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Chapter 1

Electrostatics

1.1 History and basics

The word electricity is derived fromA ek Tpov (el ektron), the Greek word for amber. The refer-
ence to amber is not a coincidence: when an amber rod is rubbed with ftraitta certain objects,
such as a piece of paper or a hair. This was documented first by THaWketus (600 BC).

Amber is not unique in this sense. Many other materials, such as glassyrBC and Ebony
can be electrified by rubbing it with for example fur, silk or wool. Many expents in the 1% and
18" century were conducted to study this phenomenon. This work led to thevdigoaf two kinds
of electricity (positive and negative charge) that attract, while electricith@kame kind repels. A
simple experiment with a glass rod and a plastic ball as illustrated in Fig. 1.1 shattke charges
repel. Another experiment, using an additional rubber rod and ball witlosipe electrical charge

3 3 |
SUPPORT SUPPORT
GLASS
GLASS ROD
peet BALL
ROD CHARGES BALL LIKE CHARGES REPEL

Figure 1.1:A glass rod is electrically charged by rubbing it with fur. The rod is therdusecharge
a plastic ball. Now the two objects repel.

demonstrates that unlike charges attract, see Fig. 1.2. Well known is tisegtehat, rubbed with
a silk cloth, obtains a ’positive’ electrification. Famous is the Ebony rod tftat heing rubbed
with a cat’s skin is 'negative’ electrified.

5
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i =
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UNLIKE CHARGES ATTRACT

Figure 1.2:The rod and ball have opposite electrical charge. The two objects attract.

1.2 Electrical Force and Field

1.2.1 Coulomb’s law

Charles Augustin Coulomb (1736 - 1806) was a French physicist wheesttite electrical forces
in a quantitative manner utilizing a torsion balance. Through this experiment&aiomb found
that the force between two (point) charges is given by:

1 qQ

F=_-— T%f 11
4r1e 12 (3.1)

wherer = || represents the distance between the test ctiegel source charg®. The vector
connects the two charges. The direction of the fd¥de given byr'= ‘% the unit vector pointing
from Q to g, see also Fig.1.3. Equivalently, we can write for the Cou‘omb force:

o 1 gQTr 1 gQ
4mey r2 |F|  4meg rd (1.2)

Q q

F
c —o

r

Figure 1.3:The Coulomb force between a source chdpgand a test chargg

The Sl unit of electrical charge is the Coulomb, which can be abbreviatibe tanit C in equa-

tions. The factorlmig0 is a constant term witlgy called the ’electrical permittivity’. The electrical

permittivity has the numerical value:

2
&0 = 8.85419x 10—12% (1.3)
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Often, Coulomb’s law is also written as
F=Kf (1.4)

with K the electrical constant:
Nm?

C2
Coulomb’s law is about the electrical force between two point chargese Have three, four
or whatever number of charges at different positions, the total fan@etest charge becomes:

K = 8.98755x 10° (1.5)

F=F+FR+R+F+... (1.6)

with F; the electrical force by source char@eon our test charge given by equation 1.1. Using this
'superposition principle’ we can write this total force as:

_ 1 i fo—T;
Fo 2 o] 7
-4 ATtEo [Fo — Til“ |Fo — T

with the position of theN chargesQ; denoted as; and the position of the test chargg The
superposition principle is illustrated in Fig. 1.4. The vectors are defined aéhact to some origin
O. Note that the expression for the electrical force is independent orhtiieecof originO.

Figure 1.4:The Coulomb force on a test chamyen positiorrg resulting from four source charges
Q1,...,Q4. The connection vectory — i1 between charg®, and the test chargeis also indicated.
The vectorsy andr, are defined with respect to origd.

The physicist J.J. Thomson discovered in 1897 a new elementary partieleletiron. The
electron carries a negative electrical charge and is responsible fdreteasrical currents. R.A.
Millikan discovered in 1909 that all electrons carry a similar charge, called the elementary
charge. In Sl units its value is

e=1.6002x 10°1°C (1.8)

We know now that in atoms negative charge is carried by electrons, wiierm are positively
charged. When we go back to the old experiment, rubbing an ebony roduwith cat’s skin, the
electrons from the cat’s skin get transferred to the ebony rod. Thegdti now has a deficiency of
electrons and so is positively charged. On the other hand, the eboimasoah excess of electrons
and hence is negatively charged. So, in everyday life, positive eleatith is due to the deficiency
of electrons and thus not by an excess of protons.
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Protons are not so elementary as electrons. Protons consists of gndrgtuons. The quarks
carry electrical charge o#%e and +%e. In nature, the quarks and gluons are confined in other
particles (like the proton). Scientific research in the field of 'particle plsydias led to a new
‘table of elements’, one with six quarks and six 'leptons’ which interact leyethchange of force
particles. The particle world is illustrated by the table in Fig. 1.5. All these pastetést in nature,

o (V) (v (v
~©O®®

S (o (D
@)

Figure 1.5: The elementary particles. The leptons from left to right are: electrotriney muon-
neutrino, tau-neutrino, electron, muon, tauon. The quarks, in the saiee are: up, charm, top,
down, strange, bottom. From left to right, the mass of the patrticles is incgeaSar example, an
up quark 'weighs’ a few MeV while a top quarks weighs 138/ (for reference: a proton weighs
1GeV). This mass difference between the particles is an open question, bud tadled Higgs
mechanism may be its origin.

leptons

quarks

but one to remember is that our everyday world is made off only three pattigeand down quarks
and electrons. Electrical charge in nature comes in discrete amounts: diriszpd, which has deep
implications. The net charge before an interaction is equal to the chaegeaafinteraction.

Elementary particles like quarks and gluons are studied in particle collisiopsrtatle labo-
ratories like CERN (Geneva) and Fermilab (Chicago) using large actaierdresently at CERN
a new accelerator is being constructed, the Large Hadron Collider (LI apparatus with a
circumference of 27 km accelerates protons clockwise and countekvaiee to energies of 7 TeV.
At a few dedicated points, interaction points, the protons collide. The detetttoneasure the
products (i.c. new particles) of these collisions are large, typically 20 x 20 . In the Nether-
lands, NIKHEF in Amsterdam, is the main institute where research in this field ig beimducted.
NIKHEF contributes to ATLAS, a detector for the LHC, as shown in Fig. Although ATLAS is
a multipurpose detector, the focus of the research program is on the phgide.

1.2.2 The electrical field

Let's have a closer look to equation 1.7 and rewrite it:

= 1 Q fo—Ti
F= s 1.9
q<i_ZN4nso|ro—ri2|r0—ri|> (1.9

The electrical fielcE is defined by:

F =qE, (1.10)

with:
(1.11)
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Figure 1.6: An impression of the ATLAS detector which is being assembled. This detector is
44 m long! Particles that are produced by proton collisions are meassied several detection
techniques. NIKHEF contributes to the silicon tracking detectors and mudrtulsé chambers.
See www.cern.ch for more information.

In different textbooks you will find different notations. A common notatian is

1 Q.

221
= ,N 47-[50 I"i

E= (1.12)

In this case the vectdy is defined ag = ry — ;. Be aware of this freedom of notation, which leads
to many un-necessary mistakes.

A way to physically interpret the above expression for the electrical fielthas a chargey
senses an electrical field and consequently undergoes afforogE. We have introduced the field
as a relatively simple mathematical definition. However, the electrical field isaige physics
quantity! In electrostatic theory, the field is present in space and youalanlate it using for-
mula 1.11 when you know the (point) charge distribution. If the field is ptasespace, you may
wonder, where is it made off? That is a bit harder to answer and beyerstope of this course. In
particle physics, fields consist of 'force particles’ that are being argked when particles have an
interaction. The electrical field consist of (virtual) photons that are axghd between electrical
charges.

Above, all equations are based on point charges. Since all chaegeaared by individual
particles this seems not unreasonable. However, in the classical thewges can be continuously
distributed. This is still reasonable when we describe physics at a scale (much) larger than
the size of and distances (1¥m) between the particles. The classical theory describes nature in a
macroscopic matter. We will discuss some examples of continuous chargleutistrs.

Line charge

A line charge can be described by a charge denksity) with has the unit C/m. The position
vectorr; is a coordinate defined with respect to some origin. To calculate the field it peith
coordinate’p, we integrate over the infinitesimal pieces of chax@g )dI to find the electrical field:

E(rp) = — / A g (1.13)

 Amgg Jiine T2
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wherer is the connection vector between a piece of charge and the Paiith coordinate’p, thus
r=Tp—T. Thisis illustrated in Fig. 1.7.

Figure 1.7:lllustration of a line charge.

In fact, we can still interpret the integral as the sum over point chargegeaused to do in
equation 1.11. A point charge is then just a piece of line chdege A (1)dl and so we obtain:

Ew) = oo [ G

4T1E) Jcharge T2
_ 1 / dg Tp—T
47180 Jcharge |r_)P -1 |2 ’T'p -7 |

1 Qi ?p— ﬁ
s 470 o — 2 o1

Perhaps the interpretation of a continuous charge distribution as a colle€poimbcharges helps
you to make the math less abstract.

%

(1.14)

Example of a line charge

As an example we will calculate the electrical field in a péinwith z= zp of a piece of wire with
lengthL centered on th& axis. The wire carries an uniform charge dengityThe configuration is
shown in Fig. 1.8.

When we consider the contributiodE, of a piece of charga dx at positionx to the electrical
field in P we see that there are two componentsxandz component:

1 Adx .
Ex = ————
dEx 4n£oz,%+x25m(a)
1 Adx
dE; = F&)mcos(or) (1.15)

Look at the symmetry of this problem. The components intd@ection cancelx = 0) and thus
we only have to integrate thecontributions. So, we need to knaws(a ), which we can get from
the figure (convince yourselflxos(a) = —2—. Now we can integrate all contributions:

ViR

EZ - / dEz

_ /+'-/2 1  Adx Zp

—-L/2 47'[¢";'()Z|%—|—X2 /Z|23+X2
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Figure 1.8:A wire of lengthL with uniform charge distribution. Also indicated is the contribution
to the electrical field in poiri of a piece of linelx.

/“-/2 1 zpAdx
L2 ATiEo (2 +x2)3
A X +L/2

—L/2
ATE0 5, |2 1 x2 /
_ L (1.16)

ATTED 70 /23 + (L/2)2

Does the result make sense? Well, we know that the field of a point chdigeds with charge
and drops quadratically with the distance. If we look from very large distdn the line charge,
Z» >> L, so that all the charge on the line appears concentrated in a point, wedind th

1A 1 Qow
‘T 4mey 2 Amey 2

(2.17)
which is the field of a point charg®..ta = AL, as expected.

Surface charge

An illustration of a surface charge is depicted in Fig. 1.9. A surface ehardescribed by a charge
density o (Fs) with has the unit C/i WhenTs lies on the surfaceg(fs) has some value that
represents the charge density. Wiieties outside the surfaces(fs) = 0 C/n?. To calculate the
electrical field we integrate over the contribution of the infinitesimal piecebafgedq = o (rs)do.
The electrical field in poinP is given by:

(p) ! / 9(rs) o (1.18)

471 Jsurface T2

mu

Now r is defined as the connection vector between pgirdnd the location of some infinitesimal
piece of surface, thus=rp —Ts.
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Figure 1.9:lllustration of a surface charge.

Like the integration over a line, the integration over a surface is a difficldt @sly in special
cases we can actually perform the integration. So, don't worry for theems if you do not see
how in general you could use the above expression. Finally we remariwéhhave been 'sloppy’
with our notation: a surface is two dimensional, thus one would expect daloubgral with two
integration variables. Well, get used to it: in different textbooks you will fiideast as many
different notations. Be prepared and just 'bluf’ through it.

Volume charge

Figure 1.10:lllustration of a volume charge.

An illustration of a volume charge is depicted in Fig. 1.10. The volume chamgsitye (1) is
the most general continuous charge density and has the unit Cha contribution of the infinites-
imal pieces of chargdq = p(ry)dv lead to the following expression:

Erp) = —— / P ey (1.19)

"~ 41teg Jvolume T2

Now T is defined as the connection vector between pgirgnd the location of some infinitesimal
piece of volumalv at positionry. Applications of this expression come later. Note that we again
have been sloppy with the notation. A volume (in this report) has three dimenaiahthus three
integration variables. For example when we integrate a functi@ver a volume in Cartesian

coordinates: . . .
/ fdv= / / / f(x,y,z)dxdydz (1.20)
volume X=—00 Jy=—00 J7=—00
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and in spherical coordinates:

2n pm 00
/ fdv:/ / / £(r, 0, 6)r2sin(6)dededr (1.21)
volume =0.6=0.r=0
If this is 'abracadabra’ to you, first work through a textbook on mathersiatic

1.2.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

e Charge can be positive and negative. Electrons carry the elementanyeche, with e =
1.6002x 10~1° C. The total charge is conserved.

e The electrical or Coulomb force between two electrically charged objectgds dy:

.1 qQ,
F=—F— 1.22
4reg 12 ' ( )

Make sure you understand the notation!

e The electrical field of a point charggis given by:

_ 1 q.
e The electrical field of a volume charge is:
o 1 p(ty) .
E(tp) = —/ fdv 1.24
(f) 41180 Jvolume T2 ( )

You understand all the vectors in this notation and you can make a drawinilubaates
this expression. You can also write down the formulas for the electricaldfeddine charge
and a surface charge.

In addition, make the corresponding exercises of this section, whichamfirtd in the Appendix.

1.3 Electrical flux and Gauss’ Law

1.3.1 Electrical field lines and electrical flux

Figure 1.11 graphically displays the electrical field corresponding to thetrielal field of a point
charge. To make this drawing a grid was chosen and on each grid-peirgldhbtrical field is
represented by an arrow. The length of the arrow corresponds to theitmade of the field and, as
can be seen in the figure, decreases quadratically as appropriate.

Traditionally, the electrical field is depicted by field lines as shown in Fig. 1Tt density
of the lines represent the magnitude of the field. Note that such drawiegsvardimensional

IpPlease, let the authors of this report know when integration using sphedordinates are unknown to you at the
time of the lectures. Don't hesitate! Additionally. in the slides that are disclidaring the sessions, added as Appendix
you can find more explanation and many examples.
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Figure 1.11:The electrical field of a point charge depicted by vectors.

Figure 1.12:The electrical field of a point charge depicted by field lines.

projections and thus that the density of the lines drops with the circumferdreceircle, 2. In
three dimensions the line-density drops with the surface of a spheré, 4

Have another look to the field lines in Fig. 1.12 and imagine a spherical susfacind a point
charge. The number of field lines through the surface is constant, thegendent on the size (or
better radius) of the sphere. You find an animation of this phenomena orethpage.

The number of field lines can be expressed by the electrical flux:

b= E.do (1.25)
sur face
This the flux through a surface. The infinitesimal surface elerdein a vector with magnituddo
and its direction perpendicular to the surface. We can write

E -do = E - Aido = |E|cos(¢p)do (1.26)

with A the normal on the surfaéandg represents the angle between the electrical field and normal
direction of the surface.

Figure 1.13 shows three examples of the electrical flux through a suidackfferent angles
between the field and surface. With the electrical field being constant, gnflaugh each surface

2|n textbooks several notations are used for the normal vector, adewnon notations aren = fi = &, = &,.
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Figure 1.13:The electrical flux through a surfa&for different angles between the field and sur-
face. The normai is also indicated.

Sin Fig. 1.13a-cis:

ads = |E|cos(0)S= |E|S
b:ds = |E|cos(11/2)S=0
c:ds = |E|cos(@)S (1.27)

1.3.2 Gauss’' Law

Gauss’ Law states that the electrical flux through a closed surfacgyendent of its shape, equals
the total charge enclosed by this surface multiplied by the fag%to'r'hus:

®= E.do= 4

closed—sur face charges—enclosed €0

(1.28)

The circle in the integral symbd indicates that you have to integrate over a closed surface, with-
out skipping any parts. As in many textbook, we often use the normal synfibaind mention
specifically whether the integral runs over a full or restricted domain.

The relation above allows us to calculate the electrical field inmany cases iensarkable
elegant way. But first we will deduce, or better, verify the validity of &sllLaw for a simple case.
Therefore we consider a point char@®,and calculate the electrical flux through a spherical surface
with radiusR. This configuration is illustrated in Fig. 1.14. The flux is given by:

®= E.do= E - Aido (1.29)

sur face sur face

whererfis the normal vector on the surface. Now we use the argument that orespié¢hE and
N point in the radial direction, hence

D= |E|cos(ag ﬁ)do:/ |E|do (1.30)
sur face ’ sur face
The electrical field at the surface follows from equation 1]El = E;(R) = Fls()%. We find
1Q
® = = do
4110 R? Jaur face
1Q
= — =4
471180 R2 T[RZ
Q
= = 131
. (1.31)

independent of the location on the surface, in accordance with Gaags’ L
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Figure 1.14: lllustration of the electrical flux from a point chargg through a spherical surface
S. Everywhere, the electrical field points along the normal on the surfacahe radial direction.
Some infinitesimal piece of surfade on the sphere is also indicated.

Intermezzo: a more mathematical approach

To evaluate (i.c. to get rid off) the dot-produgt d6 we used the argument that both vectors point
in the radial direction. Perhaps this step is hard to digest and you wané teisa is behind it.
Well, let’s give it a try. If we had started using Cartesian coordinates wddvmave written:

® :/ E.do
sur face

- /w - (BX+EI+ED - (n+ng+n2)do (1.32)

with A = (ny, ny,n;) the normal vector on the spherical surface. The unit vectors ix,thendz
direction are represented gsy’andZrespectively. Another common notation for these unit vectors
arei, | andk.

The expression in Cartesian coordinates is for our case just terribkribec¢he physical sym-
metry of the original problem is obscured. Obviously we need to work irespal coordinates.
Then, formally we obtain:

® :/ E.do
sur face

:/ (Ep®+EgB +EF)- (N@+neb + neF)do
Jsur face

- / (Egnp®+ Eong + E;nyF)do (1.33)
sur face

With (f) 6 andrthe unit direction vectors in the, 6 andr direction respectively. It looks abstract, (it

is), but just try to see through the notation and realize that the vectorgigenvout in components.
We then us& = (0¢,08, E;f) with E, = WQorz- In factE; is a function and depends in general

onr or in this case for a point charge just onHence, on the surfadg = E;(r = R). The normal
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vectorrion the surface points in the radial direction and has the unit lemgth(0; 0, f). When we
substitute these expressions and reshuffle, we acquire:

1 Q
® :/ > 2do
sur face 41T R?
1 Q 2

T
= IRy 6:Ostm(G)d(pdG

_ 1 Qp n((p) 2Msin(0)de
AR Jo—o 7 ©

1
_ 4moF‘fzRzzm—cos(e))\éf

-2 (1.34)

Probably this intermezzo did not increase your confidence in Gauss’ ltalowed however the
basic steps which many textbooks tend to skip. In the following we often skip sieps; they
contain too much mathematical detail and so distract from our physics cds#. Was the physics
case? Well, the symmetry in the behavior of the electrical field, namely ftfedependence, and
that of the size of the spherical surface growing witheads to a cancellation.

1.3.3 Validity of Gauss’ Law

Figure 1.15:(a) Point charge Q in a closed surface. (b) Point charge Q outsidsedctairface.

We checked Gauss’ Law for a spherical surface with a point chagdd at its center. Fig-
ure 1.15a shows a weird shaped closed surface with a point charge/eeredn its volume. Also
for this shape Gauss’ Law is valid; it is the 'dot’ product which does the fali the point charge in
the origin. Its electrical field has only radial components. The dot-piogiih the normal vector
of the surface Kills all non-radial contributions. In addition, the distaridbesurface with respect
to the charge is irrelevant: the field drops witfrd and the radial projection of the surface grows
with r2. Also, we could have put many point charge at different location withirctbged surface.
Obviously for each point charge individually the contribution to the flux is fitarge (divided by
o), and the total flux is given by the sum of all charges)(/
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Figure 1.15b shows a closed surface with a charge located outside its voliseehe above
arguments to deduce (qualitatively) tiat= 0 in this case.
1.3.4 Applications of Gauss’s law

'Gauss’ Law is always valid, but not always useful’. What does thiam?eWell, Gauss’ Law can
be applied in some cases to evaluate the electrical field in an elegant waw, Beldescribe a few
of these configurations.

The line charge

!‘..:‘Q
4

Figure 1.16:A line charge (dark gray). A Gaussian cylinder (light gray) with helyand radius
is also drawn.

Figure 1.16 shows an infinitely long and infinitely thin line charge with uniforrargk density
A. The optimal Gaussian surface is a cylinder. To obtain this insight, firstiaethe shape of the
electrical field. It needs some practice to acquire a feeling for this, butaneive some hints.

e Imagine the line is build from small point chargeéa. Every point charge produces a elec-
trical field point in the radial (spherical-wise) direction. Consider a pasisiemewhere near
the line. At this position you 'feel’ an equal amount of field lines from abasdrom be-
low. Hence, the field in the direction cancels. Obviously there are no components irmpthe
direction. There can only be a component pointing away from the line charge

e Look at the symmetry of the line charge. Suppose there is a field comporikatidirection.
Remember that the line is infinitely long and imagine that you mirror the configuretitre
ro plane. This does not change the physical configuration, but the "wamild component
of the field has changed sign. There is only one possibility: there icomponent.

We conclude that the electrical field has only a radial (cylinder-wise) covapt. Therefore we try
a cylindrical Gaussian surface with arbitrary heigrand radiug. The flux through the cylinder is
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given by the sum of the contributions of the curved body and the ends:
®= E-da:/ E.do+ E.do (1.35)
cylinder ends curved—body

The normal vector on the ends of the cylinder point (only) inzdeection. Hence, the dot-product
filters out thez component of the electrical field, which is zero. So, we are left with théritonion
of the flux through the curved body of the cylinder. The normal vectaadsal (cylinder-wise) and
thus filters out the one and only radial component of the electrical fig}dr Y). We obtain:

. 2 pz=h
®— E.do— Er(r)do:/ / E.(r)dzrde (1.36)
curved—body curved—body —=0.Jz=0

The electrical field is independent on the integration variables and we mitgy wr

2 rz=h
®= Er(r)/ dzrdg = E, (r)2mrh (1.37)
@=0.Jz=0

Now we apply Gauss’ Law:

Ah
&0 &
For the electrical field of a line charge we find that:
EZ = O
E(r) = A (1.39)
' - 2megr '

If the line has a finite length this method can not be applied. However, it then still provides a
good estimate of the field close to the wire, k<< L. If you are not convinced, use the result of
the direct integration in Section 1.2.2 to show this. Also when the charge démsiby constant in
thez direction we can not simply apply Gauss’ law. When the line has a finite thickvidssadius
p this method can still be applied as we will see later.

A flat surface charge

Figure 1.17 shows an, infinitely large and infinitely thin, surface chargeumittorm charge density
o. What are the components of the electrical field?

e Imagine the plate constituted of small point chardes= gdo. Every point charge produces
an electrical field point in the radial (spherical-wise) direction. Consiposition some-
where near the plate. At this position you 'feel’ an equal amount of fieldslfirem above
as from below and from left as from right. Hence, the field in xtendz direction is zero.
There can only be a component perpendicular to the surface charge.

e We can also used arguments based on symmetry. Suppose there is a fiettheotip thex
and/orz direction. Turn the configuration around itsaxis. The plate is infinitely large and
thus remains physically the same. The would be components would haveechdingction,
while the physics is invariant.
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y

X

Figure 1.17:A flat surface charge (dark-gray). A Gaussian cubical surfaaésisindicated.

¢ In addition, a shift of the plate in the— z plane does not change the electrical configuration.
This implies that the electrical field does not depenconz and thus only depends gn

We conclude that the electrical field has only a component iy theection, opposite for the region
+y. We try a cubical Gaussian surface (a pill-box) with ribs siaedlr'he flux through the sides
with normal vector in thex andz direction is zero. We only need to calculate the flux through the
top-covers with normal vector in thedirection. The normal vector in they region is opposite to
that in the+y region, but the electrical field direction also swaps. Hence,

> = E-do=2 Ey(y)do = 2a%Ey(y) (1.40)

top—covers top—cover

Make sure you understand the steps above. From Gauss’ Law follows

a’o

® = 2E,(y)a? = %;)C’Sed =22 (1.41)

And for the size of the electrical field we obte = 5z~ and thus

_ o
E=—yv. 1.42
2goy (1.42)

Note that the field is constant, but point in the opposite direction for positidenagativey values
respectively.

In general, thus for non-uniform charge densities this method cannetdzk unless it is known
that the electrical field has onlyyecomponent. Then, the result will look lik&(x, z) ~ o(X,2)y.
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/k

Figure 1.18:lllustration of a spherical surface charge densitwith radiusR.

A spherical surface charge

We consider a spherical charged surface (or shell) with radiaad surface charge densityas
illustrated in Fig 1.18.

What are the components of the electrical field? Suppose there aradiah{spherical-wise)
components. Rotate the configuration around its center such that thadiaheomponents change
direction. Realize that the physical configuration is invariant allowing nonaglial components.
The same argument can be used to deduce that the radial componenfi@ftitbaly depends on.
HenceE = E,(r)f. We did not specify whether we discussed the field inside or outside thie she
Well, it doesn’t matter. Both inside and outside the shell we can use the abwments.

For the electrical flux inside the shell follows:

o— [ E.dg= Er(f)/ do = E(r)4mr? (1.43)

spherical —sur face spherical —sur face
There is no enclosed charge, so we have:
¢ =E(r)4m?=0 (1.44)

There is only one possibilityE (r) = 0 inside the surface.
Outside the shellr > R, we find the same expression for the flux. The enclosed charge is
Q= Jqsface 000 = 04TR?. We obtain:

1
© =B (ndm?® = —o4nk? (1.45)
0
For the electrical field follows =2
=3 0
E-E((rf=—Ffr>R 1.46
l'( ) eor2 > ( )

In fact, the electrical field outside the shell is identical to that of a pointgehar the center

with the same charge as present on the shell. This can be easily shownbsttuseo = % in
equation 1.46 and find:
_ Q .
E=—_f 1.47
4rg0r2 ( )

which is the field of a point charge, as expected.

A massive spherical charge

Figure 1.19 shows a spherical volume charge densitylThe volume has radiuB. Like in the
previous example, we have spherical symmetry. The electrical field Hasaoadial component
and depends only on the radial distanEe= E, (r)F.
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Figure 1.19: A spherical volume with radiuR carrying a uniform charge density (dark-gray).
Two Gaussian spherical surfaces are indicated. One inside and taigedihe charge density.

The electrical flux outside the sphere; R, is given by:

®— E.do— Er(r)/ do = E (r)4mr? (1.48)
spherical —sur face spherical —sur face
Outside the spherical charge the enclosed chargg is.pdv = p37R®. For the electrical field we
find:
. pR
E= R 1.4
3£0r2r r> (1.49)

Inside the spherical charge< R, we have in principal two contributions to the electrical field.
One contribution from the inner sphere (surrounded by the Gaussifatsuwith radius and a
contribution of the shell betweanandR. In the previous section we calculated that the electrical
field contribution inside a charged shell is zero. This implies that we only twgecount for the
contribution from the inner sphere. The Gaussian spherical surfadeses a chargp%nr? For
the electrical flux we find:

4
E (nam? =P 23 (1.50)
&3
This leads to an electrical field of ,
E-— PR (1.51)
380

Figure 1.20 shows the magnitude of the electrical field as functian 8tarting from the center,
the field grows linearly withr till the surface of the spherical charge is reached. Then it drops with
1/r?, similar to the field of a point charge in the origin.

1.3.5 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

e Gauss’' Law:

o i1
/ E.do= Q_ 7/ pdv (1.52)
closed—sur face charge ehclosed €0 €0 Jvolume
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E r<R: E:ﬂ
o 350
r>R: F= pR3f
36‘0r2
R

Figure 1.20:The size of the electrical field of a spherical uniform charge densityaibn ofr.

which is always valid.

e In electrical configuration with a symmetry between the field and the chargrgbdifon,
Gauss’ Law can be used to determine the electrical field.

e You can apply Gauss’ Law for a line, flat surface, and sphericaigghaYou know how to
use Cartesian, cylinder and spherical coordinates to perform suafat volume integrals.

In addition, make the corresponding exercises of this section, whichagmfirtd in the Appendix.

1.4 More on electrical field equations

Gauss’ Law is a so called field equation. It uses an (surface) integdaisatherefore called an
integral equation. There exists also a differential form of this law, whielderive in this section.

However, Gauss’ Law does not specify all properties of the electfiell. One more field
equation is required. The integral form of the second field equation exdbas the loop integral of
the electrical field as we will see below.

1.4.1 Flux and divergence
The divergence of the electrical field is defined as

0-E 0Ex O0E, OE
D'E:<dx’ay7az)'(EX7EYaEZ>:7X+7y z

x oy T oz (1.53)

We will introduce this quantity in a natural way and describe its link with Gauasi.L

Figure 1.21 shows a infinitesimally small box, which is placed in an unspecigettfieal field
E(x,y,z). We work in Cartesian coordinates and calculate the electrical flux throeghak The
flux [« E - d through each of the covers a to f of the box is given by:

—Ex(x,y, z)dydz

Ex(x+dx,y,z)dydz

—Ey(x,y,z)dxdz

Ey(x,y+dy,z)dxdz

—Ez(X,Y, z)dxdy

E;(x,y,z+ dz)dxdy (1.54)

-~ O O O T o
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_____ v
ady Etcyz)\b)  Etxtdxy.z)

Figure 1.21:An infinitesimal box with volume=xdydz in an electrical fielE (x,y,z). The covers
ato f are indicated. Also, the field vectors on cover a and b are shown.

whereEx(x,y,z) and so on are defined on the centre of the corresponding cover. Notel#tive
minus sign for opposite covers which comes from the opposite direction afdimeal vectors on
these covers. Now we add all contributions to obtain the flux through the box

E ’ d6 = [EX(X+ dX7 ya Z) - EX(Xa y7 Z)]dde

[Ey(x,y+dy,2) — Ey(x,y,2)]dxdz
[E2(X,Y, 2+ dz) — E4(X,y, 2)]dxdy (1.55)

Remember the rule of elementary calculus that= f (x+ dx) — f(x). The above equation can be
rewritten as:
E - d0 = dExdydz+ dE,dxdz-+ dE,dxdy (1.56)

box

Now multiply the part withEy, Ey andE; with g—ﬁ % andg—j respectively, which is (for physicists)
mathematically equivalent to multiplying with unity. We find

dE,

. dE dE,
/bOXE-dG = aydz+ =

X dy
_ [dE dE, dE,

= [-Evolumayx (1.57)

dxdydz+ dxdydz

Hence, we derived a relation between the flux through infinitesimal boxtendivergence of the
electrical field. The relation is however valid for any volume. To see thig ghxes together to
make you any volume as illustrated in Fig. 1.22. We obtain:

/ E.do= 0. EJdv (1.58)
sur face volume

Although we derived this expression for the electric field, it is valid for aagtor field and was
first derived by Gauss. We will refer to this expression as GaussdiEme.
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7

Figure 1.22:Any volume consists of a collection of infinitesimal boxes.

1.4.2 Gauss’' Law and Gauss’ Theorem

Gauss’ Law for the electrical flux:

_ 1 1
/ E.d6 = = Qugosed = 7/ pdv (1.59)
sur face & &0 Jvolume
can be combined with Gauss’ theorem:
/ E.do= 0. Edv (1.60)
sur face volume
This leads to the following expression:
— = — 1
/ E-6:/ D-EdV:—/ pdv (1.61)
sur face volume €0 Jvolume
which implies
E=P (1.62)
&

This relation is Gauss’ Law in differential form. It locally relates the chatgesity and the electri-
cal field.

1.4.3 Gauss’ Law for a charged sphere

Given the electrical field, we can 'simply’ determine the charge density USangss’ Law (in dif-
ferential form). We start with the known field of a uniformly charged spheith densityp. The
electrical field inside the sphere is:

=_Pre_ P
E= Eor = 380? r<RrR (1.63)
Now take the divergence.
AE - Par_ P .
_ P _ P4 P
- 38O(c9xx+ oy + 0,2) = 363" 5 (1.65)
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Yes!
Outside the charge sphepe= 0, the electrical field i€ = 3‘;Rr33? We calculate the divergence
of &
- T - 1
05 = 0l Z———5xY2)]
r (X2 +y2+22)2
- X y z
= 0 ( 3 3 3
(C+y2+22)2 (+y2+22)2 (X 4y?>+22)2
7] X ) y 0 z

OX(@4y2+22)3  OY(R+y2+ )2 0Z(x2+y2+2)

- [07)(]1“ 9 1 rdh +d
~ | oax (x2+y2+22)% ox (X2+y2_|_22)§ oo+ 0.
1 1
ey e Re e v e R
(R +y2+22)2 27 (e ry2+ )%
3 1
= ——— = 3V D)
0 (1.66)

Not convinced? Try it yourself!

1.4.4 The loop integral of the electrical field

Figure 1.23:An illustration of a path integral in the electrical field of a point chayge

Another important characteristic of the electric field emerges when we @rthiel path integral
of the field of a point charge:

b
— — q 7,\
/élE o= o [ pafed= /Err dr (1.67)

The electrical field is pointing purely radially. No matter what the exact patblisvied froma
to b, the dot-product filters out the radial componentdl’ = dr). Thus we can replace the path
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integral by:
o q (M1 q -1 q 1 1
E -dr=-— —dr=— "= " (= - = 1.68
o ' ameg Jr, 12 Arreg 1 2 47nso(ra rb) (1.68)
For a closed pathy, = r, we obtain:
/E-drzo (1.69)

Thus, independent of the path we followed, the integral of a closed [étle electric field is zero.
Using the superposition principle we can argue that this relation derivesdfoint charge is valid
for any charge density.

The expressiorj’l? -dl = 0 is the second electrical field equation in integral form and has no
historical name. The differential forfi x E = 0 we will derive later.

1.4.5 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

e You understand Gauss’ theorem and the relation between the electridahrieghe charge

density:
/ E.5= i-Edv:l/ pdv (1.70)
sur face volume &0 Jvolume
e You can apply the field equation:
O.E=P (1.71)
&

which is Gauss’ Law in differential form.
e You can derive and use the loop integral of the electrical field:

/E-df: 0, (1.72)

independent of the path we followed.

In addition, make the corresponding exercises of this section, whichagmfirtd in the Appendix.

1.5 The electric potential

In this Section we will introduce the electric potential. It turns out that the étepttential is a
powerful quantity to calculate the electric field of complex charge conftgurs. However, within
the scope of this report we have to limit to more straightforward but elegamples.

1.5.1 Work in a gravitational field

To refresh your memory we first consider work and potential energygrasitational field. The
work, Wperson When you lift an object with mags from the ground to heigttis

h —
Wherson = / E.di (1.73)
0
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with the force, |F\ - mg, the mass times the gravitational constant. To lift the object we need to
apply a forcef = —Fg = mgl and thus the the total amount of work needed is:

The potential energy of the object equbls= Wperson = mgh. In the following Section we apply
this principle to the electrical field.

1.5.2 Potential energy in an electric field

Q’p

Figure 1.24:A test charge in the field of a source chardgis brought in from infinity toP.

Consider a (test) charggin the electrical field of a point charg® at positionP, see also
Fig. 1.24. The electrical force on the test chargesds. = gE. The (minimum) force you must exert
on g to move it opposite to the electrical field igE. The potential energy of the configuration is
defined as the minimal work needed (for you) to bring the test chafgsm infinity to P.

P —

It must be emphasized that the path follovethdn principle has a radial and non radial compo-
nents (thep and@ direction). However, as before we argue that the electrical field higsaaadial
component and we can write:

P P . P=rp
up:_q/ E~d|:—q/ Erf.ou:_q/ E,dr (1.76)

Now substitute the electrical field of a point charge and obtain:

— P 1 1 1
T Amgy Jo 120 Ameyr'®  Amegrte

A definition of the 'potential’Vv is the potential energy of a charge unit in the field of the source

chargeQ:

U Q1
Vi 1.78
P= q 47T£0 I'p ( )

where the reference point or ‘gauge-point’ is implicitly taken at infinity.
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To calculate the potential for a collection of charge, we simply extend equafi@and inte-
grate over all point charges in the collection:

dg 1
Vi :/ — 1.79
P charge 4TTEg I ( )

and for a continuous charge densityve write:

p(r)1
Vi :/ P e 1.80
P volume 4TTE I ( )

1.5.3 The definition of the electric potential

The most general definition of the potential is

P
Vp = —/ E.dl (1.81)

gauge
where the gauge-point can be chosen where-ever you want. Yotedanyourself that for a point
charge and gauge-point at infinity you find back equation 1.78.

We have defined the potential starting the potential energy of a simple chamfjiguration.
Fine, the potential and the potential energy are related; that is usefubte. kBut, what about
the general definition of the potential? It depends in general on the figeecof a gauge-point.
How can such freedom be useful for describing physics? Indeegdtential itself has no physical
interpretation. However, potential difference and as we will see soergrddient of the potential
are relevant physics quantities.

1.5.4 The potential and the electrical field

From the previous section we know how to calculate the potential from thé&ietdield. Is it
also possible to determine the electrical field given the potential. To find thitorglaonsider the
difference in potential between poimdsandB:

() N o . B—» .
VAB:VB—VA:/ E.dl—/ E-dl:—/ E.di (1.82)
B A A

where we swapped the upper and lower boundary of the integral, gotkaek of the ’plus and
minus’ signs! Note that the potential differenégs is uniquely defined, independent of the gauge-
point.

The potential is just a scalar function. Hence,

B Bov ov ov
VB—VA_/AdV = ﬁdx+a—ydy+ﬁdz

B/oV oV oV
- (dx,dy,az)«dx,dy,dz) (1.83)

With the standard definition of the gradient:

. (0 d 0
0= <dx’dy’c?z> (1.84)
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we find:
B—»
Vg—Va = /DV'(dx,dy,dz)
A
B—» —
- /Dv-dl (1.85)
A

Combining Equations 1.82 and 1.85 leads to:

—

E=—-0V (1.86)

Thus the gradient of has a physical interpretation; it is the electrical field (with a minus sign).
This closes the circle. We can now determine the potential from the electri@fieldice versa.

For completeness we express Gauss’' Law in terms of the electric potentrahdtave need
the Laplacian operatoﬁz, defined by:

. (32 02 02
2 P —_— E— [R—
0% = <0X2 Taet (322). (1.87)

Now we go back to Gauss’ Law and derive:

0-E = DO-(0V) (1.88)
- fv=F
&

which is usually called 'Poisson’s equation’. Let's throw in one more defimitia the absence of
any charge, Poisson’s equation becomes:

[V =0 (1.89)

which is called Laplace’s equation.

The electrical potential and field of a point charge

We determined the potential for a point charge to be:

_ Q1

= - 1.90
4rieg r ( )

Now we check whether the expressignr= —[V returns the correct electrical field. We start with:

7l _ g1
r /X2+y2+22
ECAR S S LA
aX,/x2+y2_|_22 ay 0z
B X . y . z R
e+ R+ +R)E Rty )
el e L P (L.91)
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and conclude that
- Q -1 Q 1. _
V=—10N0-=—-——Sf=-E 1.92
4meg 4rgg r2 ( )
Most expressions in electrodynamics involve spherical symmetric fundtmrsuch a function,
f(r), you can quickly determine the gradient using the following relation.

> df

Of(r)= a (1.93)

The potential of a charged sphere

In Section 1.3.4 we determined the electrical field inside and outside a mapb®ecal charge
with radiusR and charge density.

E - Pricr
3¢&o

L PR |

E = fr>R 1.94
3egor? > (1.94)

As an example we calculate the potential inside the spherical charge.

r . R_ T,
V(r):—/ E-dl:—/ E-dl—/ E.di (1.95)
9 R

29

We substitute the expression for the electrical field and find:

RpR3 rpr
V(i) = - ; 3£or2d — Rs—godr
— E|R_p7r2r
35r ' 6gg
_ pR® pr2 pR?
T 3aR 6w 6
pRZ  pr?
= & (1.96)

At this point it may be not yet clear why the potential is relevant anywayn'Dmeorry about that
now and make sure you understand the mathematics.

The potential of a circular charge

We introduced the potential and perhaps the idea came to your mind 'wheve deed that for'.
Well, to calculate the electrical field of complex charge configuration candiffieult task, even
numerically®. Starting with a calculation of the potential and then calculate the electrical field is
often much easier.

We want to calculate the electrical field at a distadcef a circular charge with radiuR as
indicated in Fig. 1.25. the charge is positioned parallel toXNeplane, centered a = d with

Sthere will be an exciting exercise in the second year course on 'Nurh@figesics’
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T
d

I
:
I
I
:
® p=(0,0,0)

Figure 1.25:A circular charge positioned parallel to th& plane, centered at= d with radiusR
carries a uniform charge densiy PointP, that coincides with the origin is also indicated.

uniform charge density. To calculate the field at distande which is the origin in our case, we
first calculate the electrical potential using equation 1.79:

dg 1
Ve = / T 1.97
3 circular—charge 4TT€g I ( )

with r = +/R? 4 d? the distance to a piece of chardg = A Rdg. Rather straightforward we obtain:

oo [TA R g R (1.98)
Tl dme JRET @ T 260 JRET 2 '
When we define the total char@e= 2r1RA, the above expression becomes:
1
Q (2.99)

VA S B
P dngy R+ 2

We can now obtain the electrical field from the potential uding —[V. The general expres-
sion forV somewhere along theaxis is:

_Q 1
V@) = 4 T a? (1.100)

For the electrical field follows:

ooy -2 9 1 2 (1.101)
47180 07 \ /R2 + (z—d)?
Q (z-d)

arteo (RE+ (z— d)2)3/2”

Of course, this result can also be obtained from direct integration, hbiréguires a somewhat
more complicated integration. Just do it and check the result!
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The electrical field of a dipole

Another example where the electrical potential makes life easier is the caloutdtibe field of
an electrical dipole. Figure 1.26 shows a electrical dipole configuratamsisting of two opposite
point charges at a distancd.2The potential in a poin®(r, 8) has a contribution from the positive

KN
.

dcos&} .
— .®
g 20 g

B=2qd

Figure 1.26:An electrical dipole consisting of two opposite point charges at distatice 2

and negative point charge. Thus,

g 1 —q1l
Ve(r,8)=V,+V.=——++—— 1.102
P, 0) = Vi + ATEg T et ( )
with ry the distance between the corresponding point charge and poMthenr >> d we can
make the approximation:

ry =rFdcos(0) (1.103)
Verify this yourself. For the potential iR we obtain:
q 1 1
\Y/ = — 1.104
P(r.0) 4m1ey (r—dcos(e) r+dcos(9)) (1.104)

We can simplify this expression, using a 'cunning’ trick. Multiply the nominasors denominators
with r +dcos(8) andr — dcos(8) respectively and realize that+ dcos(0))(r — dcos(8)) = r2 —
d?cos?(6). Remember that we work in approximation-> d and thusr? — d?cos?(8) ~ r2. The
leads to

g 2dcos(6)

amey 12

2qdcos(0)

4115012

pcos(6)  p-f  p-T
ATiegr?  Aregr?  Aregr3

V|:>(I'7 9) =

(1.105)
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wherep = 2qd. The quantityp is called the dipole moment. Mathematical dipoles have distance
d — 0 andq — o, such thaip = 2qd remains constant.
Now we determine the electrical field by taking the gradient of the potential:

B, . - (BT
B = —[Vp=-0
P P <4nsor3

_ L (9 xpctypytzp
4”80 dX r3 PEEEEE TR PREEEEERE T

_ 1 /e 3X(Xpx+YPy+2p;)
= ~am e, R

r3 (5

1 —p+3F(F-Pp)
= 3 (1.106)

The drop of the magnitude of the field with is characteristic for a dipole field.

The potential of a line charge

Several examples convinced us starting with the electrical potential simpli§eattulation of the
electrical field. The following example shows that we have to be careful.

We calculate the electric potential of an infinitely long line charge in pg@ioy integrating over
all charge on the line ( see Equation 1.79):

dq

Vp = 1.107
P line 4TTEQr ( )
We put the line on the z-axis and thdg = Adz. Hence,
Vi / A (1.108)
p = ———————dz .
~® Amegy /13 + 22
A
= _— 2 +oo = i |

4nsol n(z+v1+2z°)| ;, = undefined! (1.109)

How can this be? Well, remember our definition of the potential in equation 1.8%lao look
at equation 1.78. We have taken the gauge-point of the potential at infivliigh has been a
reasonable choice for charge configurations with a potential vanishimdirity. However, the
potential of the infinitely long line charge doesn't.

In this case we have to obtain the potential by integration of the electrical lire®ection 1.3.4
we calculated the electrical field at radial distana# an infinitely long line charge:

L A
E) = 1.11
(r) 27Tsorr ( 0)
and thus 5 N
Vp=— E-dr = ———In(r)|} 1.111
P ./gauge d 2710 n(r)’gauge ( )
When we choose gauge-pomt 1 we obtain:
Vp = —Lln(r) (1.112)
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But isn'tit bizarre that we can just choose a gauge? Perhaps it isgfm@mber that the potential is
not a physical quantity. The electrical field is a physical quantity and atspakential difference
in two points, which is even easily measurable, and these quantities remairenugep of the
gauge-point.

1.5.5 The energy of a charge configuration

We have already discussed that the work needed to bring one poigech&mom infinity to a point
P in the field of another point charge equals:

P . P _ o
uzwz—/ qE.dlz/ qoV - dl' = Ve (1.113)

qz ‘%
g e

qf.\-.
93

Figure 1.27:lllustration of a collection of point charges.

Figure 1.27 shows a collection of point charges. To determine the enkaggharge collection
(of point charges) we have to calculate how much work is required torddsesuch collection.
The first charge takes no force (there is no field yet) and thus physitallyork is done. To place
the second charge, we requild = 2V (r12) = %@o% wherer, represents the distance between
chargeq; andgz. When we bring in the third charge we feel the field of the first an secbadye,

thus:

_ _ a1 02
W; = C{3V(r13) + q3V(r23) =03 (47’[80[’13 + 47T£0I'23> (1.114)

The total energy of our collection so-far is

0102 0103 n 203 (1.115)

123 1 +\N2 +\N3 + 47T80I’12 47T£0I’13 47T£0I’23

For a collection oN point charges we find:

m:ii; G %iqivm) (1.116)
i=1]HAi i=

47T80I'ij

Note that all combinations @f andq; appear twice, which is accounted for by the fac%oAnother
remark we have to make is that the self-energy to make the point chargesdetely ignored in
the above expressions.
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1.5.6 The energy of continuous charge distribution

For a volume charge density we can generalize Equation 1.116 and obtain:

= 1 pVdv (1.117)

2 Jvolume
Consider the following question of a smart student. There appears abciain from the charge
pdv, sensing its own potential in infinitesimal volurde. Such contribution from the self energy is
not present in equation 1.116. Wouldn't this contribution lead to unphlyssalts? To check the
size of this contribution, we imagine that our continuous charge distributiosists of infinitesimal
charged spheres. We calculate the self energy of a uniformly chaplesteswith (infinitesimal)
radiusR, due to its own potential (see equation 1.96):
R 2
Wit = } Jephere PVinsidedV = ;/0 P(g: - %)4m2dr

_ R 4np2R2r 4np2r4

2/ 280 680
_1,4mp*R®  Amp’R°
= 3l 6  30e

ATIp?R®

= 1.11
156 (1.118)

Remember that our sphere is infinitesimBl- 0) and thus the contributioiy s+ = 0. Hence,
equation 1.117 correctly represents the energy of a continuous attiatgbution.

)dr

)

1.5.7 The energy in the electrical field

Starting point is the energy of the continuous charge distribution.

= 1 pVdv (1.119)

2 Jvolume

Substitute Gauss’s lali - E = p/&o:

w="2 (0-EVdv (1.120)

2 volume
We can further simplify this expression. Therefore we first consideexpeession:
0(ExV)

ox

COVENEAS

= (0-E)V+E-(DV) (1.121)

0-(BV) =

We return to the energy (equation 1.120) and use equation 1.121 to write:

W = 80 (i(é) E-(DV)) dv
volume
- 50 / (- v E-E)dv
olume
80/ = =2
= — D dv+ E-)dv 1.122
2 olume 2 volun‘e< ) ( )



1.5. THE ELECTRIC POTENTIAL 37

Using Gauss’ Theorem 1.58, we obtain:
&0 _ & =9
w=2 (Ev) do+ 2 E2dv (1.123)
2 Jsurface volume

The integral of the surface equals zero. Why? Suppose we consiieelthof a point charge. The
electrical field drops with Ar? and the potential with Ar. We can write:

/ d5-EV ~ da.l/r%/ dedosin(8)1/r (1.124)
sur face sur face

sur face

We should consider a surface enclosing all space,thuso and thus
/ dedesin(8)1/r = 0 (1.125)
sur face
Finally, we obtain for the energy of the electrical field:

w=2 E2dv (1.126)

2 Jvolume

E, V and Energy of a spherical surface charge

In Section 1.3.4 we calculated the electrical field of a charged spheritateyor shell) with radius
R and charge density. We found that outside the shell:

ﬁ R
E—Ef=2"4fr>R (1.127)
Sor
Inside the the sphere no charged is enclosed andghys0.
What is the potential as function o? We use/(r) = — [L E - dI'and write:

/d sorz o r>R (1.128)

Now, calculate the potential inside the sphere (where the electrical fieldak ze

Re = (T2 o oR
V(r)z—/ E-dl—/ E-di=V(R)+0=— r<R (1.129)
(<] R 0

You could always check the results for the potential by calculating the ileicfield usingE =
—[V. The results for the electrical field are also shown in Fig 1.28, where gioisee that inside
the surface the electrical field becomes zero, while the potential is congtat,

Now we can calculate the energy of this configuration in two ways. We sttrtthe expres-
sion for the energy based on the potential (equation 1.117). The voluangectensityp is zero
everywhere, except on the spherical surface whereat idence,

1 1
W = = pVdv — = oV (R)do (2.130)
2 Jvolume Jsur face
1 R 1 R °Re
_ = 0 do = Zanrea 2" — on? (1.131)
2 Jaurface &0 2 & &0
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V-E

R

Figure 1.28:The electrical field and the potential of a spherical surface charge

The other expression for the energy with the electrical field in quadréayeation 1.126) should
yield the same result. Let’s check that.

w = 2 E2dy = 2 E2dv
2 Jvolume r>R
R? 4 R°o ,1
= &f Sy [ g (Rl
2 Jisr r%go r>R & T
4mey RPo ,—1 °R3
_ T ROp e on? (1.132)
2 & r

as expected.

1.5.8 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

¢ You understand the definition (and the derivation) of the potential:

P —
Vo — —/ E.di (1.133)
gauge
For a point charge, the potential is given by:
Up Q 1
Vp=—=—"-— 1.134
P q 4rteg Ip ( )
e you can also calculate the electrical field given the potential, USiag— V.
e you understand how we derived the energy of a charge collection:
13 Giq; 13
Wh = = =_ iV (ri 1.135
Zi;;‘”ﬁorij Zi;ql (ri) ( )
e For a continuous charge density the energy is given by:
1
W= pVdv (1.136)

2 Jvolume
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or, alternatively:
w=2 E2dv (1.137)
2 Jvolume
which you can apply for a spherical charge density.

In addition, make the corresponding exercises of this section, whichamfired in the Appendix.

1.6 Electrical fields in matter

So-far, we considered electrical fields in vacuum. Usually we started witiessymmetrical)

charge configuration and then we calculated the electrical field, its potengalergy. What if we

place (electrically neutral) objects in the electrical field? What happenseitsase objects and
what is the effect on the electrical field in and outside the object? In this Sestowill discuss

these questions and more.

1.6.1 The Conductor

What is a conductor? For our purposes a conductor is an object thdticts electrical currents
because the negative charge carriers (electrons) can move freiely the material. The number
of the free charge carriers is unlimited. Materials that approach theskpdgzerties are metals
like iron, copper and gold. If the conductor is electrically neutral, it costain equal amount of
negative and positive charge. The positive charge is always bauhdhas cannot move freely
through the material.

Given the above we can deduce what happens when a conductores jpiaie an electrical
field as illustrated in Fig. 1.29.

= y ._J—\L
£ Extern
E A ~ Emi/ veld

Figure 1.29:A conductor is placed in an extern electrical field.

e What is the electrical field inside a conductor? Suppose there is an elefielidén the con-
ductor. Then, the free electrons would be subjected to the electrica &g start moving.
Well, they may do for a short time when the field is just turned on, but we disouiy elec-
trostatic situations. There is only one stable solution to our question and that ihéhe is
no electrical field inside a conductor!

e How can the field be zero inside a conductor? Well, suppose the electeichikfjust turned
on. Then some free electrons will be attracted by the electrical force anddlthe surface
of the conductor (they can not escape). This process goes on till ttkeicdéfield inside
the conductor has vanished, or better, the original field gets cancelext tfield of the free
charge sitting on the surface and the nett positive charge that keepigitabposition®. In

4This is always possible in one, and only one, way based on the 'unigsiimeorem’. The derivation of this theorem
is beyond the scope of this course.
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general, the nett positive charge will appear on the opposite surfaceeasitlect to the side
of the free negative charge.

e What is the charge denS|ty inside the conductor? We know now that the felieithe
conductor is zero. Hencél-E = p/& = 0 The charge densitg inside the conductor must
be zero. Thus, any nett negative or positive charge must sit on tfaee(s) of the conductor.

e What about the electrical field on the surface? Suppose there is aricalkefigid along the
surface of the conductor. The free charge carriers will immediatelypdad’ and flow into
a configuration with no electrical charge along the surface. Henceg tHrerno electrical
field components along the surface of a conductor. Now suppose thetecisical field
perpendicular to the surface. The charge sitting just on the surfaceandttiacted or repelled
by the field, but it cannot move inward or outward the conductor. This talales situation
and thus there can be an electrical field just outside an conductor piépkam to its surface.

e Is there a potential in a conductor? No, there can’t be, beda(ee-V (b) = — f;) E.di'=0.
At any place inside or at the surface of a conductor the potential is gunsta

# | characteristic why

1 | E = 0 inside a conductor otherwise charge starts moving.

2 | p =0inside a conductor 0-E=0= P/ &o.

3 | charge sits on the surface where-else could it be?

4 | V is constant inside a conductol (a) —V (b) = — f;’ E.dl'=0.

5 | Field lines leave the conductor otherwise the surface-charge starts

perpendicular. moving.

Table 1.1:The conductor rules.

Table 1.1 summarizes the electric characteristics of the conductor. So, ave kow what
happens if we place a conductor inside an electrical field. Well, not redle (original) field
outside the conductor also changes and we have not discussed thats atiwough problem to
solve without a general solution. When there is an obvious symmetry in tHgomtion we can
give the solution. It will take a lot of practice to adopt a 'feeling’ for thesafigurations. Anyway,
the examples in the following paragraph help you to get started.

A conducting plate in a uniform electrical field.

We start with a given uniform electrical fieBxena in the horizontal ) direction and then place
an infinitely large conducting plate as shown in Fig. 1.30a. After a few remiuoels an electrostatic
configuration exists. What is the resulting electrical field?

Start by applying the rules of conductors (Table 1.1) to get the nett eltangfiguration. Then,
with the charge configuration we can calculate the electrical field everngnigng standard tech-
niques as we have been doing in the previous Sections.

So, we know that the nett charge will sit on the surface (rule 2 and 3)caNeeplace the plate
by the electrical configuration as shown in Fig. 1.30b. This situation is palj)siequivalent. Of
course we also need to know the amount of charge, or better, the diemgidyo_ ando,.. We
started with a neutral plate, so for swwe= 0. = —o_. According to rule 1, the field inside the
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a) original b) charge equivalent

—— G———
+ -

— ——

— - —

E external + B E external

— C—

G— - C—

—— + - —

— - C—
+

— + - ——

Figure 1.30:a) An infinitely large conducting plate is placed in an external electrical fiettier
direction. b) The physical equivalent charge configuration on the.plate

conductor shall be zero. Hence, in the region where the plate resideélettirical fields from the
charge densities have to cancel the external field:

Ein—plate = 0 = Eegernal + E(_) + E(1) (1.138)
We have already calculated the electrical field of a flat surface chirge: 2“—;0 which we substitute
in the above expression:

R . —0O,. O,
from which follows:

Note that the (vector) contribution of the positive charge has acquiredwsraign, because it points

in the negativez direction, which is also illustrated in Fig. 1.31 (for the sake of the argument we
made the external field vector fit just inside the plate). Inspect the figunesglf and verify that the
field inside the plate gets canceled. Outside the plate the contributions of itiegpasd negative
charge density cancel and hence the field outside still edidalsa !

Finally, we remark that inducing two layers of opposite charge on a platéresqwork. The
work is performed in the small timespan before reaching the equilibrium. Tieere field gets the
‘energy bill'. From equation 1.126 we can seen that the energy difterenmes form the volume
inside the plate where the original field has vanished. Thus, for a platddisad heighh and
thicknesd, the energy difference is:

& = &hd =
== Eé(ternal dv= 07Ee2xternal (1-141)

U=
2 Jvolume— plate 2

(of course we demani >> d such that we can ignore edge effects.) You can verify yourself that
this equals the work needed to separate the positive an negative sthiéage.

A grounded conducting plate

We can also consider a grounded plate. This means that the plate is cantwettie earth. For
this purpose the earth should be seen as an unlimited source of chahyssth& earth can pump
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Figure 1.31: The electrical field contributions inside the plate form the external field &wagge

densitiess, ando_ respectively.

electrons in or out the plate at no cost without acquiring any net charglé itsurthermore, the
potential of the earth is usually defined to be zero and grounded objects tire same potential.

Figure 1.32 shows a grounded plate (as you can see from the pieceeothatrends in the
special symbol for ground), together with its charge distribution.

The surface chargéyounded, N€€ded to cancel the electrical field inside the plate, can be easily
calculated using similar steps as above:

Ogrounded = _Zgo‘éedernaly (1.142)

But why reaches the plate an equilibrium without any positive net (seytharge as in the previous
example. Well, as mentioned above, to make a positive and negative layelhsrge work is
performed, which requires a force. In the 'grounded’ case all tleesgary electrons are provided
for free by the earth. Note that the field outside the plate has drasticallgetain fact, the field
becomes zero everywhere left from the negative surface chady& doubles on the right side.
This also affects the energy in the field dramatically. Of course, the eartit really an unlimited
source of electrons and we have to know all the details to calculate the corapkrtg balance.
Hence, in practice this cannot be done. In the scope of this cours&esponsibility’ ends with
checking that all rules for conductors are satisfied. Check that gfurs

A spherical conducting shell with a point charge inside

We consider an electrically neutral conducting shell with an inner and oatius of R, and R,
respectively. We have put a positive point chagga its center as shown in Fig. 1.33. What is the
charge density in the shell and what is the electrical field everywhereaitesp

It is amazing that we can answer this question given such little informationufdr a com-
plicated configuration. But we can, again just by using the rules forwcind (and all the stuff
we learned before). Rule nr. 1 tells us that in the meat of the shell (thatigbpeR, andR,) the
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/]

E external

Figure 1.32:A grounded conducting plate is placed in an extern electrical field. Note tbmar
tional symbol for ‘grounding’ indicated in the figure.
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Figure 1.33:A positive point charge is positioned in a conducting shell with inner ra&iasd out
outer radiufx,.

electrical field of the point charge should cancel. This can (only) béeeeti by induced charge
on the inner and outer surface. since we started with an electrically nebjeadt, there must be
a similar amount of induced negative and positive surface charge,-g, on the inner and outer
surface respectively.

The question is now how to calculate tbe= 4‘% (or equivalentlyg,). Well, we have calcu-

lated the electrical field of a spherical surface charge density befesegquation 1.46):

" R?
E = Zrfr>R (1.143)
Eor
Q .
= —— R 1.144
47Teor2r = ( )

andE = 0 inside the shell (betwedR andR,). In the shell, we add the contributions of the point
charge, the negative charge density on the inner shell and the positverothe outer shell, we
find inside the conductor:

6 = Eq—i_E’Ql—i—EQo
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1 /ag G .
_ 4n€0(r2+r2+o>r (1.145)

We conclude tha@Q; = —q (andQ, = —Q; = g). Note that the charge densities on the inner
and outer surface, besides the sign, are also in magnitude not the same:-q/(4nR?) and
0o = q/(4nR2). Check yourself that all rules for conductors are fulfilled.

What are the consequences for the electrical field everywhere ire spaside the conductor?
Well, the field is just the field of the point charge. We could say that the poesef the conductor
has not disturbed the outer field at all!

Finally we remark that we have been able to calculate the induced chargjgetgl@asily
because off the large symmetry in this problem. Most notably is that all cotibiisuto the field,
i.c.: that of the point charge, the surface chargB;and the charge &, all have radially pointing
contributions. For a weird shaped conductor in an external field yourgajust for fun, to make a
sketch of the charge distribution on its surface.

Method of images

A powerful technigue to calculate the electrical field in many situations is the tdathimages’
using a 'mirror charge’. This method relies on the fact (not deriveéhtvat the electric potential
is uniguely definednside some volume

with a given charge density inside the volume, and,
with given the potential at its boundary surface.

In such case we may change the original charge configuration outsigleltinee by an alternative
configuration respecting the boundary conditions. Inside the volume tbiiedé potential of the
alternative configuration equals that of the original configuration. Yoy ima&e to read the previous
sentence twice. Outside this volume, the potential of the original and altexnadivfiguration
generally completely differ. In the following example we will see the strengthisfmethod.

We consider a grounded plate and place a point chgeage distanced as illustrated in Fig. 1.34.
The point charge induces charge on the plate surface with an a prioroum distribution. For this
example the plate is infinitely large and infinitely thin What is the electrical fieldysueere? Well,
on the right side of the plate ¢ 0) we have a volume with a given charge density (the point charge)
and we know the potential at the boundariés= 0 at the plate{= 0) and at infinity.

Hence, it is allowed to use the technique of the mirror charge. We have patke@oint charge,
but can remove the plate if we can find a charge configuration that gieesatne potential =0
at the boundarg = 0 andz = +. As the name of the technique suggests, put a mirror charge
(—q) atz= —d which leads to the configuration shown in Fig. 1.35. Are the boundaryitonsl
fulfilled? At z= 0 the contributions to the electric potential of the two charges cancel anfirétlyin
(by the way: only positive is relevant in this case) the potential is also still zero. The resulting
configuration is an electrical dipole which we have seen before. Here&now the potential for
z> 0 now. But what about the potential in the regior 0. This is outside the our volume with
known boundary conditions. It is certainly wrong to use the potential ftipale in this region!

The trick is to go back to the original configuration and first determine thegehdensity on
the plate. Foz > 0 we know the potential is given by:

1 q q
V(XY,2) = — 1.146
by 41t <\/x2+y2+(z—d)2 \/x2+y2+(z+d)2> ( )




1.6. ELECTRICAL FIELDS IN MATTER 45

Figure 1.34:A grounded conducting plate is placed in the field of a point chgrgéhe point charge
is positioned at = d and the right surface of the plate is located at0.

The corresponding electrical field can be calculated uBihgy,z) = —[V(X,y, 2). For the field at

z= 0 we find:
E(x,y,0) = Q 2 - ]2 (1.147)
47-[80 (X2+y2+(d)2)§

as you can check yourself. Now we know the electrical field gor 0) which allows us to the
determine the charge density on the plate using the rela}%(pﬁ E(z=0) -2 (see equation 1.42).

Hence,
q d
oxy)=—|——=|, 1.148
(%) 4n<(xz+y2)§) ( )

which together with the the point chargezat d determines the physical situation, enabling us to
calculate the field everywhere.

We have discussed when and how you can use the method of images ainiticeaciude this
section by summarizing this method:

e Check the following. the potential should be known at the boundariesleise boundaries,
the charge density should be known as well.

e Find an alternative charge configuration outside the boundaries thmatestogether with
the charge density inside) the original boundary conditions.

e Calculate the potential of the alternative configuration.

¢ If required, you can calculate the original charge configuration usiagditential (or electric
field).

There is no general concept that returns the alternative configuratidiit probably became clear
to you that it needs some experience to find such configuration.
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Figure 1.35:An alternative charge configuration, existing of a electrical dipole.

1.6.2 Capacitors

We take two parallel plates of conducting material and charge the plates witisitg charge as
indicated in Fig. 1.36. The plates are separated by a disténa¥e ignore the thickness of the
plates and assume that the plates have a large sukfadth respect tad. We have calculated the

RRRERRR
C L SVIRENET r
L1111t J't'llrtﬂ '1
o LTI
———
Figure 1.36:Two parallel plates of conducting material. The plate have opposite cxegel are

separated by a distande The contribution to the electrical field of each plate individual is also
indicated.

electrical field for an infinitely large flat surface charge already in $64, which provides a good
approximation for the present configuration wigh>> d. We have to add the contribution of the
two plates. In between the plates, we obtain:

=_ Q, Q, Q.
E=—-272-—7= 1.149
2A€0 2A£0 ASO ( )

The electrical field is constant and points away from the positive chasiggd. The contribution
of the negative charge obtain an additional minus sign, because if it wewddoositive charge the
field would point in the negativedirection. Make sure you understand this argument.

The potential difference between the plates is given by:

V=V, - /E dz———Q/ (1.150)
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What we have shown now is that the potential difference between theictumd is proportional to
Q, which is generally valid for capacitors.

Is the behavio ~ Q independent on the shape and size of the conductors? Yes. Suppose
you take two conductors of arbitrary shape and size as illustrated in Figy. Th@ electrical field is

Figure 1.37:A capacitor, consisting of two conductors with bizarre shapes.

proportional to the charge density in, or betbarthe conductors. The charge density is proportional
to Q. The potentiaV is proportional tae and thus also tQ.

Capacitance

We have seen that ~ Q. Now we introduce a constant of proportionality called capacita@ce,
such that

Q
c== 1.151
v (1.151)
The capacitance depends completely on the geometry of the electricaluratifig. For the con-

figuration with the two plates, we have shown tRat %. The largerA and the smalled the

more charge can be stored in the configuration for the same poténflde unity of capacitance is

called Farad (=Coulomb/Volt), denoted by F. In practizeneasured in Farad is numerically small.
For our plate configuration witd = 1 mm andA =1 m,C = 9 x 10 1 F. In the newspapers a few
years ago, there was an item about a small capacitor@thl F, but | haven't figured out yet how

to make that. Let me know if you find the 'trick’ on the web.

The energy of a capacitor

We start with an uncharged capacitor and move electrons from one ctondio the other to charge
it up. The electrons 'sense’ the electrical force in this process. Hemogng them requires energy.

The energy needed to bring some chadggeto the other conductor idU = V(q)dg. With
V(q) the potential difference between the two conductors as function of thedglraoved charge
g. Since the capacitand@ is a purely geometrical quantity we can wri€q) = q/C and thus
du = % The total energy of a charge capacitor is then given by:

B _ /Qqdg 1o 1Q* 1_ .,
u_/du_/o BT =52=350v (1.152)

with Q andV the final charge and potential of the capacitor respectively.
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Examples of Capacitors

Cylindrical configuration

Figure 1.38: Two coaxial conductors. The inner and outer conductors have aaaidb respec-
tively. The conductors have opposite total chagge

Figure 1.38 shows a cylindrical configuration, consisting of two coaxiatiactors with length
L. The inner conductor has a radias The outer radius i® and is much smaller than the length.
The conductors have opposite total cha@yé/Nhat is the capacitance of this configuration?

e First, determine the electrical field in the space between the two conductenniayf/assume
thatL >> b which implies that away from the edges the field is radial. The charge demsity o
the inner conductor is; = %. We calculate the flux through an imaginary small cylindrical
Gaussian surface and obtain:

o2l

= e

Note that in between the conductors there is no contribution to the flux (ddji fiem the

outer conductor. The electrical field &= %‘r“

E 2mml (1.153)

e The potential difference between the two conductors is given by:

a, aga ga ga
vz—/ E.-df=— | —“dr=—-"In(r)|]2= —In(b/a 1.154
i e Or= N ="CInb/a) - (1.154)

e Now we know the potential and it is trivial to obtain the capacitance:

~ Q  2mloig  2nlg
€=y~ gialn(b/a)  In(b/a) (1.155)

Like the plate-capacitor, the capacitance of this configuration incredses the distance between
the two conductors becomes smaller.

Spherical Capacitor

We now consider a capacitor consisting of a spherical surface (th@smassive sphere, but a shell
with some thickness) of a conducting material with radiusn its center we placed a conducting
sphere with radiug. The conductors carry opposite chai@Qe What is the capacitance of this
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Figure 1.39:A spherical capacitors. The inner conductor has radiasd the outer one has radius
b. The conductors have opposite charge. Note that the outer conduet@pikerical surfacd (a
shell) an not a massive sphere.

configuration? To calculate the electrical field we use a spherical Gaussitace with radius

such thata < r < b. For the electrical field we obtain:
., gal
E=—f 1.156
£or2 ( )

Now we calculate the potential difference between the conductors:

a_ aga? oa’ oa® 1 1
V=— | Edf=— | —dr=—]3="—"(=-= 1.157
/b ' b &2 ' &of b £ (a b) ( )
for the capacitance follows:
Q 4Tl o g ab
== = ATy 1.158
V.  oga(l/a—1/b) "™0h"a ( )

Note that the capacitance is independendoand/orQ and thus is indeed a purely geometrical
quantity.
1.6.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

¢ You understand the properties of a conductor.

e When a conductor is placed in an electrical field you can identify the sudlaarge densities
and calculate the resulting electrical field.

¢ You understand the basics of the mirror charge technique

You can explain what capacitors are and deduce the relation:

~Q
C=y (1.159)

You can calculate the the capacitance of a parallel plate capacitor.

The energy of a capacitor is given by

1
U= éc:v2 (1.160)

In addition, make the corresponding exercises of this section, whichamiird in the Appendix.
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1.7 Insulators

All matter that cannot be classified as a conductor we call an insulator. sitators there are
no free electrons to cancel the electric field inside the 'bulk’. Howewverpdiarization of the
molecules and atoms inside an insulator there is some cancellation of the fielch alfhetom
polarizes we can discriminate between a positive and negative side. Fogdhi, insulators are
historically referred to as 'dielectrics’. The properties and behavidielectrics in electrical fields
are discussed in this Section.

1.7.1 Polarization of atoms and molecules

What happens microscopically when we electrically polarize an atom? Th&azhpicture of an
atom is a big positive nucleus surrounded by tiny electrons orbiting it. Foporpose, that is
electrostatics, we adapt this picture by taking the 'average’ of the atomtiove. Yes, you need
some imagination, but this leads to an atom consisting of a small positive nucléwsdanter of a
uniform cloud of negative charge. Consider the illustration in Fig. 1.40ei\ike apply an external

—

£=0

elektronenwolk
uniforme bol (R)

-Q E=0
bolsymmetrisch
= dipoolmoment

-Q

Figure 1.40: A view of an electrostatic atom. It consists of a positive nucleus surralibgtea
uniform cloud of negative charge. The cloud has radius (R). Leftpdlarized, the nucleus is
centered,; Right: Polarized, the nucleus is shifted away from the centbe @loud. This results
effectively in a dipole.

electrical fieldE as is depicted in the right figure, the negative charge is attracted, whil@site/p
nucleus is repelled. Consequently, the nucleus is shifted by a disdanite respect to the center
of the cloud. We have assumed that the spherical shape of the cloudsereed. The net effect is
that we produced an electrical dipole with moment Qd.

To good approximation the dipole moment is proportional to the external figle: Qd =
aE, with proportionally factora, called the 'polarizability’. Table 1.2 lists some experimentally
obtained polarizabilities. As expected, the faatagrows with increasing chargé For water vapor

Atom Z [ a(1030md)
Helium 2 3
Neon 10 5
Argon 18 20
Water vapor| - 500

Table 1.2:Several examples of the polarizability for some atoms and water vapor.

we observe thatr is relatively large. Such a-typical behavior points in the direction of a wiffe
physical mechanism. Indeed, there is an additional effect in water zqubother so called 'polar’
molecules. The electrons in water molecules are attracted by the positiverorygleus, more
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than by the hydrogen nuclei. The result is that water (and other polar mle&gcave a built in
electrical dipole moment. Figure 1.41 shows what happens when these mslamijg@aced in an
electrical field. The dipole moments of the water molecules are aligned by thmaxédectrical

wl?
P Jo =/ & o x
HLH e X 9 2 H‘OH A
2 Yt
- = \ 0 H H H
E<d R 08 E=x0 2 o

Y N\

Figure 1.41:Left: Water molecules without electrical field. the electrical dipole moment of the
molecules is indicated. Right: Water molecules in an external electrical fiekel difole moment
of the molecules are aligned by the electrical force.

field which leads to the relatively large polarization factor

In this Section we have discussed two different microscopic effects lgadipolarized mat-
ter. We have postulated a straightforward relatign= aE) between a new phenomenon called
polarization in the external electrical field. In Electrostatics however, waat care about this
microscopic behavior so much. We only want to describe the behavior dields, averaged over
all atoms, as we will see in the follow Section.

1.7.2 Macroscopic Polarization

What is the electrical field in a dielectric when put in a known external field®dt for the mo-
ment the atoms and molecules in the dielectric and put on your 'abstractgjlasselectrostatic
theory, dielectrics consist of infinitesimally small electrical dipoles. A dieleciit be electrically
polarized by putting it in an external fielh as illustrated by Fig. 1.42.

L

— —
fal— Eo +Epa.f

E, fo
Figure 1.42:A dielectric in an external electric fiely. The microscopic dipoles polarize (polar-
izationP). The resulting total field is given by the sum of the original external field that of the

polarized dipoles.

Inspired by the microscopic view (see previous Section), the polarizagommit volume is
defined as the polarizatidhwhich weassume proportional to the electrical field:

P = gxeE (1.161)

The factor of proportionalitye is called the electrical susceptibility for historical reasons. We say
that the dielectric idinear when this equation is valid. In general it is valid for relatively small
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electrical fields. Note that the word linear in this context is not related toesbfghe dielectric;
it describes an electrical property. In this expression, the electriddifie= E;4, the total field,
which usually leads to confusion and/or mistakes! It is the sum of the ektiégfthand the, yet
unknown, field from the polarized dipoleépfd).

What is the field of the polarized dipoles? Well, the polarization leads to nejelsaparation.
When we can quantify this charge, that is, determine the charge configyrae know how to cal-
culate the field using standard techniques. So, let’s try to find the chang#ymside a dielectric
first.

Have another look at Fig. 1.42. Inside the the dielectric there is macrosdigpio net charge.
The dipoles are aligned in chains of positive and negative charge ahe af are canceled by-'.
However, this is not the case at 'the start and end of the chains’, abthedhry of the dielectric. At
the left side, all the chains start with-’, while at the right side all chains end with ’+’. There is a
net charge separation at the surface of the dielectric. Note that thgeshtiiemselves are localized
in contrast with the free charge in a conductor. For this reason, thehaeje at the surfaces of a
dielectric is calledbound charge. The amount of bound charge is given by the polarization:

—

Let’'s put in a small intermezzo. The above Equation 1.162 is sufficient featidielectrics;
there cannot be any bound charge inside the dielectric. However, reaerajly the relation be-
tween polarization and charge is given by:

Poound = -0-P. (1.163)

It says that there is bound charge inside an dielectric when the polarizaside a dielectric is not
constant. In such case there is no (perfect) cancellation between pasitinegative bound charge
inside the dielectric in contrast to a linear dielectric. At the surface of arlgatiec this relation
transforms to Equation 1.162. In this reader, like in many textbooks, wesiuntily consider linear
dielectrics, unless stated otherwise. This ends our small intermezzo.

In principle, we can now deal with a dielectric (with knowx) placed in a known original
external fieldgg:

1 the (yet unknown) polarizatidddetermines the (bound) charge configuration (Equation 1.162),

2 the charge configuration determines the contribuigi to the electrical field, enabling us
to calculateEigig s

3 Eiqta fixes the polarization (Equation 1.161).

To you, it all may look a bit circular, but in the following Sections we will dissg®@me examples.
There is one suggestion to consider: memorize the three Equations ahdwbada meaning)!

The electrical field in a flat dielectric

We consider a flat dielectric with a giveg and we place it in a known uniform electrical fiefg in
thezdirection as shown in Fig. 1.43. The dipoles in the dielectric polarize, leadiagtdarization
P. The bound net charge on the surfaces of the dielectric is accordinguiatin 1.162:

—

op=P-A=P (1.164)
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Figure 1.43:A piece of dielectric in an external electric fiedg. The microscopic dipoles polarize
(polarizationP). The resulting bound charge at the surface is also indicated.

Now, forget about the dieletric and only use the equivalent configuratitence, besideR,
we have a configuration of two oppositely charged flat surfaces, whids to an electrical field:

L -0
Epo = —22 (1.165)
&
Here we simply used the formula of a plate capacitor, derived in Section b2 ém sure, you
could derive it yourself by now).
In the dielectric, the (total) electrical field is now:

E = Eo+ I_E‘pol
= Eo— Opal /€0
= EO — IS/EO (1166)
Using equation 1.161 we can write
E=Ey— XxeE = ! Eo (1.167)
T (Xet)) '

That's it!
The susceptibilityxe for glass and plastic like are of order 10. For water the susceptibility is
about 80.

Plate capacitor with dielectric

Consider a plate capacitor with a dielectric in between its plates as illustrated ih44g.The plates
have surfacé\ and are separated by a distamcelhe dielectric has an electrical susceptibility
Given the free charg®js,e On the plates, what is the electrical field in the dielectric and what is the
capacitance of this capacitor?

That looks like a tough question, but in fact it isn’'t. Just cut the problemelgvant pieces and
you will see that you already can solve all pieces one by one.

Starting point, the first piece, is ampty capacitor. Thus the same configuration as already
discussed in Section 1.6.2. We repeat our results (you should be ablewe these results by
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+++++++++++++++Ze ld

Figure 1.44:A plate capacitor with dielectric in between the plates.

now):
= Qfree, Ofrees
+ 2 d
Vempty = _/_ Eempty - dz= AT:()eree
Qfree  &A
= = 1.168
Cempty Vempty d ( )

The second step is to place the dielectric between the plates. The field insthegdtyecapacitor
is relevant external field for the dielectric. In fact we have placed aciréten an external field
just like we have already seen in the previous Section and according &i@yd.167 the field

becomes:
1 - 1 Ofree .

I -
Xe+D) ™7 (Xet1) &

So-far, so good and we go to the next piece. We can calculate the poteitieden the plates
by integration of the electrical field (just like we have done for empty capagito

E=

(1.169)

+ . 1 d 1
V:—/ E-dz=———~— =—V 1.170
B (Xe+1) Agonree (Xe+1) empty ( )

for the capacity follows:

A
C =21 _ (x4 1) 2 = (xo+ 1Commy (1a7)

In textbooks the following definition is often used
(Xet1leo=¢ (1.172)

With this definition most expression related to dielectrics become similar as thessiqm in vac-
uum after substituting for &.

Note that the capacitance between the empty and "filled’ capacitor is justdte {ge+ 1).
Thus, for plastic fillings the capacity grows with a factor of order ten.

1.7.3 The electrical Displacement

To describe electrical fields inside dielectrics, we had to thrown in sewevalelectrostatic objects’
like the polarizatior and the bound chargp,. The question may arise: is Gauss’ Law valid inside
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a dielectric or should it be adapted? The answer is that Gauss’ Law igsiwadid, but we should
be careful. Consider Gauss’s Law once more:

gl-E=p (1.173)
Realize thaE in Gauss’ Law always is thistal electrical field ang is thetotal charge density:
gll-E = Pfree+ Po (1.174)

wherepiree is the charge induced on an conductor surface or the charge neettedtiman external
electrical field. (Keep in mind that we often discussed examples where e giielectric in an
external field. Well, the external field comes not for free: it is the efdédtee charge somewhere.)
Using Equation 1.163 we can write:

&)-E = piree— - P (1.175)
or equivalently, .

O- (&0E+P) = Prree (1.176)
Now define the dielectric displacemebt= &E + P. It is just a matter of definition, bud has an
important feature: .

0-D = Prree (1.177)

It is Gauss’ Law for 'field’D that only depends on the presence of free charge. Also the integral
form of Gauss’ Law is valid:
Qi

&

D.dd=

free—charges—encl osed

/ (1.178)
closed—sur face

Combining the formula’s in this Section you can derive tBas also proportional to the (total) field
E:
D=¢E+P=¢cE+exE=(Xe+1)&E =¢E (1.179)

This mathematical approach completes the theory on electrical fields in matter.

1.7.4 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréhvous can be summa-
rized as follows:

e You can explain how a dielectric is polarized in an electrical field, resultingneteébound
charge at its surface.

e The relation between the polarization and the electrical field is

P = gxeE (1.180)
¢ With this relation you can calculate the electrical field in a parallel plate capditiearwith
a dielectric: 1 1 o
= = free 4
E=——F = 1.181
et D) ™~ (et 1) & (1.181)
You can also show that the capacitance is:
C= (XeJF 1)Cempty (1.182)

The capacitance of the filled capacitor is larger than that of the empty capacito
In addition, make the corresponding exercises of this section, whichamiirad in the Appendix.
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1.8 The icons of Electrostatics

Throughout the previous Sections we deduced, described, discassederived the aspects of
electrical fields in vacuum and matter. The resulting field equations are listEbie 1.3. Never
forget that we started with Coulomb’s empirical Law, based on experimahtcanstructed the
theory on electrostatics around it.

Comment| Integral Differential
Gauss | JyrfaceE U0 :_'j;/olumeg%dv 0-E= 8%
fclosedflineE'dI =0 OxE=0

Table 1.3:The complete set of field equations for electrostatic theory.



Chapter 2

Magnetostatics

2.1 Basic concepts

Magnetostatics aims at the description of all phenomena that involve nowfiolganagnetic fields.
Qualitative knowledge about magnetostatics has been around for manuyiegnit is possible to
use a magnet needle to make a compass without knowing how to quantify mggoegsses. In
this section some basic concepts of magnetism are discussed.

In electrostatics you are familiar with the fact you have positive and negatiarges. The
charges for magnetostatics always come in pairs. In a magnet one sidenmgmetic-positive
side, while the other side is the magnetic-negative side. The magnetic-pssivee like to call
the 'north-pole’ and the magnetic-negative side the 'south-pole’. Qffsmthis naming is derived
from our own earth, which itself is a permanent magnet. Forces betweenetsagye such that a
north- and a south pole attract each other, while there is a repelling fetagbn two poles of the
same kind.

Now you could decide to cut a magnet in half, just between the north- ansbtlte pole, in
order to obtain a north-pole and a south-pole separately. The resuluofexperiment, however,
will be that you will have indeed two magnets, both with a north AND a south sale Fig. 2.1).
You can repeat this as many times as you like, but the only thing you will sdéeeis to get many
more small magnets. As far as we know no magnetic monopoles exist!

Also it is well known that compared to gravity the magnitude of the magnetic fsrbage. It
is very common for even small magnets to lift little (or sometimes big) pieces of igainst the
gravitational force from the whole earth!

In addition there exists an intricate relation between electrical currents agati@field, which
will become clear further in these lecture notes. The unit of a magnetic fietddléziche Tesla, and
it can be described in terms of other units as:

[Tesla] = [N]/([Al[m]) = [N][s]/([C][m]) = [kg]/ ([C][s]) (2.1)
with [A] = [C]/[s] an electrical current, andN] the unit of force.

2.2 Lorentz force

2.2.1 Experimental basis and formulation

The Dutch physicist Hendrik Antoon Lorentz was the first to quantify theenmant of an electri-
cally charged particle inside a constant magnetic field. Just as Coulomhtkdagescribes forces
57



58 CHAPTER 2. MAGNETOSTATICS

Figure 2.1: Cutting a magnet in two pieces will only result in creating two magnets, each with
a magnetic north- and south pole. You can repeat cutting, but you will reattec a magnetic
monopole.

in electrostatics, the law for the force caused by a magnetic field is basegbenrsental data:
1. The Lorentz force is proportional to the strength of the magnetic field;
2. The Lorentz force is proportional to the electric charge;
3. The Lorentz force is proportional to the velocity of the object it acts on;

4. The Lorentz force is proportional to the sine of the angle between theityevector and the
speed vector;

5. The Lorentz force is perpendicular to both the velocity direction and ieettbn of the
magnetic field;

This list of experimental data can be elegantly translated into the following mativahsatement,
that fully describes the force of a magnetic fi@lén a moving object with charggand a velocity
V.

F=qVxB (2.2)
The x in equation 2.2 represents the 'cross-product’ between two vectors.diitknowledge of

the cross product we can prove that the Lorentz force actually obeyexgrerimental data as listed
above. The magnitude of the Lorentz force is given by:

—

IF| = dvxB
q|V||B|sin@ (2.3)

with 8 the angle between the magnetic field lines and the velocity vector. From thelestian it
can be seen that the first four experimental requirements on the Loozo&ztfave been fulfilled.
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2.2.2 The direction of the Lorentz force

When it comes to proving that the Lorentz force fulfills the last requiremangshare slightly
more complicated, since we now have to calculatedinectionof the force. Remember that for
electrostatics the electrical force was just proportional to the size anctidimef the electrical field.
For the Lorentz force this is not the case, since we are dealing with agrodsct of two vectors.
Now we have too look into the detail of the cross-product: what is the direofithe result vector?
First we will work out mathematically what is the direction of the field. The cpssluct between
any two vectors/ = (Vy, Vy, Vz) andB = (Bx, By, B;) can be calculated by evaluating the following
determinant (try this yourself and you will be a commander of cross-ptstuc

B Xy 2z
VxB = Ve WV
Bx By B;

= (wBz;—V:By) X+ (V:Bx — WB;) Y+ (WBy —wBy) 2

wB; —Vv;By
- VzBX - Vsz (24)
VxBy — vy By

This general equation might not tell the full story of the direction of the htaéorce directly, but
we can prove that the direction of the force is both perpendicular to theitehector and the
magnetic field vector. Two vectors are perpendicular if themer producequals zero (remember:
A-B = |A||B|cosh), so we have to validate that:

F.v=0 (2.5)
We can explicitly calculate the inner product using equation 2.4 as follows:

FVv = qVxB)-v
= d(wBz—VBy) w+
a(vzBx — WxB;) vy + q(vxBy — Wy By) Vv,
= OBx(V2Vy — WVz) + OBy (—VaVy + VoV ) + OB (VyVx — vy )
=0 (2.6)

Following similar tactics you can now prove yourself that the Lorentz foradse perpendicular
to the magnetic field In fact you then have proved a general propertyossgroducts between
vectorsA andB:

=0 (2.7)
= 0 (2.8)

(
(

Note that the second statement follows directly from the first, becauseotfiemproperty of the
cross-product:

mL >
> >l
o

X
X

AxB=-BxA (2.9)

Prove this!
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2.2.3 A force without work

A very important consequence of the fact that the Lorentz force isepelipular to the velocity

of an object, is that the Lorentz force does not do any work. To utetedsthis a bit more in
detail we have to recall our definition of wo¥K being done by a force. It has been defined as the
displacement in the direction of the force, or as an equation:

W=/ F.di (2.10)

line
This can be rewritten with a change of variables as:

W= | F.vdt (2.11)
line
The last equation is clearly zero due to equation 2.5. The consequetids & that if a charged
particle moves through a magnetic field its energy does not change, sincegbaes work done.
So the only thing that does change is thectionof the velocity. This is really special to the Lorentz
force: all other forces you have thus far encountered, like the Couforob or gravitational force,
do actually work.

2.2.4 The right-hand-rule

Now it is time to get a clearer understanding of the direction of the Lorentefby studying a
simple example. Let’s look at a configuration with a magnetic figle (0,0,B) pointing in the
2 direction and a particle with chargemoving with velocityV = (v,0,0) in the X direction. The
equation now becomes much more explicit and clear:

F = —quBy (2.12)

You can verify that all requirements on the Lorentz force as mentioneardelre still fulfilled
(sinf = 1!) and also you can see that the direction of the Lorentz force cantagel without
calculation, by using the (in)-famous right hand rule’. Stretch out ytarrd and make your thumb
point in the direction of. Point your other fingers in the direction of the magnetic fiéldThe
cross-product x B is now pointing out of the palm of your hand. Exercise this a couple of times
and you will never make any mistakes in pointing out the direction of crosdyat. Be however
careful that a negative electric charge does flip the direction of thentoferce by 180.

2.2.5 Example: force on a wire

What happens if you place a wire of lendtttarrying a current, inside a homogeneous magnetic
field, B (see Fig. 2.2)? The direction of the force can be found using the rigid hae. The
electrons move in the opposite direction as the current, but they have tiveegzarge. So the
direction of the force is the direction of the cross product @fnd B. The size of the force is
calculated by integrating:

Fl = | da@xB)
line
= Adl(V x B)

line
= dl(I'x B)
line

= LIB (2.13)
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1
2

Figure 2.2:A wire with lengthL is placed inside a homogeneous magnetic feldith field lines
pointing out of the paper.

We have used the fact that the line charge densityultiplied by the velocity of the electrons gives
the electrical currerit. So we now have an equation that tells us that the Lorentz force of a magnetic
field on a wire carrying a currertis equal to:

dF =dI('x B) (2.14)

2.2.6 Current loops & Magnetic dipoles

Now let us consider a square wire loop with sides of lengtbarrying a current, placed in a
homogeneous magnetic fieli(see Fig. 2.3). The forces on each of the sides of the loop can be

Figure 2.3:A square wire loop with sidds and carrying a currentis placed inside a homogeneous
magnetic fielB.

calculated in the same way as shown in the previous paragraph:

—

F=L({IxB) (2.15)
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It can be seen that the net force on the wire loop is zero, since thesforcop and bottom of the
loop cancel each other, just as the forces on both of the sides. Howeere is aorque on the
current loop! The torquet, exerted on for example the left side of the loop is just the size of the
Lorentz force times the 'arm’ the force. So:

1L = (LI B)%sine (2.16)

In he right side of the loop the Lorentz force points in the opposite direcbohthe arm of the
force also points in the opposite direction. So the total torque becomes:

T = L?IBsin8 (2.17)

Notice that the bottom and top sides of the current loop do not contribute tortinge. The Lorentz
force is certainly pulling of the wire there as well, but it is trying to stretch theewiop instead of
trying to rotate it (try to understand this yourself).

At this point it is instructive to rewrite equation2.17 as the following crossdpct:

T=mxB (2.18)

wherem is the magnetic dipole moment of the current loop. The direction of the magnetic dipole
moment is perpendicular to the plane spanned by the wire loop. Its size isgustrilent multiplied
by the surface area:

M| = L2 (2.19)

The torque exerted on the wire loop tries to rotate it such that it is perpdadtoithe magnetic field
lines. In terms of a magnetic dipole moment we can make a more general statemeagnetic
field tries to set magnetic dipoles parallel to the magnetic field lines.

2.3 Biot-Savart’s law

Now we have learned in the previous section how to calculate the forceedx®r a magnetic field
on a moving charge, we have to know how to actually calculate a magnetic figignatfic fields
are caused by electric currents. An expression that relates the magelelji in a pointP to an
electric current], is called the law of Biot-Savart:

B — Kol / dixr (2.20)
line T

The integration is done along the current path in the direction of the tibig;an element of length
along the wire and is the direction vector from the location df and the poinP as is sketched in
Fig. 2.4. Try to verify by using the right-hand-rule that the magnetic fieldtdude infinitesimal
wire element in Fig. 2.4 is pointing into the paper. When using Eg. 2.20 youdhealize that
along your integration path bottl, f, andr may change, both in magnitude and direction! To
master this equation practice is mandatory.

The constangy is called the magnetic permeability which is defined as:

N
Ho = 41110 7@ (2.21)
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/

Figure 2.4:Variables needed to calculate the magnetic field in a goihte to an infinitesimal wire
element with lengtldl at a distanceg.

A remarkable thing happens when the magnetic permeability is multiplied with the ekbgteic
mittivity €5. Remember thady was defined as:

& = ;Ciz (2.22)
0= 4710 7¢2 Nn? '
The multiplication leads to:
1 (2.23)
€Ho

with c the speed of light. This amazing results indicates that there might be a spdaiadnship
between electric and magnetic field. This relationship will be unveiled towarerhttief this course.

2.3.1 A wire with a current

With Biot-Savart’s law we are now able to calculate the magnetic field for amgruconfigura-
tions. So let us start with the calculation of the magnetic field of a relatively sinxalmple: an
infinitely long wire carrying a currerit(see Fig. 2.5). We could start calculating like blind chickens
at this point, but we can also usgmmetryarguments to argue what the direction of the field must
be. The cylindrical symmetry of this example excludes the existence of d cadigonent to the
magnetic field. We can try to argue that this is impossible by making a 'gedaekpatiment: we
can rotate the infinitely long wire by 1880 the current is now pointing in the downward direction.
As can be seen in the law of Biot-Savart changing the sign of the curritiwesult in flipping the
sign of theB field. However, the rotation of the wire leaves the radial component of thmeti
field pointing in the same direction as before. So there can exist no radialatiadield in our
example. The component of the magnetic field pointihgngthe direction of the wire drops out
because the contribution coming from the currerz &0 is canceled exactly by the contribution
from the current az > O (try to prove and visualize this yourself).
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Figure 2.5:Wire carrying a current. The magnetic field is calculated at a pdhéat a distance
from the wire.

So the only component of the magnetic field that is not equal to zero is the cempm
the azimuthalg, direction. Its size is calculated with Biot-Savart’s law 2.20, but we have to be
extremely careful how to fill in the variables in the equation. Let us congltkemagnetic field
caused by an infinitesimal line elematx first (see Fig. 2.5): the magnitude of the magnetic field
in point P due to this line element is:

- Lol |dZ|sina
el = 2
There are a couple of variables in this equation that at first might seenstdige. First there is
ther? + % term, while you would expect & term if you look at the Biot-Savart law. But in fact
ther2+ 2 is correct since it is the distance between the line elemeand the poinP. So ther in
Biot-Savart’s law is a very differentthan is used to indicate the radius in cylindrical coordinates.
The same is the case fowhich indicates the unit vector in the direction of the line elentirand

the pointP, and thus also has nothing to do with the radius in cylindrical coordinates. m{est
think very well before just using a formula! The sircomes from the size of the cross product:

dzx f| = dzsina (2.25)

(2.24)

wherea is the angle betweedz andr” It can be geometrically worked out to be:
r
sina = —— 2.26
Vr2+ 72 (2.26)

Now we can calculate the magnetic field adding the contributions from all line alsrethe

magnetic field.
Bp| = ‘/ déq)‘
line
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Mol /+°° dz r
4t ) e r2+22\/r21 2

_ bz 7
- 4m 252,
Hol

The integral overz you do not have to be able to solve yourself. If you encounter suchtan in

gral at any point we will provide you with the answer. However you carify the answer by
differentiating the one but last equation.

2.3.2 Two parallel wires

We can now consider a configuration with two parallel wires with lerigtit a distancé;» each
carrying an electrical currenty andl,,respectively (see Fig. 2.6). We can calculate the magnetic
field at the position of the second wire, due to the current in the other wiing eguation 2.27. The

0
|

NE>

Figure 2.6: Two wires with electric currents both generate a magnetic field. The magnéds fie
result in a Lorentz force on the wires.

equation for the Lorentz force on a wire (Eq. 2.13) tells us that:

IR = L|(izxBy)| (2.28)
_ HoLlz2ly
= SR, (2.29)

The calculation of the size of the cross product is fairly easy since thedy 90 angles involved
in this example. | leave it up to you to show that the Lorentz force betweeniths is attractive if
the currents point in the same direction.
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2.3.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

2.4

Magnets always have a north- and a south pole. Magnetic monopole$ dristo
The Lorentz force of a magnetic field on a moving charge is:
FL=quxB (2.30)

Make sure you can figure out both thiee and thedirection of the Lorentz force. For the
direction make sure that you are comfortable with the right-hand-rule;

The Lorentz force on a straight wire segment is:

—

F=L({IxB) (2.31)

The torque on a current loop is:
T=mxB (2.32)

wherem s the magnetic dipole moment;

The law of Biot-Savart can be used to calculate magnetic fields that arecchydine cur-

rents: .
. I dl xf
Bp— KO / . (2.33)
line T

Intermezzo; Current densities

In the previous section we used currents all the time. Just as for elecrigashit is often instructive
to talk about current densities instead of currents. We can spdaiep$urface andvolumecurrent
densities (see Fig. 2.7). A line current is defined as the charge densityqier, A, times the

Figure 2.7:Different types of current densities: a) shows a line current dengity,surface current
density, and c) shows volume current density.

velocity of the charges:

I—»

=AV— [I] =C/s= A (Ampere) (2.34)
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The size of the current is just the magnitude of the vettdrhe corresponding Lorentz forces are
calculated as:

A= TxBdi—1[ Tx8 (2.35)
line line
For surface currents the situation is similar (see Fig. 2.7b):
q dr
K = — —>[K]=A/m (2.36)
d
= oV (2.37)

To obtain a current one now has to multiply the surface current det&ityith the length of the
surface. Or to be more precise one has to integrate the current densityeatairface if the current
density is not a constant. The Lorentz force is now:

F = / K x Bdo (2.38)
surface
Biot-Savart's law can be used again to calculate the magnetic field resultingafgurface current
density: A
- o / K()xd
B="— ——~>—do 2.39
AT Jsurface  d? ( )

where the integration is over the surface carrying the currentdand — 7.
Most frequent you will encounter volume curreniswhich are defined as:

) B
J = E_>[J]_A/mz (2.40)
= pv (2.412)

The differentiation with respect o, gives a vector pointing through a surface: the sizd isfthe
current per unit area perpendicular to the flow. For example take a vitiheradiusR and a current
I If we now assume that the current density is homogeneous, we can tigainrrent density,
by simply dividing! by the surfacemR2 of the wire. The direction of is along the direction of
current flow. The Lorentz force can be calculated through the volumgraite

F :/ Tx Bav (2.42)
volume

Try to prove this last equation yourself. Once more Biot-Savart’s law eanded to calculate the
magnetic field resulting from a volume current density:

< Ho JP)yxd
812 /V e (2.43)

where the integration is over the volume carrying the current,chad” — .

2.5 Ampere’s law

We now know how to calculate magnetic fields in any configuration using theSRie&rt law in
principle. We can have a closer look at the properties of magnetic fieldstd geere are laws,
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like Gauss's law for electrical fields, that can simplify our calculation of negigrfields in certain
cases. Let us go back to the magnetic field of a wire carrying a current:
Hol

szﬁ,Br:Bz:O (2.44)

We can take a circular path around the wire, so that the line integral:
/ B-dl = ol (2.45)
line

where the[ represents an integral in a path around the wire. In fact the path doésveto be
a circle; any path around the wire will give exactly the same answer (campsave this one? see
Griffiths section 5.3.1). We can generalize this law a bit further to obtain:
/ B-dl = 1o J-do (2.46)
line surface
This equation is known as the law of Ampere: it states that the integral of theetiadield along
a closed path is equal to the total current that is enclosed by the path. Weden that it is true
for a thin wire carrying a current. It can be explicitly proven, using thetfavart law and the
superposition principle, that it is true in general for any current dertgitysing a magnetic field.
(see Griffiths section 5.3.2).
The law of Ampere is always true, but for calculation of magnetic fields it ifulisaly if there
is a high degree afymmetryin the configuration you want to solve. The reason for this is that in
that case the line integr#ll?ﬂl can become easy to solve. This is especially true if you know that
the magnetic field over your integration path is constant, since the magnetic Belditbps out of
the integral, or in an equation:
/ Bdl -8/ d (2.47)
line line
In the next sections we show a selection of examples where the magneticéielte calculated in
a fairly easy way, using the law of Ampere.

2.5.1 Thick wire with a current

In the previous section you have already seen how Ampere’s law carsdaeta calculate the
magnetic field outside a wire. Now let us consider a wire with a ra@lcarrying a currenf’
distributed homogeneously over the wire (see Fig. 2.8). The curresttyidrin this case is just the
total current divided by the surface of a cross-section through thes wir

—

- I
From the symmetry of the problem we can conclude that the magnetic field only t@mponent
pointing in the azimuthal¢) direction, and that it only depends on the radiusAmpere’s law
inside the wire now reduces to:

/ Bdl = uo/ Jdo (2.49)
line surface

| 2
B.2m — “‘;{; (2.50)
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Figure 2.8:A thick wire of radiusR carrying a currenk that is homogeneously distributed.

so that the magnetic field in thgdirection as a function af now becomes:

B(r <R) = “n%'; (2.51)
Outside the wire you can show (see previous section) that the magnetic fibllsame as for an
infinitely thin wire. Off course if you do nosee the cylindrical symmetry in a problem like this
you can always use the law of Biot-Savart to calculate the magnetic field. duamiage is that
you are always right to use this law, the disadvantage is that you will hazsa&dalate much more
complicated integrals. Remember for example how much work it was to find theatiadjeld of
a wire with the Biot-Savart law!

2.5.2 Plane with a homogeneous current density

As a next example of the Ampere’s law we calculate the magnetic field of an irfiaie carrying
a current density (A/m) as shown in Fig. 2.9. The plane is lying in tlge- z plane and the
current is flowing in they direction. Since we know that magnetic fields to be perpendicular to the
currents causing them, the magnetic field cannot have a componentiditkeetion. From a clever
symmetry argument we can also show that the component of the B-fieldnglcpkar to the plane
must also be zero. Suppose there were a component of the magnetic figddiditéction. Then
rotate the whole (infinite!) plane 18@round thex axis. The current is now pointing in the opposite
direction, while thex component of the B-field is unaffected. This is a clear contradiction arsl thu
thex component of the magnetic field must be zero as well. We are only left with aatiadield
parallel to the plane in thedirection.

Now we can use Ampere’s law to calculate the magnitude of the field, by cotisg@an imag-
inary rectangular path as shown in Fig. 2.9. Along this path we can againla@i@dhe integral
Jiine Bdl. The sides of the rectangle that are perpendicular to the plane do rtdbatato the line
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Figure 2.9:An infinitely big plane with homogeneous current density

integral since we just showed that the magnetic field does not have a centgmrpendicular to
the plane, so we are left with the two sides that are parallel to the plane. So:

Bdl = 2aB, (2.52)

line

Ampere’s law tells us that this integral should be equalgdimes the enclosed current. So we can
now solve theB field:

2aB, = uoKa (2.53)
U (2.54)
B, — % (2.55)

So the field is homogeneous on either side of the plane. Only the sign of theeticaiigid flips
(try to confirm the direction yourself by using the right-hand-rule).

2.5.3 The Solenoid

An even more complicated configuration that is made simple by Ampere’s law isotbieosd.
A solenoid is an infinitely long cylinder of radiuR over which a wire carrying a currentis
wrapped around witlN windings per meter (see Fig. 2.10). We can start-off with a couple of
symmetry arguments to reduce some of the components of the magnetic field tqusesas we
did before for the infinite plane. First there can be no component inpthl&ection, since it is
parallel to the current. Secondly, suppose there is a radial componidet field. Then by rotating
the cylinder around thg axis over 180 the current is now going in the opposite direction and the
radial component of thB field is unaffected: contradiction! The radial component of the field can
only be zero, so we are left with onlyzzcomponent.

Let’s first calculate the fieldutside the solenoid. We can take the line integral around a path
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Figure 2.10:A solenoid with radiusk and current running throughN windings per meter.

indicated byl in Fig. 2.10. There is no enclosed current so Ampere’s law reduces to:

Bdl'=0 (2.56)
line

We can safely assume that the magnetic field should go to zero when thel faf thre integration
path goes to infinity. In that case we only get a contribution to the path intiegralthe line piece
atr =r. Since the total integral needs to be zero, this can only be true if the fieldigsmdfo. So
outside a solenoid the magnetic field is zero!

The field inside we can obtain by integrating the B-field along the path indicate@ In
Fig. 2.10. The only contribution to the integral is from the path inside the swiqrarallel to thez
axis. The enclosed current is simply:

lenciosed= al N (2.57)
Ampere’s law is now written as:
Bl = o / Jdo (2.58)
line surface
B.a = WalN (2.59)
[} (2.60)
B, = olN (2.61)

A surprisingly simple answer for such a complicated configuration.

2.5.4 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréhéous can be summa-
rized as follows:

e You should be familiar withine, surface andvolume currents;
e You should be able to calculate the Lorentz force on these different kirclgrent densities;

e You should be able to write down and use Ampere’s law to calculate magnetie ifieditu-
ations with a high degree of symmetry.
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2.6 Field equations

In this section we will give an overview of the equations that give a fuledpson of electro- and
magnetostatics. In order to do so there is one more bit of mathematics you rieenhio

2.6.1 Stokes’ theorem

The last bit of math you need to know before we can complete the theoryatf@land magnet-
icstatics is the theorem of Stokes. In electrostatics Gauss's law (see se@jagave a relation
between surface integrals of the electrical field and a volume integral lodi@e density. It turns
out that for the line integrations you encounter in magnetostatics a similar tyygéatibn can be
found. For any vector field the integral around a surface is equal ta@uHeof the vector field
integrated over the surface:
A-drz/ (01 A)do (2.62)

line surface
We will not rigorously prove Stokes theorem, but we will try to give a monedivaving argument
to make it acceptable to you. Assume you have a vector Aétdy, z) and you want to calculate
the path integral of the vector field around an infinitesimal small loop in the @ané as shown
in Fig. 2.11. The line integradf”ne,&dr is then split up in four parts, with a contribution from each

A(x, y+dy,z) Alx+ax y+dy,z)
Ay,
4 Ax+ax y,.z)
ay. 3/
4
/oo

1 adx

Figure 2.11:Vector field integrated along a path enclosing an infinitesimal loop imtheane.

of the sides of the little square. For each of the sides we must think aVtsatould be, especially
paying attention to the plus and minus signs. Along paﬂﬁ: (dx, 0, 0), along pat we move in
the positivey direction sodl = (O, dy, 0). Path8 and4 are in the—x and—y direction, respectively,
so they pick up a minus sign with respect to pattesd2. So the line integration becomes:

x+dx d
Adl = /X T A y)dX + /y " A xy)ay — (2.63)

line

‘X y
/ A(X,y+dy)dx — / Ay(X,y+dy)dx (2.64)
x+dx y+dy

Notice that | have left out theindex everywhere since= 0 anyhow. The first component can be
calculated explicitly:

X-+dX
[ A ) = S (Ay) + At dey)ax (2.65)



2.6. FIELD EQUATIONS 73

If you do this to all four terms and then collect thg andA terms together (go ahead and try) you
will find that:

L A OA
Adl = dxdy(—— — =2 2.66
- y( ay ox (2.66)
= (OxA)do (2.67)

= (OxA)-do (2.68)

For a non-infinitesimal path in the—y plane we can write theurface integral as the sum of
many infinitesimal surface integrals as shown in Fig. 2.12. Using the theomjusy derived

global local

Figure 2.12:Many infinitesimal path integrations make up a big one. Notice how only the oynd
integration remains.

for infinitesimal path integrals, you can see from the figure each side ointfmétesimal loop
borders to another infinitesimal loop that gives exactly an opposite cotitribio the path integral,
except when the loop is at the border of your integration area. Thatish® relation between a
total surface integration and the path integral around the surface cdrogs dn this context it is
instructive to think of the the curl of a vector as a litiiirlpool around it: then it becomes easy
to see why Stokes theorem makes sense. You have to notice that we realbt dide any general
proof of the theorem. We restricted ourselves to integration ixfhglane, and certainly not any
surface. For a more rigorous proof please refer to any vector daagpgbook.

2.6.2 Stokes theorem: example

At this point it is worth to go through an example in which we can apply Stokesirdm. Suppose
we want to calculate the path integral over a circular path with raRiaad centex =y = 0 for a
vector fieldA that is parametrized as:

Ao (¥%0 (2.69)

In Fig. 2.13a you see what the vector field looks like. So what about théniegral? The vector
field is just the unit vector in the direction so:

/ A.drz/ dl = 21R (2.70)
line circle
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a) - b) -
_.__..-1'-""_":-.---.___'A(X»y;z) 7 ___V_.-%.’IA(X,)/,Z)

Figure 2.13:In Fig. a) you see a drawing of the vector fidldin Fig. b) a drawing of] x A.

According to Stokes theorem we could also calculate the curl of this veeldrdnd then do the
integration over the surface spanned by the path. So first the curl g&ttter field:

X y z P

- o . X 7] y
Ac Ay A | TVERYE Yy
Z Z
= — = 2.72
= (2.72)

In Fig. 2.13b the curl of the vector fiellis drawn. Now let's calculate the surface integrafbik A.

4 r=R re=2mq

/ O x A= / rdrdg = 27R 2.73)
disk r=0 Jo=0 I

Notice the factor coming from the integration in cylindrical coordinates. The answer yoeitfgtr

way is exactly the same, though the work has been considerably moreiegtetgn calculating

the surface integral.

2.6.3 The curl of B

We can now use Stokes theorem to find an elegant differential formulatitdre daw of Ampere,
just as we could use Gauss law in electrostatics to go from Gauss’s law inaihfiegn to Gauss'’s
law in differential form. Recall Ampere’s law:

Bdl' = o / J.do (2.74)
line surface

Stokes theorem (equation 2.62) now tells us that the path integral on thafeftdide of equa-
tion 2.74 can be written as the surface integral of the cuB.dBo equation 2.74 becomes:

/ (T1x B) . do— uo/ J.do (2.75)
S S

urface urface

This can only be true for ang if: )
OxB=poJ (2.76)



2.6. FIELD EQUATIONS 75

Please realize that equation 2.76etgivalent to Ampere’s law in integral form (equation 2.74);
there is really nothing new in this equation, except for the notation.

Now a little example. We have calculated the magnetic field for a thick wire with @wcuim
section 2.5.1 to be:

B= o= 1% (-yx0 r<R

(2.77)
B=1lg r>R
We can explicitly calculate the curl & inside the wire:
X y 2
= — 2“0' A -
-y x O

Can you prove that outside the wirex B = 0?

2.6.4 The divergence oB

We have an expression for the curl of the magnetic field. What aboutisgdince? For electrical
fields we had Gauss's law in differential form which stated that = p/&. The divergence

of the E field at any point is equal to the charge density at that point. For the tieegeiuce of
any magnetic field we could get a similar expression, by taking the divergenite ddw of Biot-
Savart (equation 2.20), since Biot-Savart’s law is true for magnetic fieldsechby any current
distribution. For such a proof see for example Griffiths chapter 5.3.2. édewy we can actually
predict what(] - B should be by comparing it to the same expression for the electrical fieldeln th
equation forll-E = p/&o you see that on the right hand side of the equation you finaltutric
charge density. Sinamagnetic charges do not seem to exist, we can guess that:

0-B=0 (2.79)
This should be true for any magnetic field and it is indeed the answer youbf¥iridllowing the
explicit proof in Griffiths. Let’s see if it is true for the magnetic field of ouoid old’ thick wire
(see above). Inside the wire we have:

0.8 — i%@ (2.80)
_ M sviax) =0 2.81
= 5p(-oy+ax) = (2.81)
Outside the wire:
0.8 — i-%&; (2.82)
Hol y X

Notice here that we would run into serious problems if we would have chtoseaiculatel] - B for
a wire with zero thickness, due to the singularity in Bhéield atr = 0.

Now remember that Gauss’s law for electrostatics could be either written irifteieedtial form
as shown above or in integral form:

/ Edo— =+ / pdv (2.84)
surface €0 Jvolume
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Orin words: the integration of tH@fieId over a closed surface (i.e. flux) is equal to the total charge
enclosed. Since we know now that B = 0, we can write for the magnetic flux through any surface
with help of the law of Gauss:

g — / Bdo (2.85)
surface

:/ [.Bdv =0 (2.86)
volume

So the magnetic flux through any closed surface is equal to zero. Thietisearway of stating that
there exist no magnetic charges.

2.6.5 Summary: Field equations forE and B fields

At this point we know all there is to know about electrostatics and magnetastaticany stationary
charge distribution we can in principle calculate the corresponding ele@licdnd for any steady
current we can calculate the resulting magnetic field (though the calculatem®Balways easy).
In addition we know how a charged particle behaves in these fields, setawve the equation for
the Lorentz force on a charged patrticle:

FL=0q(E+VxB) (2.87)

There are just four equations needed to calculate all electrical and trafigles. In integral form:

/ E.ds = — pdV (Gauss law) (2.88)
surface &o Jvolume
/ E.dl = 0 (2.89)
line
/ B-ds = 0 (2.90)
surface
/ B-dl = Ilo/ J-dd (Ampere’s law) (2.91)
line surface

Using Stokes theorem and the divergence theorem - just mathematicahtritkese integral equa-
tions can be re-written as the following set of differential equations:

e = P (2.92)
&

OxE = 0 (2.93)

0.8 = 0 (2.94)

OxB = poJ (2.95)

That is all there is to know about electro- and magneto- statics; nothing mtnmgdess.

2.6.6 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréhveous can be summa-
rized as follows:

¢ You should be familiar with Stokes’ theorem relating line integrals to surfacgriale
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e Ampere’s law in differential form:
OxB= ppJ (2.96)

e The divergence of the magnetic field is zero:

N

0.B=0 (2.97)

¢ You should know the four equations describing electrostatics and matgtéies

2.7 Magnetic fields in matter

In this section we will try to explain what happens if matter is placed inside magreitis fi

2.7.1 Paramagnetism: electron spin

Since every electron in matter has intrinsic spin it carries a little magnetic dipole namténa
dipole moment:
e %N
2me
You can imagine the electron as a spinning electric charge, or a currgntifigou want (see
section 2.2.6). Without a magnetic field (see Fig. 2.14a) these dipoles dmmgnoriented, but if
a magnetic field is applied the dipole moments - and thus the spin vectors - try to @igedives
with the magnetic field. As a result of the aligned dipole moments the magnetic figitldsced:
enhancement of a magnetic field in matter due to an applied magnetic field vpareatiagnetism.
It seems that since every material contains electrons paramagnetism bleoalldniversal effect

(2.98)

Figure 2.14:Alignment of electron spins in a magnetic field as a cause of para-magnetism.

for all substances. However the Pauli exclusion principle (quantum améc$) does not allow
electrons in the same orbit to have their spins aligned. So as a rule of thumbutrgiances with
an odd number of electrons exhibit paramagnetism due to spin alignment, whiteiistances
with even number of electrons the effect cancels out. Even when a substaparamagnetic the
alignment of spins is usually (room temperatures) far from complete duerim@héuctuations. A
last point to remember is that as soon as the external magnetic field dissppegparamagnetic
effect disappears, and the dipole moments are randomly distributed onee mor
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2.7.2 Paramagnetism: Electron orbit

Just as the electron has a magnetic moment, so does the orbiting electrahthoacleus. Again
a current loop! This effect only gives a minute contribution to the paramtégm, since it turns out
to be much harder to 'turn’ an entire orbit than it is to turn a spin.

—

B=0 B#0

Figure 2.15:Alignment of electron orbits resulting in para-magnetism.

2.7.3 Diamagnetism

There is a second, more subtle, effect of a magnetic field on the orbit @atron, for which we
will have to look a bit deeper into the centripetal acceleration that holds amtatgether. Without
a magnetic field the centripetal acceleration is caused by the Coulomb attfactie@lone. So:

1 € V2

= & Y 2.99
neg R TER (2.99)

Now suppose there is a magnetic field, that is perpendicular to the plangibbbthe electron
and opposite to the direction of the magnetic moment of the atomic orbit (situatiemgoahe
right side of Fig. 2.16). In that case the centripetal force is sustaindathythe Coulomb and the

) {g ym ym [é
I:L Ve EL i

=

Figure 2.16:Changing velocity of the electrons in a magnetic field resulting in diamagnetism.
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Lorentz forces. Equation 2.99 now becomes:

1 € V2
= = Me— 2.1
e TV TR (2.100)
By subtraction of the above two equation, and assuming that the chandeditye small, we get
for the change in velocity (see Griffiths section 6.1.3):

eRB
Vo~ 2.101
vV o (2.101)

When a magnetic field is turned on the electron speeds up and thus the magmeéotincreases.
If the magnetic moment would have been in the opposite direction as shown tdttlsedéin
Fig. 2.16, the velocity of the electron would decrease, and thus the magnetiemhavould de-
crease.

In both cases there is a change in magnetic dipole moment that is opposite toeti®diof
the applied magnetic field. This effect is called diamagnetism. All substanoasdmagnetism,
but in general it is much weaker than paramagnetism, so in general it is sitjewhen param-
agnetism is absent. In general this was shown to be the case for materiabsveritmumbers of
electrons. Furthermore, the calculation as shown here does not afjivaya reliable result, it is
just made to make the argument clear. To get quantitative answers on digtieayga full quantum
mechanically correct calculation is required.

2.7.4 Magnetization and Bound Currents

In the previous section we saw the effects of magnetic field on matter on a nopioscale. Now
we will give a macroscopic description of magnetic fields in matter. Let usdinssider a cylinder
of para-magnetic material that is placed inside a magnetic field (see Fig. 2ZTh&anagnetic field
- on average - aligns the magnetic dipoles in the material. So there is an adgralgemoment per
volume element, which is defined as

dipole moment

M
volume

(2.102)

We callM the magnetization of the material. If you remember that a magnetic dipole is in fact
nothing else than a little current loop you can have a look on top of the cyliisderFig.2.17b).

You see all the current loops lying side-by-side and effectively onlyraeat is running over the
edge of our cylinder. So in case we have a uniformly magnetized object) heaescribed as if
there was a current running over the edge of the object. The magnetipdtiorobject can thus be
interpreted as a surface current.

We can make the above argument more quantitative by considering an examwpieh a slab
of para-magnetic material is placed in a magnetic field (see Fig. 2.18a). Weavara look at the
dipole moment for each little block in the slab by multiplying the magnetization by the votiime
the little block . This should be equal to the effective current going ardi@dblock multiplied by
its area (remember that = [Area). So:

d|M|Area = Iy ouArea (2.103)

Now it can be clearly seen from the figure that neighboring blocks hdes sarrying opposite cur-
rents, at least in case the magnetization is homogeneous. As a result taeeffisctive boundary
current which happens to be exadthy«. So:

lboundary = lblock = [M|d (2.104)
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Figure 2.17:Effect of a magnetic field on a macroscopic object.

The surface current densi is just the current per unit length:

_ IM[d
-~ d
Figure 2.18b shows the equivalent situation for our magnetized slab ofialatara more general

notation our current density can now be written as the cross-produtbeahagnetization vector
and the normal vector to the surface:

Kmag =M x i (2.106)
Finally if the magnetization is non-homogeneous there will also be an effeativene current
density (see Griffiths section 6.2), which is written as:

K = |M| (2.105)

Jrag = 0 x M (2.107)

The vectorsKimag and Jnag are what we call the bound surface and volume currents, respectively
Please notice that these are some kind of effective currents, sincalrahagge is moved from one
place to another.

2.7.5 Linear materials

A material is called a linear material its magnetization is proportional to the magnédiclfiesuch
casedM is written as: X
- m _

M Ho(1+4 Xm)
where xm is called the magnetic susceptibility, which is a measured quantity for each material.
Please note tha is not just the external magnetic field, but the field including the modifications
due to the magnetization (tricky):

(2.108)

B = Brag + Bo (2.109)
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a) | block

Figure 2.18:Magnetization can effectively be described by bound current densities

Wherel§mag is the field due to the magnetization aBglis the externally supplied field.

Example: Infinite bar

Consider a long para-magnetic (linear material) cylinder inside an externgllylisd magnetic
field By as in Fig. 2.17. The surface bound current is written as:

Kmag = M x i (2.110)

The magnetic field due o the magnetization can be calculated with Ampere’s lamiagsthat the
cylinder is infinitely long (at this point you should be able to do the calculatiamsadf, so | don't
do it):

Brmag = Ho|Kimag|2 (2.111)

Now we can use Eqg. 2.108 to rewrite this equation in terms of its susceptibility as:

So we can see that the total magnetic field inside the cylinder is modified with a faetg(m).

Example: Infinite bar with free current

We are now considering the infinite cylinder once more, but now we arergéng the external
magnetic field with a wire running around the cylinder (also see section 2Suppose we have
windings per meter and a free currérthen the magnetic field due to the free current is:

Bo = nl2 = Kree? (2.113)

Now suppose we fill the interior of the cylinder with a linear magnetic material wstisgeptibility
Xm, then we know from the previous example that:

B= (14 Xm)Bo = (1+ xm)ni2 (2.114)

So by inserting some material inside a magnet we have a way of amplifying-ifegaetic) or
damping (dia-magnetic) the resulting field.



82 CHAPTER 2. MAGNETOSTATICS

2.7.6 Ferromagnetism

Finally we come to the special case of ferromagnetism. In ferro-magneticiaiatelectron spins
really love to align with each other. Whereas for the normal paramagneticiaiatiére alignment
was far from perfect, for a ferromagnetic material the alignment can besalt@%. Usually
there are little areas - so called Weiss domains - in which the spins are aligreeBi¢s 2.19), and
usually the effect of these areas cancel out giving no noticeablenektmagnetic field. However,

“Weiss"
gebiedjes

Ny

Figure 2.19: In a ferro-magnetic material there are domains where spins spontanesigsiyto
each other. These are the so called Weiss areas.

once an external magnetic field is applied all these domains can spontigredmrsthemselves to
the magnetic field. A small externally applied field can then result in a huge riadieéd from
the material. Another interesting property of ferromagnetism is what hapyben the external
magnetic field is switched off. The alignment of spins might become less, m#stmbt disappear:
you have created a permanent magnet!

If for example our solenoid from the previous example is filled with a ferrametig material,
the resultingd field may be 100 times larger than the externally applied field. The effect isyhigh
non-linear as illustrated in Fig. 2.20, which shows the magnetic field as a faraftihe externally
applied field. First thd field grows rapidly as a function of the external field. Then at a certain

174 saturation

B

external

Figure 2.20:If the external magnetic field is removed from a ferro-magnetic material theraetag
zation does not directly disappear. This non-linear behavior is callaenagss.

point the dipole moments of all domains are aligned and there is no furtheageieB (satura-
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tion).

If the external field is removed, there is still quite some magnetic field réngadtue to the

ferromagnetism. Only once the external field is fully reversedRfield finally changes sign.

2.7.7 Knowledge and Skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

In para-magnetic material the magnetization is in the same direction as the extapyigd
magnetic field,;

In dia-magnetic materials the magnetization is in the opposite direction as the #yterna
applied magnetic field;

A magnetized object can be effectively described with bound surfaxremwensitylzmag
and a volume current densiﬂ}ﬁag, with:

x (2.115)

(2.116)

Krnag —

o2
2 >

Jmag = X

Linear materials are materials for which the magnetization is proportional to theatiag
field:
- Xm _

M=—"—B
Ho(1+ Xm)
wherexm is the magnetic susceptibility of the material.

(2.117)
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Chapter 3

Electrodynamics

3.1 Introduction

In this part we discuss the electric charge configurations and currexttargnnot constant in time.
We start with a study of the effects of electromagnetic force acting on ehargis study allows
us to understand time dependent currents in electric circuits consistingnications of resistors,
capacitors and inductors. Our main quest is the time dependent behaeieicbic and magnetic
fields, leading to an elegant description in terms of the Maxwell equations.

3.2 Current and force

3.2.1 Why does current flow?

Current flows because something is pushing the charge carriers ¢al€ctAnd that something is
an electric (or magnetic as we will see later) force. Let’s analyze that.i@arepiece of wire made
of copper with a current densityas illustrated in Fig. 3.1. To make the electrons that constitute the

\J
Figure 3.1:A piece of wire made of copper with a current density

current a forcef is needed. The forcé is defined as a force per unit charge. For normal everyday
materials and current densities, the current is proportional to the force:

J=of (3.1)

with o the conductivity! depending on the material. Usually, in tables describing characteristics of
materials, one gives the reciprocal value of this quantity, called the réfigtiv=1/0.

The above expression looks reasonable at first sight, but when yduahit you may get con-
fused about the following. When a force acts on the electrons in the wieawould expect that the

IHistorically the symbob is used for conductivity, while we (and others) also use it for a surtasege density. So,
don't get confused.

85
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electrons acquire more and more speed with time. Consequently, the ouaelotincrease with
time, which is not the case. Why not? Well, there appears to be a cancellaédao @ollisions’ of
the free electrons and the nuclei in the material. This effect, that manifedtagseconstant fric-
tion, is illustrated in Fig. 3.2. Right after the current starts an equilibrium batvilee accelerating
force f and the de-accelarating friction sets in.

Free electron .
® — o o— |\_IToc time

f Collisions
. * o * LS
oo * ¥ ®¢ o V]~ constant
° b hd .
; 4 . } » time (1)

Figure 3.2: Top: The free electron undergoes a fofceSince it is really free its speed increases
rapidly with time. Bottom: Another electron that also undergoes a férég constrained in a
material and collides with nuclei, such that it effectively senses a frictifomeé that cancel§ and
eventually obtains a constant velocity.

3.2.2 Ohm’s law

So far, we discussed the relation between fdread the current density; without bothering about
the origin of it. The origin of the forcd for our purpose is an electric field caused by any device
that establishes a potential difference, such as a battery, a van ddf Ggaerator or a dynamo.
We know that in general the electric force is giveny= gE. The forcef was defined per unit
charge, thus we may writE= E. Now we consider a piece of wire with cross sectfand length

I. A potential differenc&/ over the wire leads trough a currdrais shown in Fig. 3.3. According to

V=V

Figure 3.3: A piece of wire with length and cross sectioA. The potential differenc¥ over its
ends leads to a curreht

Ohm’s law,V andl are related by:
V=IR (3.2)
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with R the resistance of the wire. This law is the subject of many physics lectuteghaschool.
Can we derive this law? Yes, in fact its derivation is rather straightfativar

For a perfect conductor, the conductivity= « and thusE = J/g = 0. For a real, everyday,
conductor the electric field inside may be zero for stationary chargesgdstdinly not for the
situation when current flows, like in our case. In our piece of wire thetedeigeld is given by:

El=1 (3.3)

The current density in the wire can be written as:

- = = \Y
|J|:a\f|:0]E|:oI— (3.4)
For|J| we writel /A and obtain:
_ \Y
J=—=0-— 35
J= =0, (35
and thus: |
V=—=IR 3.6
oA (3.6)

with R= o|7\- Hence, when we double the lendtlof the wire the resistance becomes twice as
large. When we double the radius of the wire the resistance drops btoaflagr. The conductivity

of copper is aboutr = 6 x 10’ (Qm)~1. A copper wire of 1 meter length and a cross section of
0.75 mn? has a resistance of abdRt= 0.02 Q.

3.2.3 Electromotive force

Figure 3.4 shows an electric circuit with a current densityWe know that a force drives the

Figure 3.4:An electric circuit with current density. The electric field and a batterfi) are also
indicated.

current through the wire. In the wire this force is an electric field, an aettic field. The field
through the wire is produced by the and— side of a battery. We know from electrostatic theory
that fj,q E - dl' = 0, and thus,; o E - dl' = — fier, E - dl. Hence, the electric field in the battery
points opposite to that in the wire. Anyway, you may ask now: if the field integrancel each
other there is no net force, so there can't be a current. Well, we fangdorce, f,, delivered by the
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battery itself, which is a chemical reaction that maintains the electric potentiatioee- and —
side. The total force that drives a current to a circuit is thus:

-

f="f+E (3.7)

Note thatf is not constant in the circuitf, is only present in the battery aril in the wire is
different fromE in the battery.
The net effect of this force is the line integral over the circuit and is cahedelectromotive

force:
EMF = / / (fo+E)-
circuit cicuit
- /battery /lcwt

In an ideal battery there is no friction or net force on the charges arwd thu

_"l

(3.8)

U

—

EMF — fo-di = —/ E-dT:Vb(:/ E-dT) (3.9)
battery battery wire

Hence, the electromotive force is just the potential (differendg)of the battery.

3.2.4 Induced EMF

Consider the experiment of a circuit pulled out of an magnetic field with acspes illustrated
in Fig. 3.5. The movement of the circuit out of the magnetic field leads tBMK. What is the

—_— —>

=0

t —lFL
I g—a" W|=dsidt R

(light-bulb,

“RYS .

Figure 3.5:An electric circuit with a light bulb with resistandeis pulled out of a magnetic field
B. The vertical height of the circuit Is. The length of the part of the circuit that is in the magnetic
field is labeleds. The Lorentz force on the (imaginary) positive charge carriers is atfioated.

source of theEMF? It is the Lorentz force on the (moving) charges in the wire. In the figure
the Lorentz force on the (imaginary) positive charge carriers is indicétechuse that defines the
direction of the current, while in reality the Lorentz force on the electronsdsdtevant driving
force. The Lorentz force in the horizontal pieces of the circuit poinveard, perpendicular to
the wire, as indicated. In the vertical piece of wire in the magnetic field thegehzarriers that
constitute a current will be pushed in the direction as indicated in the figure.fdarbhe per unit
charge isf = vV x B. For theEMF follows:

EMF — f-dI:/ |fyd|:/ 1V Bldl = [v||B|h (3.10)
0 0

circuit
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Note that the horizontal pieces do not contribute toEMe-. TheEMF generated by the movement
of the wire is called inductance, resulting in a potential difference over theliglb of sizeVinq =
EMF.

For reasons that become clear in a moment we study the flux of the magnetitifaidh the
circuit. The magnetic flux is given by:

ch:/ B.do = Bhs (3.11)
sur face

wheresis the part of the circuit that lies in the magnetic field, which depends on the tiraa wh
pull the circuit out of the field. The time derivative of the magnetic flux is gilog:

d®g  d(Bhs) ds

Hence, we have found a relation between the EMF and the change of tineticdtyx:
EMF = —% = —Ving (3.13)

This principle to create electromotive force is exploited by electric generédignamo’s).

3.2.5 Faraday’s law

—>=6>
_ = m
TV|=ds/dt % |0 .
— 1 FL ; (light-bulb, %
F = J z

Figure 3.6:An electric circuit with a light bulb with resistand®is located in an magnetic fiell
At timet = O the magnetic field is pulled to the left.

Figure 3.6 illustrates one of the experiments Faraday conducted in 1881is kxperiment an
electric circuit is first located in a magnetic field. Then, at time 0, the magnet is pulled away
with a speed/. The height of the wire loop i& and vertical part of the wire that is in the area
of the magnetic field is. An EMF leads to a current and the light bulb flashes, just like in the
‘'experiment’ when the circuit was pulled away described in the previoctiose

We ask the same question now: what is the source dEME ? Well, based on relativity princi-
ple, this is physics-wise exactly the same experiment as we did before. Gicutate thd&aEMF we
transform this experiment to the previous experiment and conclude th&iMiteoriginates from
the Lorentz force.

Good, but no cigar, because it is not the answer we are looking farkTdifferent and forget
about the relativity principle and analyze this experiment based on whihewe already about
electrostatic, magnetostatic and electrodynamics. We do not transform toetheys experiment:
physics-wise the results should be invariant anyway! In this experimerg th no moving charge,
so there is no Lorentz force as source of HMF. We can write:

EMF = f.dr:/ E.dl 40 (3.14)
circuit circuit
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How can [, E - dI # 0? Well, this is electrodynamics, not electrostatics! So, this tim&ME
is electric in nature. When we use Stokes Law, we obtain:

EMF :/ E.dl
circuit

_ / (1% E)-do (3.15)
sur face—circuit

From the previous section we know that

dog  d

EMF = ——==_— B-do
dt dt Jsur facecircuit
B
S / %8 4o (3.16)
sur face—circuit Ot
When we combine these results we find Faraday’s Law:
. . 0B
OxE=—— 3.17
. at 317

Hence, a changing magnetic field induces an electric field.

In the first experiment we calculated the Lorentz force and therefoger lthe direction of the
current. In the second experiment it is already much harder to figurestoat the direction of the
current will be. And, you could get really lost when you have to prettiietdirection of the current
in case of a time dependent magnetic field! Fortunately, there is a handy trak ttus, called
Lenz’s Law. It states that the:

"induced current attempts to compensate the change of magnetic flux

Hence, when the magnetic flux decreases (when the circuit is pulled the fiéld) the induced
current generates a magnetic field in the original field direction (think of itteelicas a solenoid
with one winding). Use your right hand to deduce that the current flausiter clock wise in the
experiments we just discussed.

3.2.6 Knowledge and skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

e You can derive Ohm’s Law = IRfromJ = o f.
e You can calculate thEMF of an electric circuit.

e You understand the following relation:

ddg

EMF = Vinguced = _W (3-18)
and that a changing magnetic field induces an electric field according tolatieme
. . 0B
OxE=—— 3.19
X ot (3.19)

¢ You know how to predict the induced current in an electric circuit usingz’ssLaw.
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3.3 Electromagnetic inductance and circuits

3.3.1 Self-inductance

Figure 3.7 depicts an illustration of a current loop and its magnetic field. FrotSavart's Law

Figure 3.7:An illustration of a current loop and its magnetic field.

we know that whatever the exact shape of the current loop, its magnddicsfigroportional to the
current: |[B| O 1. When we consider the magnetic flux through the loop, originating from its own
magnetic field we can write:

Py — B.-doO|

loop

= LI (3.20)

with L a factor of proportionality called self-inductance, with unit Henry, 1 H=/A/ The self-
inductance only depends on the geometry and size of the loop.

When the wire loop is placed in a magnetic field, it requires an electromotice torchange
its current:

do dl
EMF =Vigop = _FB =Ly (3.21)
Self-inductance of a solenoid
N windings/meter |
current | r
R

Figure 3.8:A solenoid withN windings per meter, raditR and length.

Figure 3.8 shows a solenoid with radidslengthl andN windings per meter. To determine the
self-inductance of this solenoid we calculate the flux through all winding® fits own magnetic
field. Using Ampre’s law we know the field in the solenoifi:= NI 2. The magnetic flux though

a single winding is:
ol — / B.do (3.22)
winding—sur face
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The field points in the direction of normal of the surface, so

ol — / IB|do
winding—sur face
2n R
= / / UoNIrdrdg
—=0.Jr=0
= uNITIR? (3.23)
The number of windings of the solenoidN8, which leads to a total flux through the solenoid of:
D = NIDE = pioN2I iRl (3.24)

As predicted, this flux is proportional to the curréntHence, the self-inductande, of this solenoid

IS:
L = dg/l = ppN? iR? (3.25)

Self-inductance of a coaxial cable

S

Figure 3.9: A coaxial cable with inner radiua and outer radiu® and length . In the inner and
outer core, but in opposite direction, flows a current

Figure 3.9 shows a coaxial cable with inner radauend outer radiud and lengtH. A current
| flows though the inner core in one direction and runs in the opposite dirdntibe outer core.

Inside the cable in the regiom< r < b, there is a magnetic field in the direction. Using
Ampere’s Law we determine the magnitude of this field:

2

/ B-di= [ Byrdp=By2m = Lol (3.26)
Jloop 0

and thusB, = (ol )/ (2r).
To calculate the magnetic flux in the coaxial cable we have to determine "amdum#gnetic
field that runs through the region betwegr r < b and length:

| b
_ ) [P, Hol
g — /0 dl /a dr 2%
b
Hol
| /a dr 22
Hol
I—In(b/a) (3.27)

2
And again, the flux is proportional toand the self-inductance becomes:

_ ®s  Ho
L= =122In(b/a) (3.28)
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3.3.2 Mutual inductance

Loop 2 Loop 2

Loop 1 M
k J\, Loop 1

Figure 3.10:/llustration of two infinitesimal loops (1 and 2) with currdnthat 'sense’ each other’s
magnetic field, indicated by the arrows. The left and right drawing depithifferent orientations
of the loops.

Consider two identical infinitesimal loops (we use square loops) as shdvig.i.10, both with
currentl = I, = I,. For the flux through loop 2 from loop 1 we can wriﬁzl) = Ml; = MI. With
M a factor of proportionality, called the mutual inductance. Physically the situéioompletely
symmetric. Hence, for the flux through loop 1, we can V\m@ = Ml, = MI, with the same factor
M. If we change the orientation of the loops, the fadibchanges accordingly, but the symmetry
CD(lz) = (Dél) remains.

Is this relation also valid for macroscopic loops of any size and shape? owsder the in-
finitesimal loops again. Suppose we extend the second loop, 2a, with dioraldnfinitesimal
loop, 2b, (with the same current) as depicted in Fig. 3.11. The extende@#&a2b now forms a
single loop again, but just twice as large as the original. We can write:

®? = 0@ = o 1 Y = Myl + Myl = Mgl (3.29)
All the arguments before allow us to write for the individual contributionsrfrand b:

P = Mal = o
oY = Myl = D"

and thus:

o) = ) = 0L+ &Y = Mal + Myl = Mgyl (3.30)

We could extend the loop 2 again by adding another additional infinitesimablodgvould find the
same relation again. In fact, we can make macroscopic loop of any sizéape sf a collection of
infinitesimal loops and thus we can conclude that

o =MI,

oY =My (3.31)
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/ Net /=0
Loop 2 m

Loop 1

—

Figure 3.11:lllustration of two loops (1 and 2) with currehtthat 'sense’ each other's magnetic
field, indicated by the arrows. The second loop consists of two infinitesiropbla and b.

whereM depends on the exact geometry of the configuration.

As an example we consider the configuration with a single currentlloopdiusR,, placed in
a long solenoids with radiusRs and N windings per meter as illustrated in Fig. 3.12. A curient

Figure 3.12:lllustration of a single loof. in a long solenoid, both with current.

runs through the winding(s) @f andS. What is the flux through the soleno&from L. You could
calculate the dipole field df and determine the flux th& sees by integration. Yes, you could,

but you should not. Instead, you should write dO\mf‘) =Ml = cb(s"). Thus, when you calculate

the flux throughL from S <D<LS), you also haveD(SL). The solenoid generates a magnetic field of
B = Bs = LpNI in the axial direction. The flux throudhis:

o = BnR? = porRZNI (3.32)

We can read off thal = RN and thus the flux through the solenoid from the single loop is
thus:

oL = MI = ponReNI (3.33)
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3.3.3 Electric circuits

In the previous sections we discussed the relation between the curcetiteBMF for a resistor
and for an inductor. Another object is the capacitor which was introdirctte course on electro-
statics:Vc = Q/C. Analogous to the self-inductantefor an inductor, the capacitan€depends
only on the geometry of the configuration. TE®MF to charge a capacitor equads and a relation
with the current can be easily derived:
de 1dQ 1
W—EE—E' (3.34)
Now we have three objects that we can combine to build electric circuits. Eleiteigits
that we consider consist of a battery that provides the potential differénleading to current
through a closed circuit that consist of, or combinations of, resista#@pacitor(s) and inductor(s).
The voltage change going around the circuit in the direction of the cufi@mtshould be zero
(Kirchoff’s Voltage Law). Note that we wrote voltagdange, we can have a voltage drop or a
voltage rise, implying that we should keep trackioefind— signs once again.
For our three objects the voltage always drops when we follow the durremthe positive
direction. Remember that when we cross a battery (in the direction of positivent) the voltage
increases by the battery potenti@al We summarize these properties in Table 3.1.

Object Potential change relation withl
ResistoR —VRr Vk=IR
InductorL ~-\i v =La3
CapacitoiC Ve e =
Battery\p Vo no resistance

Table 3.1: The voltage change over possible elements in an electric circuit when wev fthito
direction of the positive current.

Consider the electric circuit consisting of a battery with potenfjala self-inductancé and a
resistorR, shown in Fig. 3.13. At timeé = O the battery is just hooked on and the current through

Figure 3.13:An electric circuit with a battery, resistor and a self-inductance.

the circuit is zero:1(0) = 0. What is the current at any time? To solve this problem, we 'walk’
around starting just before the resistor and add all voltage changegs&VEable 3.1 and obtain:

~VR-W+VWo=0
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Vo—V, = Vi
vo L =I(HR
07 Fat
dl R Vo
A R+ (3.35)

Physically we can interpret the last equation as the electromotive‘tlared';g—{ of a battery and an

inductor that establishes the potenWal= IR to drive a current through a resistor.
Mathematically, it is a first order differential equation with the structﬁ{ﬁe: af +b. The

general solution i (t) = ke™ — g with a, b andk constants. Returning to ouR circuit, we write:

I(t) = \g(l—e*(R/'-)t) (3.36)

Figure 3.14 shows the current as function of time. At time interlzgR, called the time constant,
the current increases with fractions-11/e.

I(t) 1>V/R

tijd
Figure 3.14:The current of atLR circuit as function of time.

Another first order circuit is shown in Fig. 3.15, which consists of a tesia capacitor and a
battery. At timet = 0, the battery is just hooked on, the charge on the capa@i#¢d) = 0 (and

C

AL

v,T Ve
R

Figure 3.15:An electric circuit with a battery, resistor and a capacitor.

Vc(0) = 0) and the currerit(0) = 0. What is the potential over the capacitor at any time? We 'walk’
around starting just before the resistor and add all voltage changess&\VEable 3.1 and obtain:

~VR—V+Vyg = O

Vo—Ve = W
Vo—Ve = I(t)R

dv,
Vo—Ve = RC—= (3.37)

dt
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with solution:
Ve(t) = Vo(1—e V(RO (3.38)

The time constant of this circuit iRC as illustrated by Fig. 3.16.

V(b) VoV,

' : » tijd

Figure 3.16:The potential difference over a capacitor inRD circuit as function of time.

3.3.4 Energy in electric circuits
Energy dissipation in a resistor

Consider the basic circuit of a battery and a resistor, shown in Fig. 3lé#beach second a charge

|
—

Vo
R

Figure 3.17:An electric circuit consisting of a batte¥g and a resistor.

Q=1 is pumped through the resistor, which requires watkSome chemical reaction in the battery
provides the necessary energy. The dissipated energy in the resistorsformed into heat. Since
the voltage change over the resistoMis= Vp, the energy needed to transport the charge equals
W =VQ. The energy per secort¥V/dt, the power, dissipated by resistoHs=VQ/1s=VI with

unit Watt. Using Ohm’s Law we obtain the equivalent expressigs|’R andP = V?/R.

Energy stored in a capacitor

In the course on electrostatics we have derived that the energy in aitcamgiven byW = %CVZ.

In this section we study the energy stored in a capacitor in an electric ciraiblaviously expect

to find the same result. Consider B8 circuit as discussed in section 3.3.3. From the calculation
in this section we conclude that the capacitor gets charged (with time coR&tarfor the power
required to charge the capacitor we write:

e,

P g = Qd

= VeIt =25 (3:39)
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The total energy in a charged capacitQe(= Q) is obtained by integration over time:

AW, [® QedQe
W= /H,Edt— o C at o
® Qc dQc
o C at o
Q Qc 12 1,
_ /QC_OCdQC_ZC_ZCV (3.40)

which is no surprise.

An alternative expression for the energy in the electric field, also dilivéhe Chapter on
electrostatics, is:

_ & [

Ve E?dv (3.41)

B 2 Jvolume
Let’s check this expression for a parallel plate capacitor. The distagiweebn the plates i$ and
the plates have a surface amkaeading to a capacit¢ = %*. In the ideal case, the electric field

outside the plates is zero, while in between the plates the field is givﬁi ByV /d. For the energy
we find

& V2
= — —av
e 2 Jvolume d?

as expected.

Energy stored in a self-inductance

To determine the energy stored in a self-inductance we can follow the saateggtas above. For
the power required to reach a currént=1 in a self-inductancé we write:

_dw

dig
P="a

= |L(t)vinduced(t) = IL(t)LE (3-43)

The total energy in the self-inductance is obtained by integration over time:

oedw g di,
W= /t:oﬁdt_/t:out)l‘ at ot

_ /I' I, (t)Ldl,

L=0

1
= L2 3.44
; (3.44)

This formula has the same structure as the expression for a capacit@rdatho an alternative
expression for energy in a self-inductance in terms of the magnetic field?Weecould just try:

1

—— B2dv 3.45
2L /vol ume ( )
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Let's check this expression for a solenoid. For a solenoid Lol N?1iR? and thus (using equa-
tion 3.44)W. = 2IN?1iR?12. Now we use the trial equation 3.45:
1 A~
= — NI)Zdv
W 2L /vol ume(IJ0 )

= (NI

24l

_ %INZHRZIZ (3.46)

which leads to the same result! Equation 3.45 is indeed the correct expréssite energy of
the magnetic field. By the way, we can also use this expression for theyetweoglculate the
self-inductance of an objedt: = 2W /I 2,

3.3.5 Knowledge and skills

The knowledge and skills you should have acquired during reading gfréweous can be summa-
rized as follows:

¢ You understand the meaning of self-inductance and mutual inductance.
e You can calculate the self-inductance of the solenoid and a coaxial cable.
e You can calculate the time dependent currerRhandLR circuits.

e You can calculate the energy in a self-inductance and in the magnetic field.

3.4 Maxwell equations

In this section we complete the field equations and derive the existence wbelagnetic waves:
light! First we summarize the field equations, we encountered so far. Lidblke atructure of these

Comment Integral

Gauss fsurface% +d0 = Qenclosed /€0 = fvolume s%dv

No magnetic monopoles [y, t4eB-d0=0

Faraday ﬁoopé dl = _%

Ampére Jioop B dl'= Holenciosed = [ faced - 40
Differential

Gauss 0-E=p/e

No magnetic monopoles[l- B =0

Faraday @ % I§ = —%—E

Ampeére OxB= upJ

Table 3.2: The (incomplete) field equations based on electrostatics, magnetostaticarandyFs
Law in integral and differential form.

equations in Table 3.2. There is an asymmetry between the electric and magséfidde to the

fact that there exist no magnetic monopoles. In addition, there is nowhermé;% Did we miss
something? How can we find that term, called the Maxwell term?
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3.4.1 The Maxwell term from a gedanken experiment

Attimet = 0 an empty capacitor is charged in a circuit as depicted in Fig. 3.18. Aroendith at

- b: balloon|surface

r S

I a: disc

Figure 3.18:An electric circuit with a parallel plate capacitor. An Amperian loop is indicatddo
indicated are two surfacea @ndb) that are enclosed by the Amperian loop. Surfadeas the
‘usual’ shape of a disk. Surfatehas the shape of a balloon and is stretched in between the plates
of the capacitor.

positiona a magnetic field is generated by the curreatich that Ampre’s law is fulfilled:
/ B.dl = ol (3.47)
loopa

In this case, the loop spans a surface, a disk, penetrated by the the wire, thus the enclosat cu
isl.

Now we modify the surface a little bit and stretch it in between the capacitor pkieh that
it acquires the shape of a ballotn In fact, no wire is pointing through the surface and the the
enclosed current is zero:

/ B.dl=0 (3.48)
loopb

which suggests that the magnetic field has vanished in conflict with equationShething must
be wrong with Amgre’s law! How can we fix that? Well, the electric field between the plates of
the capacitors i$E| = % = %to). The time derivative i$‘§—'§| = A%O%—? = AE'—O A changing electric
field is related to a current, which fixes Amae’s Law:
Lo JOE
/ B-dl' = Lolendosed +uoeo/ %% do (3.49)
loop surface Ot
and we conclude that a changing electric field induced a magnetic field!
This calculation may look not so scientific to you or perhaps it even looks lilke-trick. Right,
but nevertheless the result correctly describes the original gedaxiemiment!
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3.4.2 The Maxwell term from a controlled charge explosion

Another example that yields the Maxwell term is a slowly exploding charge atrdlied in Fig. 3.19.
A large collection of charge at the origin slowly explodes. In the figurénaginary sphere is also

.
J(t
AT
«
L=
Sy,
u ! \\ ~
“
P

Figure 3.19:A large amount of charge at the origin slowly ‘explodes’. The chargeéhzerges
from the explosion traverses an imaginary sphere. On the surface dafithére an infinitesimal
Amperian loop is also indicated

shown. The charge that emerges from the explosion uniformly travénsesphere. You could
compare this situation with a radioactive decay. However, in radioactigaydeusually, besides
electrons, also photons and neutrinos are produced. Anyway,echasg, the explosion is compa-
rable to radioactive decays. When we start wikhnuclei with chargeq and lifetimer, then the
number of nuclei at a given time l$(t) = Noe~%/ and the total charge 3(t) = gN(t). The electric
field of the charged nuclei is given by:

. 1 gNge VT
B % ¢
4msyg 12

(3.50)

Each decay produces a chagy@hich leads to a 'shower of charge’ that escapes: with correspond-
ing current:

~dQM)  gNo_ s
=g = (3.51)

For the current density through a spherical surface we find:

j:

aNoe VT,
T

i (3.52)

wherer represents the radius of the surface.

Now we investigate the integrg],,, B(r) - dI of the magnetic field over a small loop on the
surface of the sphere, also indicated in Fig. 3.19. The dot-producsfitgrthe component of the
magnetic field along the surface of the sph&e, What is the magnitude of this component? Well,
look at the symmetry of the configuration. The can not be a component ofdbeetic field along
the surface, and thus:

B(r)-di'= | B(rdl=0 (3.53)

loop loop
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According to Amgre’s law, this loop integral should be proportional with the enclosedentirr
Uolenclosed = uoj- da. Is the enclosed current zero as equation 3.53 demands? No, bévengses
certainly charge showering through the surface enclosed by the lopp\noere’s Law fails again.
Let's see whether the changing electric field completes the equation:

I 9E
/IOOPB‘d| = Molenclosed + Iloﬁo/ —--do (3.54)

sur face ot

:uo/ .T-d6+uoeo/ %E 4o
sur face sur face ot

Now we substitute the expressions we derived for the current dengitatien 3.52) and the electric
field (equation 3.50) and obtain:

5 o7 Qe '/t NoQ et/
B.dil = / No =S do+ Lioe /
/Ioop Ho sur face 0 T 472 Hoo surface 4TIEpr? Ot
Qeft/r / Qeft/r
= No— do— No— do
uo/surface 0 T 472 Ho sur face 0 T 472
=0 (3.55)

So, the Maxwell ternup&o fw,faoe%—'t; -dd, saves the day again!

3.4.3 Continuity equation

In the previous section we used the fact that charge is conserved.rréntthrough a (closed)
surface was the result of a changing charge in the enclosed volume:

I _ _dQvqume
sur face dt
- d
J-dd = —— dv
/surface dt vol umep
/ J.do+ 3 pdv = 0 (3.56)
Jsur face dt. volume
Using Gauss's rule we can write:
/ 7. Jdv+ 9P yv_o (3.57)
volume volume dt
and thus: d
i-ﬂd—fzo (3.58)

This expression is known as the continuity equation.
Is this consistent with our renewed Afg’s Law? We start with:

/ é-dr:uo/ j-da+uOso/ %E 4o (3.59)
loop sur face surface Ot

and use Stokes Law to write:

/ ﬁxﬁ-dﬁzuO/ j-d6+u030/ %€ 4o (3.60)
sur face sur face

sur face ot
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Note that the surface is arbitrary, thus the integrands must be equal:

L - JoE
0 x B = HoJ + Hogo—-

= (3.61)

(which by the way is the renewed Arage’s Law in differential form!) Now take the divergence of
this equation and realize that the divergence of a rotation is zero by ootistr;

—

L. Lo . 9E
0. (O x B) =0= pol)- I+ pogol) - —

o (3.62)

or equivalently

L P
B (0 x B) = 0= pol- J+uO;t) (3.63)

from which we can read off the continuity equation. As a matter of fact weamnclude that
Ampere’s Law extended with Maxwell’s term leads to charge conservation.

3.4.4 The complete set of Maxwell equations

The time has come to write down the complete set of field equations which wedehiwving our
tour through electrostatics, magnetostatics and electrodynamics leadingattafFarLaw and the
Maxwell term. The equations are know as the Maxwell Equations and aré listable 3.3. The

Comment Integral

Gauss fsurface% +d8 = Qenclosed/ &0 = fvol ume e%dv

No magnetic monopoles [y, t,eB-d0=0

Faraday fioopE di'= - 9%

Ampere+Maxwell term | 505 B-dl'= Lolenclosed + Ho€o fsurface% -do
Differential

Gauss 0-E=p/s

No magnetic monopoles [0-B=0

Faraday @ x E = %‘;3

Ampere+Maxwell term | O x B = poJ + uOso

Table 3.3: The complete set of field equations based on electrostatics, magnetostdteleero-
dynamics, called the Maxwell Equations, in integral and differential form.

physical behavior of electric and magnetic field are described by thesgiens. In the following
section we use the Maxwell Equations to derive the existence of electretagraves of which
light is a specific example.

3.4.5 Electromagnetic waves

The Maxwell equations, based on empirical studies, can now be usedtherfinvestigate the
physics of the electric and magnetic field. In this section we study the fieldsensfrace, which
requires some mathematics, but the result will be worth it.
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In vacuum, away from electric charges and currents the Maxwell Equatio differential
form) simplify to:

(@ O-E=0
- . 0B
b OxE=——
(o O-B=o0
S JE
(d) UxB= UOSOE (364)
Now take the rotation of 3.@and write:
. - . - 0B
DXDXE:—DXa— (3.65)
ot
First, we concentrate on the left hand side. Using basic calculus we obtain
OxOxE=0(0-E)- D% (3.66)
Remember that we are in vacuum and use equatiora3dbdrite:
OxOxE=—0PE (3.67)
Now, we proceed with the right hand side:
. 0B A0 x B
Ox — = — .
X 5 ot (3.68)
and use 3.6d to write:
- 0B 9%E
—Ox —=— — :
T Hogo (3.69)
When the results are combined we obtain:
. 0°E
[?E = Hogo—=— 3.70
Hogo~ (3.70)
Starting with the rotation of 3.@#tyou find a similar relation for the magnetic field:
o 0°B
2B = Logo—=—- 3.71
Hogo = (3.71)

Fine, so what? Well, remember the theory of waves. The classical waati@yfor a wave in
thez direction with speed is:
02 02
oY 2070
ot2 072

with typical solutionAcos(kz— wt) wherew? = k?v?. Hence, the equations 3.70 and 3.71 imply

the existence of electromagnetic waves with spe ﬁ = ¢, the speed of light!

(3.72)
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Monochromatic waves in one dimension

In this section we study a typical solution of the electromagnetic wave equdimeimplify the
math, we assume:

e The electric and magnetic field only dependzamdt;
e \We stay in the vacuum which is infinitely large.

This leads to the following wave equations:

o2 07
928 028
- Sz
with solutions of the form:
E = E%os(kz— wt)
B = B%os(kz— wt) (3.73)

with w = kc. The constants E° and B° can be determined by applying Maxwell Equations in
vacuum (again):

o [I-E =0= —E%sin(kz— wt) implies thatE? = 0.
e [1-B=0=—B%sin(kz— wt) implies thatB? = 0.
e OxB= C—lz%f leads to:
+cB) = Ey
—cBY =E) (3.74)
which can be written as: 1
BY = “2x E° (3.75)

The equatiorﬁ X E = —%té implies the same and adds no information.

We summarize our findings by saying that the Maxwell Equations have sautiat can be
interpreted as electromagnetic waves with spedtie speed of light. These waves are transverse:
the electric and magnetic fields have no components in the direction of ptapagg = B, = 0).

In addition the fields are also mutual transverse and in phase. Figuret®28 an illustration of
an electromagnetic wave.

3.4.6 Knowledge and skills

The knowledge and skills you should have acquired during reading gfréwous can be summa-
rized as follows:

¢ You understand the problem in Arage’s Law.
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|§: r EJ_\T'
B BLv
B&E
in phase

Figure 3.20:A schematic view of an electromagnetic wave.

You can fix Ampgere’s Law.
You can write down the Maxwell Equations.
You can derive the continuity equation from these equations.

From the Maxwell Equations in vacuum you can proof the existence of éigtitits proper-
ties.



