.

In the case of MCTS there are various parameters that can control the search process:

MCTSConstant=<value> This is the constant Cp in Eq. (3).

MCTSNumExpand=<value> The number of times the tree is traversed and hence the
number of times that a Horner scheme is constructed.

MCTSNumKeep=<value> The number of best solutions that will be remembered.

MCTSNumRepeat=<value> As we will see in the section 5 sometimes it is more advan-
tageous to run a new tree search several times, each with a smaller number of expansions.
This parameter tells how many times we will run with a new tree. The total number of
tree traversals is the product of MCTSNumRepeat and MCTSNumExpand.

MCTSTimeLimit=<value> The maximum time in seconds that is used when searching
through the tree.

The Horner methods generate a number of Horner schemes: one or two in the case of oc-
currence order schemes, depending of the direction parameter, and a number equal to MCT-
SNumKeep in the case of MCTS. Next, for each stored Horner scheme other optimizations
are performed as determined by the following parameter:

Method=(None | CSE | Greedy | CSEGreedy) Determines what method is used for
optimizing the generated Horner schemes. CSE performs common subexpression elim-
ination (see section 2.2) and Greedy performs greedy optimizations (see section 2.3).
CSEGreedy performs CSE followed by greedy optimizations; usually this is somewhat
faster than just greedy optimizations, but it gives slightly worse results. The option
None does nothing after applying the Horner scheme and is only useful for debugging
purposes.
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When the method of greedy optimizations is used, repeatedly all optimizations are de-
termined and a few of them are performed. The following parameters are used to tune the
greedy method:

GreedyMaxPerc The percentage of the possible optimizations that is performed.

GreedyMinNum The minimum number of possible optimizations that is performed.

GreedyTimeLimit The maximum time in seconds that is spent in the process of greedy
optimization.

Experimentation shows that the influence of the first two parameters is not very big. They
might however be useful when the greedy method is expanded with the recognition of more
complicated substructures.

Additionally, there are two more general settings:

Stats=(On | Off) This parameter determines whether statistics of the optimization are
shown.

TimeLimit=<value> This set both the MCTSTimeLimit and the GreedyTimeLimit to
half of the given value.

Finally there are a few options that can help very much with debugging:

DebugFlag=(On | Off) In the case that the value is On, the list of temporary variables is
printed in reverse order with the the string ”id ” in front. This makes them into a set
of Form substitutions that undo the optimizations. One can use this for instance to
make sure that the optimized code is identical to the original.

PrintScheme=(On | Off) This option (when On) will print the Horner scheme. That is
the order in which the variables were taken outside parentheses.

Scheme=(list of symbols) The list should be enclosed by parentheses and the symbols
should be separated by either blanks or comma’s. This option will fix the Horner
scheme to be used.

All options should be specified in a single format statement and be separated either by
commas or blank spaces. When Format Optimize is used, first the default settings are taken
and then the options that are specified overwrite them. It is allowed to have the O1, O2, O3
optimization specifications followed by options. In that case the program first sets the values
of those specifications and then modifies according to what it encounters in the rest of the
statement.

4 Examples

4.1 Optimizing a single expression

The first example shows a rather simple use.
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O1 O2 O3 (default)

Horner occurrence occurrence MCTS
HornerDirection OR OR OR
MCTSConstant — — 1.0
MCTSNumExpand — — 1000
MCTSNumKeep — — 10
MCTSNumRepeat — — 1
MCTSTimeLimit — — 0
Method cse greedy greedy
GreedyMinNum — 10 10
GreedyMaxPerc — 5 5
GreedyTimeLimit — 0 0
Stats off off off
TimeLimit 0 0 0

Table 1: Values for the various parameters in the predefined optimization levels. OR stands
for ForwardOrBackward.

Symbols x,y,z;

Off Statistics;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Format O1,stats=on;

Print;

.end

Z1_=y*z;

Z2_= - z + 2*y;

Z2_=x*Z2_;

Z3_=z^2;

Z1_=Z2_ - Z3_ + 2*Z1_;

Z1_=x*Z1_;

Z2_=y^2;

Z2_=2*Z3_ + Z2_;

Z2_=y*Z2_;

Z1_=Z2_ + Z1_;

F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 10M 5A : 15

The statistics show that we started with 23 operations (one power which counted double
because it was a third power, 16 multiplications and 5 additions) and that we are left with 15
operations. Note that squares are counted like a single multiplication. If we run this program
with the option O2 we obtain

Z1_=z^2;

Z2_=2*y;

Z3_=z*Z2_;

Z2_= - z + Z2_;

Z2_=x*Z2_;
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Z2_=Z2_ - Z1_ + Z3_;

Z2_=x*Z2_;

Z3_=y^2;

Z1_=2*Z1_ + Z3_;

Z1_=y*Z1_;

Z1_=Z1_ + Z2_;

F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 9M 5A : 14

and with O3 we have

Z1_=x + z;

Z2_=2*y;

Z3_=Z2_ - x;

Z1_=z*Z3_*Z1_;

Z3_=y^3;

Z2_=x^2*Z2_;

Z1_=Z1_ + Z3_ + Z2_;

F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 1P 6M 4A : 12

It is possible to obtain an even better decomposition, but this requires simplifications of the
type x2 + xz + z2 → (x + z)2 − xz which is not within the scope of the simplifications we
apply. Similarly x2+2xz+z2 will not be seen as a square. Such simplifications require entirely
different algorithms which should be executed before the Form algorithms are applied.

4.2 Simultaneous optimization

Imagine we have to compute two objects F and G. If we can compute the common subex-
pressions of both only once we may save much. To do this we put the two expressions into
a single expression H in such a way that we can separate them again by bracketting in the
extra variable u. If the expression is bracketted in terms of u at the moment of optimization
Form will know that it is not allowed to combine terms like u*a+u^2*a into (u+u^2)*a. The
output expression in H still contains the variable u and when we bracket again in u, we can
recover the individual expressions, but now in their optimized version.

Symbols x,y,z,u;

ExtraSymbols,array,tmp;

Off Statistics;

Local F = (x+y+z)^2;

Local G = (x+2*y+z)^2;

.sort

Format O3;

Local H=u*F+u^2*G;

B u;

.sort

#optimize H
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B u;

.sort

Local F1 = H[u];

Local G1 = H[u^2];

.sort

#write <> "%5O"

tmp(1)=z + 2*x;

tmp(1)=tmp(1)*z;

tmp(2)=x^2;

tmp(1)=tmp(1) + tmp(2);

tmp(2)=z + x;

tmp(3)=2*tmp(2) + y;

tmp(3)=y*tmp(3);

tmp(3)=tmp(3) + tmp(1);

tmp(2)=y + tmp(2);

tmp(2)=y*tmp(2);

tmp(1)=4*tmp(2) + tmp(1);

#write <> "\n F=%e G=%e",F1,G1

F=tmp(3);

G=tmp(1);

.end

The same program, but now without writing the output and showing statistics, also for
the optimization of the individual expressions, shows the gain by doing the optimization
simultaneously.

Symbols x,y,z,u;

ExtraSymbols,array,tmp;

Off Statistics;

*Format nospaces;

Local F = (x+y+z)^2;

Local G = (x+2*y+z)^2;

.sort

Local H=u*F+u^2*G;

B u;

*Print;

.sort

Format O3,stats=on;

#optimize H

*** STATS: original 0P 19M 10A : 29

*** STATS: optimized 0P 7M 7A : 14

.sort

#optimize F

*** STATS: original 0P 9M 5A : 14
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*** STATS: optimized 0P 5M 5A : 10

#optimize G

*** STATS: original 0P 10M 5A : 15

*** STATS: optimized 0P 5M 5A : 10

.end

The counting of the number of operations in the original version of H takes into account that
the brackets fulfil a special role here.

Of course, by using factorization one can write the above expressions shorter than this,
but that is not the point here. In general we do not apply factorization because that succeeds
only in very rare cases and it can be very slow on large expressions. Potential factorization
is considered ‘domain specific’ and falls under the responsibility of the user.

4.3 Optimizing resultants

The third example is bigger. It comes from ref. [3]. We compute the resultant of two poly-
nomials A =

∑m
i=0 aix

i and B =
∑n

i=0 bix
i. This is a (m + n) × (m + n) determinant and

gives a polynomial in m+ n+ 2 variables. The program is rather short and can go to rather
large values of m and n. The complete program can be picked up from the Form website
(see ref [8]). Here we show the final part of the program in which F is a stored expression
containing the 7× 5 resultant:

Format O1,stats=on;

L F1 = F;

.sort

#message CPU time till now: ‘time_’ sec.

#optimize F1

.store

Format O2,stats=on;

L F2 = F;

.sort

#message CPU time till now: ‘time_’ sec.

#optimize F2

.store

Format O3,stats=on,mctsconstant=0.1;

L F3 = F;

.sort

#message CPU time till now: ‘time_’ sec.

#optimize F3

.store

#message CPU time till now: ‘time_’ sec.

.end

and the output is

~~~CPU time till now: 0.34 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 41P 11745M 8359A : 20210

~~~CPU time till now: 0.75 sec.
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*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 42P 8873M 7417A : 16398

~~~CPU time till now: 6.12 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 25P 5551M 5561A : 11171

~~~CPU time till now: 189.73 sec.

189.73 sec out of 189.79 sec

The times are on an Opteron 2.6 GHz processor. The first time is the time needed to obtain
the 12 × 12 determinant. The times are cumulative. It is possible to obtain even better
values at the cost of more CPU time. It is also possible to run the program with TForm or
ParForm to get the benefit of parallelization. For the O1 and O2 optimizations this gives
a modest improvement in the time, because it runs the scheme twice: once with the Horner
scheme in forward mode and once in backward mode (as in the forwardorbackward setting).
These can be executed in parallel. The Monte Carlo approach of the O3 level is very suitable
for parallelization. This is illustrated by the following TForm run with 4 workers:

~~~CPU time till now: 0.86 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 41P 11745M 8359A : 20210

~~~CPU time till now: 1.47 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 42P 8873M 7417A : 16398

~~~CPU time till now: 7.17 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 25P 5306M 5364A : 10730

~~~CPU time till now: 220.27 sec.

0.37 sec + 220.00 sec: 220.38 sec out of 58.81 sec

The times printed during the running are the times of the master processor and hence rather
meaningless. But the final time involves all workers and the 58.81 sec is the real time that
passed. The difference between the total CPU time of the sequential run (189.79 sec) and the
run with 4 workers (220.38 sec) is partially due to overhead and partially to bus-congestion.
Yet it is clear that we gain more than a factor 3. The different number of operations in
the O3 optimization is due to the Monte Carlo nature and the fact that each worker has
its own initialization of the random number generator. In general such multicore runs are
not deterministic anyway, because the order in which objects are processed is not fixed. For
regular algebra this is only noticed in the intermediate statistics of a module (not in the
answer of course), but here it becomes a real effect.

A good demonstration of the statistical nature is when we run the same program on 24
workers:

~~~CPU time till now: 1.07 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 41P 11745M 8359A : 20210

~~~CPU time till now: 1.65 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 42P 8873M 7417A : 16398
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~~~CPU time till now: 7.39 sec.

*** STATS: original 12044P 106580M 11379A : 142711

*** STATS: optimized 23P 6331M 6003A : 12388

~~~CPU time till now: 376.19 sec.

0.32 sec + 376.25 sec: 376.58 sec out of 23.07 sec

Suddenly the final answer has 12388 operations. We also see that the total CPU time has
increased enormously. As far as we can tell this is bus-congestion. It also shows that running
with very many workers does not always give correspondingly better execution times.

4.4 Physics examples

For the purpose of ‘realistic’ testing we have taken three formulas that were generated by
the GRACE [17, 18] system which generates matrix elements for the product of one loop
graphs and tree graphs. Each formula represents a diagram and the whole is written in terms
of Feynman parameters. The coefficient of each combination of Feynman parameters is to
be evaluated numerically and put in an array. A separate routine will then compute the
corresponding integrals and multiply them by these coefficients. This means that the best
procedure is to optimize these coefficients simultaneously.

The first formula comes from the reaction e+e− → e+e−γ and concerns a loop diagram
with a 5-point function. In total there are 5717 terms, containing a total of 15 different sym-
bols, which includes the 4 Feynman parameters. We call this formula HEP(σ). A straight-
forward evaluation takes 47424 mathematical operations. For this example we do not do a
simultaneous optimization. We just do a global optimization, including the Feynman param-
eters, just to see how this type of formulas can be improved. It made it also easier to create
an output for quick testing with compilers.

The other two formulas are called F13 and F24 and come from the reaction e+e− →
µ+µ−uu and are diagrams with a 6-point function. The F13 formula contains 105114 terms,
5 Feynman parameters and 24 other variables. Its direct evaluation takes 1 068 153 mathe-
matical operations. The F24 formula contains 836010 terms, 5 Feynman parameters and 31
other variables. It needs 7 722 027 mathematical operations in its raw version. Both formulas
have 56 different combinations of Feynman parameters.

4.5 Comparison with other algorithms

We have compared the current implementation with results from the literature and programs
we had access to.

4.6 Compiled results

Because the object of the code optimization is to create numerical programs that will be
shorter and faster, we also have a look at what the compiler can make of the code. To do
this in a fair way, we must take into account that the pow function in C is rather inefficient.
It needs two double arguments and then becomes very slow. Hence we made a function that
takes a double and an integer argument, and put it in the same file as the optimized code.
This way the compiler can make inline code and optimize better. For the Form optimized
code this makes hardly any difference as there are very few calls to the power function. For
the original formula however it makes a difference of more than a factor 10. The results are
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7-4 resultant 7-5 resultant 7-6 resultant HEP(σ)

Original 29163 142711 587880 47424
Form O1 4968 20210 71262 6099
Form O2 3969 16398 55685 4979
Form O3 3015 11171 36146 3524
Maple 8607 36464 - 17889
Maple tryhard 6451 O(27000) - 5836
Mathematica 19093 94287 - 38102
HG + cse 4905 19148 65770 -
Haggies(Ref. [19]) 7540 29125 - 13214

Table 2: Number of operations after optimization by various programs. The number for the
7-5 resultant with ‘Maple tryhard’ is taken from ref [3]. For the 7-4 resultant they obtain
6707 operations, which must be due to a different way of counting. The same holds for the
7-6 resultant as ref [3] starts with 601633 operations. The Form O3 run used Cp = 0.07 and
10× 400 tree expansions.

in Tab. 3. All times were on a 3.2 GHz Xeon laptop and were obtained by evaluating the
function 106 times.

Format O0 Format O1 Format O2 Format O3

gcc -O0 83.543 11.266 10.200 6.757

gcc -O1 14.400 5.278 4.664 3.171

gcc -O2 17.091 5.880 5.266 3.498

gcc -O3 17.119 5.686 5.006 3.302

Table 3: Execution times for the resulting C code of the physics formula HEP(σ) in microsec.
The O3 option in Form used Cp = 0.8 and 3000 tree expansions. It produced 3358 terms.

We have also created the outputs in FORTRAN and made a similar table (4).

Format O0 Format O1 Format O2 Format O3

gfortran -O0 54.687 11.243 10.192 6.796

gfortran -O1 17.320 5.679 4.997 3.341

gfortran -O2 17.382 5.689 5.044 3.318

gfortran -O3 17.336 5.676 5.020 3.318

Table 4: Execution times for the resulting FORTRAN code of the physics formula HEP(σ)
in microsec. The formulas were as in Tab. 3.

It is interesting to note that in all cases the O1 option of the (GNU) C compiler gives the
fastest code. In the case of the gfortran compiler this effect does not exist.

Of course the optimizer of the compilers is not allowed to use certain optimizations that
we can use. A compiler is not allowed to assume that addition is associative in order to not
upset programs that have been coded carefully to avoid numerical instabilities or overflow
problems.

On the whole there is not much difference between the C and the FORTRAN code,
provided we manage to have the (low) powers made inline in the C code. FORTRAN does
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this automatically.
Finally we present the corresponding table for the 7-6 resultant. This is a much bigger

expression and we include the running times of both Form and the GNU C compiler. We can

Format O0 Format O1 Format O2 Format O3

Operations 587880 71262 55685 36146

Form time 0.12 1.66 65.43 2398

gcc -O0 time 29.02 6.33 5.64 3.36
run 119.66 13.61 12.24 7.52

gcc -O1 time 5098.8 295.96 199.47 92.09
run 26.98 6.88 6.12 3.80

gcc -O2 time 4891.5 247.60 163.79 74.15
run 21.87 7.00 6.22 3.80

gcc -O3 time 4910.4 276.77 179.24 79.11
run 21.89 6.95 6.19 3.84

gcc -O1 time 3018.6 295.96 199.47 80.82
run 24.30 6.88 6.12 3.58

gcc -O2 time 3104.4 247.60 163.79 65.21
run 21.09 7.00 6.22 3.93

gcc -O3 time 3125.4 276.77 179.24 71.02
run 21.02 6.95 6.19 3.93

Table 5: Form run time, compilation times and the time to evaluate the compiled formula
105 times (run). All times are in seconds. The O3 option in Form used Cp = 0.07 and
10×400 tree expansions. The top compilations are with the powers taken as macro’s and the
last three ‘lines’ with the powers as inline functions.

see from the table that an optimal sum-time depends on the number of formula evaluations2.
In all cases however one of the Form optimizations will give the best result. It should be
noted that for this formula the O1 option of the compiler does not always produce the fastest
code.

5 Effects of the parameters

5.1 Scatter plots

In this section we will study a few expressions and how the various parameters can influence
the results of the optimization process. Because the MCTS process involves random numbers,
the final answer is not always the same. We show this by means of scatter plots. In order
to create scatter plots we have implemented an extra random number generator. Form has
already the regular function random_, but this function generates random integers. For the
scatter plots we needed random values for the parameter Cp in Eq. (3). These should be
floating point numbers and follow a distribution. Unfortunately, currently Form does not
have floating point numbers and the algebraic expressions do not tolerate them. Hence the
only way we can carry floating point numbers around is as strings. This dictates that the

2For this article we ignore the fact that the fastest evaluation would be to compute the original 13 × 13
determinant which, considering the zeroes, would take just a few hundred operations.
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preprocessor should handle them for now. Therefore we have created a preprocessor variable
random_ which takes three arguments as in

#define R "‘random_(log,0.01,10.0)’"

which stores a floating point value in the preprocessor variable R. The generation is with a
logarithmic distribution and the number will be between 0.01 and 10.0. Internally it uses of
course the same random number generator as the random_ function. Hence it is affected in
the same way by the #setrandom instruction.

Currently the random_ preprocessor variable can generate according to two distributions:
logarithmic (log) and linear (lin). There might be more in the future if there is a demand for it.
At the moment the only place where they can be used is in the Format Optimize statement
for the MCTSConstant option. People who would like to install their own distributions should
look at the function PreRandom in the source file reken.c.

5.2 Effects of MCTSconstant, MCTSnumexpand and hornerdirection

In the first plots we show the result for HEP(σ), which is the same expression as in section
4.4, generated with the GRACE system. We take a random value for the constant Cp and run
the optimization for a given number of points. The final number of operations in the output
determines the ‘answer’ and it constitues one dot in the scatter plot. The program looks like

Symbol amel2 zk xcp3 xcp1 x1 x5 x4 xcp2 x3

e2e1 e3e2 e3e1 e4e2 e4e1 EFUN;

Off Statistics;

.global

#include- ReadSigma.h

.store

#setrandom 1021

#do i = 1,4000

#redefine R "‘random_(log,0.01,10.0)’"

#message mctsconstant = ‘R’

Format O3,mctsconstant=‘R’,

hornerdirection=backward,

method=cse,mctsnumexpand=3000,stats=on;

L FF = Sigma;

.sort

#Optimize FF

.store

#enddo

.end

The file ReadSigma.h contains the expression and is more than 5000 lines long. Running
the program with TForm can speed it up considerably. Alternatively one could run various
instances of the program, each with a different initialization of the random number generator
and with a smaller number of iterations in the loop. The output would look like

~~~mctsconstant = 1.482771

*** STATS: original 1270P 39168M 5716A : 47424
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*** STATS: optimized 2P 1995M 2123A : 4122

~~~mctsconstant = 0.073660

*** STATS: original 1270P 39168M 5716A : 47424

*** STATS: optimized 2P 1916M 2287A : 4207

~~~mctsconstant = 0.135939

*** STATS: original 1270P 39168M 5716A : 47424

*** STATS: optimized 3P 1893M 2198A : 4097

.

.

.

and so on.
Let us first look at what happens when we vary the number of tree expansions. In Fig. 5

we see scatter plots for 4 different values: 300, 1000, 3000 and 10000 expansions.
At the right side (larger values of Cp) of the plots we see a rather diffuse distribution. When

Cp is large, exploration is dominant, which means that at each time we try a random (new)
branch and knowledge about the quality of previously visited branches is more or less ignored.
On the left side there is quite some structure. Here we give a large weight to exploitation: we
prefer to go to the previously visited branches with the best results. Branches that previously
had a poor result may never be visited again. This means that there is a big chance that we
end up in a local minimum. The plots show indeed several of those (the horizontal bands).
When there is a decent balance between exploration and exploitation it becomes very likely
that the program will find a good minimum. The more points we use the better the chance
that we hit a branch that is good enough so that the weight of exploitation will be big enough
to have the program return there. Hence we see that for more points the value of Cp can
become bigger. We see also that at the right side of the plots using more evaluations gives a
better smallest value. This is to be expected on the basis of statistics. In the limit that we
ask for more evaluations than there are leafs in the tree we would obtain the best value.

Clearly the optimum is that we tune the value of Cp in such a way that for a minimum
number of expansions we are still almost guaranteed to obtain the best result. This depends
however very much on the problem. In the case of the formula of Fig. 5 this would be Cp = 0.7.

The HEP(σ) formula gives the best results when we use backward as the value for the
hornerdirection parameter. This is what we used for Fig. 5. In the case we use forward for
this parameter we obtain Fig. 6. Comparing the two figures shows that the first has the
better potential to give an optimal result. It reflects the fact that the backward option gives
a better yield of common subexpressions. This can depend very much of the problem as we
will see.

With the resultants we have the opposite effect as shown in Fig. 7. Here the backward
direction is far from ideal and the forward direction works well, provided we go through the
tree a sufficient number of times.

The effect of the forward/backward selection shows the importance of selecting the proper
tree structure for the problem. The more the good leaves are clustered on few branches, the
better the MCTS can work. Because of the big difference between the forward/backward
selections the normal reaction is to set the defaults to trying both orderings. In the case of
Fig. 8 for the HEP(σ) formula this obtains close to optimal results. Of course a percentage of
points will be wasted by using the wrong direction and hence we see the random r.h.s. in the
graphs move a little bit to the left. In Fig. 7 this is unfortunately counterproductive. This
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Figure 5: Scatter plots for 300, 1000, 3000, 10000 points per MCTS run. Each plot has 4000
runs. The formula optimized is one obtained from a physics program (HEP(σ)) as explained
in the text.

shows that once one knows the best direction for the problem at hand it is better to specify
it. This will give a better efficiency. As the plots show a number of runs with a small number
of points and relatively few tree expansions should indicate what is the best direction.

5.3 Effect of MCTSnumrepeat

If we take another look at Fig. 5 we notice that in the left sides the distributions are nearly
identical, independent of the number of tree expansions. This suggests a new approach: if,
instead of 3000 expansions in a single run, we take, say, 3 times 1000 expansions and take
the best result of those, the left side of the graphs should become far more favorable. This is
illustrated in Fig. 9. We notice a number of things here: when each run has too few points, we
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Figure 6: Scatter plots for 300, 1000, 3000, 10000 points per MCTS run. Each plot has 4000
runs. The formula optimized is HEP(σ) as explained in the text. Here we use the value
‘forward’ for the hornerdirection parameter.

do not find a good local minimum and in the limit of runs of a single point per run the results
revert to that of the almost random branches for large values of Cp. The multiple runs make
us loose the beautiful minimum near Cp = 0.7, because we do not have a correllated search
of the tree. If, however,we have no idea what would be a good value for Cp it seems best to
select a value that is small and make multiple runs as used here, provided that the number of
expansions is big enough for finding a decent local minimum in a branch of the tree. At this
point it should be remarked that TForm and ParForm will give a result that is statistically
a little bit inferior to a run with sequential Form and the same number of tree expansions.
In the case of sequential Form each tree expansion takes all previous tree expansions into
account, while in the cases of TForm and ParForm a new tree expansion has no access to
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Figure 7: Scatter plots for 5000 points per MCTS run. Each plot has 4000 runs. We optimize
the 7-4 resultant as explained in the text. The top left plot is with the forward direction and
the top right plot is with the backward direction for the horner scheme. The bottom left plot is
for the forwardorbackward direction and the bottom right plot is for the forwardandbackward
direction.

the expansions that are still in progress inside other workers. This is particularly relevant
when one uses many runs each with a small number of points.

The next question is: ”What is a good value for the number of tree expansions per run?”
We investigate this in Fig. 10. We select a small value for Cp (0.01) and run for several values
of the total number of tree expansions. The calculations in the left graph are for the formula
HEP(σ) and in the right graph for the 7-4 resultant. The minima for HEP(σ) coincide more or
less around 165 expansions per tree and for the 7-4 resultant around 200 expansions per tree.

24



0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp
0.01 0.1 1 10

4000

5000

6000

N
u
m
b
er

of
op

er
at
io
n
s

Cp

Figure 8: Scatter plots for 5000 points per MCTS run. Each plot has 4000 runs. The formula
optimized is HEP(σ) as explained in the text. The left plot is with the backwards direction
and the right plot is with the forwardorbackward option (default).

We believe this to be correlated with the square of the number of variables. To saturate the
nodes around a single path takes 1

2n(n + 1) expansions. The remaining expansions are used
to search around this path and are apparently enough to find a local minimum. The right
top plot of Fig. 9 was selected with 18 trees of 167 expansions per tree with this minimum
in mind. For this formula this seems to be the optimum if one does not know about the
value Cp = 0.7 or if one cannot run with a sufficient number of expansions to make use of its
properties.

We have also made a few runs for the 7-5 and 7-6 resultants and find minima around 250
and 300 respectively. This suggests that if the number of variables is in the range of 13 to 15
a good value for the number of expansions is 200-250 and this will then be multiplied by the
value of MCTSNumRepeat to obtain a good total number of tree expansions.

Similar studies of other physics formulas with more variables (O(30)) show larger optimal
values for the number of expansions per run and less pronounced local minima. Yet also here
many smaller runs can give better results than a single big run, provided that the runs have
more than a given minimum number of tree expansions.

In the above examples we have intentionally omitted the greedy optimizations because
they slow the programs down and do not make qualitative changes in what we wanted to
demonstrate. This can be seen in Fig. 11 in which we show typical results with the greedy
optimizations included.

The plots show clearly the same behaviour as the plots without the extra greedy opti-
mizations. The formulas are just 15-25% shorter.

6 Further improvements

As we have mentioned before, it may pay to spend some attention to the formulas before
sending them to the Form optimization. One generic improvement one may think about is
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Figure 9: The physics formula HEP(σ) with 30 runs of 100 expansions, 18 runs of 167
expansions, 10 runs of 300 expansions and 3 runs of 1000 expansions respectively. The plot
with one run of 3000 expansions can be found in Fig. 5, left bottom.

a shift of variables. This could work in a large number of cases. Such a shift would be one of
the types

xi → xi + axj (10)

xi → xi + a. (11)

With such a shift the number of variables remains the same and hence the work for the op-
timizer (the size of the tree) does not become more complicated. This work can in principle
be done in a generic procedure of about 100 lines. We have opted for a more sophisticated
method that takes into account that there are various types of variables that only mix amoung
each other. This would be the case when variables have different dimensions. The procedures
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Figure 10: Number of operations as a function of the number of tree expansions per tree.
The product of the number of expansions and the number of runs is kept constant (1000 for
the open dots, 3000 for the filled dots and 5000 for the open squares). The dots are average
results obtained by running the program 50 times. The left graph is for the HEP(σ) formula
and the right graph is for the 7-4 resultant.
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Figure 11: Each plot has 4000 runs. The runs include the greedy optimization. The left plot
is the physics formula HEP(σ) with the backward direction and 3000 expansion per MCTS
run, corresponding to Fig. 5 left bottom, and the right plot is the 7-4 resultant with the
forward direction and 5000 expansion per MCTS run, corresponding to Fig. 7.

are included with the other files (doshift.hh) that contain the examples of this paper. The
procedures look for potential replacements and if they make the expression shorter (= fewer
terms) the new expression replaces the old one. It keeps doing this until all potential im-
provements are exhausted. In principle one could do this until a given number of attempts
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has been made (the algorithm is basically quadratic in the number of terms) because the final
improvements are usually rather small.

The shift procedure does not work for the resultants. The reason is that it looks for
combinations like · · · (aixi + ajxj + · · ·) with xi and xj not occurring outside the brackets,
and then it tries the substitution xi → xi − ajxj/aj . Such combinations do not occur in the
resultants. On the other hand in the physics formulas the results are very favorable. It is
however important to notice that the order of declaration of the variables is important and
hence one may have to experiment a little bit with this. For the three formulas we treat here
some general rules could be set up.

The Feynman parameters were treated in a special way. In the end we want to bracket
in them. Hence at first one might think that we should not be shifting them. If however
we shift them too (but just combining Feynman parameters with each other or numbers) we
obtain much better results. At the end we have to add some code to ‘unshift’ the Feynman
parameters, so that in the original parameters the code becomes a bit lengthier again. Also
this can be optimized, although it is a bit rough on the MCTS method because now there are
many different variables (the coefficients of the shifted brackets). In the Tab. 6 we present
the full results. If there are two numbers the numbers refer to the number of operations
after the optimization plus the number of operations in the shift. When there are three
numbers they represent the number of operations after the main optimization, the number of
operations in the unshifting of the Feynman parameters and the number of operations in the
shifts themselves.

HEP(σ) HEP(σ) F13 F24

Variables 15 4+11 5+24 5+31
Expressions 1 35 56 56

Terms 5 717 5 717 105 114 836 010
Format O0 47 424 33 798 812 645 5 753 030
Format O1 6 099 5 615 71 989 391 663
Format O2 4 979 4 599 46 483 233 445
Format O3 3 423 3 380 41 666 195 691

Terms shifted 754 754 16 439 78 005
Format O0 6 278+29 4 402+731+15 123 415+605+48 536 127+476+57
Format O1 1 549+29 1 481+409+15 23 459+453+48 68 093+336+57
Format O2 1 216+29 1 146+261+15 17 620+330+48 53 131+229+57
Format O3 976+29 1 012+261+15 13 206+322+48 47 379+235+57

Table 6: Results for the physics formulas in the original and the shifted versions. The counting
of the number of operations takes the brackets in the Feynman parameters into account unlike
ref [4]. When the number of variables is presented as a sum, the first number is the number
of Feynman parameters and we do simultaneous optimizations.

The improvements are significant and in addition the Form optimization runs become
faster because their input expressions are shorter. Also the compile times go down consider-
ably. The reason that this shifting works so well is that effectively it selects simple popular
common subexpressions and expresses the formula in terms of these. This makes that the
Horner scheme will be affected and so will the optimizations after it.

Of course other types of problems may benefit from other approaches. If one is resigned
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to not try the O3 option, the number of variables may be less of an obstacle and one may try
’partial replacements’. These act on only a fraction of the terms. Such replacements cause
the number of variables to increase. The structure of the formulas will dictate what to try
and how to try it. This is what we call domain specific and it falls outside the scope of this
paper.

7 Conclusions and outlook

The inclusion of adaptable Horner schemes, the common subexpressions and the greedy op-
timizations add considerable power to the flexibility of the Form output and make it com-
petitive, if not better, than all systems we could compare it with. The additional MCTS
methods improve the optimizations even further, although this goes at the cost of computer
resources. Because the method is completely new for this field, it is not yet known how the
various parameters should be tuned to the formulas that are optimized. The section on the
selection of the parameters should aid the user in determining experimentally what is optimal
for the problems at hand. If the computer time invested in these experiments is relatively
unimportant, the payoff can be large. In particular the tuning of the UCT parameter Cp and
the selection of the direction of the tree search through the relevant variables are important
and can make much difference in the final result. The use of several trees each with a smaller
number of expansions can also have a great influence. We hope to be able to implement ways
to automatically determine these parameters in future versions of Form.

Additional methods that would for instance recognize subexpressions that are powers of
simpler composite objects are much harder to implement. Currently they have not been
developed to a level that allows implementation. Therefore we encourage users to consider
these ‘domain specific’ and look for such simplifications in their programs. Often knowledge
about the problem allows one to find a number of them.

The examples we used can be found in the Form site (http://www.nikhef.nl/∼form)

The work of JK and JV is part of the research program of the “Stichting voor Funda-
menteel Onderzoek der Materie (FOM)”, which is financially supported by the “Nederlandse
organisatie voor Wetenschappelijke Onderzoek (NWO)”. The work of TU was supported by
the DFG through SFB/TR 9 “Computational Particle Physics”.
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