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Abstract: A new regularization and renormalization procedure is presented. [t is particularly
well suited for the treatment of gauge theories. The method works for theories that w
known to be renormalizable as well as for Yang-Mills type theories. Overlapping diver

The completely general one-loop scalar one-, two-, three- and four-point functions
are studied. Also an integral occurring in connection with soft bremsstrahlung is consi-

gencies arc disentangled. The procedure respects unitarity, causality and allows shifts derec!‘ Forrpulas in terms of Spen(:,e functions are given. An expansmn' for Spence
integration variables. In non-anomalous cases also Ward identities are satistied at all st functions with complex argument is presented. The whole forms a basis for the cal-
It is transparent when anomalies, such as the Bell-Jackiw-Adler anomaly, may occur. culation of one-loop radiative corrections in the general case, including unstable parti-

cles and particles with spin.

— establish a complete system of integrals: 2, 3, 4-point functions
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The 3- and 4-point functions
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The One-Loop Problem: Solved Completely
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The Basis for Many Calculations :
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Integration = Anti-Differentiation

o Infegration is easy if one knows the complete target space.

o Try fo construct the target space for the Feynman integrals,
forming certain algebras in general.

Important examples:

e Poincaré-iterated integrals

L( ) /y dy1 /yl dyz /yk—l dyk
ai,...ap;Yy) =
0o Y1 —ai Jo Y2 — a2 0 Yr — Qg

Work out all iterations for the alphabet A = {a4,...,ar}. a; € R
.. a1 =0,as = 1,a3 = —1, ... polylogs, Nielsen functions, HPLs, ...

e Nested generalized harmonic sums
Zk) 1 Zk)

Snl,...nk<a17'~a'k7 § E : ng Tk
g
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The representations are related by a Mellin fransform

M [f(2)] () = / draV [ f(2)] )

Both types of functions form (quasi) shuffle algeloras and further obey
structural relations.

c.g.: L(C’J3;y)L(@1,&2;y) — L(a3,a1,a2;y) T L(a1,a3,&2;y) T L(a1,a27&3;y)

How do these structures emerge ?

Feynman parameter infegrals massless or with one mass as regulator map
infto multi Mellin Barnes infegrals

1 /’YZ‘HOO 1o I’(a,lN + by (0‘1) + rls)...F(akN + bk(O'l) + Tké‘)
l
i

(27T’i)l l | —ioo F(ClN + d; (0‘[) -+ qle)...F(ckN + dk;(O'l) -+ qke)
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These functions define (generalized) hypergeometric functions, Meijer
G-functions, and generalizations thereof, which obey (mulfiple) integral
and (mulfiple) sum representations.

The e-expansion turns

['(z + re)

1 / 2 2 2
T'(z) L+d(z)er + 9 W' (2) + U3 (2)] 57

l.e. info product of single harmonic sums S (z) and ¢-values.

The multfiple sums, e.g. via z, infroduce nesting which can be solved by
modern summation methods SI GV, c. schneider 2000-

Two Loops

e Very many important calculations all over the world; notably in
The Netherlands: LER HERA, pp-colliders ... =

Veltman, Berends, Gastmans, Gaemers, Laenen, van Neerven, Smith, Vermaseren, van der Bij, ... and many other groups world wide, 1980 -

N B oo (al)n--'(a’p)n n
pFqlag; by x) = nz::O (1)n(b1)n...(bq)nx
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More Loops

... hecessarily means less external Legs: currently two.
- Massless and massive results up to O(a?)

® g-2. O(Cv3) Laporta, Remiddi, 1996
||

i . 4
® Rur\nlﬂg g, O(CYS> mmmm | arin, van Ritbergen, Vermaseren 1997;  Czakon, 2005

e Unpol. anomalous dimensions and Wilson coefficients: O(a?)

—
Moch, Vermaseren, Vogt 2004/05 s

e Unpol. NS anomalous dimension 2nd Moment: O(a?) saikov, cretyrin 2006

e Moments of DIS Heavy Flavor Wilson Coefficients for Q2 > m?: O(a?):

Bierenbaum, Blumlein, Klein, 2009

e Confributions to the vacuum polarization : O(a?) saiov. chetyrin, kinn 2003
e R(s), Adler function, p-parameter, Z- and r-decay ...: O(a?)

S
Baikov, Chetyrkin, KUhn, last 10 years

- Zero scale quantities:  up to O(ast™)
- Single scale quantities: O(a?)

S
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More Loops

Massless(ive) Zero Scale Quanftifies : In(2); (o5 (3; Lig(1/2); (¢5, Lis(1/2));
(L16(1/2), 0'_5,_1);(C7, L17(1/2), 0_51,1, 0'5’_1’_1);... 13 l0OPS  vermaseren 199

Massless Single Scale Quantities : S1(V), ..., S_221(N), ...
13 loops, weight 5

Massive Single Scale Quantities : in addition ..., S_221 (3,1,-2;N), ...

13 loops, weight 5
Massive Zero Scale Quantities (more massive lines): (3- and 4 loop)
CYC|OTOmiC zeta values, eIIipTiC functions soadnurst 1998, Ablinger, JB, Schneider, 2011, Laporta 2008

Systematic Integration

Consider graphs with no poles in 1/&. ¢ sown. 2008

/ero Scale Graphs can be integrated directly, if all Feynman
parameters enter linearly; first problems at 6 loops in scalar field
theory.
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More Loops

Topics of contemporary research include:

o To which structures does a single mass lead (fixed and variable
moments) ?

© Which combinatoric and summation problems arise ?

o What is needed additionally fo treat the large amount of
diagrams with poles ?

© At which loop level do new structures occur in QED and QCD ?
Symbioses with Mathematics:

© Advanced discrete algorithms and combinatorics —» computer
algebra

o Complex analysis of new higher transcendental functions

o Theory of irrafional numbers, moftivic numbers, periods, algebraic
geometry
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Advanced Technologies to Evaluate Feynman Diagrams

Some Examples:
o /ero-scale Problems : Euler-zagier and Multiple Zeta Values
JB. D. Broadhurst, J. Vermaseren, Comput.Phys.Commun. 181 (2010) 582
find all relations : ——=> Tera-Terms to be processed
alternating: all relations up to w = 12 (6-loop level);
non-alfernating: all relations up to w = 22; determined.
Interesting relations: to w = 30;

@ Reconstructing recurrent quantities fromm Mellin Moments
JB, M. Kauers, S. Klein, C. Schneider, Comput.Phys.Commun. 180 (2009) 2143
Can one find the anomalous dimensions and Wilson coefficients to 3-loops just
from their moments ? Yes - recurrent quantities in Mellin space.

< 5114 Moments; difference equation fills 440 books
Complete computation: 5§ CPU Months
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Tini af Loops and Legs

F \ | | :' | i| I| ||.}I5'
1996: before the prize
Talk about the physics in momentum space.

Veltman prize — Ettore Remiddi.

T |
= :::
=

i il

J. Blimlein Tini 80 Fest, Nikhef, June 24, 2011 —p.12



Special Talk: 2000

‘JI
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We owe Tini :

o Various key precision predictions
o Many essential tfechnologies in physics
o [he example of a sfraight character

o Reminding us, what is really essential.

Happy Birthday, Tinil - And many Happy Returns.
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