
Experiences with moving to open
source standards for building and

packaging

Dennis van Dok, Mischa Sallé and Oscar Koeroo

Nikhef Amsterdam

SIGSOFTENG 2013, Nikhef, Amsterdam

SIGSOFTENG 2013, Nikhef, Amsterdam 1 / 32



Software midwifery

SIGSOFTENG 2013, Nikhef, Amsterdam 2 / 32



Software midwifery II

SIGSOFTENG 2013, Nikhef, Amsterdam 3 / 32



Where we come from

I Middleware contributions in a series of EU
funded grid projects: DataGrid, EGEE (I,
II and III), EMI and IGE.

I current sustained ‘maintenance mode’
through SURF e-infrastructure.

r r r r r r r r r r r r r r r20
00
20
01
20
02
20
03
20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14

︸ ︷︷ ︸
Initiative for

Globus in

Europe

SIGSOFTENG 2013, Nikhef, Amsterdam 4 / 32



The ETICS era

The EGEE era saw increased scale in every way:
I the EGEE Grid
I the middleware stack
I the code complexity and interdependencies

EGEE II had to deliver more reliable and stable
software. To manage this, a build system was
introduced called ETICS.
This system had a few shortcomings.

SIGSOFTENG 2013, Nikhef, Amsterdam 5 / 32



ETICS’ shortcomings

I It was not easy to build outside of ETICS
I Building in ETICS was too slow for
debugging/test cycles

I The system required specific m4 macros to
build

I There was little or no focus on portability
I The output consisted of binary products and
no rebuildable source material.

I The ETICS project stopped in 2013 and the
portal went off-line.

We had to do things ourselves.

SIGSOFTENG 2013, Nikhef, Amsterdam 6 / 32



What we did

code improvements

I better m4 macros for dependency discovery
I stick to standards (ANSI C, POSIX, Autotools)
I Build without compiler warnings
I Implement secure coding standards
I active portability testing to many platforms
(solving bugs along the way)

I documented software process

SIGSOFTENG 2013, Nikhef, Amsterdam 7 / 32



what we also did

version control: imported all CVS history for our
components from CERN CVS, with full
history

packaging and building: wrote Fedora and Debian
compliant packaging sources, built
native packages suitable for inclusion
in mainstream distributions

Implementation of guidelines: adopt Fedora
packaging guidelines and Debian Policy

automation: set up Koji for automated building

software delivery: deliver software through our
own (signed) repositories

improved documentation in the form of manpages
and Wiki pages.

SIGSOFTENG 2013, Nikhef, Amsterdam 8 / 32



What we (eventually) managed

Most (autotools based) open source software can
do this out of the box:

./configure

make

make install

We actually stuck to the mantra:

make distcheck

which builds outside the source tree and tests if
an install with DESTDIR works.

SIGSOFTENG 2013, Nikhef, Amsterdam 9 / 32



Fedora packaging

I Tagging in SVN (of the SPEC file) triggers a Koji
build

I Koji does mock builds of the source and binary
RPMs for all targeted platforms, i.e. the latest
Fedora releases and EPEL5 and EPEL6.

I The builds are signed with a tool called sigul.
I The mash utility generates the repositories
that can be installed through yum

koji, sigul and mash are also used by the Fedora
project.

SIGSOFTENG 2013, Nikhef, Amsterdam 10 / 32



Debian packaging

For Debian, the procedure is slightly different.
There is no equivalent of Koji for Debian /.

I a Debian source package is created for
currently supported Ubuntu versions, Debian
unstable, stable and oldstable,

I each source package is build with
cowpoke/cowbuilder/pbuilder (equivalent to
mock).

I the resulting packages are signed with the
packager’s GPG key

I The package is uploaded to a software
repository from where it can be installed with
apt-get.

SIGSOFTENG 2013, Nikhef, Amsterdam 11 / 32



Catching common errors

For Fedora, use rpmlint; for Debian, lintian to see
if packages do not contain silly mistakes (lintian
helped find several common spelling errors.)

The automated build logs revealed more warnings
due to using different compiler settings.

This is not a substitute for real testing, of course.

SIGSOFTENG 2013, Nikhef, Amsterdam 12 / 32



Communi{ty,cation}

I Mailing lists
We’ve set up a few mailing lists:

I grid-mw-security-support@nikhef.nl for
support questions and

I grid-mw-security-announce@nikhef.nl for
announcements of new versions. This list has
an open subscription policy.

No general discuss mailing list (yet). . . no
sizable community either (besides wLCG/EGI
there is OSG).

SIGSOFTENG 2013, Nikhef, Amsterdam 13 / 32

mailto:grid-mw-security-support@nikhef.nl
mailto:grid-mw-security-announce@nikhef.nl


Sources, binaries and bugs

I Version control in SVN
https://ndpfsvn.nikhef.nl/viewvc/mwsec/
https://ndpfsvn.nikhef.nl/ro/mwsec/

I Download sources
http://software.nikhef.nl/security

I RPM/Deb distribution
http://software.nikhef.nl/dist

I Bug tracking
NEW: https://bugzilla.nikhef.nl/, moving
away from CERN Savannah.

SIGSOFTENG 2013, Nikhef, Amsterdam 14 / 32

https://ndpfsvn.nikhef.nl/viewvc/mwsec/
https://ndpfsvn.nikhef.nl/ro/mwsec/
http://software.nikhef.nl/security
http://software.nikhef.nl/dist
https://bugzilla.nikhef.nl/


Why we did it

Changes were implemented gradually over time,
with each step bringing new benefits.
Being good netizens and playing along with
common open source practices is rewarding even
without drawing a crowd.
Supporting OSG was much easier once we took
control of the process.
We believe we have greatly improved
sustainability of our software.

SIGSOFTENG 2013, Nikhef, Amsterdam 15 / 32



What we got in return

Some of the benefits our work rendered:

1. playing fair with package management avoids
conflicts

2. installation of software becomes trivial

3. reproducing bugs becomes easier

4. pin-pointing bugs to source lines is easier

5. cycle time to deliver updates becomes shorter

6. uncovered some lurking bugs

7. improved portability

8. easier integration with third parties

9. using common technology makes it easier to
pass the support to future staff members.

SIGSOFTENG 2013, Nikhef, Amsterdam 16 / 32



References

I Guide to setting up the Koji build system
http://fedoraproject.org/wiki/Koji/ServerHowTo

I Nikhef Security Access Control sofware procedures
https://wiki.nikhef.nl/grid/SAC_software_procedures

I Fedora packaging guidelines
https://fedoraproject.org/wiki/Packaging:Guidelines

I Debian Policy
http://www.debian.org/doc/debian-policy/

I Debian upstream guide
https://wiki.debian.org/UpstreamGuide

SIGSOFTENG 2013, Nikhef, Amsterdam 17 / 32

http://fedoraproject.org/wiki/Koji/ServerHowTo
https://wiki.nikhef.nl/grid/SAC_software_procedures
https://fedoraproject.org/wiki/Packaging:Guidelines
http://www.debian.org/doc/debian-policy/
https://wiki.debian.org/UpstreamGuide


Bonus item: How to tell if a FLOSS
project is doomed to FAIL

Original by Tom “Spot” Callaway; inspired by
Chromium.

How to tell if a FLOSS project is doomed to FAIL

Count along the POFs (Points Of Fail) to see how
well your project is doing. Our overall fail score:
10 points.

SIGSOFTENG 2013, Nikhef, Amsterdam 18 / 32

https://www.theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL


Size

I The source code is more than 100 MB. +5
I If the source code also exceeds 100 MB when
it is compressed +5

SIGSOFTENG 2013, Nikhef, Amsterdam 19 / 32



Source Control

I There is no publicly available source control
(e.g. cvs, svn, bzr, git) +10

I There is publicly available source control, but:
I There is no web viewer for it +5
I There is no documentation on how to use it for
new users +5

I You’ve written your own source control for this
code +30

I You don’t actually use the existing source
control +50

SIGSOFTENG 2013, Nikhef, Amsterdam 20 / 32



Building From Source

I There is no documentation on how to build from source +20
I If documentation exists on how to build from source, but it
doesn’t work +10

I Your source is configured with a handwritten shell script +10
I Your source is configured editing flat text config files +20
I Your source is configured by editing code header files manually
+30

I Your source isn’t configurable +50
I Your source builds using something that isn’t GNU Make +10
I Your source only builds with third-party proprietary build tools
+50

I You’ve written your own build tool for this code +100

SIGSOFTENG 2013, Nikhef, Amsterdam 21 / 32



Bundling

I Your source only comes with other code
projects that it depends on +20

I If your source code cannot be built without
first building the bundled code bits +10

I If you have modified those other bundled code
bits +40

SIGSOFTENG 2013, Nikhef, Amsterdam 22 / 32



Libraries

I Your code only builds static libraries +20
I Your code can build shared libraries, but only
unversioned ones +20

I Your source does not try to use system
libraries if present +20

SIGSOFTENG 2013, Nikhef, Amsterdam 23 / 32



System Install

I Your code tries to install into /opt or /usr/local
+10

I Your code has no “make install” +20
I Your code doesn’t work outside of the source
directory +30

SIGSOFTENG 2013, Nikhef, Amsterdam 24 / 32



Code Oddities

I Your code uses Windows line breaks (“DOS
format” files) +5

I Your code depends on specific compiler
feature functionality +20

I Your code depends on specific compiler bugs
+50

I Your code depends on Microsoft Visual
Anything +100

SIGSOFTENG 2013, Nikhef, Amsterdam 25 / 32



Communication

I Your project does not announce releases on a
mailing list +5

I Your project does not have a mailing list +10
I Your project does not have a bug tracker +20
I Your project does not have a website +50
I Your project is sourceforge vaporware +100

SIGSOFTENG 2013, Nikhef, Amsterdam 26 / 32



Releases
I Your project does not do sanely versioned releases (Major,
Minor) +10

I Your project does not do versioned releases +20
I Your project does not do releases +50
I Your project only does releases as attachments in web forum
posts +100

I Your releases are only in .zip format +5
I Your releases are only in OSX .zip format +10
I Your releases are only in .rar format +20
I Your releases are only in .arj format +50
I Your releases are only in an encapsulation format that you
invented. +100

I Your release does not unpack into a versioned top-level
directory (e.g. glibc-2.4.2/ ) +10

I Your release does not unpack into a top-level directory (e.g.
glibc/ ) +25

I Your release unpacks into an absurd number of directories (e.g.
home/johndoe/glibc-svn/tarball/glibc/src/) +50

SIGSOFTENG 2013, Nikhef, Amsterdam 27 / 32



History

I Your code is a fork of another project +10
I Your primary developers were not involved
with the parent project +50

I Until open sourcing it, your code was
proprietary for:

I 1-2 years +10
I 3-5 years +20
I 6-10 years +30
I 10+ years +50

SIGSOFTENG 2013, Nikhef, Amsterdam 28 / 32



Licensing

I Your code does not have per-file licensing
+10

I Your code contains inherent license
incompatibilities +20

I Your code does not have any notice of
licensing intent +30

I Your code doesn’t include a copy of the license
text +50

I Your code doesn’t have a license +100

SIGSOFTENG 2013, Nikhef, Amsterdam 29 / 32



Documentation

I Your code doesn’t have a changelog +10
I Your code doesn’t have any documentation
+20

I Your website doesn’t have any documentation
+30

SIGSOFTENG 2013, Nikhef, Amsterdam 30 / 32



FAIL METER

Points of FAIL Verdict
0 Perfect! All signs point to success!

5–25 You’re probably doing okay,
but you could be better.

30–60 Babies cry when your code is downloaded
65–90 Kittens die when your code is downloaded
95–130 HONK HONK. THE FAILBOAT HAS ARRIVED!
135+ So much fail, your code should have

its own reality TV show.

SIGSOFTENG 2013, Nikhef, Amsterdam 31 / 32


	What everybody wants
	History
	ETICS
	What we did
	What we achieved
	How we roll
	Who we support
	What we learned
	How to tell if a FLOSS project is doomed to FAIL

