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If the results of the first LHC run are not betraying us, many decades of particle physics
are culminating in a complete and consistent theory for all non-gravitational physics:
the Standard Model. But despite this monumental achievement there is a clear sense
of disappointment: many questions remain unanswered. Remarkably, most unanswered
questions could just be environmental, and disturbingly (to some) the existence of life
may depend on that environment. Meanwhile there has been increasing evidence that
the seemingly ideal candidate for answering these questions, String Theory, gives an
answer few people initially expected: a huge “landscape” of possibilities, that can be
realized in a multiverse and populated by eternal inflation. At the interface of “bottom-
up” and “top-down” physics, a discussion of anthropic arguments becomes unavoidable.
We review developments in this area, focusing especially on the last decade.
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I. INTRODUCTION

In popular accounts, our universe is usually described
as unimaginably huge. Indeed, during the last centuries
we have seen our horizon expand many orders of magni-
tude beyond any scale humans can relate to.

But the earliest light we can see has traveled a mere
13.8 billion years, just about three times the age of our
planet. We might be able to look a little bit further than
that using intermediaries other than light, but soon we
inevitably reach a horizon beyond which we cannot see.

We cannot rule out the possibility that beyond that
horizon there is just more of the same, or even nothing at
all, but widely accepted theories suggest something else.
In the theory of inflation, our universe emerged from a
piece of a larger “space” that expanded by at least sixty
e-folds. Furthermore, in most theories of inflation our
universe is not a “one-off” event. It is much more plau-
sible that the mechanism that gave rise to our universe
was repeated a huge, even infinite, number of times. Our
universe could just be an insignificant bubble in a gi-
gantic cosmological ensemble, a “multiverse”. There are
several classes of ideas that lead to such a picture, but
there is no need to be specific here. The main point is
that other universes than our own may exist, at least in
a mathematical sense. The universe we see is really just
our universe. Well, not just ours, presumably.

The existence of a multiverse may sound like specula-
tion, but one may as well ask how we can possibly be
certain that this is not true. Opponents and advocates
of the multiverse idea are both limited by the same hori-
zon. On whom rests the burden of proof? What is the
most extraordinary statement: that what we can see is
precisely all that is possible, or that other possibilities
might exist?

If we accept the logical possibility of a multiverse, the
question arises in which respects other universes might
be different. This obviously includes quantities that vary
even within our own universe, such as the distribution
of matter and the fluctuations in the cosmic microwave
background. But the cosmological parameters them-
selves, and not just their fluctuations, might vary as well.
And there may be more that varies: the “laws of physics”
could be different.

Since we observe only one set of laws of physics it is a
bit precarious to contemplate others. Could there exist
alternatives to quantum mechanics, or could gravity ever
be repulsive rather than attractive? None of that makes
sense in any way we know, and hence it seems unlikely
that anything useful can be learned by speculating about
this. If we want to consider variations in the laws of

physics, we should focus on laws for which we have a
solid underlying theoretical description.

The most solid theoretical framework we know is that
of quantum field theory, the language in which the Stan-
dard Model of particle physics is written. Quantum field
theory provides a huge number of theoretical possibili-
ties, distinguished by some discrete and some continuous
choices. The discrete choices are a small set of allowed
Lorentz group representations, a choice of gauge symme-
tries (such as the strong and electroweak interactions),
and a choice of gauge-invariant couplings of the remain-
ing matter. The continuous choices are the low-energy
parameters that are not yet fixed by the aforementioned
symmetries. In our universe we observe a certain choice
among all of these options, called the Standard Model,
sketched in section II. But the quantum field theory we
observe is just a single point in a discretely and contin-
uously infinite space. Infinitely many other choices are
mathematically equally consistent.

Therefore the space of all quantum field theories pro-
vides the solid underlying description we need if we wish
to consider alternatives to the laws of physics in our own
universe. This does not mean that nothing else could
vary, just that we cannot discuss other variations with
the same degree of confidence. But we can certainly theo-
rize in a meaningful way about universes where the gauge
group or the fermion masses are different, or where the
matter does not even consist of quarks and leptons.

We have no experimental evidence about the existence
of such universes, although there are speculations about
possible observations in the Cosmic Microwave Back-
ground (see section III.E.2). We may get lucky, but our
working hypothesis will be the pessimistic one that all
we can observe is our own universe. But even then, the
claim that the only quantum field theory we can observe
in principle, the Standard Model of particle physics, is
also the only one that can exist mathematically, would
be truly extraordinary.

Why should we even care about alternatives to our
universe? One could adopt the point of view that the
only reality is what we can observe, and that talking
about anything else amounts to leaving the realm of sci-
ence. But even then there is an important consequence.
If other sets of laws of physics are possible, even just
mathematically, this implies that our laws of physics can-
not be derived from first principles. They would be – at
least partly – environmental, and deducing them would
require some experimental or observational input. Cer-
tainly this is not what many leading physicist have been
hoping for in the last decades. Undoubtedly, many of
them hoped for a negative answer to Einstein’s famous
question “I wonder if God had any choice in creating the
world”. Consider for example Feynman’s question about
the value of the fine-structure constant α: “Immediately
you would like to know where this number for a coupling
comes from: is it related to pi or perhaps to the base of
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natural logarithms?”. Indeed, there exist several fairly
successful attempts to express α in terms of pure num-
bers. But if α varies in the multiverse, such a compu-
tation would be impossible, and any successes would be
mere numerology.

There is a more common “phenomenological” objec-
tion, stating that even if a multiverse exists, still the only
universe of phenomenological interest is our own. The
latter attitude denies the main theme of particle physics
in the last three decades. Most activity has focused on
the “why questions” and on the problem of “natural-
ness”. This concerns the discrete structure of the Stan-
dard Model, its gauge group, the couplings of quarks and
leptons, the questions why they come in three families
and why certain parameters have strangely small values.
The least one can say is that if these features could be
different in other universes, this might be part of the an-
swer to those questions.

But there is a more important aspect to the latter dis-
cussion that is difficult to ignore in a multiverse. If other
environments are possible, one cannot avoid questions
about the existence of life. It is not hard to imagine en-
tire universes where nothing of interest can exist, for ex-
ample because the only stable elements are hydrogen and
helium. In those universes there would be no observers.
Clearly, the only universes in the multiverse that can be
observed are those that allow the existence of observers.
This introduces a bias: what we observe is not a typi-
cal sample out of the set of possible universes, unless all
universes that (can) exist contain entities one might plau-
sibly call “observers”. If the Standard Model features we
are trying to understand vary over the multiverse, this
is already crucial information. If there is furthermore a
possibility that our own existence depends on the values
of these parameters, it is downright irresponsible to ig-
nore this when trying to understand them. Arguments
of this kind are called “anthropic”, and tend to stir up
strong emotions. These are the kind of emotions that al-
ways seem to arise when our own place in the cosmos and
its history is at stake. One is reminded of the resistance
against heliocentricity and evolution. But history is not
a useful guide to the right answer, it only serves as re-
minder that arguments should be based on facts, not on
emotions. We will discuss some of the history and some
general objections in section III.

The fact that at present the existence of other universes
and laws of physics cannot be demonstrated experimen-
tally does not mean that we will never know. One may
hope that one day we will find a complete theory of all
interactions by logical deduction, starting from a princi-
ple of physics. For more than half a century, it has been
completely acceptable to speculate about such theories
provided the aim was a unique answer. But it is equally
reasonable to pursue such a theory even if it leads to a
huge number of possible realizations of quantum field the-
ories. This is not about “giving up” on the decade long

quest for a unique theory of all interactions. It is simply
pointing out a glaring fallacy in that quest. Nothing we
know, and nothing we will argue for here, excludes the
possibility that the traditional path of particle physics to-
wards shorter distances or higher energies will lead to a
unique theory. The fallacy is to expect that there should
be a unique way back: that starting with such a theory
we might derive our universe uniquely using pure math-
ematics.

Nowadays few physicist would describe their expecta-
tions in such a strong way. There is a variety of points
of view, spread between two extremes, the uniqueness
paradigm and the landscape paradigm. The former states
that ultimately everything can be derived, whereas the
most extreme form of the latter holds that – from now
on – nothing can be derived, because our universe is just
a point in a huge distribution. Neither can be correct as
stated. The first is wrong because some features in our
universe are clearly fluctuations, and hence not deriv-
able. So we will have to decide which observables are
fluctuations. The fact that we do no see them fluctuate
is not sufficient to conclude that they do not. We can-
not decide this on the basis of the single event that is
our universe. The second paradigm necessarily involves
a moment in time. In the past many physical quantities
(such as molecules, atoms and nuclei) have been derived
from simpler input data. So if we want to argue that, in
some sense, this will no longer be possible, we must ar-
gue that we live in a very special moment in the history
of physics. The Standard Model has been pointing in
that direction for decades already, and its current status
strengthens the case.

On the other side of the energy scale, there exists a
theoretical construction that may have a chance to fulfill
the hope of finding the underlying theory: String Theory.
It is the third main ingredient of the story, and will be
introduced in section IV. It describes both gravitational
and gauge interactions, as well as matter. Initially it
seemed to deliver the unique outcome many were hoping
for, as the strong constraints it has to satisfy appeared
to allow only very few solutions.

But within two years, this changed drastically. The
“very few solutions” grew exponentially to astronomi-
cally large numbers. One sometimes hears claims that
string theorists were promising a unique outcome. But
this is simply incorrect. In several papers from around
1986 one can find strong statements about large num-
bers of possibilities, starting with Narain (1986), shortly
thereafter followed by Strominger (1986); Kawai et al.
(1987); Lerche et al. (1987); and Antoniadis et al. (1987).
Large numbers of solutions had already been found ear-
lier in the context of Kaluza-Klein supergravity, reviewed
by Duff et al. (1986), but the demise of uniqueness of
string theory had a much bigger impact.

The attitudes towards these results differed. Some
blamed the huge number of solutions on our limited
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knowledge of string theory, and speculated about a dy-
namical principle that would determine the true ground
state, see for example Strominger (1986). Others ac-
cepted it as a fact, and adopted the phenomenological
point of view that the right vacuum would have to be
selected by confrontation with experiment, as stated by
Kawai et al. (1987). In a contribution to the EPS con-
ference in 1987 the hope for a unique answer was de-
scribed as “unreasonable and unnecessary wishful think-
ing” (Schellekens, 1987).

It began to become clear to some people that string
theory was not providing evidence against anthropic rea-
soning, but in favor of it. But the only person to state
this explicitly at that time was Andrei Linde (1986b),
who simply remarked that “the emergent plenitude of so-
lutions should not be seen as a difficulty but as a virtue”.
It took ten more years for a string theorist to put this
point of view into writing (Schellekens, 1998), and fifteen
years before the message was advertised loud and clear by
Susskind (2003), already in the title of his paper: “The
Anthropic Landscape of String Theory”.

In the intervening fifteen years a lot had changed. An
essential rôle in the story is played by moduli, continuous
parameters of string theory. String theorists like to em-
phasize that “string theory has no free parameters”, and
indeed this is true, since the moduli can be understood
in terms of vacuum expectation values (vevs) of scalar
fields, and hence are not really parameters. All param-
eters of quantum field theory, the masses and couplings
of particles, depend on these scalar vevs. The number
of moduli is one or two orders of magnitude larger than
the number of Standard Model parameters. This makes
those parameters “environmental” almost by definition,
and the possibility that they could vary over an ensemble
of universes in a multiverse is now wide open.

The scalar potential governing the moduli is flat in
the supersymmetric limit. Supersymmetry is a symme-
try between boson and fermions, which is – at best – an
approximate symmetry in our universe, but also a nearly
indispensable tool in the formulation of string theory. If
supersymmetry is broken, there is no reason why the po-
tential should be flat. But this potential could very well
have a disastrous run-away behavior towards large scalar
vevs or have computationally inaccessible local minima
(Dine and Seiberg, 1985). Indeed, this potential catastro-
phe was looming over string theory until the beginning
of this century, when a new ingredient known as “fluxes”
was discovered by Bousso and Polchinski (2000). This
gave good reasons to believe that the potential can in-
deed have controllable local minima, and that the num-
ber of minima (often referred to as “string vacua”) is
huge: an estimate of 10500 given by Douglas (2004a) is
leading a life of its own in the literature. These minima
are not expected to be absolutely stable; a lifetime of
about 14× 109 years is sufficient.

This ensemble has been given the suggestive name “the

Landscape of String Theory”. Our universe would corre-
spond to one of the minima of the potential. The min-
ima are sampled by means of tunneling processes from an
eternally inflating de Sitter (dS) space (Linde, 1986a). If
this process continues eternally, if all vacua are sampled
and if our universe is one of them (three big IF’s that
require more discussion), then this provides a concrete
setting in which anthropic reasoning is not only mean-
ingful, but inevitable.

This marks a complete reversal of the initial expecta-
tions of string theory, and is still far from being univer-
sally accepted or formally established. Perhaps it will
just turn out to be a concept that forced us to rethink
our expectations about the fundamental theory. But a
more optimistic attitude is that we have in fact reached
the initial phase of the discovery of that theory.

The landscape also provided a concrete realization of
an old idea regarding the value of the cosmological con-
stant Λ, which is smaller by more than 120 orders of
magnitude than its naive size in Planckian units. If Λ
varies over the multiverse, then its smallness is explained
at least in part by the fact that for most of its values
life would not exist. The latter statement is not debat-
able. What can be debated is if Λ does indeed vary, what
the allowed values are and if anthropic arguments can be
made sufficiently precise to determine its value. The an-
thropic argument, already noted by various authors, was
sharpened by Weinberg (1987). It got little attention for
more than a decade, because Λ was believed to be exactly
zero and because a physical mechanism allowing the re-
quired variation of Λ was missing. In the string theory
landscape the allowed values of Λ form a “discretuum”
that is sufficiently dense to accommodate the observed
small value.

This gave a huge boost to the Landscape hypothesis
in the beginning of this millennium, and led to an explo-
sion of papers in a remarkably broad range of scientific
areas: string theory, particle physics, nuclear physics,
astrophysics, cosmology, chemistry, biology and geology,
numerous areas in mathematics, even history and philos-
ophy, not to mention theology. It is impossible to cover
all of this in this review. It is not easy to draw a line,
but on the rapidly inflating publication landscape we will
use a measure that has its peak at the interface of the
Standard Model and String Theory.

An important topic which will not be covered are
the various possible realizations of the multiverse. Es-
pecially in popular accounts, notions like “pocket uni-
verses”, “parallel universes”, “the many-world interpre-
tation of quantum mechanics”, the string landscape and
others are often uncritically jumbled together. They are
not mutually exclusive, but do not all require each other.
For example, the first three do not require variations
in the laws of physics, and in particular the Standard
Model.

To conclude this introduction we provide a brief list
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of popular books and reviews covering various points of
view. The anthropic string theory landscape is beau-
tifully explained in Susskind (2005). Another excellent
popular book is Vilenkin (2006a). A very readable ac-
count of anthropic reasoning in cosmology is Rees (1999).
The classic book on the anthropic principle in cosmo-
logy is Barrow and Tipler (1986), a mixture of historical,
technical, philosophical and controversial material, that
however can hardly be called “popular”.

Precursors of the present review are Hogan (2000) and
Douglas and Kachru (2007). The point of view of the
author is presented more provocatively in Schellekens
(2008). A very accessible review of the cosmological con-
stant problem and the Bousso-Polchinski mechanism is
presented in Bousso (2008) and Polchinski (2006). The
book “Universe or Multiverse” (Carr, 2007) is an inter-
esting collection of various thoughts on this subject.

But there is also strong opposition to the landscape,
the multiverse and the anthropic principle. One of the
earliest works to recognize the emergent string theory
landscape as well as the fine-tunings in our universe is
Smolin (1999), but the author firmly rejects anthropic
arguments. The very existence of fine-tuning is denied
in Stenger (2011) (see however Barnes (2012) for a de-
tailed criticism, and an excellent review). The existence
of the string theory landscape, as well as the validity
of anthropic arguments is called into question by Banks
(2012), which is especially noteworthy because the au-
thor pioneered some of the underlying ideas.

II. THE STANDARD MODEL

Despite its modest name (which we will capitalize to
compensate the modesty a little bit), the Standard Model
is one of the greatest successes in the history of science. It
provides an amazingly accurate description of the three
non-gravitational interactions we know: the strong, elec-
tromagnetic and weak interactions. It successes range
from the almost 10-digit accuracy of the anomalous mag-
netic moment of the electron to the stunningly precise de-
scription of a large number of high energy processes cur-
rently being measured at the LHC at CERN, and prior
to that at the Tevatron at Fermilab, and many other ac-
celerators around the world. Its success was crowned on
July 4, 2012, with the announcement of the discovery of
the Higgs boson at CERN, the last particle that was still
missing. But this success has generated somewhat mixed
reactions. In addition to the understandable euphoria,
there are clear overtones of disappointment. Many parti-
cle physicists hoped to see the first signs of failure of the
Standard Model. A few would even have preferred not
finding the Higgs boson.

This desire for failure on the brink of success can be
explained in part by the hope of simply discovering some-
thing new and exciting, something that requires new the-

ories and justifies further experiments. But there is an-
other reason. Most particle physicists are not satisfied
with the Standard Model because it is based on a large
number of seemingly ad hoc choices. Below we will enu-
merate them.

We start with the “classic” Standard Model, the ver-
sion without neutrino masses and right-handed neutri-
nos. In its most basic form it fits on a T-shirt, a very
popular item in the CERN gift shop these days. Its La-
grangian density is given by

L = −1

4
FµνF

µν

+ iψ̄ /Dψ + conjugate

+ ψ̄iYijψjφ+ conjugate

+ |Dµφ|2 − V (φ) .

(2.1)

In this form it looks barely simple enough to be called
“elegant”, and furthermore many details are hidden by
the notation.

a. Gauge group. The first line is a short-hand notation
for the kinetic terms of the twelve gauge bosons, and
their self-interactions. One recognizes the expression fa-
miliar from electrodynamics. There is an implicit sum
over eleven additional gauge bosons, eight of which are
the gluons that mediate the strong interactions between
the quarks, and three more that are responsible for the
weak interactions. The twelve bosons are in one-to-
one correspondence with the generators of a Lie alge-
bra, which is SU(3)× SU(2)× U(1), usually referred to
as the Standard Model “gauge group”, although strictly
speaking we only know the algebra, not the global group
realization. The generators of that Lie algebra satisfy
commutation relations

[
T a, T b

]
= ifabcT c, and the real

and fully anti-symmetric (in a suitable basis) constants
fabc specify the coupling of the gauge bosons labeled a, b
and c to each other. Hence the SU(3) vector bosons
(the gluons) self-interact, as do the three SU(2) vector
bosons. The field strength tensors F aµν have the form

F aµν = ∂µA
a
ν−∂νAaµ+gfabcAbµA

c
ν , where g is the coupling

constant. There are tree such constants in the Standard
Model, one for each factor in the gauge group. The will
be denoted as g3, g2 g1. The coupling constant g1 of the
abelian factor does not appear yet, because so far there
is nothing the U(1) couples to. Nothing in the formula-
tion of the Standard Model fixes the choice of the gauge
group (any compact Lie algebra can be used) or the val-
ues of the coupling constants. All of that information is
experimental input.

b. Fermions. The second line displays, in a short-hand
notation, all kinetic terms of the fermions, the quarks and
leptons, and their coupling to the twelve gauge bosons.
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These couplings are obtained by minimal substitution,
and are encoded in terms of the covariant derivatives Dµ

Dµ = ∂µ − igiT aAaµ (2.2)

where Aaµ is the vector field, and T a is a unitary SU(3)×
SU(2) × U(1) representation matrix, and gi is the rele-
vant coupling constant, depending on the label a. Rep-
resentations of this Lie algebra are combinations of rep-
resentations of the factors, and hence the choice can be
parametrized as (r, `, q), where r is an irreducible repre-
sentation of SU(3), ` is a non-negative half-integer in-
dicating an SU(2) representation, and q is a real num-
ber. If we write all fermions in terms of left-handed Weyl
fermions, as is always possible, the fermion representa-
tion of the Standard Model is

(3,2,
1

6
) + (3,1,−2

3
) + (3,1,

1

3
) + (1,2,−1

2
) + (1,1, 1)

This repeats three times for no known reason. These
sets are called “families”. There is no theoretical reason
why this particular combination of representations is the
one we observe, but there is an important restriction on
the fermions from anomaly cancellation. This condition
arises from triangle Feynman diagrams with three ex-
ternal gauge bosons or two gravitons and a gauge boson,
with a parity violating (γ5) coupling of at least one of the
fermions. These amplitudes violate gauge invariance, un-
less their group-theory factors cancel. This requires four
cubic and one linear trace over the gauge group genera-
tors to vanish. This makes the structure of a single family
a bit less arbitrary than it may seem at first sight, but
still leaves an infinity of other possibilities.

The first two lines are nearly completely fixed by sym-
metries and depend only on the discrete choices of gauge
group and representations, plus the numerical value of
the three real coupling constants.

c. Yukawa Couplings. The third line introduces a new
field φ, a complex Lorentz scalar coupled to the gauge
group as (1, 2, 1

2 ), another choice dictated by observation,
and not by fundamental physics. This line consists of all
terms allowed by the gauge symmetry, with an arbitrary
complex coefficient Yij , the Yukawa coupling, for each
term. The allowed couplings constitute three complex
3 × 3 matrices, for a total of 54 parameters (not all of
which are observable, see below).

d. Scalar Bosons. The last line specifies the kinetic terms
of the scalar boson, with a minimal coupling to the gauge
bosons. The last term is a potential, a function of φ. This
potential has the form

V (φ) =
1

2
µ2φ∗φ+

1

4
λ(φ∗φ)2. (2.3)

This introduces two more real parameters. Despite the
misleading notation, µ2 is just an arbitrary real number,
which can have either sign. In the Standard Model it is
assumed to have a negative value, and once again this is
a choice that is not dictated by any principle. Because of
the sign, the potential takes the shape of Mexican hat,
and the minimum occurs for a non-zero value of φ, and
has the topology of a sphere in four dimensions.

e. The Higgs Mechanism. The experimentally observed
form of the Standard Model is obtained by picking an
arbitrary point (the choice does not affect the outcome)
on the sphere and expanding φ around it. After this
expansion, the Standard Model Lagrangian takes a con-
siderably more complicated form, which occupies several
pages, but everything on those pages is full determined by
all the discrete and continuous choices mentioned above.
if we ignore the gauge couplings the three modes of the
variation of φ along the sphere appear in the spectrum as
massless Goldstone bosons. But if we take the gauge cou-
plings into account, three of the twelve gauge bosons ac-
quire a mass by using the three Goldstone bosons as lon-
gitudinal components. These are the W± and Z bosons
with masses 80.4 and 91.2 GeV that mediate the weak
interactions. The one remaining mode of the φ field ap-
pears in the spectrum as a massive real boson with mass√
−2µ2, the famous Higgs boson that has now finally

been discovered, and has a mass of about 126 GeV. The
eight gluons remain massless, as does a linear combi-
nation of the original U(1) vector boson (usually called
“Y ”) and a generator of SU(2). This linear combination
is the photon. The Yukawa couplings, combined with
the Higgs vev, produce mass matrices for the quarks and
charged leptons. These can be diagonalized by unitary
rotations of the fermion fields. In the end, only 13 of the
original 54 parameters are observable, 6 quark masses, 3
charged lepton masses and 4 mixing angles [the Cabibbo-
Kobayashi-Maskawa (CKM) matrix] which appear in the
coupling of the W bosons to the charge 2

3 quarks and the
charge − 1

3 quarks.

f. The CKM matrix. The CKM matrix is obtained by
diagonalizing two complex matrices, the up-quark mass
matrix Mu and the down-quark mass matrix Md, which
are the product of the corresponding Yukawa coupling
matrices and the Higgs vev v:

Du = U†LMuUR; Dd = V †LMdVR; UCKM = U†LVL (2.4)

where Du and Dd are real, positive diagonal matrices.
For three families, UCKM can be parametrized by three
angles and a phase. It turns out to be nearly diagonal,
which presumably is an important clue. An often used
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approximate parametrization is

UCKM ≈

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


where λ = 0.226, and corrections of order λ4 have been
ignored. For values of the other parameters see Beringer
et al. (2012). They will not matter in the rest of this
review, because the current state of the art does not go
beyond getting the leading terms up to factors of order
1, especially the hierarchy of the three mixing angles,
θ12 = λ, θ23 ∝ λ2 and θ13 ∝ λ3. The degree of non-
reality of the matrix can be expressed in terms of the
Jarlskog invariant J , which is defined as

Im
[
VijVklV

∗
ilV
∗
kj

]
= J

∑
m,n

εikmεjln . (2.5)

This is a very small number: J ≈ 3× 10−5.

g. Quark and Lepton masses. The values of the quark and
lepton masses, in GeV, are listed below. See Beringer
et al. (2012) for errors and definitions.

u, c, t d, s, b e, µ, τ
0.0023 0.0048 0.000511
1.275 0.095 0.105

173.5 4.5 1.777

The masses and hierarchies are not explained within the
Standard Model; they are simply put in by means of the
Yukawa coupling matrices.

h. The number of parameters. We now have a total of 18
observable parameters, which have now finally all been
measured. From the measured values of the W± and Z
masses and the electromagnetic coupling constant e we
can compute g1 = (MZ/MW )e, g2 = MZ/(

√
M2
Z −M2

W )
and the vacuum expectation value v of the scalar φ, using
MW = 1

2g2v. This vacuum expectation value is related

to the parameters in the potential as v = 2
√
−µ2/λ, and

has a value of about 246 GeV. The Higgs mass determines
µ2, and hence now we also know λ.

i. CP violating terms. There is, however, one more di-
mensionless parameter that does not appear on the T-
shirt. One can consistently add a term of the form

θ
g2

3

32π2

8∑
a=1

F aµνF
a
ρσε

µνρσ . (2.6)

where the sum is over the eight generators of SU(3). This
term is allowed by all gauge symmetries, but forbidden

by P and CP . Neither is a symmetry of nature, how-
ever, and hence they cannot be invoked here. The pa-
rameter θ, an angle with values between 0 and 2π, is not
an observable by itself. By making suitable phase rota-
tions of the fermions its value can be changed, but then
these phase rotations end up in the mass-matrices of the
quarks. In the end, this leads to one new physical param-
eter, θ̄ = θ−arg det (MuMd), where Mu and Md are the
quark mass matrices. A non-zero value for this parameter
would produce a non-zero dipole moment for the neutron
and certain nuclei, which so far has not been observed.
This puts an upper limit on θ̄ of about 10−10. Note that
one could also introduce a similar term for the SU(2) and
U(1) gauge groups, with parameters θ2 and θ1. However
θ1 is not observable, because in an abelian theory (2.6)
is a total derivative of a gauge-invariant operator. In
non-abelian gauge theories such terms are total deriva-
tives of operators that are not gauge invariants, and that
can be changed by non-perturbative effects (instantons).
The CP violating parameter θ2 of SU(2) can be set to
zero by means of baryon number phase rotations, using
the anomaly of baryon number with respect to SU(2).
This works provided baryon number is not broken by
anything else than that anomaly. If there are explicit
baryon number violating terms, θ2 might be observable
in baryon number violating processes, but no such pro-
cesses have been seen so far, and – by definition – the
Standard Model does not contain such terms. Hence it is
unlikely that θ2 will ever be observed, and in any case we
would be beyond the Standard Model already. There-
fore we get only one extra parameter, θ̄, bringing the
total to 19. Just as with all the other parameters, the
Standard Model does not fix its value.

j. Renormalizability. The 19 parameters were obtained
by writing down all interactions allowed by the symmetry
with a mass dimension less than or equal to 4. Without
this restriction, infinitely many terms could be added to
(2.1), such as four-fermion interactions or polynomials in
(φ∗φ). Any such term defines a new mass scale, and we
can consistently “decouple” these terms by sending these
mass scales to infinity.

Such terms are sometimes called irrelevant operators.
Conversely, the presence of any such term requires, for
quantum consistency, the presence of infinitely many oth-
ers. In this sense there is, for example, no arbitrariness in
limiting the scalar potential to terms of at most order four
in φ; this is a consequence of the consistent assumption
that there no negative dimension terms. The correct-
ness of this assumption is under permanent experimen-
tal scrutiny. For example, compositeness of a Standard
Model particle would manifest itself through operators
with dimension larger than 4. For many such operators,
the lower limit on the mass scale are now around 1 TeV.

Virtual process in quantum field theory make all phys-
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ical quantities depend, in principle, on all unknown
physics. Loops of particles in Feynman diagrams depend
on arbitrarily large momenta, and are therefore sensi-
tive to arbitrarily short distances. Furthermore, all par-
ticles, including those that have not been discovered yet,
are pair-produced. It might appear that this inhibits
any possibility for making predictions. But in quantum
field theories with only non-negative dimension opera-
tors, such as the Standard Model, this problem is solved
by lumping all unknowns together in just a finite number
of combinations, corresponding precisely to the parame-
ters in the Lagrangian. Since they encapsulate unknown
physics, the values of those parameters are fundamen-
tally unknown: they can only be measured. But a finite
number of measurements produces an unlimited amount
of predictive power. Furthermore this is not just true for
the precise values of the Standard Model parameters we
measure, but also for other parameter values. A quan-
tum field theory with twice the observed electron mass is
equally consistent as the Standard Model.

This property is called “renormalizability”. In the
seventies of last century this was treated as a fundamen-
tal principle of nature, but it has lost some status since
then. It is now more common to say that the Standard
Model is just an effective field theory.

As soon as evidence for a new term with dimension
larger than four is found this will define a limiting mass
scale Mnew (where “new” stands for new physics). All
computations would be off by unknown contributions of
order Q/Mnew, where Q is the mass scale of the process
of interest. Since such new terms can be expected to exist
on many grounds, including ultimately quantum gravity
(with a scale Mnew = MPlanck), the Standard Model is
just an effective field theory valid up to some energy scale.

k. Running couplings. As a direct consequence of the
renormalization procedure, the values of the constants in
the Lagrangian depend on the energy scale at which they
are measured. In the simplest case, the loop corrections
to a gauge coupling constant have the form

g(Q) = g + β0g
3log(Q/Λ) + higher order . . . , (2.7)

where g is the coupling constant appearing in the La-
grangian, and Λ is a manually introduced ultraviolet
cutoff of a momentum integral. We may use g(Q) as
the physical coupling constant to be compared to exper-
imental results at a scale Q. This then removes the de-
pendence on Λ in all physical quantities to this order.
But if we had used instead a different scale Q′ we would
have measured a different value for the coupling constant,
g(Q′). The value of g(Q′) can be expressed in terms of
g(Q) using Eq. (2.7), and involves a term β0log(Q/Q′).
One can do better than this and sum up the leading con-
tributions (“leading logs”) of Feynman diagrams of any

order in the loop expansion. This leads to the renormal-
ization group equations, with a generic form

dgi(t)

dt
= β(gi(t)) , (2.8)

where β is a polynomial in all parameters in the La-
grangian. Here t = log(Q/Q0), where Q0 is some ref-
erence scale.

These equations can be solved numerically and some-
times exactly to determine how the parameters in the La-
grangian evolve with energy. Of particular interest is the
question how the parameters evolve if we increase Q to
energies beyond those explored by current experiments.
In many quantum field theories, this has disastrous con-
sequences. Typically, these functions have poles (“Lan-
dau poles”) where couplings go to infinity and we loose
perturbative control over the theory. A famous exception
are non-abelian gauge theories, such as QCD, with not
too much matter. In these theories the leading parame-
ter, β0, is negative and the coupling approaches zero in
the ultraviolet. In that case there is a Landau pole in the
infrared, so that we loose perturbative control there. In
QCD, the energy scale where that happens is the QCD
scale.

The loss of perturbative control in the infrared limit
can usually be remedied by means of a non-perturbative
definition of the action using discretised space-times (lat-
tices), as is indeed the case for QCD. But the loss of
perturbative control in the ultraviolet limit cannot be
handled by methods that can be deduced from known
physics. This requires unknown, new physics.

Note that not only the dimensionless parameters
change logarithmically with Q, but also the parameter µ2

in the Higgs potential, even though Eq. (2.7 ) looks dif-
ferent in this case: there are additional divergent contri-
butions proportional to Λ2. This implies that µ2 may get
quantum contributions many orders of magnitude larger
than its observed value, but this by itself does not in-
validate the Standard Model, nor its extrapolation. The
parameter µ2 is a renormalized input parameter, just as
all others.

l. Range of validity. Now that we finally know all Stan-
dard Model couplings including the Higgs self-coupling λ
we can see what happens to them if we assume that there
is nothing but the Standard Model. It turns out that un-
til we reach the Planck scale they all remain finite; all
Landau poles are beyond the Planck scale.

Note that not only the dimensionless parameters
change logarithmically with Q, but also the parameter
µ2 in the Higgs potential, even though Eq. (2.7) looks
different in this case: there are additional divergent con-
tributions proportional to Λ2. This implies that µ2 may
get quantum contributions that are many orders of mag-
nitude larger than its observed value. But this by itself
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does not invalidate the Standard Model, nor its extrapo-
lation: the parameter µ2 is a renormalized input param-
eter, just as all others.

This is a remarkable fact. If there would be a Landau
pole, the Standard Model would predict its own downfall.
Surely, new physics would then be needed to regain com-
putational control. In the present situation, the Standard
Model is not only mathematically complete, but it also
remains valid until the Planck scale, leaving us rather
clueless about new physics. Note that a randomly cho-
sen quantum field theory would not necessarily have that
range of validity, but that does not yet make it invalid
as alternative laws of physics in different universes. All
that is required is that new physics can be introduced
that can remove the singular behavior and that this new
physics is sufficiently decoupled from low energy physics.

m. The stability bound. The current value of the Higgs
mass, and the corresponding value of λ does have a
slightly worrisome consequence. The self-coupling λ de-
creases and may become negative. If and where where
that happens depends rather sensitively on the top quark
mass and the QCD coupling constant αs = g2

3/4π, and
can be anywhere from about 1011 GeV to MPlanck. A
negative value for λ in (2.3) looks catastrophic, since it
would appear to make the potential unbounded from be-
low, if probed at high energies. But that is too naive.
First of all, in the real world, including quantum grav-
ity, their will be higher order terms in the potential of
order (φφ∗)n/(MPlanck)n−2, and secondly even in the ab-
sence of gravity one should consider the behavior of the
complete potential at high energy, and not just evolve
λ. This requires the computation of the effective poten-
tial, and is discussed in detail in Sher (1989). It turns
out that what really happens is that the potential ac-
quires a “false vacuum”, a new global minimum below
the one of the Standard Model. This is not a problem,
provided the tunneling amplitude towards that vacuum is
sufficiently small to yield a lifetime of our vacuum larger
than 13.8×109 years. Furthermore there must be a non-
vanishing probability that we ended up and stayed in our
vacuum, and not in the false vacuum, during the early
stages of the universe. Note that even if the probability
is small this does not really matter, because the false vac-
uum has a very large Higgs vev and therefore is unlikely
to allow life. The implications of the Higgs mass on the
stability of the vacuum are illustrated in (Degrassi et al.,
2012; Ellis et al., 2009). Especially figure 5 in the lat-
ter paper shows in a fascinating way where the Standard
Model is located relative to the regions of (meta)stability.
The stability bound can be avoided in a very easy way by
adding a weakly coupled singlet scalar (Lebedev, 2012).
Since we cannot distinguish this modification from the
Standard Model at low energies, in this sense the Stan-

dard Model can be extrapolated to the Planck scale even
without encountering stability problems. Furthermore,
it has been argued that the current data also allow the
interpretation that the Higgs coupling is running to the
value zero at the Planck scale (Bezrukov et al., 2012),
with entirely different implications. Note that, contrary
to some beliefs, vacuum stability is not automatic in bro-
ken supersymmetric theories (Abel et al., 2008).

n. Neutrino masses. The observation of neutrino oscilla-
tions implies that the “classic” Standard Model needs to
be modified, because at least two neutrinos must have
masses. Only squares of mass differences can be deter-
mined from these experiments. They are

∆m2
21 = (7.5± 0.2)× 10−5 eV2

|∆m2
23| = (2.3± 0.1)× 10−3 eV2

In principle, neutrinos could be nearly degenerate in mass
with minute differences, but from various cosmological
observations we know that the sum of their masses must
be less than about half an eV (see de Putter et al. (2012)
for a recent update). The masses can have a normal
hierarchy, m1 < m2 � m3 or an inverted hierarchy,
m3 � m1 < m2. They are labeled 1, 2, and 3 according
to their νe fraction, in descending order.

The simplest way of accommodating neutrino masses is
to add N fermions ψS that are Standard Model singlets1.
The numberN is not limited by anomaly constraints, and
in particular does not have to be three. To explain the
data one needs N ≥ 2, but N = 2 looks inelegant. Better
motivated options are N = 3, for right-handed neutrinos
as part of families, as in SO(10)-related GUTs, orN � 3,
in string models with an abundance of singlets.

As soon as singlets are introduced, not only Dirac, but
also Majorana masses are allowed (and hence perhaps
obligatory). The most general expression for couplings
and masses is then (omitting spinor matrices)

Lν =

3∑
i=1

N∑
a=1

ψ̄iνLYiaψ
a
S +

N∑
ab

Mabψ
a
Sψ

b
S . (2.9)

The first term combines the three left-handed neutrino
component with three (or two) linear combinations of sin-
glets into a Dirac mass m, and the second term provides a
Majorana mass matrix M for the singlets. This gives rise
to a six-by-six neutrino mass matrix with three-by-three
blocks, of the form

Mν =

(
0 m
m M

)
(2.10)

1 One may give Majorana masses to the left-handed neutrinos
without introducing extra degrees of freedom, but this requires
adding non-renormalizable operators or additional Higgses.
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The mass scale ofM is not related to any other Standard
Model scale and is usually assumed to be large. In the
approximation m � M one gets three light neutrinos
with masses of order m2/M and N heavy ones. This is
called the see-saw mechanism. It gives a very natural
explanation for the smallness of neutrino masses (which
are more than eight orders of magnitude smaller than
the muon mass) without unpalatable side-effects. The
optimal value of the Majorana mass scale is debatable,
and can range from 1011 to 1016 GeV depending on what
one assumes about “typical” lepton Dirac masses.

If we assume N ≥ 3 and discard the parameters of
the heavy sector, which cannot be seen in low-energy
neutrino physics, this adds nine parameters to the Stan-
dard Model: three light neutrino masses, four CKM-
like mixing angles and two additional phases that cannot
be rotated away because of the Majorana nature of the
fermions. This brings the total number of parameters
to 28. However, as long as the only information about
masses is from oscillations, the two extra phases and the
absolute mass cannot be measured.

The current values for the mixing angles are

sin2(2θ12) = 0.857± 0.024

sin2(2θ23) > 0.95

sin2(2θ13) = 0.09± 0.01

Note that the lepton mixing angles, are not all small,
unlike the CKM angles for quarks. The fact that θ13 6= 0
is known only since 2012, and implies that the CKM-like
phase of the neutrino mixing matrix is measurable, in
principle. This also rules out the once popular idea of
tri-bi maximal mixing (Harrison et al., 2002), removing
a possible hint at an underlying symmetry.

It is also possible to obtain massive neutrinos with-
out adding new degrees of freedom to the classic Stan-
dard Model, by adding an irrelevant operator (Weinberg,
1980)

1

M
(φψL)TC(φψL) (2.11)

where ψL denotes the Standard Model lepton doublets
(1, 2,− 1

2 ). This gives rise to neutrino masses of order
v2/M , where v is the Higgs vev of 246 GeV, so that
M must be of order 1014 GeV to get a neutrino mass
of order 1 eV. An operator of this form is generated if
one integrates out the massive neutrinos of the see saw
mechanism, but it might also have a different origin. Just
as a direct Majorana mass, this operator violates lepton
number.

One cannot detect the presence of any of these lep-
ton number violating terms with only neutrino oscillation
experiments, not even using the two extra phases in the
mixing matrix (Bilenky et al., 1980; Doi et al., 1981; Lan-
gacker et al., 1987). Experiments are underway to detect
lepton number violation (via neutrinoless double beta de-
cay) and to observe neutrino masses directly (by studying

the endpoint of the β-decay spectrum of tritium), so that
we would know more than just their differences.

In the rest of this paper the term “Standard Model”
refers to the classic Standard Model plus some mecha-
nism to provide the required neutrino mass differences.
Since the classic Standard Model is experimentally ruled
out, it is inconvenient to insist strictly on the old def-
inition and reserve the name “Standard Model” for it.

III. ANTHROPIC LANDSCAPES

The idea that our own existence might bias our obser-
vations has never been popular in modern science, but
especially during the last forty years a number of intrigu-
ing facts have led scientists from several areas of particle
physics, astrophysics and cosmology in that direction, of-
ten with palpable reluctance. Examples are Dirac’s large
number hypothesis in astrophysics (Carr and Rees, 1979;
Carter, 1974), chaotic inflation (Linde, 1986b), quan-
tum cosmology (Vilenkin, 1986), the cosmological con-
stant (Barrow and Tipler, 1986; Davies and Unwin, 1981;
Weinberg, 1987), the weak scale in the Standard Model
(Agrawal et al., 1998b), quark and lepton masses in the
Standard Model (Hogan, 2000), the Standard Model in
string theory (Schellekens, 1998) and the cosmological
constant in string theory (Bousso and Polchinski, 2000;
Susskind, 2003).

This sort of reasoning goes by the generic name “An-
thropic Principle” (Carter, 1974), which will be referred
to as “AP” henceforth. Hints at anthropic reasoning can
already be found much earlier in the history of science
and philosophy. An extensive historical overview can be
found in Barrow and Tipler (1986) and Bettini (2004).
In modern science the AP first started making its ap-
pearance in astrophysics and cosmology, in the seventies
of last century. At that time, particle physicist were just
moving out of fog of nuclear and hadronic physics into the
bright new area of the Standard Model. In 1975 Grand
Unified Theories were discovered, and it looked like a
realization of the ultimate dream of a unique theory of
everything was just around the corner.

In 1984 string theory re-entered the scene (which it
had occupied before as a theory of hadrons) as a promis-
ing theory of all interactions, including gravity. Within
months, everything seemed to fall into place. Grand Uni-
fied Theories emerged almost automatically, as a conse-
quence of just a few consistency conditions, which seemed
to allow very few solutions. At that time, nobody in this
field had any interest in anthropic ideas. They were di-
ametrically opposite to what string theory seemed to be
suggesting. It still took almost two decades before the
“A-word” made its appearance in the string theory lit-
erature, and even today mentioning it requires extensive
apologies.
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The name “anthropic principle” does not really help
its popularity, and is doubly unfortunate. The word
“anthropic” suggests that human beings are essential,
whereas we should really consider any kind of observer.
If observers exist in any universe, then our existence is
not a bias. Furthermore the name suggests a principle
of nature. Indeed in some forms of the AP – but not
the one considered here – it is an additional principle of
nature. However, it is pointless to try and change the
name. This is what it is called.

There exist many different formulations of the AP,
ranging from tautological to just plain ridiculous. See
Barrow and Tipler (1986) for a discussion of many of
these ideas. We will avoid old terms like “weak” and
“strong anthropic principle” because historically they
have been used with different meanings in different con-
texts, and tend to lead to confusion. In the present con-
text, the AP is merely a consequence of the true princi-
ples of nature, the ones we already know and the ones
we still hope to discover, embodied in some fundamental
theory. Discovering those underlying laws of physics is
the real goal. We assume that those laws do not contain
any statements regarding “life” and “intelligence”. This
assumption is an important fork in the road, and making
a different choice here leads to an entirely different class
of ideas. This assumption may be wrong. Some people
point, for example, to the importance of the rôle of ob-
servers in the formulation of quantum mechanics, or to
the poorly understood notion of “consciousness” as pos-
sible counter indications (see e.g. Linde (2002) for an –
inconclusive – discussion).

In the rest of this review, the term AP is used in
the following sense. We assume a multiverse, with some
physical mechanism for producing new universes. In this
process, a (presumably large) number of options for the
laws of physics is sampled. The possibilities for these
laws are described by some fundamental theory; they are
“solutions” to some “equations”. Furthermore we as-
sume that we are able to conclude that some other sets
of mathematically allowed laws of physics do not allow
the existence of observers, by any reasonable definition
of the latter (and one can indeed argue about that, see
for example Gleiser (2010)).

This would be a rather abstract discussion if we had
no clue what such a fundamental theory might look like.
But fortunately there exists a rather concrete idea that,
at the very least, can be used as a guiding principle: the
String Theory Landscape described in the introduction.
The rest of this section does not depend on the details of
the string landscape, except that at one point we will as-
sume discreteness. However, the existence of some kind
of landscape in some fundamental theory is a prerequi-
site. Without that, all anthropic arguments lose there
scientific credibility.

A. What Can Be Varied?

In the anthropic literature many variations of our laws
of physics are considered. It has even been argued that
life depends crucially on the special physical properties of
water, which in its turn depend on the bond angle of the
two hydrogen atoms. But this angle is determined com-
pletely by thee-dimensional geometry plus computable
small corrections. It cannot be changed. There is no ver-
sion of chemistry where it is different. Often it is realized
years later that a variation is invalid, because the param-
eter value is fixed for some previously unknown funda-
mental reason. One also encounters statements like: we
vary parameter X, but we assume parameter Y is kept
fixed. But perhaps this is not allowed in a fundamental
theory. So what can we vary, and what should be kept
fixed?

In one case we can give a clear answer to these ques-
tions: we can vary the Standard Model within the do-
main of quantum field theory, provided we keep a range
of validity up to an energy scale well above the scale of
nuclear physics. Furthermore, we can vary anything, and
keep anything we want fixed. For any such variation we
have a quantum field theory that is equally good, theoret-
ically, as the Standard Model. For any such variation we
can try to investigate the conditions for life. We cannot
be equally confident about variations in the parameters
of cosmology (see section III.E.2).

Of course this does not mean that a more fundamen-
tal theory does not impose constraints on the Standard
Model parameters. The Standard Model is just an effec-
tive field theory that will break down somewhere, almost
certainly at the Planck scale and quite possibly well be-
fore that. The new physics at that scale may even fix
all parameters completely, as believers in the uniqueness
paradigm are hoping. Even then, as long as the scale of
new physics is sufficiently decoupled, it is legitimate and
meaningful to consider variations of the Standard Model
parameters.

Even though it is just an effective field theory, it goes
too far to say that the Standard Model is just the next nu-
clear physics. In nuclear physics the limiting, new physics
scale Mnew is within an order of magnitude of the scale
of nuclear physics. Computations in nuclear physics de-
pend on many parameters, such as coupling constants,
form factors and nucleon-nucleon potentials. These pa-
rameters are determined by fitting to data, as are the
Standard Model parameters. But unlike the Standard
Model parameters, they cannot be varied outside their
observed values, in any way that makes sense. There
is no theory of nuclear physics with twice the observed
pion-nucleon coupling, and anything else unchanged.

This difference is important in many cases of anthropic
reasoning. Some anthropic arguments start with unjusti-
fied variations of parameters of nuclear physics. If life
ceases to exist when we mutilate the laws of physics,
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nothing scientific can be concluded. The only admissi-
ble variations in nuclear physics are those that can be
derived from variations in the relevant Standard Model
parameters: the QCD scale ΛQCD, and the quark masses.

This raises an obvious question. If the Standard Model
is just an effective field theory, made obsolete one day by
some more fundamental theory, then why can we consider
variations in its parameters? What if the fundamental
theory fixes or constrains its parameters, just as QCD
does with nuclear physics? The answer is that the rele-
vant scale Q for anthropic arguments is that of chemistry
or nuclear physics. This is far below the limiting scale
Mnew, which is more than a TeV or so. New physics at
that scale is irrelevant for chemistry or nuclear physics.

If we ever find a fundamental theory that fixes the
quark and lepton masses, the anthropic argument will
still be valid, but starts playing a totally different rôle
in the discussion. It changes from an argument for ex-
pectations about fundamental physics to a profound and
disturbing puzzle. In the words of (Ellis, 2006a): “in this
case the Anthropic issue returns with a vengeance: (...)
Uniqueness of fundamental physics resolves the parame-
ter freedom only at the expense of creating an even deeper
mystery, with no way of resolution apparent.”

B. The Anthropocentric Trap

There is another serious fallacy one has to avoid: in-
correctly assuming that something is essential for life,
whereas it is only essential for our life. Any intelligent
civilization (either within our own universe or in an en-
tirely different one with different laws of physics) might
be puzzled about properties in their environment that
seem essential for their existence. But that does not im-
ply that life cannot exist under different circumstances.

Let us take this from one extreme to another, from ob-
vious fallacies to assumptions that are generally made in
anthropic arguments, but should be considered critically.

1. Humans are irrelevant

A tiny, instantaneous variation of the electron mass
by one part in a million would be fatal for us, even if
just one percent of the energy difference were converted
to heat. But it would clearly by nonsense to claim that
the electron mass is fine-tuned to one part in a million.
We evolved in these conditions, and would have evolved
equally well with a slightly different value of the electron
mass (note that even the word “evolved” already implies
an anthropocentric assumption). Our health is believed
to depend crucially on about twenty different elements,
but this not mean that all twenty are really needed. The
hormones produced by our thyroids contain iodine, but
it is easily imaginable that if no iodine were available in

our environment, evolution would have solved the prob-
lem in a different way. It is usually assumed that water
is required, but that may also be too anthropocentric.
This is even more true for the existence of DNA. It is
impossible for us to decide theoretically whether there
are other ways of encoding life, although this issue might
one day be solved with real data in our own universe, by
discovering different forms of life.

2. Overdesign and Exaggerated Claims

Another potential fallacy is to overlook the fact that
some features that are needed in principle are vastly
“overdesigned” in out universe: there is much more of
it then is really required anthropically. The formation
of our solar system and evolution require a certain de-
gree of smoothness in our environment, but there is no
reason why that should extend to the entire universe.
The proton has to be sufficiently stable, but it does not
have to live 1031 years; the anthropic limit is about 1020

years (below that decaying protons would produce too
much radiation). Biological processes need energy, but
that does not mean life requires stars employing nuclear
fusion. Only a fraction of about 10−9 of the sun’s energy
actually reaches the earth. Furthermore there is life in
deep oceans getting its energy from volcanic activity.

Indeed, perhaps one can imagine life in universes where
stars do not ignite, or where there are no nuclear fu-
sion reactions at all (Adams, 2008). With just gravity,
fermionic matter, photons and quantum mechanics one
can have radiating black holes, and various analogs of
white dwarfs and neutron stars, where the force of grav-
ity is balanced by degeneracy pressure (the Pauli Princi-
ple). These “stars” could radiate energy extracted from
infalling matter or electromagnetic annihilations.

Another important set of anthropic constraints comes
from abundances of some basic building blocks, like Car-
bon in our universe. But these do not have to be large
over the entire universe either. In our universe, the rel-
ative Carbon abundance produced by Big Bang Nucle-
osynthesis is only about 10−15. The Carbon in our uni-
verse must therefore have been produced in early stars.
Here one encounters the “Beryllium Bottleneck”: the fact
that there is no bound state of two α particles (8Be) ap-
peared to cripple carbon production in stars. Famously,
Hoyle predicted the existence of a resonance in the Car-
bon nucleus that would enhance the process, and indeed
this resonance was found.

This is often referred to as a successful anthropic pre-
diction, because Carbon is essential for our kind of life.
But it is in fact just a prediction based on the observed
abundance of some element. The puzzle would have been
equally big if an element irrelevant for life had an anoma-
lously high abundance. Indeed, Hoyle himself apparently
did not make the link between the abundance of Carbon
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and life until much later (see Kragh (2010) for a detailed
account of the history as well as the physics).

The current status of the Hoyle state and its implica-
tions will be summarized in section V.B.1.f. Based on
what we know we cannot claim that life is impossible
without this resonance. We do not know which element
abundances are required for life, nor do we know how they
vary over the Standard Model parameter space. Perhaps
there even exists a parameter region where 8Be is sta-
ble, and the beryllium bottleneck is absent (Higa et al.,
2008). This would turn the entire anthropic argument on
its head.

The abundance of Carbon in our own body, about 20%,
is several orders of magnitude larger than in our environ-
ment, demonstrating the possibility of chemical processes
to enhance abundances. If we discover that we live near
an optimum in parameter space, this would be a strong
indication of multiverse scanning (a unique theory is not
likely to land there), but as long as the maximum is broad
or other regions exist there is no need to over-dramatize.
Most observers will observe conditions that are most fa-
vorable to their existence.

3. Necessary Ingredients

On the other end of the anthropocentric scale one finds
requirements that are harder to argue with. Four dimen-
sions (three space and one time) may be required an-
thropically (see (Tegmark, 1997) and references therein).
The arguments include lack of stability of planetary or-
bits and atoms in more than three space dimensions, and
the topological triviality of less than three, which does
not allow the biological plumbing needed for the kind of
living organisms we know. These statements are obvi-
ously somewhat anthropocentric, but the differences are
radical enough to focus on four dimensions henceforth.

Fermionic matter and non-gravitational interactions
are undoubtedly needed. If we assume the validity
of quantum mechanics and special relativity and hence
quantum field theory, there are only a limit number of
possibilities. Interactions can be mediated by scalar or
vector bosons, and the latter can belong to abelian or
non-abelian gauge groups. It is hard to avoid the conclu-
sion that at least one abelian gauge interaction is needed,
like electrodynamics in our universe. Electrodynamic
provides a carrier of energy and information, a balancing
force in stars, and chemistry. Photons play a crucial rôle
during the early stages of cosmology. The existence of
repulsive and attractive forces and opposite charges al-
lows exact cancellation of the force among macroscopic
bodies, and all of this can work only if charges are con-
served. Scalars interactions are an unlikely candidate,
because they have none of these properties, and scalars
tend to be massive. Purely non-abelian interactions can-
not be ruled out so easily. They can have a complicated

phase diagram, and the only non-abelian gauge theory
we can study in our universe, QCD, may have an infinite
number of bound states (nuclei) if we switch off elec-
tromagnetism. Can there be life based on some purely
non-abelian gauge theory? With current knowledge we
cannot decide that.

In view of the difficulties in defining anthropic con-
straints some authors have proposed other criteria that
are under better control and still are a good “proxy”
for life. In particular, it seems plausible that the for-
mation of complex structures will always be accompa-
nied by entropy production in its environment, a crite-
rion that would certainly work in our own universe. This
“entropic principle” has led to some successes for cosmo-
logical parameters (Bousso and Harnik, 2010), but seems
less useful for the subtle details of the Standard Model
parameter space.

4. Other Potentially Habitable Universes

a. Purely electromagnetic universes? Going to extremes,
let us ignore the problem of abundances and energy
sources and focus only on the building blocks of life. We
need to assume some electromagnetic theory, simply be-
cause we know too little about anything else. So let us
restrict attention to universes with at least one massless
photon species. There must be charged particles, and
there are many choices for their charges. Presumably in
any fundamental theory the choices are rational only. A
sensible theory is widely expected to have both electric
and magnetic charges, and then Dirac quantization im-
plies rational charges; this is indeed expected to be true in
string theory. This still leaves us with a large number of
choices of electromagnetic theories. In the weak coupling
limit we could in principle work out the “atomic” spectra
in many cases and even say something about molecules.

We know one example which leads to observers: simply
take a set of particles with masses and charges equal to
those of the stable nuclei, and a world such as ours can
be built, with solid planets and living beings. We are
treating the nuclei here as fundamental point particles,
with spin 0 or 1

2 . Perhaps something in the chemistry
of life is sensitive to fine details such as nuclear struc-
ture or magnetic moments, which cannot be mocked up
with fundamental particles, and perhaps there are bot-
tlenecks in evolution that depend on such details, but
in the spirit of looking for the extremes we can not ex-
clude this. We cannot exclude life in universes with only
electromagnetism, with fundamental nuclei and electrons
whose abundances are due to some kind of baryogenesis,
and with stars radiating energy without nuclear fusion,
like white dwarfs or neutron stars (Adams, 2008). Per-
haps we do not need the strong and the weak interactions
at all! Furthermore, if this extreme possibility works for
our kind of fundamental nuclei, there is going to be a
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huge number of variations that work as well. We may
vary nuclear masses freely, changes charges, allow addi-
tional photons.

b. The weakless universe. A much more convincing case
can be made if only the weak interactions are eliminated
(Harnik et al., 2006). These authors made some clever
changes in the theory to mimic physics in our universe
as closely as possible. Then one can rely on our ex-
perience with conventional physics. In particular, the
strong interactions are still present to power stars in the
usual way. In our universe, the weak interactions provide
chiral gauge symmetries, that protect quark and lepton
masses and reduce the mass hierarchy to just one scale,
the weak scale. In the weakless universe only the u, d and
s quarks and the electron are kept, and are given small
Dirac masses (of order 10−23 in Planckian units; alterna-
tively, one may choose extremely small Yukawa couplings
and move the weak scale to the Planck scale).

In our universe, before electroweak freeze-out proton
and neutrons are in equilibrium because of weak interac-
tions. This leads to a computable Boltzmann suppressed
neutron to proton ratio n/p at freeze-out, that does not
depend on primordial quark abundances, and is the main
source of the observed Helium/Hydrogen ratio. Without
the weak interactions, the initial neutron to proton does
depend on the quark abundances produced in baryoge-
nesis. If the number of up quarks and down quarks is
the same, then n/p = 1, and conventional BBN will burn
all baryons into 4He by strong interactions only. In the
weakless universe, BBN can be made to produce the same
hydrogen to helium ratio as in our universe by adjusting
either the primordial quark abundances or the baryon-to-
photon ratio. In the later case one can get a substantially
larger deuterium abundance, and a surviving stable neu-
tron background contributing a fraction of about 10−4 to
the critical density.

The larger deuterium abundance comes in handy for
hydrogen burning in stars, because they cannot use the
weak process pp → De+ν, but can instead can work via
pD →3 Heγ. Despite very different stability properties of
nuclei, stellar nucleosynthesis to any relevant nuclei ap-
pears possible, and stars can burn long enough tot match
the billions of years needed for evolution in our universe
(although those stars have a significantly reduced lumi-
nosity in comparison to the sun).

Another obvious worry is the rôle of supernova explo-
sions. In our universe, stars can collapse to form neu-
trons stars. The neutrinos released in this weak interac-
tion process can blast the heavy nuclei formed in the star
into space. This process is not available in the weakless
universe. What is possible is a type-Ia supernova that
originates from accumulation by a white dwarf of ma-
terial from a companion. In this case the shock wave
is generated by nuclear fusion, and does not require the

weak interactions.
While this is a compelling scenario, there are still

many differences with our universe: no known mech-
anism for baryogenesis, different stellar dynamics and
stars with lower luminosity, a presumably far less effi-
cient process for spreading heavy elements, and the ab-
sence of plate tectonics and volcanism (driven by the core
of the earth, which is powered mostly by weak decays),
which the authors regard as “just a curiosity”. In the
weakless universe, after BBN one is left with a poten-
tially harmful (Cahn, 1996; Hogan, 2006) stable neutron
background. Clavelli and White (2006) pointed out that
material ejected from type-Ia supernova has a low oxygen
abundance. Since oxygen is the most abundant element
(by mass) in the earth’s crust and oceans and in the hu-
man body, this would seriously undermine the claim that
the weakless universe exactly mimics our own. However,
it certainly seems plausible that such a universe might
support some kind of life, although perhaps far less vig-
orously.

It is noteworthy that all differences would seem to di-
minish the chances of life. However, that may just be due
to a too anthropocentric way of looking at our own uni-
verse. Unfortunately our universe is the only one where
the required computations have been done completely, by
nature itself. In our own universe we may not know the
mechanism for baryogenesis, but at least we know that
such a mechanism must exist.

c. Other cosmologies Instead of changing the quantum
field theory parameters underlying our own universe, one
can also try to change cosmological parameters, such as
the baryon-to-photon ratio, the primordial density per-
turbations, the cosmological constant and the curvature
density parameter Ω. This was done by Aguirre (2001),
and also in this case regions in parameter space could be
identified where certain parameters differ by many orders
of magnitude, and yet some basic requirements of life are
unaffected. These cosmologies are based on the cold big
bang model.

d. Supersymmetric Universes. Of all the quantum field
theories we can write down, there is a special class that is
the hard to dismiss on purely theoretical grounds: super-
symmetric field theories. Any problem in quantum field
theory, and especially fine-tuning and stability problems,
are usually far less severe in supersymmetric theories. In
the string theory landscape, supersymmetric vacua are
the easiest ones to describe, and getting rid of supersym-
metry is a notoriously difficult problem. If we cannot rule
out supersymmetric theories on fundamental grounds, we
should find anthropic arguments against them.

Fortunately, that is easy. In supersymmetric theories
electrons are degenerate with scalars called selectrons.
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These scalars are not constrained by the Pauli principle
and would all fill up the s-wave of any atom (Cahn, 1996).
Chemistry and stability of matter (Dyson, 1967)(Lieb,
1990) would be lost. This looks sufficiently devastat-
ing, although complexity is not entirely absent in such a
world, and some authors have speculated about the pos-
sibility of life under these conditions, for entirely different
reasons, see e.g. (Banks, 2012; Clavelli, 2006).

Even if supersymmetric worlds are ruled out anthrop-
ically, there is still a measure problem to worry about.
Supersymmetric landscapes often have flat directions, so
that they form continuous ground states regions. If we
are aiming for a discrete landscape, as is the case in
the string theory landscape, the question naturally arises
why the continuous regions do not dominate the measure-
zero points by an infinite factor. In the string landscape,
the discreteness is related to local minima of a poten-
tial, and if one ends up anywhere in such a potential one
reaches one of the minima. Claiming that only the sur-
face area of the minima matters is therefore clearly too
naive. This should be discussed in its proper context, the
problem of defining a measure for eternal inflation.

C. Is Life Generic in QFT?

It may seem that we are heading towards the conclu-
sion that any quantum field theory (QFT) allows the ex-
istence of life and intelligence. Perhaps any complex sys-
tem will eventually develop self-awareness (Banks, 2012).
Even if that is true, it still requires sufficient complexity
in the underlying physics. But that is still not enough to
argue that all imaginable universes are on equal footing.
We can easily imagine a universe with just electromag-
netic interactions, and only particles of charge 0,±1,±2.
Even if the clouds of Hydrogen and Helium in such a
universe somehow develop self-awareness and even intel-
ligence, they will have little to be puzzled about in their
QFT environment. Their universe remains unchanged
over vast ranges of its parameters. There are no “an-
thropic” tunings to be amazed about. Perhaps, as argued
by Bradford (2011), fine tuning is an inevitable conse-
quence of complexity and hence any complexity-based
life will observe a fine-tuned environment. But this just
strengthens the argument that we live in a special place in
the space of all quantum field theories, unless one drops
the link between complexity and life. But if life can ex-
ist without complexity, that just begs the question why
the problem was solved in such a complicated way in our
universe.

If we put everything we know and everything we do not
know together, the picture that emerges is one of many
domains where life might exist, and many more where
it definitely does not. Presumably the habitable regions
are narrow in certain directions, and very elongated in
others. A cartoon version of such regions in part of QFT

FIG. 1 Habitable regions in QFT space. The gray circle rep-
resents the experimental bounds on the Standard Model. The
dots show the distribution of QFT points in a hypothetical
landscape.

space is shown in Fig. 1, with the gray circle showing
our own location and the experimental uncertainties.

This diagram represents two unrelated gedanken com-
putations (Schellekens, 2008). The contours are the re-
sult of the anthropic gedanken computation explained
above. The dots show the results of a very different one.
They represent points in QFT space obtained from some
fundamental theory, such as string theory. Here the im-
plicit assumption is made that such a theory will lead
to a discrete set of points. In this concrete setting, it is
clear that the two gedanken computations are completely
unrelated. The first one involves low-energy physics: nu-
clear and atomic physics and chemistry. The second one
involves geometry and topology of manifolds with mem-
branes and fluxes wrapped around them, and determin-
ing minima of potentials generated by all this structure.
We can actually do both kinds of computations only in
simple cases, but we know enough to conclude that it
would take a miracle for them to match each other, if
the second computation were to produce a unique an-
swer. The obvious way out is precisely what string theory
suggests: that there is not a single point, but a cloud of
points, covering a substantial part of the QFT parameter
space.

These contours are sharp lines in the case of parti-
cle physics thresholds, such as reactions that stop being
exothermic or stability of essential building blocks (al-
though there is usually a small transition region where
a particle is just stable enough). In other cases they
are more like contour lines of distributions. Most papers
make different assumptions about the definitions of these
lines (i.e. the necessary conditions for life), and consider
different slices through the parameter space.

Moving out of our own location, the first line we en-
counter is the end of our region. There our kind of life
ends, and we have to rely on speculation to know if other
kinds of life are possible. This happens for example if one
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of the crucial processes in the functioning of stars is shut
off. Other processes may take over, but stellar lifetimes
and/or heavy element abundances may differ by orders of
magnitude, and we cannot rely on experimental data to
be certain that such a universe will “work”. Beyond this
terra incognita (perhaps more appropriately called “no
man’s land”) there is usually another boundary where the
conditions become so adverse that any kind of complex-
ity can be ruled out. For a discussion along similar lines
see Hall and Nomura (2008). In the rest of this review
we shall not make this distinction over and over again,
and use the adjective “anthropic” rather loosely for any
parameter change that is likely to affect life, whether it
is our life or life in general.

Real plots of this kind can be found in many papers,
e.g. Agrawal et al. (1998b); Tegmark (1998); Hogan
(2000); Tegmark et al. (2006); Hellerman and Walcher
(2005); Graesser and Salem (2007); Hall and Nomura
(2008); Barr and Khan (2007); Jaffe et al. (2009); Elor
et al. (2010); and Barnes (2012).

Even without drawing further conclusions, it is simply
incredibly exciting to see where we are located on the
parameter space map, and to see the lines of minor and
major catastrophes surrounding us. It is a bit like seeing
our fragile planet in the vastness of space, on the first
Apollo 8 pictures. It is also a great way of appreciating
how our universe really works. If we do indeed under-
stand that, we should be able to change something and
work out the consequences.

Fig. 1 was deliberately drawn in this way to illustrate a
few fallacies that are perhaps blatantly obvious, but that
are nevertheless repeated incessantly in the literature.

• Anthropic reasoning will never completely deter-
mine the Standard Model. It is quite clear that
even in our own environment there are variations
that have no conceivable impact on life, such as the
τ mass. Furthermore, everything we know suggests
that there might very well exist other, disconnected
habitable regions, and even far in the foreseeable
future our technical abilities will be insufficient to
rule them out.

• Anthropic reasoning combined with a fundamen-
tal theory is not likely to determine the Standard
Model either. This would require the density of the
cloud to match the size of the anthropic region, in
such a way that precisely one point lands inside it.
That would be another miracle.

• There is no reason to expect the maximum of the
density distribution, even when folded with sam-
pling probabilities, to select our vacuum. Comput-
ing these maxima is another gedanken computation
that cannot be sensitive to the location of the do-
mains, the other gedanken computation.

• The gray region decreases monotonically with time.
Some people have tried to reduce arguments of this
kind to absurdity, by claiming that it leads to the
conclusion that the density of points would have
to increase as well, in order to have a chance of
getting one point inside the gray circle. But no
cloud of points is needed to explain the presence
of one point in the experimental domain. There is
no miracle here that requires such an explanation,
because the experimental domain is not determined
by a calculation.

• Bounds on parameters may disappear as others are
allowed to vary. Obviously the projection of the re-
gions on the axes cover essentially everything, but if
we intersect them with horizontal or vertical lines,
we get narrow bounds. But that this was going to
be true was obvious from the start. In the (me,mτ )
plane (keeping everything else fixed), the anthropic
domain is a extremely elongated along the mτ axis,
and narrow along the me axis. If for some rea-
son we decide that the fundamental parameters are
(me −mτ ) and (me +mτ ) we would conclude that
if the latter linear combination is kept fixed, the
former is tightly constrained. Then someone might
point out that if (me+mτ ) was also allowed to vary,
the bound goes away. People committing this obvi-
ous fallacy are apparently either assuming that an-
thropic arguments should constrain all parameters
to a small circle, or do not understand the notion
of small regions in more than one dimension.

If one can show that a parameter is anthropically con-
strained, keeping all others fixed, that is a tremendous
success. If one can do it while allowing others to vary,
that is an even bigger success. Only in cases where strong
claims are made about the actual value of a parameter
(especially that it must be small), it becomes really im-
portant to ask if the smallness is a consequence of fixing
other parameters.

There is one interesting exception to the third point,
namely if life in a universe somehow affects the sampling
probability of its offspring. This includes science fiction
ideas such as scientists making copies of their own uni-
verse in experiments. Another variant was proposed by
(Smolin, 1994), who argued that collapsing black holes
create new universes with slightly changed parameters,
and that universes that are optimized for black hole pro-
duction are also optimal for life. This would make the
maximum of black hole production a point of attraction
in a multiverse. But black holes are not a friendly en-
vironment for life, nor a suitable device for transferring
information. For further discussion see Rothman and El-
lis (1993); Barrow (2001); Vilenkin (2006b); and Smolin
(2006).

Note that any argument based on sampling probabili-
ties, such as the one mentioned above, needs a landscape
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of possibilities in the first place. Then the anthropic ge-
nie is already out of the bottle. In any situation where
the dots in Fig. 1 are sampled eternally, nothing else
is needed. Sampling probabilities, either determined by
fundamental physics or by life itself, may help explain our
location within the anthropic domain, but cannot help in
explaining why we are inside a domain. The anthropic
argument already explains that. Any second explanation
just creates a new mystery.

There exist numerous proposals for avoiding the an-
thropic principle even given the existence of a huge land-
scape, see for example (Bouhmadi-Lopez and Vargas Mo-
niz, 2007; Brustein and de Alwis, 2006; Firouzjahi et al.,
2004; Kawai and Okada, 2011; Kobakhidze and Mersini-
Houghton, 2007; Linde and Vanchurin, 2010), but they
tend to focus on one anthropic issue (in particular the
cosmological constant), and ignore all others. For the
cosmological constant, the value zero is a natural point
of attraction, and hence it is on quite general grounds not
too surprising that it can be singled out by some mecha-
nism. But this will not work for the more subtle, though
far less extreme tunings of the Standard Model, unless a
miracle happens.

D. Levels of Anthropic Reasoning

Even in the interpretation used in this review, one may
distinguish several versions of the AP:

1. AP0: A mere tautology.

2. AP1: An explanation for certain fine tunings.

3. AP2: A predictive method.

AP0: If the fundamental theory allows many universes
that do not allow observers, we should not be puzzled to
find ourselves in one that does. This is true, but not very
useful.
AP1: Suppose we conclude that some variable x, a pri-
ori defined on an interval [0, 1] has to lie in an extremely
narrow band of size ε for observers to exist. If the fun-
damental theory contains N values of x evenly scattered
over the interval, the chance that none of them is in the
observer range is (1−ε)N . For N = M/ε and small ε this
goes like e−M . For sufficiently large M , we would agree
that there is nothing surprising about the existence of a
point in the observer band. For concreteness, one may
think of numbers like 10−120 for ε and 10500 for N , so
that M = 10380. These are the kind of numbers that
appear in the discussion of one fine-tuned parameter, the
cosmological constant. The chance that a flat distribu-
tion contains no points in the observer range would then
be the absurdly small number exp(−10380). Obviously,
the fine-tuning is then explained. Note that we are talk-
ing about landscape density distributions here, not about

sampling probabilities in eternal inflation (see section VI
for various approaches towards defining the latter).

AP2: It may be possible to go one step further, and
determine the most probable point where we should ex-
pect to find ourselves within the anthropic window. This
requires additional information compared to AP1. We
should be able to assign a probability to each point, work
out the probability distribution, and determine its max-
imum. We need to know how often a certain solution
is sampled with respect to others, and we will have to
compare the “fertility” of distinct universes that allow
observers. Universes with more observers are more often
observed.This brings some very serious measure prob-
lems into the discussion. What counts as an observer,
and what counts as an observation? Should we sum over
the entire history of the universe, and how do we include
parts of the universe that are currently behind the hori-
zon? How do we even define probabilities in the context
of eternal inflation, where anything that can happen hap-
pens an infinite number of times? Furthermore there is
the issue of “typicality” (Vilenkin, 1995a). If we can de-
fine and compute a probability distribution, should we
expect to find ourselves at its maximum? Are we “typi-
cal”? Does statistics even make sense if we can observe
just a single event?

Many criticisms of anthropic reasoning are aimed at
the measure and typicality problems in AP2, and espe-
cially its use for predicting the cosmological constant. See
for example Armstrong (2011); Bostrom (2007); Maor
et al. (2008); Muller (2001); Neal (2006); Smolin (2004);
and Starkman and Trotta (2006) for a variety of thoughts
on this issue. We will return to the measure problem in
section VI.

Sampling probabilities are not relevant for AP1. Sup-
pose xa is a value of x for which observers can exists,
whereas for xb they cannot exist. If N is much smaller
than 1/ε the existence of a habitable value xa in the
fundamental theory is mysterious. This becomes no less
mysterious if xa has a vastly larger sampling probability.
Would we conclude that we find ourselves in xa because
that is far more probable, or because nothing can live in
xb? Similarly, if xb had a much larger sampling proba-
bility, would that affect the conclusion in any way?

Perhaps AP1 is as far as we can ever get. We may
determine the boundaries of our domain, and find out
how a fundamental theory spreads its “vacua” over that
domain. There is a lot of interesting physics and math-
ematics associated with all of these questions. In the
end we may just be satisfied that we roughly understand
where we are, just as we are not especially obsessed with
deriving the orbit and size of our planet in the landscape
of astrophysical objects. Establishing the fundamental
theory will have to be done by other means, perhaps
purely theoretically, and by ruling out alternatives.
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Sharp predictions, rare even in the golden age of par-
ticle physics, are not likely to come from this. An AP1-
based prediction would say nothing more than that we
live within an anthropic domain, and almost by definition
that can never be more than a post-diction. AP2-based
predictions may be possible in cases where some con-
tribution to the probabilities is strongly skewed in one
direction. In that case we may predict that we should
live close to the edge of an anthropic domain, or the in-
tersection point of several edges.

In the context of a multiverse sampling the string land-
scape the “anthropic principle” is nothing more than a
bias we have because we exist as observers. Therefore it
makes no sense to ask if the anthropic principle is falsi-
fiable or require that it makes any predictions. It is the
underlying theory that has to be falsifiable.

e. Measures of fine-tuning It is impossible to make a
mathematically precise statement about the amount of
(fine)-tuning. To compute the surface areas we need a
measure on the space of quantum field theories, but this
space does not come with a measure. By “measure” we
mean here a prescription to compute a surface area in
Fig. 1 in order to decide that an anthropic region is large
or small. This should not be confused with the measure
problem of eternal inflation (see section (VI.B), which
has to do with the relative sampling rates of vacua.

The most common situation is that of a dimension-
ful parameter that is small in Planck units, such as the
strong scale (or the proton mass), the weak scale or the
cosmological constant. If one assumes a flat distribution
one may say that the parameter is fine-tuned. But if
instead we use a logarithmic distribution the conclusion
would be different. If the proton mass must be as small
as it is for anthropic reasons, we need to tune it with 19
digit precision if the distribution is flat, but with only
two digit precision if we only need to tune the exponent.

Therefore it is rather pointless to ask if our universe
is “fine-tuned” as long as we only know one vacuum. In
a sufficiently dense discrete landscape this question be-
comes well-defined: the discrete points provide a mea-
sure. But if the existence of a discrete landscape has
already been established, the question looses much of its
relevance.

E. First Signs of a Landscape?

Historically, we are in a remarkable situation. The
Standard Model is consistent, and can be extrapolated
all the way to the Planck scale. Our vacuum may be
metastable, but this is not an inconsistency nor a dis-
agreement with any experimental result. We have a com-
plete theory of the strong electromagnetic and weak in-
teraction that seems to be perfectly adequate. All re-

maining problems of the Standard Model are matters of
taste. There are many unmotivated choices, and many
dimensionless parameters are very small. It is worth em-
phasizing this point because this is a rare moment in the
history of physics that may already have passed when
this review appears in print.

The current situation in particle physics invites an ap-
peal to Occam’s razor. Although there are shelves full of
scientific work proposing new physics beyond the Stan-
dard Model, it is strange that all of that new physics has
managed to hide itself so well. Perhaps nature is playing
a really evil trick with us, presenting us with a complete
Standard Model just to deceive us. But we cannot avoid
asking the obvious question: Could it be that the Stan-
dard Model, including a minor extension to accommodate
neutrino oscillations, is really all there is? Indeed, sug-
gestions in that direction have already been made some
time ago by Shaposhnikov and Tkachev (2006), albeit
not in the context of a landscape.

It is undeniable that this state of affairs has con-
tributed to the interest in “anthropic” and “landscape”
thinking in particle physics. Could it be true that the
Standard Model is like a dart that was thrown repeat-
edly at the space of all quantum field theories, until one
of them landed in one of the anthropic domains of Fig.
1? This is the central question of this review.

It is clear that the discovery of major new structures,
especially new strong interactions, would indicate that
this sort of thinking is, at best, premature. But this
would also raise the alarming possibility of an indefinite
series of matryoska’s of substructure, which we might
never be able to disentangle completely. Would that be a
more attractive option than a landscape? The absence of
major new physics in any accelerator experiment in the
last decade may be an indication that we are living at
a special time in the history of particle physics, that we
might have our first view of the foothills of a landscape.
Perhaps we have reached the interface of bottom-up and
top-down thinking, and our next task is to locate the
Standard Model of particle physics within the landscape
of some fundamental theory, perhaps string theory.

Low energy supersymmetry, by far the most discussed
option for new physics, is an attractive compromise.
It might be the final step towards a theory of all in-
teractions, allowing a smooth interpolation towards the
Planck scale, and could give us important clues about
that theory. Nothing we know about low energy super-
symmetry gives evidence against the idea of a landscape.
It does not reduce the number of parameters, quite the
contrary, and supersymmetry itself plays a crucial rôle
in understanding the only (part of) a landscape we can
even begin to discuss. But if nature wanted to provide us
with a soft, supersymmetric, landing on the landscape,
it could have given some clues a little earlier.

But even in the most extreme landscape scenario, there
are plenty of problems left that require a solution. It is
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just that the nature of the remaining problems has shifted
in a remarkable way in a certain direction: most prob-
lems are now “environmental”, and many have anthropic
implications.

One can roughly order the open problems according to
their urgency, in the following way.

• No consistent theory.

• Disagreement between theory and experiment.

• Environmental, but not anthropic problems.

• Potentially anthropic problems.

We will make an – admittedly rather artificial – sepa-
ration between particle physics and cosmology.

1. Particle Physics

The main item in the first category is quantum grav-
ity. The Standard Model does not contain gravity, and
adding it using standard QFT methods leads to incon-
sistencies. Some people would argue that a violation of
the stability bound on the Higgs self-coupling belongs in
this category as well.

In the second category there is a long list of deviations
of low statistical significance that may one day develop
into real problems, astrophysical phenomena for which
there is no good theoretical model, but which may point
to new particle physics, a hint of a gamma-ray line in
cosmic rays at 130 GeV (Weniger, 2012) and a 4σ indi-
cation for spatial variations of the fine structure constant
(Webb et al., 2011).

The last two categories refer to the so-called “why”
problems: why are certain parameters or discrete choices
the way they are. This kind of problem may never be
solved. Nothing goes wrong if we cannot find a solution,
and there is no experiment we can do to force nature to
give us a clue. If in addition different values of a parame-
ter have a negative impact on the prospects for life, then
this fact already provides a clue. Then it becomes even
less obvious that a “solution”, in the traditional sense, is
required. But we should not jump to conclusions. Sim-
ply saying “parameter X has value y, because otherwise
we would not exist” is too simplistic.

In the third category are all Standard Model param-
eters that have peculiar values, without any reason to
hope that anthropic arguments are going to be of any
help. The most important one is the CP-violating angle
θ̄ of the strong interactions, arguably the most impor-
tant Standard Model problem in the context of a land-
scape (Banks et al., 2004; Donoghue, 2004). Another
example of non-anthropic parameters with small values
are the CKM angles, and some of the quark mass ra-
tios. The famous questions “why are there three families
of quarks and leptons” is probably in this category as

well, although the number “3” is not very peculiar from
a landscape perspective, so this does not even belong on
a list of problems.

The last category consists of all problems related to
parameters whose values do potentially have an impact
on the existence of life. This includes the group structure
and representations of the Standard Model, the scales of
the strong and the weak interactions (the “gauge hier-
archy problem”, see subsection V.C.2), the light quark
masses and the electron mass (assuming the heavier
fermions stay heavy), neutrino masses and perhaps even
the mass of the top quark. The environmental impact of
the fermion masses will be discussed in section V.B.

2. Cosmology

For the sake of the argument we will treat cosmology
as a theory with input parameters, although its theoreti-
cal underpinnings are far less robust. There are certainly
plenty of “category 1” problems here, especially in infla-
tion and pre-big bang cosmology. For Standard Model
parameters it is easier to accept the extreme form of the
landscape paradigm, namely that the Standard Model
might be merely a point in a huge landscape about which
only few details can be derived from fundamental physics,
just as only a few general features of Mount Everest can
be derived from geology. In cosmology we are simply not
in such a situation, or at least not yet.

The main cosmological parameters are the cosmologi-
cal constant Λ, the density parameter Ω, the matter den-
sity fluctuations Q = δρ/ρ, the dark/baryonic matter
ratio ζ, the baryon-to-photon ratio η and the parame-
ters of inflation (see Tegmark et al. (2006) for a system-
atic survey of all parameters). There is no effective
theory of cosmology where all of these parameters can
manifestly be varied independently and without worry-
ing about the impact of changes in our understanding of
gravity. For example, the cosmological constant only has
an observable meaning in a theory of gravity. The notion
of decoupling it from gravity, as one can do for Standard
Model parameters, does not even make sense. Cosmo-
logical variations are highlighted in the book “Just Six
Numbers” (Rees, 1999); just one of his six numbers, the
fraction of energy released in nuclear reactions, is directly
related to Standard Model physics.

Anthropic issues in cosmology will not be discussed
in detail in this review, except for the cosmological con-
stant, the focal point of a lot of attention. Here we will
just briefly mention some interesting observations.

The main item in the second category is “dark mat-
ter”, or more precisely the complete set of problems that
is elegantly solved if we postulate the existence of dark
matter: galaxy rotation curves, the bullet cluster, struc-
ture formation, the features of the Cosmic Microwave
Background (CMB), the amount of deuterium produced
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in Big Bang Nucleosynthesis and the matter density of
the Universe. There is a minority point of view that holds
that these problems belong in the first category, and re-
quire a modification of gravity. But should we really be
so surprised if dark matter exists? Is it not a typical
example of anthropocentric hubris to assume that any-
thing that exists in the universe must be observable by
us, or made out of the same stuff that we are made of?
Postulating dark matter moves this problem largely to
category four, although there are still serious problems
in computer simulations of galaxy formation which may
point to a more fundamental problem (see Famaey and
McGaugh (2013) for a list of open problems).

The dark-to-baryonic matter ratio ζ, which is ≈ 5 in
our universe, may have anthropic implications, since dark
matter plays an important rôle in structure formation.
This was first discussed for axion dark matter (Linde,
1988), because the most popular solution to the strong
CP problem, the Peccei-Quinn mechanism, predicts an
additional particle, the axion, that contributes to dark
matter. In contrast to the more popular WIMP dark
matter2, whose abundance is predicted by its interac-
tions, axionic dark matter must satisfy constraints which
are in part anthropic in nature (for more on axions see
section V.D). The constraints were made more precise by
Hellerman and Walcher (2005), who found ζ < 105 and
Tegmark et al. (2006) who concluded that 2.5 < ζ < 102,
using some additional anthropic requirements. These pa-
pers also discuss the effect of other parameter variations
(in particular Q and Λ) on these bounds. Using assump-
tions about a multiverse measure and the number of ob-
servers per baryon, Freivogel (2010) gave an anthropic
statistical prediction for ζ roughly in agreement with the
observed value. Although the emphasis on all these pa-
pers is on axionic dark matter, some of the conclusions
on ζ do not really depend on that.

Most other cosmological parameters are also in the
fourth category. Changing any of these substantially has
an impact on some feature in the history and/or current
status of the universe that would appear to be catas-
trophic at least for our kind of life, and hence it is at
least possible that this is part of the reason we observe
the values we do.

But once again, we should not jump to conclusions.
An extreme example is the smoothness and isotropy of
the cosmic microwave background. This fact may be re-
garded as environmental, and if it were a wildly fluctu-
ating distribution this could have a very negative impact
on the prospects for life (Tegmark and Rees, 1998). But
surely one cannot assume that the entire density pertur-
bation function is tuned this way just for life to exist

2 WIMPs are “weakly interacting massive particles”, which are
present, for example, in certain supersymmetric extensions of
the Standard Model.

in one galaxy. The most popular solution to this “hori-
zon problem” is inflation, which solves another problem
with anthropic relevance, the flatness problem, but also
introduces some new fine-tunings.

Inflation is an especially rich area for anthropic and
landscape ideas. An early example is Vilenkin (1995a),
giving arguments that typical civilizations will see an ex-
tremely flat inflaton potential. In Freivogel et al. (2006)
anthropic landscape arguments are given suggesting that
the number of e-folds of inflation will not be much larger
than the observed lower bound of about 60. According
to these authors, 59.5 e-folds are required for structure
formation, and we should not expect to see much more
than that.

Many features of string theory have the potential to be
relevant here such as moduli, axions (Dimopoulos et al.,
2008) and D-branes (Kachru et al., 2003a). In Liddle and
Urena-Lopez (2006) the possibility of a common origin
of inflation, dark matter and dark energy in the string
landscape is discussed. See Burgess (2007); Cicoli and
Quevedo (2011); Kallosh (2008); and Quevedo (2002) for
reviews of inflation in string theory. But inflation in the
string landscape also introduces new problems, see e.g.
Allahverdi et al. (2007); Hall et al. (2006); and Huang
and Tye (2009).

Inflationary cosmology also offers interesting opportu-
nities for predictions of features of the CMB, see e.g.
Ashoorioon (2010); Frazer and Liddle (2011); Holman
et al. (2008); Tegmark (2005); and Yamauchi et al.
(2011). Furthermore, the CMB may even give direct
hints at the existence of a multiverse. There is a chance of
observing collisions with other bubbles in the multiverse,
see for example Aguirre et al. (2007) and WMAP results
presented by Feeney et al. (2011). Gonzalez-Dı́az and
Alonso-Serrano (2011) consider an even more exotic pos-
sibility involving non-orientable tunneling. In principle
there might be information about other universes in the
detailed structure of the cosmic microwave background,
but at best only in the extreme future (Ellis, 2006b).

Anthropic predictions for the density parameter Ω were
already made a long time ago by Garriga et al. (1999).
This work, as well as Freivogel et al. (2006), points out
the plausibility of observing negative spatial curvature,
(i.e. Ωk > 0, where Ωk ≡ 1 − Ω) in a multiverse pic-
ture. They argue that sixty e-folds of inflation are an-
thropically needed, and having a larger number of e-
folds is statistically challenged. The current observa-
tional constraint is |Ωk| < 10−2. Furthermore, Guth
and Nomura (2012) and Kleban and Schillo (2012) point
out that observation of even a small positive curvature
(Ωk < −10−4) would falsify most ideas of eternal infla-
tion, because tunneling in a landscape gives rise to open
Friedmann-Robertson-Walker (FRW) universes.

That the baryon to photon ratio η ≈ 6 × 10−10 may
have anthropic implications was already observed a long
time ago (see Carr and Rees (1979); Nanopoulos (1980);
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Linde (1985) but also Aguirre (2001) for critical com-
ments), but it is not simply a tunable free parameter.
Inflation would dilute any such initial condition, as would
any baryon number violating process that gets into equi-
librium in the early stages of the universe. See Shaposh-
nikov (2009) for a list of 44 proposed solutions to the
baryogenesis problem. Most of these solutions generate
new anthropic issues themselves.

This brief summary does not do justice to the vast
body of work on string and landscape cosmology. Further
references can be found in reviews of string cosmology,
e.g. Burgess and McAllister (2011).

3. The Cosmological Constant

The cosmological constant Λ is a parameter of classical
general relativity that is allowed by general coordinate in-
variance. It has dimension [length]−2 and appears in the
Einstein equations as (the metric signs are (−,+,+,+))

Rµν −
1

2
gµνR+ Λgµν = 8πGNTµν . (3.1)

Without a good argument for its absence one should
therefore consider it as a free parameter that must be fit-
ted to the data. It contributes to the equations of motion
with an equation of state P = wρ, where P is pressure
and ρ is density, with w = −1 (matter has w = 0 and
radiation w = 1

3 ). As the universe expands, densities are
diluted as (the initial values are hatted)

ρw = ρ̂w

(a
â

)−3(1+w)

. (3.2)

As a result, if Λ 6= 0 it will eventually dominate if the
universe lasts long enough (and if there is no “phantom
matter” with w < −1).

However, Λ itself affects the expansion. For Λ < 0
the universe collapses in a time ct = π

√
3/Λ whereas

for Λ > 0 the universe goes into exponential expansion
as exp(

√
Λ/3ct). These two cases correspond to exact

maximally symmetric solutions to the Einstein with Λ 6=
0 and without matter, and are called Anti-de Sitter (AdS)
and de Sitter (dS) spaces respectively. The latter has a
horizon at a distance (

√
Λ/3 from the observer. Light

emitted by matter beyond that horizon can never reach
the observer because of the expansion. The fact that
our universe has existed billions of years and that we
observe galaxies at distances of billions of light years gives
immediately an upper limit on |Λ| (see Eq. (3.4) below)
which is already known for decades (Barrow and Tipler,
1986)).

The fact that the length associated with Λ is of cos-
mological size is not surprising in itself, but there is
second interpretation of Λ that puts this in an entirely
different perspective. The parameter Λ contributes to

the equations of motion in the same way as vacuum en-
ergy density ρvac, which has an energy momentum ten-
sor Tµν = −ρvacgµν . Vacuum energy is a constant con-
tribution to any (quantum) field theory Lagrangian. It
receives contributions from classical effects, for example
different minima of a scalar potential and quantum cor-
rections (e.g. zero-point energies of oscillators). How-
ever, it plays no rôle in field theory as long as gravity
is ignored. It can simply be set to zero. Since vacuum
energy and the parameter Λ are indistinguishable it is
customary to identify ρvac and Λ. The precise relation is

Λ

8π
=
GNρvac

c2
:= ρΛ . (3.3)

This immediately relates the value of Λ with all other
length scales of physics, entering in ρΛ, which of course
are very much smaller than the size of the universe. The
extreme version of this comparison is to express ρΛ in
Planck mass per (Planck length)3, which gives a value
smaller than 10−120. This was clear long before ρΛ was
actually measured.

This huge difference in length scales implies a huge
fine-tuning problem. It was noted a long time ago by
(Linde, 1974; Veltman, 1975) that the Standard Model
Higgs mechanism induces a huge change in vacuum en-
ergy. Other contributions are expected to come from dy-
namical symmetry breaking in QCD and inflation. The
latter is especially hard to avoid, because in most mod-
els the exponential is driven by vacuum energy, which
must therefore have been vastly larger in the inflationary
period than it is now. Quantum corrections to vacuum
energy are due to vacuum bubble diagrams (coupling to
gravitons to generate the

√
−g factor). There are contri-

butions from all particles, with opposite sign for bosons
and fermions. These diagrams are quartically ultra-violet
divergent: they are infinite if we naively integrate over
arbitrarily large momenta, and they are proportional to
M4

cutoff if we assume that nature cuts off the divergence
at some scale M4

cutoff (note that that quantum correc-
tions contribute to the density ρvac, and hence Λ gets
quartic corrections, not quadratic ones as its dimension
might suggest). It is likely that the divergent integral are
cut off by a consistent theory of quantum gravity (and
indeed, string theory does that), and in that case the
cut off scale would be the Planck scale. In that case, the
naive order of magnitude for ρΛ is the Planck density, one
Planck mass per Planck volume (5.15× 1096 kg/m3). In
these units the aforementioned old observational limits,
using y × 109 (light)years for the assumed cosmic time
(length) scale, are3

|ρΛ| < 3.4y−2 × 10−121 (3.4)

3 In the rest of this section we use ~ = c = GN = 1.
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The fact that this number is so absurdly small is called
“the cosmological constant problem”. The problem can
be mitigated by assuming a smaller cutoff scale for the
quantum corrections, but even if we choose the TeV scale
there are still sixty orders of magnitude to be explained.
It seems unlikely that the cut-off can be less than that,
because then we are in known quantum field theory ter-
ritory, and furthermore we then have the classical con-
tributions to worry about as well. One may consider
radical changes to the theory, so that gravity somehow
does not couple to vacuum energy at all, but so far no
working proposals exist. See for example (Bousso, 2008;
Polchinski, 2006; Weinberg, 1989) for a summary of some
of these ideas and why they do not work.

A recent very detailed review is (Martin, 2012). This
paper, just as (Koksma and Prokopec, 2011) makes the
remarkable claim that vacuum energy diagrams are not
divergent in quantum field theory, but finite and pro-
portional to m4ln m, with opposite signs for bosons and
fermions, and vanishing contributions for photons and
gravitons. This would still get us only halfway (there are
still vacuum contributions, a bare contribution, and the
loop contributions do not magically cancel). The trou-
ble with this claim is that, even if correct, it requires
knowing the full particle spectrum at all mass scales.
If QED is embedded in a GUT, there would be extra
GUT particles contributing, and the claim that photons
do not contribute to vacuum energy looses its meaning.
The whole point of renormalization is that everything
unknown beyond a certain mass scale is combined into
a few constants, such as Λ. This proposal violates that
principle. It can only be useful if we know the complete
theory, but in that case we would also know Λ. This just
illustrates how hard it is to get rid of contributions from
vacuum diagrams.

The small observational limit led most people to be-
lieve that Λ had to be identically zero, for reasons that
were still to be discovered. But then from observations
of redshifts of distant type-Ia supernovae gave evidence
for accelerated expansion (Perlmutter et al., 1999; Riess
et al., 1998). This expansion can be fitted with the Λ-
parameter. Combined with more recent data on the cos-
mic microwave background this indicates that the contri-
bution of Λ to the density of the universe is about 70%
of the critical density ρc ≈ 9.9 × 10−27kg/m3, assuming
the standard ΛCDM model of cosmology. Then

ρΛ ≈ +1.3× 10−123 (3.5)

a. Anthropic arguments. The foregoing discussion al-
ready implies that there will be an anthropic range for
Λ, assuming everything else is kept fixed. Although this
may have been clear to some much earlier, it appears that
the first paper stating this is Davies and Unwin (1981).

They did not make it quantitative, though. In subse-
quent years Banks (1985); Linde (1984); and Sakharov
(1984) also discussed anthropic implications of Λ 6= 0.
Sakharov’s paper contains the remarkable statement: “If
the small value of the cosmological constant is determined
by “anthropic selection”, then it is due to the discrete
parameters. This obviously requires a large value of the
number of dimensions of the compactified space or (and)
the presence in some topological factors of a complicated
topological structure.”

Since Λ must be small to get a large cosmological
length or time scale, it is obvious that Λ is anthropically
bounded in any universe that has life based on some kind
of nuclear or chemical complexity, for any underlying field
theory. If one requires that a compact object consisting
of N constituents of mass µ (in Planck units) fits inside
a dS horizon, one gets Λ . µ2N−2/3 . N−4/3, where
the second inequality holds for pressure-balanced objects
(stars, planets or humans, but not galaxies). In AdS
space the minimal time for biological evolution, some
large number M times the constituent time scale µ−1,
must be smaller than the collapse time, ≈

√
3/Λ. This

gives a limit −Λ .M−2µ2. Clearly, both N and M must
be large but are not computable from first principles; in
our universe N ≈ 1027 for a human brain and M � 1031

(assuming full biological evolution in a single year). In
dS space a better limit can be obtained by weakening the
assumptions underlying Weinberg’s argument or by de-
termining the maximal size of an object that can break
away from the exponential expansion. Using results from
Hellerman and Walcher (2005), Harnik et al. (2006) de-
rived a limit

ρΛ . min
[
µ4, µ−2N−2

]
(3.6)

No matter which limit one uses, the conclusion is in any
case that in universes with a value for Λ that is not ex-
tremely small life is impossible. Obviously these are very
crude limits, and there is no guarantee that other uni-
verses exist where |ρΛ| is as large as one of the bounds.
But, crude as it may be, this arguments implies that if
Λ can be treated as a free parameter on a Planckian in-
terval, it is clearly true that the reason for its smallness
is anthropic.

If all other parameters are kept fixed at their observed
values, much tighter bounds can be obtained. Barrow
and Tipler (1986) pointed out that if Λ is too large
and negative, the universe would collapse before life has
evolved. The precise limit depends on the time needed
for stars to produce heavy elements, and the time needed
for biological evolution, for which we have no theoretical
estimate, and just one data point. The authors used the
average life-time of a main-sequence star to get a limit.
This quantity can be entirely expressed in terms of Stan-
dard Model parameters and the Planck mass, and leads
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to a limit

|ρΛ| / α−4

(
me

mp

)4(
mp

MPlanck

)6

= 6.4× 10−120. (3.7)

For negative Λ the collapse of the entire universe is un-
questionably a limit, but there are still some important
uncertainties in this bound. Because we have observa-
tional evidence for a positive Λ, the bound for negative
Λ may seem irrelevant, but it is interesting for several
reasons, so it is worthwhile to see if it can be made more
precise. The formula on which it is based is actually the
Eddington limit, a lower limit on the lifetime for objects
radiating at maximum luminosity. This limit is

Tmin =
2

3
ε

[(
MPlanck

mp

)3
]
α2m2

p

m2
e

tPlanck ≈ 3 million years

where ε is the energy efficiency, the fraction of mass that
can be converted to energy, ε ≈ .007. The actual limit is
equal to ttot = t∗ + tev, where t∗ is the time of the first
supernova explosion after the big bang (which produced
the required heavy elements) and tev the shortest time
needed for geological and biological evolution. The latter
cannot be determined from first principles. It depends
on biological time scales, the evolution of the sun, plate
tectonics, volcanism, the movement of the solar system
through the spiral arms of the galaxy, subtle variations
in the earth’s axis, the moon, Jupiter, meteor impacts
and other catastrophic events, effect we do not even know
about, and most importantly, chance. From the one data
point we have we know that 13.8 billion years is sufficient.
If we assume that we are typical, faster evolution must
be far less probable, but as long as it is possible it affects
the limit. The most conservative assumption is that tev

under ideal circumstances could be less than a million
years, so that the limit is determined by the minimal
stellar lifetime. So ttot, the minimal time between the big
bang and evolution until intelligent life, must lie between
3 million years and 13.8 billion years. Requiring that
this is less than the time of collapse, π

√
3/Λ, gives ρΛ >

−ρmin, with

1.8× 10−122 < ρmin < 3.8× 10−115 . (3.8)

The limit (3.7) was argued to be valid for positive Λ as
well. However, Weinberg (1987) pointed out that struc-
ture that has already formed will not be ripped apart
by an expanding universe. Once galaxies have formed,
it makes no difference how much time is needed to make
stars or evolve life, because the expansion will not inhibit
that from happening. He then derived a limit based on
the assumption that life would not form if the universe
expands too fast to inhibit galaxy formation. The exact
form of Weinberg’s bound is

ρΛ <
500

729
∆3ρ0 , (3.9)

and was derived by studying the collapse of a spherical
overdensity ∆ using a Robertson-Walker metric. The
overdensity starts expanding at t = 0 when the universe
has a matter density ρ0. For ρΛ = 0 it recollapses and
forms structure, but as ρΛ is increased a point is reached
beyond which the recollapse does not occur anymore.
This gives the maximum value of ρΛ for the overdensity
∆. The absolute upper limit in a given universe is given
by determining the maximal overdensity that can occur.
Since density fluctuations are distributions, there will not
be a strict upper limit, but the number of galaxies that
can be formed will drop off rapidly beyond a certain ρΛ.

A “lower bound on the anthropic upper bound” can be
obtained by observing quasars (centers of young galaxies)
at high redshift z, and then extrapolating the observed
matter density back to the corresponding age by multi-
plying the present ρmatter by a factor (1+z)3. If we know,
empirically, that galaxies can form at such densities, then
vacuum density can not play a rôle if is smaller than the
density of matter. With the information available in 1987
this argument gave an upper limit of at least 550ρmatter

based on quasars observed at z = 4.4 (the exact pre-
factor is 1

3π
2(1 + z)3). However, meanwhile dwarf galax-

ies have been observed at z = 10, increasing the bound
by almost an order of magnitude (Loeb, 2006). The ob-
served value of ρΛ/ρmatteris about 2.5, more than three
orders of magnitude below this upper bound. There is
also an upper bound to this upper bound: at a redshift
of z ≈ 1000 we reach the time of decoupling, and we are
certainly not going to observe galaxies that formed that
early. This implies an absolute upper limit on ρΛ of order
10−113.

b. Estimates of the Value of Λ. Nowadays we can deter-
mine the density fluctuations using COBE and WMAP
(and recently PLANCK) results. It is instructive to
make a rough estimate using the time of matter-radiation
equality as the starting point of structure formation. An
order of magnitude estimate for the matter density at
equality is (Hellerman and Walcher, 2005): ρeq ≈ T 4

eq,
Teq ≈ mpη(ζ + 1), where η = 6.3× 10−10 is the baryon-
to-photon ratio and ζ the cold dark matter to baryon
ratio. Using for ∆ the average for the fluctuations,
Q ≈ 2 × 10−5 yields ρΛ < 7.3 × 10−125 (with parame-
ter values from Tegmark et al. (2006)). Putting in the
correct factors of order 1, and taking into account the
contribution of neutrinos to matter-radiation equality,
lowers this number substantially. Clearly a more careful
treatment of galactic-size density perturbations (which
contribute with a third power) is needed.

Furthermore the “bound” is not a step function. One
expects a mean density of galaxies that falls of with in-
creasing ρΛ. Such a function was computed by Efstathiou
(1995) based on the results of COBE (but prior to the
observation of accelerated expansion). Although the ob-



24

servation of a positive Λ in 1998 came as a shock to
many, there were already several indications in that di-
rection because of the density contribution needed for
spatial flatness (as predicted by inflation) and the age
of the universe. This had already been pointed out by
Weinberg (1987). The results of Efstathiou (1995) pre-
dicted a value for ρΛ in agreement with that expectation,
although with large uncertainties, and subject to some
criticisms (Vilenkin, 1995b; Weinberg, 1996). This com-
putation was improved and done analytically rather than
numerically by Martel et al. (1998), with similar results.
Distributions for ρΛ based on more recent cosmological
data can be found in Pogosian and Vilenkin (2007) and
Tegmark et al. (2006).

Computations of this kind rely on several assump-
tions. The distribution of theoretically allowed values
of ρΛ must be essentially flat near Λ = 0. Since Λ = 0
is not a special point from the perspective of quantum
gravity, and since the relevant range is extremely small
in Planck units, this seems plausible. Furthermore, the
vacuum selection mechanism – for example eternal infla-
tion – must not prefer special values either. This is less
obvious, see section VII. It is assumed that observers
are correlated with galaxies, and sometimes with stars,
planets and baryons, and that we are typical observers
(the “principle of mediocrity” of Vilenkin (1995a)).

The computations mentioned above assumed that only
ρΛ varies. The possibility that Q also varies was consid-
ered by Tegmark and Rees (1998), who computed the an-
thropic bounds 10−6 < Q < 10−4 assuming Λ = 0. They
also pointed out that without anthropic bounds on Q,
the bound on Λ is invalid. A potentially serious problem
was raised in Banks et al. (2004); Graesser et al. (2004);
Garriga and Vilenkin (2006); and Feldstein et al. (2005).
Depending on models of inflation, the probability distri-
bution may vary so steeply as a function of Q that ex-
treme values are strongly preferred, so that the observed
value Q ≈ 10−5, roughly in the middle of the anthropic
range, has a very low probability of being observed (the
“Q-catastrophe”). But even when both ρΛ and Q vary,
there is a robust bound on ρΛ/Q

3 (Garriga and Vilenkin,
2006). See Vilenkin (2004) for a brief review of anthropic
predictions for the cosmological constant.

We return briefly to the cosmological constant problem
in section VII, after the string theory landscape and the
measure problem have been explained.

F. Possible Landscapes

1. Fundamental Theories

The “Anthropic Principle” discussed here is not a prin-
ciple of nature, and not our ultimate goal. That goal is
a fundamental theory in which different quantum field
theories are realized, and can be sampled.

We are not interested in an anthropic principle added
to the Standard Model and General Relativity as an ad-
ditional principle of physics. The ultimate goal remains
finding a “theory of everything”, a theory that agrees
with all current experiments and can be extrapolated
to extreme limits without encountering inconsistencies.

This fundamental theory provides the input distribu-
tions for anthropic arguments, and may in principle be
falsified with the help of such arguments. But it is the
fundamental theory we should try to falsify, and not the
anthropic principle, which is only a tool that may help
us finding the theory. Once that has been achieved, the
anthropic principle will only be a footnote.

In the rest of this review we will avoid the term “the-
ory of everything”, since it sounds a bit too pretentious,
and just call it a “fundamental theory”. But whatever
it is called, one can raise a number of objections. Per-
haps such a theory does not even exist, or perhaps our
mental abilities are too limited to find it, or perhaps we
simply do not have enough information to figure out the
answer. Since, by assumption, we can only extract all our
information from an infinitesimal bubble in a multiverse,
the latter possibility is a very serious one. One can also
speculate about fundamental obstacles, along the lines
of Goedel’s theorem or Heisenberg’s uncertainty princi-
ple that would make it impossible, in principle to ever
achieve such a goal. Or one may believe in the onion
shell paradigm, which states that as we explore nature at
ever shorted distances, we will continue to discover new
physics forever, like peeling layers from an onion with an
infinity of shells. But most physicists believe that there
would be a last shell at the Planck length, so that the
number of unknown shells is presumably finite.

The marvelous success of the Standard Model gives
some reason for optimism. It might even turn out to be
the last shell. It brings three of the four known interac-
tions under control, and hence it seems not too unreason-
able to hope that the fourth one can also be mastered.
The first attempts to apply the traditional methods of
perturbative quantum field theory to quantum gravity
were made decades ago (’t Hooft and Veltman, 1974) but
ran into problems. String theory can be considered the
most conservative attempt to overcome these problems.
It does indeed overcome them in special cases (ten space-
time dimensions with supersymmetry). There are good
reasons to believe that in that case it does indeed lead
to the desired finite perturbative expansion. But that is
not all we expect from a fundamental theory.

If one accepts the foregoing anthropic arguments, it is
not plausible that the Standard Model is mathematically
unique. Nothing said so far about a possible fundamen-
tal theory requires that. Non-uniqueness of the Standard
Model may look like the end of last century’s dreams, but
it is only saying that those dreams were to naive. Then
we need a fundamental theory which allows several, pre-
sumably a large number, of alternatives. In general, we
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will refer to the list of options as the “landscape” of that
theory. This list consists of all universes like our own
(which of course must be on the list itself), but with a
different point in the space of all quantum field theories
governing matter and the non-gravitational interactions.
In string theory we can – in some cases – give this no-
tion a more precise meaning, where the different points
correspond to minima of a potential. The name “land-
scape” was, presumably, partly inspired by the hills and
valleys of that potential, as well as by the common usage
in other fields, such as the “publishing landscape”.

But we will need more than just a list of options. There
has to be a way to reach different points in that landscape
through some kind of physical process, such that they can
all be sampled in a process like eternal inflation. This
disqualifies the quantum field theory landscape, where
any QFT is allowed, but there is no mechanism to go
from one to another.

2. The rôle of gravity

During three-quarters of last century, particle physics
and gravity where mostly treated as separate subjects.
All Lorentz covariant theories of particle physics can be
coupled straightforwardly to classical general relativity.
Furthermore, gravity can be consistently decoupled from
particle physics by sending Newton’s constant to zero.
The fact that quantum gravity did not enjoy the same
consistency as quantum field theory (in particular the ex-
istence of perturbative infinities that cannot be removed
by renormalization) was often stated, but seen mostly as
a problem of gravity. On the other hand, the remain-
ing problems of particle physics – understanding the dis-
crete and continuous choices of groups, representations
and parameters – have often been thought to be com-
pletely solvable without coupling to gravity. This might
indeed be true. However, there are good grounds to be-
lieve that these two theoretical areas must meet.

Indeed, there are a few concrete reasons why one might
expect (quantum) gravity to play a rôle in limiting the
number of options of quantum field theory.

UV completion. The renormalization procedure that
works so well in quantum field theory requires an in-
finite number of fundamentally undetermined parame-
ters in quantum gravity. Although in all low-energy ob-
servables their contribution is suppressed by powers of
the Planck mass, this situation is untenable in a theory
that aims at determining the Standard Model parame-
ters. Furthermore one cannot solve this problem in grav-
ity alone. Gravity can be decoupled from the Standard
Model, but not the other way around. Loop corrections
due to matter are equally important as loop corrections
due to gravity itself. One has to find a theory of matter
and gravity that does not have these problems. This is

the requirement of “UV completeness”. One may expect
this to restrict the possibilities for matter.

Vacuum energy. The energy of the ground state is not an
observable in quantum field theory, and can be set to zero
by subtracting a constant. This is fine as long as a single
theory with fixed parameter values is considered, but as
soon as different parameter values are allowed one might
expect that constant to differ. Gravity does couple to
vacuum energy, and therefore it is plausible that in order
to consider different quantum field theories, we have to
embed them in a theory of gravity.

Holography. Black hole entropy is proportional to the
area of the horizon. This has led to the idea of hologra-
phy, stating that fundamental degrees of freedom should
be associated with surface area rather than volume. This
suggests that theories which consistently describe black
hole physics must place some restrictions on degrees of
freedom.

Using these guidelines, we can try to decide which
properties a fundamental theory should have, and which
current ideas qualify.

3. Other Landscapes?

The String Theory Landscape seems to fit the bill, al-
though there is a lot of work still to be done, and a lot
that can go wrong. There are many ideas that are pre-
sented as competitors, and here we list a few of them, to
see if they qualify. We will not enter here in a discus-
sion about the relative merits of some of these ideas as
theories of quantum gravity.

• Loop quantum gravity (Ashtekar, 1986) is a
method for quantizing of gravity, but it does not
appear to restrict matter.

• Dynamical triangulations (Ambjorn et al., 2004) is
method for defining sums over geometries in quan-
tum gravity, with the interesting feature that four
dimensions emerge dynamically. But it has nothing
to say, so far, about matter coupled to gravity.

• Asymptotically Safe Gravity (Weinberg, 1976),
(Reuter, 1998) attempts to deal with the perturba-
tive problems of quantum gravity by demonstrat-
ing the existence of a non-perturbative ultra-violet
fixed point. The other interactions may share that
feature. However, this does not imply that they
can be derived from such a principle. For exam-
ple, non-abelian gauge theories have a perturbative
ultra-violet fixed point, but this does not determine
the value of the coupling constant at lower ener-
gies, nor the choice of gauge group. Furthermore
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there is no mechanism for change within this land-
scape. Interestingly, in this context (under some
additional assumptions) the Higgs mass was pre-
dicted two year prior to its observation (Shaposh-
nikov and Wetterich, 2010). This prediction is that
the Higgs self-coupling vanishes at the Planck scale,
and hence the Higgs mass would be exactly at the
stability bound. With more up-to-date values of
the top quark mass the prediction is now too high
by about two standard deviations.

• Noncommutative geometry (Chamseddine and
Connes, 2008) is claimed to provide an essentially
unique derivation of the Standard Model, although
some features such as the number of families and
the masslessness of the photon do not (yet) come
out, and the appearance of the Standard Model
gauge group involves additional assumptions. One
can also obtain supersymmetric QCD with these
methods (van den Broek and van Suijlekom, 2011),
suggesting a larger landscape, but it is not clear
if distinct theories are physically connected. In
this context the Higgs mass was also predicted, at
a value that is now ruled out, but it is claimed
that can be fixed by means of an additional scalar
field that was previously ignored (Chamseddine
and Connes, 2012).

• Finite Unified theories (Heinemeyer et al., 2008) are
N = 1 supersymmetric GUTs that can be made
all-loop finite. This has lead to a correct prediction
for the Higgs bosons mass range, more than three
years before its discovery. This approach does not
have the ambition to provide a theory of all interac-
tions, but only to find reductions in the parameter
space. As in the two foregoing cases, there is no
mechanism for connecting different points in this
landscape.

• Spontaneously broken local conformal invariance
was argued (’t Hooft, 2011) to be a physically mo-
tivated condition that fixes all parameters, leaving
only a (denumerably infinite) number of discrete
choices of gauge groups and representations.

All of these ideas may be correct, and they are not nec-
essarily mutually exclusive. All we are saying is they do
not seem to give rise to an anthropic landscape, and ob-
servation that most of these authors will enthusiastically
agree with. When it comes to that, string really is the
“only game in town”.

Note that three of these approaches now claim to pre-
dict or postdict the Higgs mass correctly. This was also
done in the context of string theory (Kane et al., 2012),
with additional assumptions, although it is just barely a
prediction.

4. Predictive Landscapes

The existence of a landscape does not necessarily imply
that all predictive power is lost. We just list some options
here to counter some common philosophical objections.

Universal Predictions. A large ensemble of possibilities
may still have one or more universal predictions. In the
case of the string landscape, what comes closest to that
is a negative prediction, namely the absence of variations
in Standard Model parameters (see section V.E). There
may be other opportunities for universal predictions be-
cause of the universal existence of moduli and axions in
string theory.

Sparse Landscapes. If a landscape is small enough, cur-
rent data may already be sufficient to find the solution
that corresponds to our universe. Having determined
that, all parameters would be known exactly. The Stan-
dard Model data has been estimated to provide about 80
digits worth of information (Douglas and Kachru, 2007)
so that a landscape of, say, 1030 points would realize this
possibility, with a lot of predictions left. But this is not
likely to be true in the string theory landscape, if current
ideas about the cosmological constant are correct. This
would already require more than 10120 solutions, and a
computation of the cosmological constant with 120 digit
precision in each of them, if we want to pin down the solu-
tion exactly. See de Alwis (2007) and Denef and Douglas
(2007) for an exposition of some of the problems involved.

Friendly Landscapes. It might happen that some param-
eters vary over a wide range, while others are sharply
peaked at definite values. Toy examples of such land-
scapes have been constructed using scalar field poten-
tials (Arkani-Hamed et al., 2005; Distler and Varadara-
jan, 2005). For a large number N of scalars, some param-
eters may be distributed widely, whereas others vary by
a fraction 1√

N
. The widely distributed ones were argued

to be the dimensionful ones, i.e. the weak scale and the
cosmological constant. This would allow anthropic argu-
ments for the dimensionful parameters to be valid with-
out eliminating the possibility for fairly sharp predictions
for Yukawa couplings and hence quark and lepton masses.
There might be enough variability left to allow even the
anthropic constraints on those masses to be met. They
might not be at the peak of their distribution, but an-
thropically pushed towards the tail. The required large
number of scalars does indeed exist in string theory: the
moduli.

Overwhelming Statistics. The following example shows
that the dream of an ab initio determination of the Stan-
dard Model and all its parameter values is not even neces-
sarily inconsistent with anthropic arguments. It requires
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a large hierarchy of sampling probabilities, the probabil-
ity for a vacuum to be selected during eternal inflation.
Let us assume that the treacherous problem of defining
these probabilities (see section VI) has been solved, and
let us order the vacua according to this probability. Sup-
pose that the mth vacuum has probability εm, where ε is
a small number. Furthermore, assume that, on average,
only one out of M vacua lands in the anthropic domain.
For definiteness, let us take ε = 0.1 and M = 1000. The
first anthropic vacuum is not likely to be the one with
m = 0, and hence it will have a very small sampling prob-
ability, but that does not matter. The point is that the
second anthropic vacuum would typically have a proba-
bility of 10−1000 with respect to the first. This prediction
would have at least the level of confidence of any “tra-
ditional” prediction in particle physics. Such a scenario
might be realized if one “master” vacuum dominates the
population of vacua by a huge statistical factor, and all
other vacua are obtained from it by a sequence of tun-
neling events (see section VI). To actually compute the
dominant anthropic vacuum would require determining
the master vacuum, the tunneling rates and the anthropic
domains, all of which are in principle computable with-
out experimental input. In practice this seems utterly
implausible, but in this example all observed anthropic
miracles would be explained, provided the complete set
of vacua is large enough and distributed in the right way,
and still there would be a nearly unquestionable predic-
tion of all parameters.

5. Catastrophic Landscapes

The last scenario implicitly assumes that anthropic re-
gions in QFT space are described by step functions, so
that a given QFT either allows or does not allow life. In
reality there will be smooth distributions at the bound-
aries, and depending on how fast they fall off there is
an important potential problem: outliers in distributions
may be strongly selected. To illustrate that, consider an
extreme version of overwhelming statistics, suggested by
Linde and Vanchurin (2010). They consider the possibil-
ity that landscape probabilities depend on the cosmolog-
ical constant Λ as exp(24π2/Λ), and that Λ can take only
a discrete set of positive values, Λ = n/N , n = 1, . . . N .
Here Λ is expressed in Planck units, and N is a large
integer. In this situation, n = 1 is strongly favored sta-
tistically. If we define P (n) as the probability for vacuum
n, then we find

P (n)

P (1)
= e−24π2N(n−1

n ) . (3.10)

If the most probable vacuum, n = 1, is ours, then
N ≈ 10120, and anything else is suppressed by behe-
mothic factors. The authors conclude “This means that
by finding the vacuum with the smallest Λ we fix all

other parameters; no additional anthropic reasoning is
required”.

But this is not likely to be true. If one can define strict
anthropic boundaries in field theory space, as in fig (1),
the vacuum with smallest Λ has only a small chance of
ending up within the anthropic contours. If any bound-
ary line is in reality a contour of a gaussian distribution,
with a tail stretching over the entire parameter space,
then the n = 1 vacuum is vastly more likely to lie some-
where in the tail. Suppose for example a variable x has
an anthropic distribution ∝ exp[−(x − x0)2/(2σ2)], and
suppose vacuum 2 happens, against all odds, to lie near
the peak. Then vacuum 1 can lie ≈

√
N or about 1060

standard deviations away from the peak, and still beat
vacuum 2 in overall probability.

This would be the worst possible outcome. It resem-
bles uniqueness, but is catastrophically inferior. There
would be a huge landscape that does not solve any prob-
lem. It would not explain any fine tunings, not even
those of the cosmological constant itself. It is very un-
likely that we would ever be able to compute the lowest
Λ vacuum, because Λ would depend on all intricacies of
particle physics, cosmology and of a fundamental the-
ory, which would have to be computed with 120 digits of
precision.

6. Expectations and implications

What kind of landscape can we expect? The special
properties of the Standard Model suggest a fairly large
number of possible QFT choices. If we assume the cor-
rectness of quantum field theory with regard to vacuum
energy, these choices will have to be discrete, because
any small changes in any parameter will generate huge
contributions. If we furthermore assume that the cosmo-
logical constant does indeed take arbitrary values on the
interval [−1, 1] in Planck units, we need at least 10123

vacua more or less evenly distributed on the interval. It
is also important that such a dense distribution exists for
arbitrary choices of the matter sector.

Any demonstration that a given “vacuum” might de-
scribe our universe has to rely on the fact that the cosmo-
logical constant can always be adjusted to the required
value by adding a sufficiently densely distributed con-
stant.

It seems inevitable that this fact also ultimately ruins
the hope of finding “the” vacuum that precisely corre-
sponds to our universe. In principle, a discrete set of
values keeps that hope alive. The right vacuum may not
be derivable from scratch, but at least by closing in on it
with experimental data we might finally determine it, and
reach a stage where all Standard Model parameters can
be predicted with unlimited precision. Unfortunately, the
previous paragraph shows that for every vacuum that fits
the Standard Model data, there must be at least 10120
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more that scan the cosmological constant axis, and we
are unable to use that piece of information. It would
be nice if the two problems were completely decoupled,
so that all 10120 alternatives have exactly the same val-
ues for the Standard Model parameters. But this is not
plausible. The standard situation in physics is that all
changes in one variable generate changes in any other
variable, unless there is a symmetry forbidding that. So
we should expect the Standard Model parameters of the
10120 variants to form a dense cloud, and the best we
can hope for is that the width of that cloud is extremely
small, a friendly landscape. See de Alwis (2007)) for a
similar discussion. In Denef and Douglas (2007) compu-
tational complexity is discussed in regions in the string
theory landscape.

IV. STRING THEORY

Just as “Standard Model” and “Anthropic Principle”,
“String Theory” is poorly named. It owes its name to its
original formulation: strings propagating through space-
time and interacting by splitting and joining. But nowa-
days this is merely a general name for an interconnected
web of theories, including some that do not have a string
interpretation at all.

It was always clear that this formulation was perturba-
tive as an expansion in the number of times strings split
and join. But despite four decades of efforts, we still do
not know of what theory it is a perturbative expansion.
Furthermore, those efforts have made it clear that what-
ever that theory is, some of its regions are not described
by perturbative strings at all, but perhaps by interacting
higher dimensional membranes. The term “string” only
refers to some easily accessible entry gates into this theo-
retical wonderland. Because that is indeed what it is: an
amazing generator of theoretical and mathematical in-
sights, which any intelligent civilization in the landscape
will encounter during their development, and which no
intelligent civilization can afford to ignore. We cannot
be sure what its ultimate fate will be in the history of
science: merely an awe-inspiring tool, or a first hint at
what we can expect from a fundamental theory of all in-
teractions. Here we will speculate that the latter is true,
and that what we are learning by studying the pertur-
bative expansion, and various non-perturbative effects,
are indeed fundamental properties of a complete theory.
For lack of a better name, we will continue to refer to his
whole interconnected web of computational methods and
mathematical features as “string theory”.

We will only introduce a few basic concepts of string
theory here. There are many excellent books on this sub-
ject, such as the classic Green et al. (1987), the introduc-
tory course by Zwiebach (2004), the books by Polchinski
(1998) and Kiritsis (2007) and the very recent one by
Blumenhagen et al. (2013). These books also provide ex-

tensive references to classic string theory papers, which
we will omit here unless they have direct relevance to the
landscape.

A. Generalities

In its most basic form, a string amplitude is derived
from the following two-dimensional conformally invariant
action

S[X, γ] =

− 1

4πα′

∫
dσdτ

√
−det γ

∑
αβ

γαβ∂αX
µ∂βX

µgµν .
(4.1)

Here Xµ(σ, τ) is a map from the two-dimensional surface
swept out by the string (the world-sheet, with coordi-
nates σ and τ) into space time, γαβ is the metric on that
surface, and gµν is the space-time metric. The Regge
slope parameter α′ (the notation is an awkward histori-
cal relic) has the dimension [length]2, and is related to
the tension of the string as T = 1/2πα′.

The two-dimensional metric γ can be integrated out, so
that the action takes the form of a surface area. Ampli-
tudes are computed by performing a path-integral over
surfaces weighted by a factor exp(−iS/~). For closed
strings without external lines these surfaces are spheres
with multiple handles, n-tori, which can be described
in complex coordinates by the theory of Riemann sur-
faces. Scattering amplitudes are obtained by consid-
ering surfaces with external lines, obtained by gluing
tubes to the surface. An important feature of this two-
dimensional field theory is that it is not only Poincaré
invariant (which ensures that the amplitudes do not de-
pend on the way the surfaces are parametrized) but also
conformally invariant. This means that, as a first step,
the Poincaré group is enlarged by adding scale transfor-
mations. transformations. In higher dimensions with p
space and q time dimensions this extends the Poincaré
group to SO(p+1, q+1), but in two dimensions the con-
formal group has an infinite number of generators. This
infinite symmetry is the reason why string theory is so
much more powerful than its analogs with world sheets of
one dimension (particles) and three or more dimensions
(membranes). Conformal invariance is important for the
consistency of string theory (absence of unphysical states
(“ghosts”) in the space-time spectrum, and it is therefore
essential to maintain it when the theory is quantized.

Upon quantization by standard methods, one finds a
spectrum that describes an infinite tower of massive par-
ticles (the vibrational modes of the string) plus a few
massless ones and a tachyon. The massless ones are a
symmetric tensor Gµν , an anti-symmetric tensor Bµν and
a scalar φ, the dilaton. The tree-level scattering ampli-
tudes can be matched to field theory Feynman diagrams
obtained by decomposing the string into its modes. In
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particular one finds contributions that correspond to ex-
change of the symmetric tensor, which precisely match
those obtained from quantized Einstein gravity. This
implies a relation between Newton’s constant GN (in D
space-time dimensions) and α′

GN ∝ g2
s(α′)

1
2 (D−2), (4.2)

where gs is the string coupling constant defined below.
The parameter α′ also sets the mass scale for the string
excitations. Consequently, their spacing is in multiples
of the Planck scale. The space-time metric gµν in (4.1)
should be viewed as a space-time background in which
the string propagates. The background can be curved
(then gµν depends on X), but it is subject to consistency
conditions that follow from the quantization. They imply
Einstein’s equations plus higher order corrections, but
also restrict the number of space-time dimensions. For
a flat metric, this yields the requirement D = 26. The
other two massless fields, Bµν and a scalar φ, can be
included in a generalization of (4.1) as background fields.
The dilaton couples as

S(X, γ, φ) ∝
∫
dσdτ

√
γR(γ)φ . (4.3)

This introduces a dependence of amplitudes on the Eu-
ler index χ of the surface as e−χφ. (χ = 2 for a sphere,
χ = 0 for a torus, and χ = 2(1− g) for a genus-g surface,
a sphere with g handles; each external line adds a factor
gs). Hence the constant mode φ0 of φ provides a weight
factor for surfaces of different topology. This defines a
loop expansion parameter: the string coupling constant
gs = eφ0 . It is not a constant set by hand in the action,
but it is the vacuum expectation value of a scalar field.
Therefore its value can be set dynamically. The only gen-
uine parameter is α′, but this is a dimensionful quantity
that sets the scale for everything else.

The bosonic string action can be generalized by adding
two-dimensional fermions ψµ to the two-dimensional
bosons Xµ, both with µ = 0, . . . , D − 1. Quantiza-
tion consistency then requires the existence of a two-
dimensional supersymmetry called world-sheet supersym-
metry relating the bosons and the fermions. These are
called fermionic strings. In flat space, they can only be
consistently quantized if D = 10.

Another generalization is to consider two-dimensional
surfaces that are not oriented, such as the Klein bottle,
and surfaces with boundaries, such as the annulus. This
leads to theories of open and closed strings, that can exist
in 26 and 10 dimensions for bosonic and fermionic strings
respectively.

Furthermore one can make use of the fact that in free
two-dimensional theories left- and right-moving modes
can be treated independently. In closed string theories
one can even use bosonic string modes for the left-movers
and fermionic ones for the right-movers. These are called

heterotic strings, and their flat space-time dimension is
limited by the smaller of the two, namely D = 10.

B. Modular invariance

Although the string theory spectrum consists of an in-
finite set of particles, string theory is not simple a quan-
tum field theory with an infinite number of fields. The
difference becomes manifest in the simplest closed string
one-loop graph, the torus. At lowest order, the relevant
integral takes the form∫

d2τ

(Im τ)2
(Im τ)(2−D)/2 Tr e2iπτ(L0− c

24 )e−2iπτ̄(L̄0− c
24 ) .

The operators L0 − c
24 and L̄0 − c

24 are the two-
dimensional Hamiltonians of the left- and right-moving
modes, and the trace is over the tensor product of the
two Hilbert spaces. The integral in QFT would be over
the entire complex upper half plane, and is clearly diver-
gent near τ = 0. But in string theory the contributions
to this integral consists of infinitely many identical copies
of each other, and they would be over-counted if we were
to integrate over the entire upper half plane. These iden-
tical copies are related by the following transformation

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1. (4.4)

The restriction to a single copy is allowed provided
that the integrand is invariant under this transforma-
tion, which implies strong constraints on the spectrum
of eigenvalues of L0 and L̄0. These are known as mod-
ular invariance constraints. To avoid the over-counting
we can then limit ourselves to one region, and in par-
ticular we may choose one that excludes τ = 0, thereby
explicitly avoiding the field theory divergence. The lat-
ter is essentially factored out as an infinite over-counting
multiplicity.

1. Finiteness and Space-time Supersymmetry

Modular invariance is the real reason why closed string
theory is UV finite. This holds for any closed string the-
ory, including the bosonic string. There is a wide-spread
belief that in order to deal with UV divergences in quan-
tum gravity and/or quantum field theory nature must be
supersymmetric at its deepest level. However, the UV
finiteness of closed strings has nothing to do with space-
time supersymmetry.

The τ -integral may still diverge for another reason: the
presence of tachyons in the spectrum. Furthermore, if
the one-loop integral is non-zero, there is a dilaton tad-
pole, which leads to divergences at two loops and be-
yond because the dilaton propagator is infinite at zero
momentum. But both of these problems are related to
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an inappropriate choice of the background, and are IR
rather than UV. The tachyon signals an instability, an
expansion around a saddle point of the action. They are
absent in certain fermionic string theories. Their absence
requires fermions in the spectrum, but does not require
supersymmetry.

The one-loop integral gives a contribution Λ to the
vacuum energy (the cosmological constant), and implies
that the one-loop diagram with one external dilaton line
is nonzero: a tadpole. In general, tadpoles indicate that
the equations of motion are not satisfied. In this case the
dilaton tadpole signals that the flat background space-
time that was used is not a solution to the equations
of motion; instead one must use de Sitter (dS) or Anti
de Sitter (AdS) space with precisely the value Λ as its
cosmological constant (Fischler and Susskind, 1986a,b).
Unfortunately this argument only provides an explana-
tion for the presence of the tadpole, but it does not pro-
vide an exact (A)dS. For AdS spaces that problem has
been solved in certain cases (using the AdS/CFT corre-
spondence), but for dS space this is considerably more
complicated. This is especially disturbing because the
observation of accelerated expansion of the universe sug-
gests that we live in a dS space with an extremely small
cosmological constant. Even disregarding the smallness,
the very existence of a positive cosmological constant is a
problem in string theory (and also in quantum field the-
ory). Some see this as merely a technical problem, while
others regard it as an obstacle that is so fundamental
that any attempts at making approximations must fail
(see (Banks, 2012)).

Space-time supersymmetry automatically implies ab-
sence of tachyons and the dilaton tadpole, but it is not
an exact symmetry of nature, and therefore cannot be
used to argue for their absence.

2. Ten-dimensional Strings

The condition of modular invariance is automati-
cally satisfied for the bosonic string, but imposes rela-
tions among the boundary conditions of the world-sheet
fermions. These conditions have several solutions: su-
persymmetric ones and non-supersymmetric ones, with
and without tachyons, and even fermionic string theories
with only bosons (including tachyons) in the spectrum
(“type 0 strings”).

The best-known solutions are the supersymmetric
ones. There are two closed fermionic superstrings, called
type-IIA and type-IIB, and two heterotic superstrings,
distinguished by having a gauge algebra E8 × E8 or
SO(32). Open string theories have to satisfy an addi-
tional constraint: cancellation of tadpoles for the χ = 1
surfaces, the disk and the crosscap. This leads to just one
theory, called type-I, with gauge group SO(32). Apart
from the type-IIA theory, all of these theories have chi-

ral fermions in their spectrum. In ten-dimensional field
theories, chiral fermions were known to lead to disas-
trous inconsistencies (chiral anomalies) which could only
be avoided by contrived-looking combinations of fields
(Alvarez-Gaumé and Witten, 1984). Precisely these
fields came out of string theory. In heterotic strings, ad-
ditional interactions are required to achieve this (Green
and Schwarz, 1984), and those interactions are indeed
found in the string effective field theory. These “mira-
cles” ignited the string revolution of 1984. After 1984,
closed strings (especially the E8 × E8 heterotic strings)
dominated the field, and there was a tendency to view all
others as unwelcome artifacts of the construction meth-
ods that would disappear on closer scrutiny. But pre-
cisely the opposite happened.

C. D-branes, p-forms and Fluxes

A second revolution took place around 1995, and orig-
inated in part from a new insight in open string bound-
ary conditions. It was always clear that one may con-
sider two possible boundaries: the Neumann boundary
condition, which respects space-time Poincaré invariance,
and the Dirichlet boundary condition, that explicitly vi-
olates it by fixing the endpoint of the open string to a
definite space-time point. The breakthrough was under-
standing that this could have a perfectly consistent in-
terpretation by assuming that the open string ends on
a physical object localized in space-time, and spanning
a subspace of it, a membrane (Polchinski, 1995). In
d space-time dimensions, the endpoints of open strings
with d−k Neumann boundary conditions and k Dirichlet
boundary conditions sweep out a m-dimensional surface
called a Dm-brane (where the “D” stands for Dirichlet
and m = d− k − 1).

These D-branes are part of string theory as non-
perturbative solutions, like solitons in field theory (see
Duff et al. (1995) for a review). Since they are non-
perturbative, they cannot be read off directly from the
low energy effective action of string theory, but they do
betray their existence because they are sources of mass-
less fields which do appear in the spectrum. These fields
are anti-symmetric tensors of rank p, called p-forms. The
source for such p-form fields are membranes with p−1 di-
mensional space-like surfaces (Mp−1 branes) that sweep
out a p dimensional world volume Vp as they propagate.
A p-form field Ap has a field strength tensor Fp+1, which
is an anti-symmetric tensor with p+1 indices. All of these
statements are fairly straightforward generalizations of
Maxwell’s theory of electrodynamics in four dimensions,
which correspond to the case p = 1. In this case the
sources are M0 branes (particles) that sweep out a one-
dimensional world line. The relation between fields, field
strengths, source branes and their world volumes can be
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summarized as follows:

Ap → Fp+1 → Mp−1 → Vp . (4.5)

One can define a magnetic dual of these fields, again
in analogy with electric-magnetic duality in electromag-
netism. In general, this relates the field strength Fn to a
field strength Fd−n in the following way

Fµ1...µn
= εµ1,...µd

Fµn+1...µd . (4.6)

In this way the field Ap is related to a field Ad−p−2,
and the source Mp−1 branes are dual to Md−p−3 branes.
For electromagnetism in d = 4 dimensions (p = 1) this
yields point-like electric charges, dual to point-like mag-
netic charges.

The analogy with electrodynamics extends to a quan-
tization condition for the dual brane charges, analogous
to the Dirac quantization condition for electric and mag-
netic charges, eg = 2πk, k ∈ Z. This will play an im-
portant rôle in the following. On compact manifolds,
these p-form fields can wrap around suitable topological
cycles of the correct dimension to support them. These
wrapped fields are called “fluxes”. A very instructive
toy model, using the monopole analogy, can be found in
Denef et al. (2007).

In the closed string spectrum of type-II strings, p-form
fields originate from the left-right combination of space-
time spinors, which in their turn originate from world-
sheet fermions with periodic boundary conditions along
the closed string, called Ramond fermions. For this rea-
son the part of the spectrum containing these fermions is
referred to as the “RR-sector”. In type-IIA string theo-
ries, the RR tensor fields have odd rank p, and they are
sources of Dp−1 branes, starting with the D0 branes that
correspond to particles. In type-IIB strings the p-form
tensor fields have even rank, and the branes odd rank.

In string theory one always has 2-forms Bµν which are
sourced by 1-dimensional objects, the strings themselves.
In ten dimensions, these are dual to five-branes. In type-
II strings this gives rise to “NS5-branes”, called this way
because the Bµν field originates from the combination of
left- and right moving Neveu-Schwarz fermions with anti-
periodic boundary conditions along the closed string. In
heterotic strings they are called heterotic five-branes.

D. Dualities, M-theory and F-theory

The discovery of branes led to a plethora of proven and
conjectured relations between a priori different string
constructions. The ten-dimensional E8×E8 and SO(32)
heterotic strings can be related to each other after com-
pactifying each of them on a circle, inverting its radius
(R → α′/R; this is called target space duality or T-
duality), and giving vevs to suitable background fields
(Ginsparg, 1987). The same is true for type-IIA and

type-IIB strings (Dai et al., 1989; Dine et al., 1989). The
SO(32) heterotic string was shown to be related to the
type-I SO(32) string under inversion of the string cou-
pling constant, g → 1/g (strong coupling duality or S-
duality; Polchinski and Witten (1996)).

S-duality, foreseen several years earlier by Font et al.
(1990), produces a remarkable result for the remaining
ten-dimensional theories. Type-IIA is mapped to an 11-
dimensional theory compactified on a circle (Townsend,
1995; Witten, 1995). The radius of the circle is propor-
tional to the string coupling constant and is inverted
as in T-duality. For infinitely large radius one obtains
an uncompactified 11-dimensional theory; in the limit of
small radius this compactification describes the weakly
coupled type-IIA theory. The 11-dimensional theory is
not a string theory. It is called “M-theory”. Its field the-
ory limit turned out to be the crown jewel of supergrav-
ity: D = 11 supergravity, which until then had escaped
the new developments in string theory. Because of the
existence of a three-form field in its spectrum it is be-
lieved that it is described by interacting two-dimensional
and/or five dimensional membranes.

A similar relation holds for the E8×E8 heterotic string.
Its strong coupling limit can be formulated in terms of
11-dimensional M-theory compactified on a line-segment
(Horava and Witten, 1996), the circle with two halfs iden-
tified. This is sometimes called “heterotic M-theory”.

Strong coupling duality maps type-IIB strings to them-
selves (Hull and Townsend, 1995). Furthermore the self-
duality can be extended from an action just on the string
coupling, and hence the dilaton, to an action on the entire
dilaton-axion multiplet. This action is mathematically
identical to the action of modular transformations on the
two moduli of the torus, Eq. (4.4), and corresponds to
the group SL(2,Z). This isomorphism suggests a geo-
metric understanding of the self-duality in terms of a
compactification torus T2, whose degrees of freedom cor-
respond to the dilaton and axion field. An obvious guess
would be that the type-IIB string may be viewed as a
torus compactification of some twelve-dimensional the-
ory (Vafa, 1996). But there is no such theory. The first
attempts to develop this idea led instead to a new piece of
the landscape called “F-theory”, consisting only of com-
pactifications and related to E8×E8 heterotic strings and
M-theory by chains of dualities.

E. The Bousso-Polchinski Mechanism

It was realized decades ago (Linde, 1984) that anti-
symmetric tensor fields might play an important rôle in
solving the cosmological constant problem. Such tensors
are natural generalizations of vector fields Aµ to tensors
with an arbitrary number of anti-symmetrized indices.
The one of interest here is the field strength with the
maximum number of indices in four space-time dimen-
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sions, Fµνρσ. They appear as field strengths of three
index anti-symmetric tensor fields Aµνρ, which can ex-
ist in four space-time dimensions, but they have triv-
ial dynamics, no propagating modes, and hence there
are no “photons” associated with them. Such four-index
field strengths can get constant values without breaking
Lorentz invariance, namely Fµνρσ = cεµνρσ, where εµνρσ
is the Lorentz-invariant completely anti-symmetric four-
index tensor; it is unique up to normalization, which is
fixed in the standard way as εµνρσε

µνρσ = −24. The
presence of such a classical field strength in our universe
is unobservable unless we couple the theory to gravity. If
we do, it gives a contribution similar to the cosmological
constant Λ, in such a way that the latter is replaced by

Λphys = Λ− 1

48
FµνρσF

µνρσ = Λ +
1

2
c2. (4.7)

In string theory c is not an arbitrary real number: it
is quantized (Bousso and Polchinski, 2000). This is due
to a combination of the well-known Dirac quantization
argument for electric charges in theories with magnetic
monopoles, and string theory dualities. The formula for
the cosmological constant now looks something like this

Λphys = Λ +
1

2
n2f2 , (4.8)

where f is some number derived from the string the-
ory under consideration. If instead of Fµνρσ we were to
consider an electromagnetic field, f would be something
like the strength of the electromagnetic coupling e: some
number of order 1. For generic negative values of Λ we
would be able to tune Λphys to an extremely small value
only if f is ridiculously small.

However, it turns out that string theory typically con-
tains hundreds of fields Fµνρσ. Taking N such fields into
account, the result now becomes

Λphys = Λ +
1

2

N∑
i=1

n2
i f

2
i . (4.9)

One would expect the values for the real numbers fi to be
different. Again an analogy with electromagnetic fields
is useful. Although for the Standard Model we need just
one such vector field, string theory may contain more
than one. Generically, these will all have different fine-
structure constants, or in other words different values for
the electromagnetic couplings ei.

If indeed the values of fi are distinct and incommensu-
rate, then Eq. (4.9) defines a dense discrete set of values.
Bousso and Polchinski called it a “discretuum”. It is an
easy exercise to show that with N equal to a few hun-
dred, and values for fi of the order of electromagnetic
couplings and small integers ni, one can indeed obtain
the required small value of Λphys, given some negative Λ.

This realizes a dynamical neutralization of Λ first pro-
posed by Brown and Teitelboim (1987, 1988) (see Feng

et al. (2001) for a related string realisation). This makes
any field strength Fµνρσ (and hence Λ) decay in discrete
steps by bubble nucleation. This process stops as Λ
approaches zero. This is analogous to the decay of an
electric field between capacitor plates by pair creation
of electron-positron pairs. However, Brown and Teitel-
boim (as well as Abbott (1985) in an analogous model)
already pointed out an important problem in the single
field strength case they considered. First of all, as noted
above, one has to assume an absurdly small value for f .
But even if one does, the last transition from an expand-
ing dS universe to ours would take so long to complete
that all matter would have been diluted (the “empty uni-
verse problem”). With multiple four-form field strengths,
both problems are avoided; see Bousso (2008) for details.

All the ingredients used in the foregoing discussion are
already present in string theory; nothing was added by
hand. In particular large numbers of fields Fµνρσ are
present, and the quantization of the field strengths fol-
lows using standard arguments.

F. Four-Dimensional Strings and Compactifications

There are essentially two ways of building string the-
ories in four dimensions. One is to choose another back-
ground space-time geometry, and the other is to change
the world-sheet theory. The geometry can be chosen as
a flat four-dimensional space combined with a compact
six-dimensional space. This is called “compactification”.
This is not simply a matter of hand-picking a manifold:
it must satisfy the equations of motion of string theory,
and must be stable. Indeed, an obvious danger is that
a given manifold simply “decompactifies” to six flat di-
mensions. The world-sheet theory can be modified by
choosing a different two-dimensional conformal field the-
ory. In the action (4.1) and its supersymmetric analog
only free bosons X or free fermions ψ are used. One can
choose another two-dimensional field theory that satisfies
the conditions of conformal invariance. This is called a
conformal field theory (CFT). In particular one may use
interacting two-dimensional theories. Only Xµ and ψµ,
µ = 0, . . . 3, must remain free fields.

The simplest compactification manifold is a six-
dimensional torus. This can be described both in terms
of space-time geometry, or by means of a modified world-
sheet CFT (bosons with periodic boundaries). However,
the resulting theories only have non-chiral fermions in
their spectrum.

The next hurdle was taken very rapidly thereafter: to
construct chiral string theories in four dimensions. The
first examples were obtained by assuming that the ex-
tra six dimensions were not flat space, but a compact
manifold. The equations of motion of string theory, plus
some simplifying assumptions that were relaxed in sub-
sequent papers, required this space to be a Calabi-Yau
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manifold, a Ricci-flat manifold with three complex di-
mensions. Soon many other methods were found, and
the bewildering choice of possibilities led to a massive
effort that is still continuing today.

As in ten dimensions, all four-dimensional string theo-
ries are related to others by strong-weak dualities, target
space dualities and combinations thereof. This suggests
a connected “landscape” of four-dimensional strings.

We will present here just a brief sketch of the string
compactification landscape. For further details we rec-
ommend the very complete book by Ibañez and Uranga
(2012) and references therein.

1. Landscape Studies versus Model Building

The amount of work on string compactifications or
four-dimensional string constructions is too vast to re-
view here. Most of this work is focused on finding exam-
ples that match the Standard Model as closely as pos-
sible. This is important, at the very least as an exis-
tence proof, but it is not what we will focus on in this
review. Our main interest is not in finding a “model”
where property X is realized, but the question if we can
understand why we observe property X in our universe,
given anthropic and landscape constraints. The relative
importance of these two points of view depends on how
optimistic one is about the chances of finding the exact
Standard Model as a point in the landscape.

2. General Features

Even if the massless spectrum matches that of the
Standard Model, such a theory contains infinitely many
additional particles: massive string excitations, Kaluza-
Klein modes as in field theory compactifications, and
winding modes due to strings wrapping the compact
spaces.

Their masses are respectively proportional to the string
scale, the inverse of the compactification radius or the
compactification radius itself. In world-sheet construc-
tions the different kinds of modes are on equal footing,
and have Planckian masses. In geometric constructions
one can consider large volume limits, where other mass
distributions are possible. But in any case, of all the
modes of the string only the massless ones are relevant
for providing the Standard Model particles, which will ac-
quire their masses from the Higgs mechanism and QCD,
as usual.

All Standard Model fermions (by definition this does
not include right-handed neutrinos) are chiral. Their left
and right handed components couple in a different way
to the weak interactions, and this implies that they can
only acquire a mass after weak symmetry breaking. This
implies that their mass is proportional to the Higgs vev.

Therefore one can say that the weak interactions protect
them from being very massive. It is very well possible
that for this reason all we have seen so far at low energy
is chiral matter. In attempts at getting the Standard
Model from string theory, it is therefore reasonable to
require that the chiral spectra match. If one does that,
one finds that in general large quantities of additional
vector-like matter, whose mass is not protected by the
weak interactions. Typically, if one requires three chiral
families, one gets N + 3 families and N mirror families.
If the N families “pair off” with the N mirror families to
acquire a sufficiently large mass, the low energy spectrum
agrees with the data.

For phenomenological, but more importantly practical
reasons most efforts have not focused on getting the SM,
but the MSSM, the Minimal Supersymmetric Standard
Model. But it turns out that “minimal” is not exactly
what one typically finds. Usually there are many addi-
tional fields that have not (yet) been observed. In addi-
tion to the superpartners of all the Standard Model par-
ticles and the additional Higgs field of the MSSM, they
include moduli, axions, additional vector bosons, addi-
tional “vector-like” matter and additional exotic matter.

Moduli are massless scalar singlets whose presence can
be understood in terms of continuous deformations of the
compactification manifold or other features of the classi-
cal background fields. The vacuum expectation values of
these fields generate the deformations. Typically, there
are tens or hundreds of them. In the more general setting
of M-theory, the dilaton is part of this set as well.

Axions may be thought of as the imaginary part of
the moduli, which are complex scalars in supersymmet-
ric theories. It is useful to make the distinction, be-
cause mechanisms that give masses to moduli, as is re-
quired for phenomenological reasons, sometimes leave the
imaginary part untouched. Axions may provide essential
clues about the landscape, see section V.D. These re-
main then as massless Goldstone bosons of a shift sym-
metry. On general grounds one expects that theories of
gravity have no exact global symmetries, so that the ax-
ions ultimately acquire a mass from non-perturbative ef-
fects. This mass can be exponentially suppressed with
respect to the string scale. One of the axions is the four-
dimensional Bµν field.

Most string spectra have considerably more vector
bosons than the twelve we have seen so far in nature.
Even if the presence of SU(3), SU(2) and U(1) as fac-
tors in the gauge group is imposed as a condition, one
rarely finds just the Standard Model gauge group. In
heterotic strings one is usually left with one of the E8

factors. Furthermore in nearly all string constructions
additional U(1) factors are found. A very common one
is a gauged B − L symmetry.

Furthermore one often finds particles that do not
match any of the observed matter representations, nor
their mirrors. Notorious examples are particles with frac-
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tional electric charge or higher rank tensors. These are
generically called “exotics”. If there are exotics that are
chiral with respect to SU(3)×SU(2)×U(1), these spec-
tra should be rejected, because any attempt to make
sense of such theories is too far-fetched to be credible.
These particles may be acceptable if they are vector-
like, because one may hope that they become massive
under generic perturbations. All particles that have not
been seen in experiments must somehow acquire a large
enough mass. This is one of the main challenges of string
phenomenology, the effort to connect string theory with
particle physics phenomenology.

Although superfluous particles may appear to be a
curse, some of them may turn out to be a blessing. All
quantum field theory parameters depend on the moduli,
and hence the existence of moduli is a first step towards
a landscape of possibilities. This should be viewed as
a good feature of string theory. Furthermore the large
number of moduli opens the way to a solution of the cos-
mological constant problem, by allowing a large number
of vacua densely covering the range of possibilities. A
popular estimate for the number of vacua is 10500, and
the exponent is determined by the number of moduli.

Axions can play a rôle in solving the strong CP prob-
lem, and may also provide a significant part of dark mat-
ter. Additional gauge groups are often needed as “hidden
sectors” in model building, especially for supersymmetry
breaking. Extra U(1)’s may be observable trough kinetic
mixing (Goodsell and Ringwald, 2010) with the Standard
Model U(1), via contributions to the action proportional
to FµνV

µν , where F is the Y field strength, and V the
one of the extra U(1)’s. Vector-like particles and exotics
might be observed and provide evidence for string theory,
though this is wishful thinking.

Some of the undesirable features may not be as generic
as they seem. They may just be an artefact of the nec-
essarily primitive methods at our disposal. Our intu-
ition from many years of four-dimensional string model
building may well be heavily distorted by being too close
to the supersymmetric limit, and by algebraically simple
constructions. Perhaps a generic, non-supersymmetric,
moduli-stabilized string ground state has no gauge group
at all, so that the gauge group we observe is a rare, but
anthropically required deviation from normality. It may
well be that a in a generic string ground state only chiral
matter is light, as expected on the basis of standard QFT
lore (any mass term that is allowed is indeed present). If
that turns out not to be the case, these features must be
viewed as evidence against string theory.

3. Calabi-Yau Compactifications

A torus compactification preserves all space super sym-
metries, and hence on ends up with N = 4 supersymme-
try in four dimension. The maximal number of super

symmetries that allows chiral fermions in four dimen-
sions is N = 1 This problem can be overcome by choos-
ing a different background geometry. In general, this
means that one chooses a six-dimensional compact man-
ifold, with classical field configurations for all the mass-
less fields: gravity, the dilaton, the Bµν field and the
gauge fields. This was first applied to the E8 × E8 het-
erotic string (Candelas et al., 1985). These authors found
consistent compactifications by using six-dimensional,
Ricci-flat, Kähler manifolds with SU(3) holonomy, called
Calabi-Yau manifolds. They assumed that the Bµν field
strength Hµνρ vanishes, which leads to the consistency
condition

dH = Tr R ∧R− 1

30
Tr F ∧ F = 0. (4.10)

This implies in particular a relation between the gravita-
tional and gauge field backgrounds. This condition can
be solved by using a background gauge field that is equal
to the spin connection of the manifold, embedded in an
SU(3) subgroup of one of the E8 factors. In compactifi-
cations of this kind one obtains a spectrum with a gauge
group E6 × E8. The group E6 contains the Standard
Model gauge group SU(3) × SU(2) × U(1) plus two ad-
ditional U(1)’s. The group E8 is superfluous but hidden
(Standard Model particles do not couple to it), and may
play a rôle in supersymmetry breaking.

If some dimensions of space are compactified, ten-
dimensional fermion fields are split as

Ψ+(x, y) = ΨL(x)Ψ+(y) + ΨR(x)Ψ−(y) (4.11)

where x denote four-dimensional and y six-dimensional
coordinates, + denotes one chirality in ten six dimen-
sions, and L,R denote chirality in four dimensions. The
number of massless fermions of each chirality observed
in four dimensions is determined by the number of zero-
mode solutions of the six-dimensional Dirac equation in
the background of interest. These numbers are equal to
two topological invariants of the Calabi-Yau manifold,
the Hodge numbers, h11 and h12. As a result one ob-
tains h11 chiral fermions in the representation (27) and
h12 in the (27) of E6. The group E6 is a known ex-
tension of the Standard Model, an example of a Grand
Unified Theory, in which all three factors of the Standard
Model are embedded in one simple Lie algebra. It is not
the most preferred extension; a Standard Model family
contains 15 or 16 (if we assume the existence of a right-
handed neutrino) chiral fermions, not 27. However, since
the 11 superfluous fermions are not chiral with respect to
SU(3)× SU(2)×U(1), they can acquire a mass without
the help of the Higgs mechanism, in the unbroken Stan-
dard Model. Therefore these masses may be well above
current experimental limits.

The number of Calabi-Yau manifolds is huge. Kreuzer
and Skarke (2002) enumerated a subset associated with
four-dimensional reflexive polyhedra. This list contains
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more than 470 million topological classes with 31,108 dis-
tinct Hodge number pairs. The total number of topologi-
cal classes of Calabi-Yau manifolds has been conjectured
to be finite.

Strominger (1986) considered more general geomet-
ric background geometries with torsion, leading to so
many possibilities that the author concluded “all pre-
dictive power seems to have been lost”.

4. Orbifold Compactifications

One can also compactify on a six-dimensional torus,
but this does not yield chiral fermions; the same is
true for the more general asymmetric torus compacti-
fications with 6 left-moving and 22 right-moving “chi-
ral” bosonsfound by Narain (1986). But string theory
can also be compactified on tori with discrete identifica-
tions. The simplest example is the circle with the upper
half identified with the lower half, resulting in a line seg-
ment. These are called orbifold compactifications (Dixon
et al., 1985), and do yield chiral fermions. These meth-
ods opened many new directions, such as orbifolds with
gauge background fields (“Wilson lines”) (Ibañez et al.,
1987), and were soon generalized to asymmetric orbifolds
(Narain et al., 1987), where “asymmetric” refers to the
way left- and right-moving modes were treated.

5. The Beginning of the End of Uniqueness

Several other methods were developed around the same
time. Narain’s generalized torus compactifications lead
to a continuous infinity of possibilities, but all without
chiral fermions. Although this infinity of possibilities is
not really a surprising feature for a torus compactifica-
tion, Narain’s paper was an eye-opener because, unlike
standard six-dimensional torus compactifications, this
approach allowed a complete modification of the gauge
group.

Free field theory constructions, discussed in more de-
tail below, allowed a more systematic exploration of cer-
tain classes of string theories. It became clear very
quickly that there was a plethora of possibilities. Un-
like Narain’s constructions, these theories can have chiral
fermions, and furthermore they did not provide a contin-
uum of options, but only discrete choices. With the ben-
efit of hindsight, one can now say that all these theories
do have continuous deformations, which can be realized
by giving vacuum expectation values to certain massless
scalars in the spectrum. Since these deformed theories do
not have a free field theory descriptions, these deforma-
tions are not manifest in the construction. They are the
world sheet construction counterparts of the geometric
moduli. This does however not imply that the plethora
of solutions can simply be viewed as different points in

one continuous moduli space. Since many spectra are chi-
rally distinct, it is more appropriate to view this as the
discovery of a huge number of distinct moduli spaces,
all leading to different physics. Fifteen years later, work
on moduli stabilisation provided hints at the existence
of non-trivial potentials on these moduli spaces, with a
huge number of metastable local minima. This explosive
growth of possibilities comes on top of the one discovered
in 1986.

Already as early as 1986 it became customary to think
of the different four-dimensional string theories or com-
pactifications as “vacua” or “ground states” of a funda-
mental theory (see for example the discussion at the end
of Kawai et al. (1987)). Here one also finds the remark
that perhaps our universe is merely a sufficiently long-
lived metastable state. All this work from 1986 gave the
first glimpse of what much later became known as the
“string theory landscape”.

6. Free Field Theory Constructions

World-sheet methods started being explored in 1986.
The first idea was to exploit boson-fermion equivalence in
two dimensions. In this way the artificial distinction be-
tween the two can be removed, and one can describe the
heterotic string entirely in terms of free fermions (Kawai
et al. (1986b) and Antoniadis et al. (1987)) or free bosons
(Lerche et al., 1987). These constructions are closely re-
lated, and there is a huge area of overlap: constructions
based on complex free fermions pairs can be written in
terms of free bosons. However, one may also consider
real fermions or free bosons on lattices that do not allow
a straightforward realization in terms of free fermions.

a. Free fermions Both methods have to face the prob-
lem of finding solutions to the conditions of modular in-
variance. In the fermionic constructions this is done by
allowing periodic or anti-periodic boundaries on closed
cycles on the manifold for all fermions independently.
Modular transformations change those boundary condi-
tions, and hence they are constrained by the requirements
of modular invariance. These constraints can be solved
systematically (although in practice usually not exhaus-
tively). Very roughly (ignoring some of the constraints),
the number of modular invariant combinations is of or-
der 2

1
2n(n−1) for n fermions. There are 44 right-moving

and 18 left-moving fermions, so that there are potentially
huge numbers of string theories. In reality there are how-
ever many degeneracies.

b. Free Bosons: Covariant Lattices In bosonic construc-
tions the modular invariance constraints are solved by
requiring that the momenta of the bosons lie on a
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Lorentzian even self-dual lattice. This means that the
lattice of quantized momenta is identical to the lattice
defining the compactified space, and that all vectors have
even norm. Both conditions are defined in terms of a
metric, which is +1 for left-moving bosons and −1 for
right-moving ones. These bosons include the ones of
Narain’s torus, plus eight right-moving ones represent-
ing the fermionic degrees of freedom, ψµ and the ghosts
of superconformal invariance. These eight bosons orig-
inate from the bosonic string map (originally developed
for ten-dimensional strings by Englert et al. (1986)) used
by Lerche et al. (1987) to map the entire fermionic sec-
tor of the heterotic string was to a bosonic string sector.
Then the Lorentzian metric has signature ((+)22, (−)14)),
and the even self-dual lattice is denoted Γ22,14 called a co-
variant lattice because it incorporates space-time Lorentz
invariance for the fermionic string (starting from free
fermions, Kawai et al. (1987) found a related construction
in terms of odd self-dual lattices). Since the conditions
for modular invariance are invariant under SO(22, 14)
Lorentz transformations, and since the spectrum of L0

and L̄0 is changed under such transformations, their
would appear to be a continuous infinity of solutions.
But the right-moving modes of the lattice are strongly
constrained by the requirement of two-dimensional su-
persymmetry, which is imposed using a non-linear real-
ization discovered by Antoniadis et al. (1986) (other re-
alizations exist, see for example Schellekens and Warner
(1988) and Waterson (1986)). This leads to the “triplet
constraint” first formulated in Kawai et al. (1986b). This
makes the right-moving part of the lattice rigid. The
canonical linear realization of supersymmetry, relating
Xµ to ψµ, on the other hand leads to lattices Γ22,6 ×E8

with complete Lorentz rotation freedom in the first fac-
tor, which is just a Narain lattice.

7. Early attempts at vacuum counting.

The rigidity of the right-moving part of the lattice dis-
cretizes the number of solutions, which is in fact finite for
a given world-sheet supersymmetry realization. A very
crude attempt to estimate the number of solutions was
made by Lerche et al. (1986), and works as follows. One
can map the right-moving bosons to a definite set of 66
left-moving bosons, while preserving modular invariance.
This brings us into the realm of even self-dual Euclidean
lattices, for which powerful classification theorems exist.

Such lattices exist only in dimensions that are a mul-
tiple of eight, and have been enumerated for dimensions
8, 16 and 24, with respectively 1,2 and 24 solutions (in
8 dimensions the solution is the root lattice of E8, in 16
dimensions they are E8 ⊕E8 and the root lattice of D16

plus a spinor weight lattice, and in 24 dimensions the
solutions were enumerated by Niemeier (1973)). There
exists a remarkable formula (the “Siegel mass formula”)

which gives information about the total number of dis-
tinct lattices Λ of dimension 8k in terms of :∑

Λ

g(Λ)−1 =
1

8k
B4k

4k−1∏
j=1

B2j

4j
(4.12)

Here g(Λ) is the order of the automorphism group of the
lattice Λ and B2j are the Bernouilli numbers. Since the
automorphisms include the reflection symmetry, g(Λ) ≥
2. If we assume that the lattice of maximal symmetry is
D8k (the root lattice plus a spinor, which is a canonical
way to get an even self-dual lattice)) we have a plausible
guess for the upper limit of g(Λ) as well, namely the size
of the Weyl group of D8k, 28k−1(8k)!. This assumption
is incorrect for k = 1, where the only lattice is E8, and
k = 2, where the lattice E8 × E8 wins against D16, but
for k = 3 and larger the Weyl group of D8k is larger
than the automorphism group of the lattice (E8)k. For
k = 3 the assumption has been checked in Conway and
Sloane (1982) for all 24 Niemeier lattices. Making this
assumption we get

1

4k
B4k

4k−1∏
j=1

B2j

4j
< N8k < 28k−1(8k − 1)! B4k

4k−1∏
j=1

B2j

4j

(4.13)
which for k = 11 gives 10930 < N88 < 101090 (in Lerche
et al. (1986) this number was estimated rather inaccu-
rately as 101500; all numbers quoted here are based on
an exact computation).

From a list of all N88 lattices one could read off all
the free bosonic CFTs with the world-sheet supersym-
metry realization discussed above. In particular, this
shows that the total number is finite. However, there
is a very restrictive subsidiary constraint due to the fact
that 66 of the 88 bosons were obtained from the right
moving sector. Those bosons must have their momenta
on a D3 × (D7)9 lattice and satisfy an additional con-
straint inherited from world sheet supersymmetry, the
triplet constraint. Perhaps a more reasonable estimate
is to view this as a lattice with 32 orthogonal building
blocks, D3×(D7)9×(D1)22, which should be combinato-
rially similar to (D1)32 then the relevant number would
be N32, which lies between 8 × 107 and 2.4 × 1051. But
unlike N88, N32 is not a strict limit, and furthermore is
still subject to the triplet constraint.

All of this can be done explicitly for 10 dimensional
strings. Then one needs the lattices of dimension 24, and
eight of the 24 lattices satisfy the subsidiary constraints
for ten-dimensional strings (Lerche et al., 1986), namely
the presence of a D8 factor.

8. Meromorphic CFTs.

The concept of chiral conformal field theories and even
self-dual lattices can be generalized to interacting theo-
ries, the so-called meromorphic conformal field theories
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(Goddard, 1989). These can only exist if the central
charge c (the generalization of the lattice dimension to
CFT) is a multiple of 8. For c = 8 and c = 16 these mero-
morphic CFTs are just chiral bosons on even self-dual
lattices, but for c = 24 there 71 CFT’s are conjectured
(Schellekens, 1993) to exist including the 24 Niemeier
lattices (most of them have indeed been constructed).
Gauge symmetries in the vast majority of the heterotic
strings in the literature (for exceptions see for example
Candelas et al. (1997)) are mathematically described in
terms of affine Lie algebras, a kind of string generalization
of simple Lie-algebras, whose representations are charac-
terized by a Lie-algebra highest weight and an additional
integer parameter k called the level. In the free boson the-
ories the only representations one encounters have k = 1,
and the total rank equals the number of compactified
bosons in the left-moving sector, 22 for four-dimensional
strings, and 24 for Niemeier lattices. All even self-dual
lattices are direct sums of level 1 affine algebras plus a
number of abelian factors (U(1)’s), which we will call the
gauge group of the theory. In meromorphic CFT’s the re-
striction to level one is removed. The list of 71 meromor-
phic CFTs contains 70 cases with a gauge group whose
total central charge is 24, plus one that has no gauge
group at all, the “monster module”. Just one of these
yields an additional ten-dimensional string theory with
tachyons and an E8 realized as an affine Lie algebra at
level 2. This solution was already known (Kawai et al.,
1986a), and was obtained using free fermions.

The importance of the meromorphic CFT approach is
that it gives a complete classification of all solutions with-
out assuming a particular construction method. In four
dimensions the same method can be used. For example,
from a list of meromorphic CFTs with c = 88 all four-
dimensional string theories with a given realization of
world-sheet supersymmetry (namely the same one used
above) can be obtained, independent of the construction
method. Unfortunately next to nothing is known about
meromorphic CFTs for c ≥ 32. It is not known if, like
lattices, they are finite in number. Their gauge groups
can have central charges that are not necessarily 0 or the
total central charge of the meromorphic CFT. It is not
known if the gauge groups are typically large or small.
There is an entire landscape here that is totally unex-
plored, but hard to access.

So far this method of mapping a heterotic theory to
a meromorphic CFT has only been applied to a world-
sheet supersymmetry realization using the triplet con-
straint. But this can be generalized to other realiza-
tions of world-sheet supersymmetry, including perhaps
the ones discussed in the next section.

The point we are trying to make here is that despite
many decades of work, we are probably still only able to
see the tip of a huge iceberg.

9. Gepner Models.

In 1987 world-sheet constructions were extended fur-
ther by the use of interacting rather than free two-
dimensional conformal field theories (Gepner, 1988).
The “building blocks” of this construction are two-
dimensional conformal field theories with N = 2 world-
sheet supersymmetry. These building blocks are com-
bined (“tensored”) in such a way that they contribute in
the same way to the energy momentum tensor as six free
bosons and fermions. This is measured in terms of the
central charge of the Virasoro algebra, which must have
a value c = 9. In principle the number of such building
blocks is huge, but in practice only a very limited set is
available, namely an infinite series of “minimal models”
with central charge c = 3k/(k+2), for k = 1 . . .∞. There
are 168 distinct ways of adding these numbers to 9.

With the constraints of superconformal invariance
solved, one now has to deal with modular invariance. In
exact CFT constructions the partition function takes the
form

P (τ, τ̄) =
∑
ij

χi(τ)Mijχ̄j(τ̄) (4.14)

where χi are characters of the Virasoro algebra, traces
over the entire Hilbert space built on the ground state
labeled i by the action of the Virasoro generators Ln:

χi(τ) = Tre2πiτ(L0−c/24) (4.15)

The multiplicity matrix M indicates how often the
ground states |i〉|j〉 occurs in the spectrum. Its entries
are non-negative integers, and it is severely constrained
by modular invariance. Note that in (4.14) we allowed
for the possibility that the left- and right-moving modes
have a different symmetry (a different extension of su-
perconformal symmetry) with different sets of characters
χ and χ̄. But then the conditions for modular invariance
are very hard to solved. They can be trivially solved if
the left and right algebras are the same. Then modular
invariance demands that M must commute with the ma-
trices S and T that represent the action of the modular
transformations τ → −1/τ and τ → τ + 1 on the charac-
ters. This has always at least one solution, Mij = δij .

However, assuming identical left and right algebras is
contrary to the basic idea of the heterotic string. In-
stead Gepner model building focuses on a subset, namely
those spectra that can be obtained from a symmetric
type-II spectrum by mapping one of the fermionic sec-
tors to a bosonic sector. For this purpose we can use the
same bosonic string map discussed above. This results
in a very special and very limited subset of the possible
bosonic sectors.

Using the discrete symmetries of the building blocks,
for each of the 168 tensor combinations a number of
distinct modular invariant partition functions can be
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constructed, for a grand total of about five thousand
(Schellekens and Yankielowicz, 1990). Each of them gives
a string spectrum with a gauge group E6 ×E8 (or occa-
sionally an extension of E6 to E7 or E8) with massless
chiral matter in the representations (27) and (27) of E6,
exactly like the Calabi-Yau compactifications discussed
above.

Indeed, it was understood not long thereafter that
there is a close relationship between these “Gepner mod-
els” and geometric compactifications on Calabi-Yau man-
ifolds. Exact correspondences between their spectra were
found, including the number of singlets. This led to the
conjecture that Gepner Models are Calabi-Yau compact-
ifications in a special point of moduli space. Evidence
was provided by a conjectured relation between of N = 2
minimal models to critical points of Landau-Ginzburg
models (Lerche et al., 1989; Vafa and Warner, 1989).

Getting the right number of families in this class of
models has been challenging, since this number turns out
to be quantized in units of six or four in nearly all cases
that were studied initially. The only exception is a class
studied by Gepner (1987). We will return to this problem
later.

10. New Directions in Heterotic strings

a. New embeddings. The discovery of heterotic M-theory
opened many new directions. Instead of the canoni-
cal embedding of the SU(3) valued spin-connection of
a Calabi-Yau manifold, some of these manifolds admit
other bundles that can be embedded in the gauge group.
In general, condition (4.10) is then not automatically sat-
isfied, but in heterotic M-theory one may get extra con-
tributions from heterotic five branes (Lalak et al., 1999;
Lukas et al., 1999).

In this way one can avoid getting the Standard Model
via the complicated route of E6 Grand Unification. Some
examples that have been studied are SU(4) bundles
(Braun et al., 2006), U(1)4 bundles (Anderson et al.,
2012) and SU(N) × U(1) bundles (Blumenhagen et al.,
2006) which break E8 to the more appealing SO(10)
GUTs, to SU(5) GUTs, or even directly to the Standard
Model. Extensive and systematic searches are underway
that have resulted in hundreds of distinct examples (An-
derson et al., 2011) with the exact supersymmetric Stan-
dard Model spectrum, without even any vector-like mat-
ter (but with extra gauge groups and the usual large num-
bers of singlets). However, the gauge group contains ex-
tra U(1)’s and an E8 factor, and large numbers of gauge
singlets, including unstabilized moduli. There can be sev-
eral Higgs multiplets. To break the GUT groups down to
the Standard Model background gauge fields on suitable
Wilson lines are used. For this purpose one needs a man-
ifold with a freely acting (i.e. no point on the manifold
are fixed by the action) discrete symmetry. One then

identifies points on the manifold related by this symme-
try and adds a background gauge field on a closed cycle
on the quotient manifold (a Wilson line).

b. Free fermionic construction. In-depth explorations
(Assel et al., 2011) have been done of a subclass of
fermionic constructions using a special set of free fermion
boundary conditions that allows spectra with three fami-
lies to come out. This work focuses on Pati-Salam model.
Other work (Renner et al., 2011, 2012) explores the varia-
tions of the “NAHE” set of free fermion boundary condi-
tions. This is a set of fermion boundary vectors proposed
by Antoniadis et al. (1989) that are a useful starting point
for finding “realistic” spectra.

c. The Heterotic Mini-landscape. This is a class of orb-
ifold compactifications on a torus T 6/Z6 cleverly con-
structed so that the heterotic gauge group E8×E8 is bro-
ken down to different subgroups in different fixed points,
such as SO(10), SU(4)2 and SU(6)× SU(2). This leads
to the notion of local unification (Buchmuller et al., 2005,
2006; Forste et al., 2004). The Standard Model gauge
group is the intersection of the various “local” gauge re-
alized at the fixed points. Fields that are localized near
the fixed points must respect its symmetry, and hence be
in complete multiplets of that group. Unlike field the-
ory GUTs, these models have no limit where SO(10) is
an exact global symmetry. In this way one can make
sure that matter families are in complete spinor repre-
sentations of SO(10), while Higgs bosons need not be in
complete representations of SO(10), avoiding the notori-
ous doublet splitting problem of GUTs. The number of
3-family models in this part of the landscape is of order
a few hundred, and there is an extensive body of work
on their phenomenological successes and problems, see
for example Lebedev et al. (2007) and Nilles et al. (2009)
and references therein.

d. Heterotic Gepner Models As explained above, the orig-
inal Gepner models are limited in scope by the require-
ment that the left and right algebras should be the same.
There is no such limitation in free CFT constructions,
but they are limited in being non-interacting in two di-
mensions. What we would like to have is asymmetric, in-
teracting CFT construction. Examples in this class have
been obtained using a method called “heterotic weight
lifting” (Gato-Rivera and Schellekens, 2011a). In the left-
moving sector one of the superconformal building blocks
(combined with one of the E8 factors) is replaced by an-
other CFT that has no superconformal symmetry, but
is isomorphic to the original building block as a modular
group representation. This opens up an entirely new area
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of the heterotic string landscape. It turns out that the
difficulty in getting three families now disappears.

11. Orientifolds and Intersecting Branes

The Standard Model comes out remarkably easily from
the simplest heterotic strings. But that is by no means
the only way. Another way to get gauge groups in string
theory is from stacks of membranes. If open strings end
on a D-brane that does not fill all of space-time, a dis-
tinction must be made between their fluctuations away
from the branes, and the fluctuations of their endpoints
on the branes. The former are standard string vibrations
leading to gravity (as well as a dilaton, and other vibra-
tional modes of closed strings), whereas fluctuations of
the endpoints are only observable on the brane, and give
rise to fermions and gauge interactions.

a. Brane Worlds This then leads to the “brane-world”
scenario, where our universe is assumed to be a Dp−1

brane embedded in a higher dimensional space-time.
Then all observed matter and gauge interactions (i.e.
the Standard Model) would be localized on the brane,
whereas gravity propagates in the bulk. The additional
dimensions must be assumed to be compact in order to
make them unobservable, but since they can only be ob-
served using gravitation, the limits are completely un-
related to the distance scales probed at the LHC. From
tests of the 1/r2 dependence of Newton’s law of gravity
one get a limit of about .1 mm; anything smaller is cur-
rently unobservable. The brane world idea was proposed
as a possible solution to the gauge hierarchy problem
(Arkani-Hamed et al., 1998). By allowing gravity to ex-
pand into extra dimensions below distances of .1 mm one
can explain the observed weakness of gravity in terms of
a dilution of the field lines into extra dimensions. Our
large observed Planck scale would just be an illusion, re-
lated to the fundamental scale of gravity Mgrav as

M2
Planck ∝ (Mgrav)2+n(R)n (4.16)

where n is the number of extra dimensions and R their
compactification radius. For moderately large R one can
obtain a large 4-dimensional Planck scale from a moder-
ately small (for example in the TeV range) fundamental
scale of gravity. This inspired followed other construc-
tions, where the extra dimensions were assumed to be
not flat, but warped (Randall and Sundrum, 1999).

However, these solutions to the hierarchy problem are
not our main interest here. Furthermore, they are put
under severe stress by the recent LHC results.

b. Chan-Paton groups. The possibility of getting gauge
theories and matter from branes sparked another di-

rection of research with the goal of getting the Stan-
dard Model from open string theories. To get towards
the Standard Model, one starts with type-II string the-
ory, and compactifies six dimensions on a manifold.
This compactified manifold may have a large radius, as
in the brane world scenario, but this is optional. In
these theories one finds suitable D-branes coinciding with
four-dimensional Minkowski space, and intersecting each
other in the compactified directions. These can be D5,
D7 or D9 branes in type-IIB and D6 branes in type-IIA
(some other options can be considered, but require more
discussion; see for example Ibañez and Uranga (2012)).
Each such brane can give rise to a gauge group, called a
Chan-Paton gauge group, which can be U(N), Sp(N) or
O(N) (Marcus and Sagnotti, 1987). By having several
different branes one can obtain a gauge group consisting
of several factors, like the one of the Standard Model.
The brane intersections can give rise to massless string
excitations of open strings with their ends on the two
intersecting branes. These excitations can be fermions,
and they can be chiral. Each open string end endows
the fermion with a fundamental representation of one of
the two Chan-Paton groups, so that the matter is in a
bi-fundamental representation of those gauge groups.

Remarkably, a Standard Model family has precisely the
right structure to be realized in this manner. The first
example was constructed by Ibañez et al. (2001) and is
called the “Madrid model”. It consists of four stacks
of branes, a U(3) stack giving the strong interactions, a
U(2) or Sp(2) stack for the weak interactions, plus two
U(1) stacks. The Standard Model Y charge is a linear
combination of the unitary phase factors of the first, third
and fourth stack (the stacks are labeled a . . . d)

Y =
1

6
Qa +

1

2
Qc −

1

2
Qd.

This configuration is depicted in Fig. 2(a).

c. The three main classes. There are other ways of getting
the Standard Model. If there are at most four brane
stacks involved, they fall into three broad classes, labeled
by a real number x. The Standard Model generator is in
general some linear combination of all four brane charges
(assuming stack b is U(2) and not Sp(2)), and takes the
form (Anastasopoulos et al., 2006)

Y = (x− 1

3
)Qa + (x− 1

2
)Qb + xQc + (x− 1)Qd. (4.17)

Two values of x are special. The case x = 1
2 leads to a

large class containing among others the Madrid model,
Pati-Salam models (Pati and Salam, 1974) and flipped
SU(5) (Barr, 1982) models. The value x = 0 gives rise
to classic SU(5) GUTs (Georgi and Glashow, 1974). To
get Standard Model families in this case one needs chiral
anti-symmetric rank-2 tensors, which originate from open
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FIG. 2 Brane configurations: (a) the Madrid model, (b)
SU(5) GUTs and (c) Trinification.

strings with both their endpoints on the same brane. The
simplest example is shown in Fig. 2(b). It has one U(5)
stack giving rise to the GUT gauge group, but needs at
least one other brane in order to get matter in the (5∗)
representation of SU(5).

Other values of x can only occur for oriented strings,
which means that there is a definite orientation distin-
guishing one end of the string from the other end. An in-
teresting possibility in this class is the trinification model,
depicted in Fig. 2(c).

This configuration is naturally embedded in E6 GUTs,
just as SU(5) GUTs and the Pati-Salam model are natu-
rally embedded in SO(10). However, these GUT groups
cannot be obtained with these open string constructions.
The reason is SO(10) GUTs cannot be obtained although
SO(10) itself is a possible Chan-Paton group is that all
matter in open string models must be in bi-fundamentals,
and therefore it is impossible to get a spinor representa-
tion.

Note that it was assumed here that there are at most
four branes participating in the Standard Model. If one
relaxes that condition, the number of possibilities is un-
limited. There exist other realizations of the Standard
Model using branes, see for example Antoniadis et al.
(2000) and Berenstein and Pinansky (2007).

d. Orientifolds. An important issue in open string model
building is the cancellation of tadpoles of the disk dia-
gram. These lead to divergences and can lead to chiral
anomalies. These tadpoles can sometimes be canceled
by adding another object to the theory, called an orien-
tifold plane. In fact, the usual procedure is to start with
an oriented type-II string, and consider an involution of
the world-sheet that reverses its orientation. Then one
allows strings to close up to that involution. In terms
of world-sheet topology, this amounts to adding surfaces
with the topology of a Klein bottle. The combination of
torus and Klein-bottle diagram acts like a projection on
the closed string theory, removing some of its states. In
most cases, removing states from string theory comes at

a price: other states must be added to compensate what
was removed. This is rigorously true in heterotic strings,
and is evident in orbifold constructions, where part of the
spectrum is projected out (“modded out”), but then new
states (“twisted states”) must be added, corresponding
to strings that stretch between identified point. Using a
(somewhat misleading) analogy with orbifolds (Horava,
1989) one adds open strings to the orientifold-projected
closed strings which in some sense can be thought of as
twisted sectors. The analogy is not perfect: there ex-
ist orientifold-projected closed strings that are consistent
all by themselves. But the procedure (called the orien-
tifold construction) is well-defined and does not require
the analogy to work.

e. Anomalies Canceling all tadpoles between the disk
and crosscap diagram removes most anomalies, but some
factorized anomalies remain. This also happens for
the original heterotic strings, where modular invari-
ance removes the non-factorizable anomalies, so that
the full anomaly polynomial factorizes into two factors
(Schellekens and Warner, 1987),

A(F,R) = (TrF 2 − TrR2)A′(F,R) (4.18)

which can then be canceled by the Green-Schwarz mech-
anism (Green and Schwarz, 1984) involving tree-level di-
agrams with exchange of the Bµν axion. In open strings
(and also in more general heterotic strings) the anomaly
factorizes also, but in terms of several factors. These
anomalies are then canceled by a Green-Schwarz mech-
anism involving multiple axions, which are available in
the Ramond-Ramond sector of the closed theory.

In four dimensions, a factorized anomaly always in-
volves a U(1). The corresponding U(1) vector bosons ac-
quire a mass by “eating” the axion , which provides the
missing longitudinal mode. String theory will always re-
move anomalous symmetries in this manner, but it turns
out that this can happen for non-anomalous U(1)′s as
well. This can be traced back to anomalies in six di-
mensions (see Kiritsis (2005) and references therein). In
the Madrid model shown above, the Chan-Paton gauge
group is at least U(3)×Sp(2)×U(1)×U(1). This contains
the Standard Model Y -charge plus two additional U(1)’s.
One of these is anomalous, and a third linear combination
corresponds to B − L, which is not anomalous (if there
are three right-handed neutrinos, as is the case here).
A massless B − L gauge boson is one of the most com-
mon generically wrong predictions of most string models.
However, there is a way out: it can acquire a mass from
axion mixing despite being anomaly-free. If that does
not happen one has to resort to the standard procedure
in string phenomenology: assume that one of the many
massless fields in the spectrum gets a vacuum expecta-
tion value that breaks the symmetry.
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f. Boundary RCFT constructions. Just as in the heterotic
string, one can construct spectra using purely geometric
methods, orbifold methods or world-sheet constructions.
Most work in the literature uses the second approach.

World-sheet approaches use boundary CFT: confor-
mal field theory on surfaces with boundaries and cross-
caps. This requires an extension of the closed string
Hilbert space with “states” (in fact not normalizable,
and hence not in the closed string Hilbert space) that de-
scribe closed strings near a boundary, or in the presence
of orientation reversal. An extensive formalism for com-
puting boundary and crosscap states in (rational) CFT
was developed in the last decade of last century, starting
with work by Cardy (1989), developed further by sev-
eral groups, including Bianchi and Sagnotti (1990); Pra-
disi et al. (1996); Fuchs and Schweigert (1998); Behrend
et al. (2000); and Huiszoon et al. (1999), culminating in
a simple and general formula (Fuchs et al., 2000). For an
extensive review of this field see Angelantonj and Sag-
notti (2002). This was applied by Dijkstra et al. (2005)
to orientifolds of Gepner models, and led to a huge (of or-
der 200.000) number of distinct string spectra that match
the chiral Standard Model. This set provides an exten-
sive scan over the orientifold landscape.

These spectra are exact in perturbative string theory
and not only the massless but also all massive states are
known explicitly. There are no chiral exotics, but in gen-
eral there are large numbers of the ubiquitous vector-like
states that plague almost all exact string spectra. All
tadpoles are canceled, but in most cases this requires
hidden sectors. However, there are a few cases where
all tadpoles cancel entirely among the Standard Model
branes (hence no hidden sector is present) and further-
more the superfluous B−L vector bosons acquires a mass
from axion mixing. These spectra have a gauge group
which is exactly SU(3)× SU(2)× U(1) (there are a few
additional vector bosons from the closed sector, but the
perturbative spectrum contains no matter that is charged
under these bosons; this is the same as in the type IIA
string, which contains a vector boson that only couples
to non-perturbative states, D0-branes).

g. Results Orientifold model building has been very ac-
tively pursued during the first decade of this century. It
is impossible to review all the different approaches and
their successes and failures here, but fortunately an ex-
tensive review is available (Blumenhagen et al., 2005a).
The original work proposing the Madrid model (Ibañez
et al., 2001) also found non-supersymmetric examples,
but since only RR tadpoles were canceled and not NS-
NS tadpoles, these were not stable. The search for sta-
ble, supersymmetric examples took some time but was
finally successful (Cvetic et al., 2001) although initially
the spectra were plagued by the presence of chiral (but
non-anomalous) exotic matter.

12. Decoupling Limits

Brane model building led to an interesting change in
strategy. Whereas string theory constructions were orig-
inally “top-down” (one constructs a string theory and
then compares with the Standard Model), using branes
one can to some extent work in the opposite direction,
“bottom-up”. The idea is to start with the Standard
Model and construct a brane configuration to match it,
using branes localized at (orbifold) singularities. Then
this brane configuration may be embedded in string the-
ory at a later stage. This point of view was pioneered by
Aldazabal et al. (2000). This is a useful approach in open
string models because the gauge fields are localized on
D-branes. This makes it possible to decouple gravity by
sending the compactification radius to infinity. By con-
trast, in heterotic string models both gravity and gauge
interactions originate from closed string exchange, and
such a decoupling limit would not make sense. Examples
with Z3 singularities were given by the aforementioned
authors. Berenstein et al. (2002) considered the discrete
group ∆27, and Verlinde and Wijnholt (2007) used D3-
branes on a del Pezzo 8 singularity.

The other extreme is to take the details of the Standard
Model for granted and focus on issues like moduli, super-
symmetry breaking and hierarchies. In this case one has
to assume that once the latter are solved, the Standard
Model can be added. Both points of view are to some ex-
tent a return to the “old days” of quantum field theory.
On the one hand, the techniques of branes and higher
dimensions are used to enrich old ideas in GUT model
building; on the other hand, string theory is treated as a
“framework”, analogous to quantum field theory, where
gauge groups, representations and couplings are input
rather than output.

Decoupling of gravity is an important element in recent
work on F-theory GUTs (Beasley et al., 2009a,b; Don-
agi and Wijnholt, 2011b) obtained by compactifying F-
theory on elliptically fibered Calabi-Yau fourfolds. This
allows the construction of models that may be thought of
as non-perturbative realizations of the orientifold SU(5)
GUT models depicted in Fig. 2(b), solving some of their
problems, especially absence of the top-Yukawa coupling,
which is perturbatively forbidden. This has led to a re-
vival of Grand Unified Theories, invigorated with fea-
tures of higher dimensional theories. We will return
to this in sections V.A.4 and V.B.5. See reviews by
Heckman (2010); Leontaris (2011); Maharana and Palti
(2013); and Weigand (2010) for further details.

An example in the second category is recent work in
the area of M-theory compactifications (Acharya et al.,
2012). Getting chiral N=1 supersymmetric spectra in M-
theory requires compactification on a seven dimensional
manifold with G2 holonomy (Acharya and Witten, 2001),
also known as a Joyce manifold. Much less is known
about M-theory than about string theory, and much less
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is known about Joyce manifolds than about Calabi-Yau
manifolds, since the powerful tool of complex geometry
is not available. For this reason the Standard Model is
treated as input rather than output, in the spirit of QFT.

Another kind of compactification that allows splitting
the problem into decoupled parts is the LARGE Volume
Scenario (Balasubramanian et al., 2005), originally in-
vented for the purpose of moduli stabilization (see section
IV.H.1). Here both kinds of decoupling limits have been
discussed, and there have also been steps towards putting
both parts together (Conlon et al., 2009). This illustrates
that focusing on decoupling limits does not mean that the
original goal of a complete theory is forgotten. Indeed,
there also exist global F-theory constructions (Blumen-
hagen et al., 2010; Marsano et al., 2013).

G. Non-supersymmetric strings

Although the vast majority of the literature on string
constructions concerns space-time supersymmetric spec-
tra, in world-sheet based methods – free bosons and
fermions, Gepner models, and certain orbifolds – it is as
easy to construct non-supersymmetric ones. In fact, it
is easier, because space-time supersymmetry is an addi-
tional constraint. These spectra are generally plagued by
tachyons, but by systematic searches one can find exam-
ples where no tachyons occur. This was first done in ten
dimensions by Alvarez-Gaumé et al. (1986) and Dixon
and Harvey (1986). These authors found a heterotic
string theory with a SO(16)× SO(16) gauge group, the
only tachyon-free non-supersymmetric theory in ten di-
mensions, out of a total of seven. Four-dimensional non-
supersymmetric strings were already constructed shortly
thereafter (Kawai et al., 1986a; Lerche et al., 1987). All
of these examples employ off-diagonal left-right pairings
of partition functions. In the absence of space-time su-
persymmetry, tachyonic character exist, but they may be
paired with a non-tachyonic one so that there is no phys-
ical tachyon. The result can be interpreted by means of
“mis-aligned supersymmetry” (Dienes, 1994). Finiteness
of the vacuum energy at one-loop is due to alternating
boson and fermion surpluses at subsequent levels.

In orientifold models there are two additional ways to
remove the closed string tachyons. They may also be pro-
jected out by the Klein-bottle diagram (Sagnotti, 1995),
or it is possible to consider supersymmetric closed string
theories with supersymmetry broken only in the open
sector. An ten-dimensional example of the latter kind
was described by Sugimoto (1999), and this is known
in general as “Brane Supersymmetry Breaking” (Anto-
niadis et al., 1999).

After adding open strings one also has to worry also
about tachyons in the open sector. These may be avoided
by judicious choices of Chan-Paton multiplicities. In
addition, one has to make sure that the crosscap and

disk tadpoles cancel, which implies an additional con-
straint on these choices. Examples satisfying all these
constraints were found using orbifold methods by Ange-
lantonj (1998) (see also Angelantonj and Sagnotti (2002)
for further references) and using Gepner orientifolds by
Gato-Rivera and Schellekens (2009). The latter authors
even tried to obtain the chiral Standard Model spectrum
in this manner, but without success, presumably just be-
cause the sample size was too small.

Non-supersymmetric strings can have a vacuum energy
Λ of either sign. See for example Dienes (2006) for a
distribution of values of the vacuum energy for a class of
heterotic strings. There also exist examples where Λ van-
ishes exactly to all orders in perturbation theory (Kachru
et al., 1999) but probably this feature does not hold be-
yond perturbation theory (Harvey, 1999).

One might think that in the absence of any evidence
for low energy supersymmetry, and because of the ev-
idence in favor of an accelerated expansion of the uni-
verse, non-supersymmetric strings with a positive cos-
mological constant are a better candidate for describing
our universe than the much more frequently studied su-
persymmetric ones. But the absence of supersymmetry
is a serious threat for the stability of these theories, even
in the absence of tachyons in the perturbative spectrum.
All of these theories have massless particles, which in-
clude at least the dilaton, and usually many others. Ab-
sence of tachyons only says something about the second
order terms in scalar potentials. Higher order terms can
still destabilize these theories. In many cases there are
tachyons in spectra continuously connected to them. In
Ginsparg and Vafa (1987) and Nair et al. (1987) this was
analyzed for the O(16) × O(16) string, where the con-
tinuous parameters were obtained by compactification of
one dimension. The (meta)-stability of brane supersym-
metry breaking is discussed by Angelantonj and Dudas
(2007).

There is always a dilaton tadpole. This signals that the
flat background space-time that was used is not a solu-
tion to the equations of motion; instead one must use de
Sitter (dS) or Anti-de Sitter (AdS) space with precisely
the value Λ as its cosmological constant (Fischler and
Susskind, 1986a,b). Unfortunately this argument only
provides an explanation for the presence of the tadpole,
but does not provide an exact (A)dS solution.

H. The String Theory Landscape

From the huge amount of work described in the previ-
ous chapter we have learned that string theory can de-
scribe all gross features of a supersymmetrized version of
the Standard Model. But there are still some major (and
many minor) obstacles: supersymmetry must be broken,
all moduli must be stabilized, a cosmological constant
must be generated, and that constant must be absurdly
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small and positive.
All of these requirements are needed for phenomeno-

logical reasons, but they also have anthropic implications.
If that were not the case, we should already ask ourselves
why string theory, to first approximation, tends to pre-
dict all of these features so catastrophically wrong.

It is possible that the supersymmetric vacua we are
able to discuss are merely an irrelevant corner in a huge,
predominantly non-supersymmetric landscape. This
would mean that our current view is completely dis-
torted by our technical limitations. This may be true,
but it is not a useful working hypothesis. The exact non-
supersymmetric string theories discussed above illustrate
this point: it has been very hard to to make progress in
this area of string theory.

Fortunately there does exist a plausible anthropic argu-
ment why the – apparently – ubiquitous supersymmetric
vacua are not observed, see sec. III.B.4. With super-
symmetry out of the way, the other two major prob-
lems change character. It not very plausible that in a
non-supersymmetric theory there would be exactly flat
moduli potentials or an exactly vanishing cosmological
constant. One could contemplate the possibility that we
live in a universe where one or more moduli are slowly
running away to infinity. They would then drag vari-
ous constants of nature along with them, and changing
constants of nature evidently create anthropic problems.
This will be discussed in section V.E. It seems however
more plausible that we need to find stable points in the
potential.

If such stable point exist, all moduli will get masses.
There are important restrictions on their masses. If
they are extremely small, moduli can mediate long-range
forces that would be observed as violations of the equiva-
lence principle. But since nature abhors light scalars this
is not a major worry. Any mass below the scale of super-
symmetry breaking would be unnatural, so the expected
mass of the moduli is the supersymmetry breaking scale.

A crucial test for the string landscape is the existence
of (meta)stable dS vacua. They are needed for three rea-
sons: there is evidence that our own universe approaches
such a space at late times, eternal inflation requires the
existence of at least one dS vacuum, and cosmic inflation
in our own universe may need, at least approximately, a
dS space as well. Furthermore, for explanations of ap-
parent anthropic tunings we need a large number of such
spaces, and they have to be distributed in the right way.

1. Existence of de Sitter Vacua

The art of constructing dS vacua is based on as-
sembling the many ingredients of the string toolbox
in a controlled way: branes, fluxes, orientifold planes,
non-perturbative effects (usually in the concrete forms
of “brane instantons” or gaugino condensation), world-

sheet perturbative corrections and string perturbative
corrections. Fortunately, several fairly recent review arti-
cles are available, e.g. Graña (2006); Douglas and Kachru
(2007); Blumenhagen et al. (2007b); Denef (2008) and
the slightly more accessible one by Denef et al. (2007).
Here we will just give a brief summary, and mention some
recent developments.

The most explicit results have been obtained in type-
IIB (and related F-theory) compactifications. One starts
with a Calabi-Yau compactification. The continuous de-
formations of such manifolds are described by moduli
of two different kinds: h21 complex structure (“shape”)
moduli and h11 Kähler (“size”) moduli, where h21 and
h11 are the Hodge numbers of the CY manifold. One can
add 3-form RR and NS fluxes, 5-form fluxes, denoted
F3, H3 and F5 respectively, and D3 and D7 branes.

In type-IIB theories the 3-form fluxes can stabilize all
complex structure moduli. This stabilization is due to a
tree-level term in the superpotential that takes the form
(Gukov et al., 2000)

Wflux =

∫
(F3 − τH3) ∧ Ω , (4.19)

where τ = a + ie−φ, and a is the axion and φ the dila-
ton. The dependence on the complex structure moduli
is through Ω, the holomorphic three-form of the Calabi-
Yau manifold. This term also fixes the dilaton and axion.
However, Wflux does not depend on the Kähler moduli
and hence cannot fix them. This leaves therefore at least
one modulus unfixed, since every CY manifold has at
least one Kähler modulus.

The next step is to try and fix the size moduli with non-
perturbative terms in the superpotential. These take the
form W ∝ exp(iλs), where s is the size modulus and λ
a parameter. Such terms can be generated by instantons
associated with Euclidean D3-branes (Witten, 1996) or
from gaugino condensation in gauge groups on wrapped
D7 branes. Assuming at least one of these effects to
be present, Kachru et al. (2003b) (usually referred to
as KKLT) obtained string vacua with all moduli stabi-
lized. This work builds on several earlier results, such as
Dasgupta et al. (1999); Giddings et al. (2002); and Kle-
banov and Strassler (2000) and other references cited.
KKLT considered the special case h11 = 1, so that only
one size modulus needs to be stabilized. They argued
that by suitable choices of fluxes one can obtain solu-
tions where supersymmetry is unbroken, and all world-
sheet and string perturbative corrections (i.e the α′ and
gs expansion) are small. The solution obtained in this
way has a negative vacuum energy, and is a fully stabi-
lized supersymmetric AdS vacuum. This is achieved by
choosing fluxes so that Wflux is small, the volume is large
and the dilaton (which determines the string coupling)
is stabilized at a point where the coupling is small. Here
“small” and “large” refer to tunings by just a few orders
of magnitude.
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This is however just a “scenario”, since the existence
of the non-perturbative effects still needs to be demon-
strated. Many would-be instantons do not contribute be-
cause of superfluous zero-modes. It turns out that mod-
els with just one Kähler modulus do not work, and that
instanton contributions are “not generic” (Denef et al.,
2004; Robbins and Sethi, 2005) but still occur sufficiently
often to allow a huge number of solutions.

The next step is more problematic and more contro-
versial. One must break supersymmetry and obtain a
dS vacuum (this is called “up-lifting”). In KKLT this
is done by adding an anti-D3 brane in a suitable loca-
tion on the Calabi-Yau manifold, such that the validity
of the approximations is not affected. Anti-D3 branes
explicitly violate supersymmetry, and hence after intro-
ducing them one loses the control offered by supergravity.
Of course, supersymmetry must be broken anyway, but
it would be preferable to break it spontaneously rather
than explicitly. Attempts to realize the KKLT uplifting
in supergravity or string theory have failed so far (Bena
et al., 2012, 2013), but opinions differ on the implica-
tions of that result. There exist several alternatives to
D3-brane uplifting (see e.g. Burgess et al. (2003); Salt-
man and Silverstein (2004); Lebedev et al. (2006); and
also Covi et al. (2008) and Westphal (2008) for further
references.)

The result of a fully realized KKLT construction is a
string vacuum that is free of tachyons, but one still has to
worry about non-perturbative instability. The uplift con-
tribution vanishes in the limit of large moduli, so there
is always a supersymmetric vacuum in that limit, sepa-
rated from the dS vacuum by the uplifted barrier that
stabilized the AdS vacuum. One can work out the tun-
neling amplitude, and KKLT showed that it is generically
much larger than the observed lifetime of our universe,
yet well below the theoretical upper limit in dS space,
the Poincaré recurrence time. See also Westphal (2008)
for a systematic analysis of several kinds of minima.

An alternative scenario was described by Balasubra-
manian et al. (2005). The starting point is the same:
type-IIB fluxes stabilizing the complex structure mod-
uli and the dilaton and axion. But these authors use
α′ corrections to their advantage rather than tuning pa-
rameters to minimize them. By means of suitable (α′)3

corrections they were able to find minima where all mod-
uli are stabilized at exponentially large volumes in non-
supersymmetric AdS vacua. The fact that α′ correc-
tions can be important at large volumes may be counter-
intuitive, but can be understood in terms of the no-
scale structure of the underlying supergravity. For other
work discussing the importance of perturbative correc-
tions see Becker et al. (2002); Berg et al. (2006); Bobkov
(2005); and von Gersdorff and Hebecker (2005). Addi-
tional mechanisms are then needed to lift the vacuum to
dS.Aan explicit example was presented recently by Louis
et al. (2012). This scenario requires special Calabi-Yau

manifolds with h21 > h11 > 1 and a structure consisting
of one large topological cycle and one or more small ones.
This has been given the suggestive name “Swiss Cheese
manifold”. Not every Calabi-Yau manifold has this prop-
erty, but several hundreds are known (Cicoli et al., 2012b;
Gray et al., 2012). A natural hierarchy can be obtained
by associating Standard Model branes with the small cy-
cles. This is called the LARGE volume scenario (LVS).

Although type-IIA and type-IIB string theories in ten
dimensions only differ by a single sign flip, the discussion
of moduli stabilization for the compactified theories is
vastly different. This is because in type-IIA theories the
available RR-fluxes are even-forms, and the available D-
branes are D-even branes. Since there still are three form
NS-fluxes one now gets flux potentials that depend on the
complex structure moduli and others that depend on the
Kähler moduli. As a result, all moduli can now be stabi-
lized classically by flux potentials (DeWolfe et al., 2005)
(see however McOrist and Sethi (2012)). Unfortunately,
it can also be shown (Hertzberg et al., 2007) that none of
the aforementioned ingredients can be used to lift these
theories to dS. There are more ingredients available, but
so far no explicit examples are known (see Danielsson
et al. (2011) for a recent attempt).

Moduli stabilization for heterotic M-theory was dis-
cussed by Braun and Ovrut (2006). Supersymmetry is
broken and a lift to dS achieved using heterotic five-
branes and anti-five-branes. For the perturbative het-
erotic strings in the “mini-landscape” a scenario for mod-
uli stabilization was presented by Dundee et al. (2010).
Acharya et al. (2006) discussed this for M-theory com-
pactifications on manifolds with G2 holonomy. These
authors do not use fluxes, because in this class of mod-
els they would destroy the hierarchy. Instead, all moduli
are stabilized by non-perturbative contributions gener-
ated by strong gauge dynamics. To this end they in-
troduce two “hidden sector” gauge groups. A similar
mechanism was applied to type-IIB theories by Bobkov
et al. (2010). These arguments often rely on plausible
but unproven assumptions about terms in potentials and
non-perturbative effects. In explicit models the required
terms may be absent, even though generically allowed.

2. Counting and Distributions

Fluxes are characterized by integers specifying how of-
ten they wrap the topological cycles on the manifold.
However, the total number of possibilities is limited by
conditions for cancellation of tadpoles. For a large class
of F-theory constructions this condition takes the form

ND3 −ND3 +
1

2π4α′2

∫
H3 ∧ F3 =

χ(X)

24
, (4.20)

where the first two terms denote the net contribution
from D3-branes, the third one the contribution due to
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fluxes and the right hand side is a contribution (“tadpole
charge”) from orientifold planes (Sethi et al., 1996); χ(X)
is the Euler number of a Calabi-Yau fourfold defining the
F-theory under consideration. Since the flux contribution
is always positive this makes the number of possibilities
finite.

This has been the starting point for estimates of the
total number of flux vacua. Douglas (2004a) gave the
following estimate (based on Ashok and Douglas (2004)
and Denef and Douglas (2004))

Nvac ≈
(2πL)K/2

(K/2)!
, (4.21)

where L is the aforementioned tadpole charge and K the
number of distinct fluxes. For typical manifolds this gives
numbers of order 10N , where N is of order a few hun-
dred. This is the origin of the (in)famous estimate 10500.
Note that Eq. (4.21) should still be summed over dis-
tinct manifolds, that it only counts fluxes and no other
gadgets from the string theory toolbox, and that none of
these 10500 vacua includes the Standard Model, because
no structure (like intersecting D-branes or singularities)
is taken into account to produce chiral matter. Indeed,
the presence of chiral matter may influence moduli sta-
bilization in a negative way (Blumenhagen et al., 2008).

It is noteworthy that this formula turns a nuisance (a
large number of moduli) into a virtue: the large number
of moduli gives rise to the exponent of Eq. (4.21), and
it is this large exponent that makes neutralization of the
cosmological constant possible. This is not automatically
true for all string compactifications and moduli stabiliza-
tion mechanisms; the existence of a sufficiently large set
of vacua has to be demonstrated in each case. Bobkov
(2009) has shown that fluxless G2 compactifications of
M-theory also yield a large discretuum of vacua.

In type-IIA constructions there are also tadpole con-
ditions to satisfy, but in this case they do not reduce the
vacuum count to a finite number. Instead it was found
that supersymmetric AdS vacua exist at arbitrarily large
volume, in combination with an arbitrarily small cosmo-
logical constant. This implies that the total number of
vacua is infinite, but it can be made finite by making
a phenomenologically inspired cut on the volume of the
compactification. Acharya and Douglas (2006) presented
general arguments suggesting that the number of string
vacua must be finite, if one puts upper bounds on the
cosmological constant and the compactification volume.

The most important contribution not taken into ac-
count in Eq. (4.21) is the effect of supersymmetry break-
ing. These computations count supersymmetric AdS
vacua. They must still be lifted to dS by a supersym-
metry breaking contribution. Already in Douglas (2004a)
the possibility was mentioned that most of the AdS vacua
might become tachyonic if such a lift is applied. Recent
work seems to indicate that this is indeed what happens.
In Chen et al. (2012b) this was investigated for type-IIA

vacua and in Marsh et al. (2012a) for supergravity. These
authors analyze general scalar potentials using random
matrices to determine the likelihood that the full mass
matrix is positive definite. They find that this is expo-
nentially suppressed by a factor ≈ exp(−cNp), where N
is the number of complex scalar fields and p is estimated
to lie in the range 1.3 to 2. This suppression can be re-
duced if a large subset of the scalars is decoupled by giv-
ing them large supersymmetric masses. Then only the
number of light scalars contributes to the suppression.
Even more worrisome results were reported recently by
Greene et al. (2013). In a study of landscapes modeled
with scalar fields, they found a doubly exponential de-
crease of the number of meta-stable vacua as a function
of the number of moduli, due to dramatic increases in
tunneling rates.

3. Is there a String Theory Landscape?

It is generally accepted that there exists a large land-
scape of fully stabilized supersymmetric AdS solutions.
But these do not describe our universe. Not in the first
place because of the observation of accelerated expansion
of the universe, but because of the much more established
fact that our vacuum is not supersymmetric. Supersym-
metric vacua have a vacuum energy that is bounded from
above at zero. Supersymmetry breaking makes positive
contributions to vacuum energy. Hence if stable non-
supersymmetric vacua exist (which few people doubt), it
would be highly surprising if their vacuum energy could
not surpass the value zero. Most arguments for or against
the existence of dS vacua do not really depend on the sign
of the cosmological constant; +10−120 is nearly indistin-
guishable from −10−120. Hence one would expect dis-
tributions to behave smoothly near zero, although they
may drop off rapidly.

By now there are many constructions of dS vacua, al-
though there are always some assumptions, and it is of-
ten not possible to check the effect of higher order world-
sheet or string loop corrections. But given the large num-
ber of possibilities, it would require a miracle for all of
them to fail. If that is the case there should exist some
general no-go theorem that was overlooked so far.

But the mere existence of vacua with positive Λ is not
enough. To make use of the Bousso-Polchinski neutral-
ization of Λ a sufficiently dense discretuum of such vacua
is needed. This mechanism relies on the fact that what-
ever the contribution of particle physics, cosmology and
fundamental theory is, it can always be canceled to 120
significant digits by flux contributions, without making
actual computations with that precision. If in reality these
distributions are severely depleted in part of the range, or
have a highly complicated non-flat structure, this argu-
ment would fail. There might still exist a huge landscape,
but it would be useless.
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The mighty landscape of a decade ago has been erod-
ing at an alarming rate. The actual number of vacua
is the product of huge numbers divided by huge sup-
pression factors. Perhaps this will re-ignite dreams of a
unique theory. Could it be that the product is exactly
one, with the Standard Model and the observed cosmo-
logical constant as the only survivor? That would be an
absurd example of the second gedanken computation of
section III.C. Any hopes that landscape erosion will re-
duce the number of de Sitter vacua to one are unfounded,
but there is a risk that it will be reduced to zero.

More fundamental objections against the use of effec-
tive potentials in quantum gravity or the formulation of
QFT and string theory in de Sitter space have been raised
by Banks (2012). If these objections are valid, we may
not have any theoretical methods at our disposal to deal
with the apparent accelerated expansion of the universe.

V. THE STANDARD MODEL IN THE LANDSCAPE

In this chapter we will discuss how the main features of
the Standard Model fit in the String Theory Landscape,
taking into account anthropic restrictions and analytical
and numerical work on landscape distributions.

It would be interesting to know if there are any quan-
tum field theories that do not have a place somewhere in
the string landscape. For a discrete, non-supersymmetric
landscape, obviously a continuous infinity of quantum
field theories is not realized in any vacuum, but one can
phrase this question in a meaningful way for supersym-
metric theories. In (Vafa, 2005) it was argued that in-
deed such a “swampland” of non-realizable quantum field
theories indeed exists, one of the examples being the ten-
dimensional anomaly free U(1)496 N = 1 gauge theory.
Further evidence is provided in (Fiol, 2010). Perhaps
there is no swampland for supersymmetric theories in
six dimensions, but this could be due to the much more
powerful chiral anomaly constraints (Kumar and Taylor,
2011). In four dimensions this issue remains unsettled.

A. The Gauge Sector

It is by now abundantly clear that string theory can
reproduce the discrete structure of the Standard Model:
the gauge group and chiral fermion representations. We
cannot even begin to enumerate all the papers that suc-
ceeded in doing this.

1. Gauge Group and Family Structure

a. Why SU(3) × SU(2) ×U(1)? From the landscape per-
spective, one might hope that the gauge group can be un-
derstood using string theory plus anthropic constraints.
The anthropic constraints are hard to determine, but all

three factors of the gauge group are needed for our kind
of life. Electromagnetism is so essential that it is im-
possible to imagine life without it. One can imagine life
without SU(3)color and only electromagnetism, but it is
by no means obvious that such universes will really come
to life. The weak interactions also play a crucial rôle in
our universe, but perhaps not in every habitable one (see
section III.B.4).

The choice of fermion representation is also essential,
but it is even harder to determine what happens if we
change it. It is possible that it is chiral in order to keep
the fermions light (a plausible reason why SU(2)weak

might be needed). Chiral fermions have chiral anoma-
lies that must be canceled. This fixes to some extent
the particle content of a single quark and lepton family,
if one insists on simplicity. See Shrock (2008) for some
gedanken variations of the representations in a family.

If life requires electromagnetism, a non-abelian strong
interaction group, and a chiral spectrum that becomes
non-chiral after symmetry breaking at energies far be-
low the Planck scale, perhaps the one-family Standard
Model is the simplest option one can write down. More
complicated possibilities are easy to find. For example,
changing the number of colors from 3 to some odd in-
teger N and the quark charges to p/N for suitable p,
one can find an infinite series of cousins of the Standard
Model (Shrock, 1996) that, for all we know, are anthropi-
cally equally valid. It is likely that in the landscape small
groups are statistically favored: then N = 3 would be the
first acceptable value. If furthermore small numbers of
gauge group factors are also favored, our Standard Model
might be the statistically dominant anthropic choice.

It has also been suggested that the choice N = 3 for
the number of colors (with everything else kept fixed) is
a consequence of the fact that only for N = 3 there is
a simple GUT embedding (Shrock, 2007). This expla-
nation would require the landscape to be dominated by
GUT gauge groups.

b. Landscape scans of groups and representations. There
have been several studies of distributions of groups and
representations in sub-landscapes, but because of lack
of a sufficiently well-defined question there is no good
answer either. For free fermion constructions of heterotic
strings see e.g Dienes (2006); Dienes et al. (2007); Renner
et al. (2011, 2012).

In Blumenhagen et al. (2005b) this was done for orien-
tifold models. Kumar and Wells (2005) derived a formula
of the average gauge group rank (for D3-brane gauge
groups of type-IIB flux vacua). Anastasopoulos et al.
(2006) gave a classification of all brane models with at
most four brane stacks that contain the Standard Model,
and a scan for realizations of these options in Gepner
orientifolds was presented. For other work on distribu-
tions of gauge group features see Balasubramanian et al.
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(2010) and Kumar (2006). An important caveat is that
all of these studies are done on exact realizations in spe-
cial points in moduli space. This is therefore not true
landscape “statistics”. One would really like to see dis-
tributions of physical quantities for fully stabilized dS
vacua, but this is not technically possible at present.
These studies are also plagued by over-counting prob-
lems. Only some features of a spectrum are sampled,
and one cannot be certain if two identical spectra still
differ in some other respect. For this reason, comparing
total numbers of “vacua” between different approaches is
meaningless. Drawing conclusions is also made difficult
because of limited sampling (Dienes and Lennek, 2007,
2009).

2. The Number of Families

a. Why three families? We are made out of just one fam-
ily of fermions. There are no good arguments why three
families should be anthropically required, although some
unconvincing arguments can be pondered, based on the
rôle of the s quark in QCD, of the muon in biological
mutations, the top quark in weak symmetry breaking, or
the CP-violating CKM angle in baryogenesis. See also
Schellekens (2008) and Gould (2010) for arguments and
counter-arguments.

Perhaps one day we will discover a good anthropic rea-
son for three families. If not, the number of families was
just picked out of a distribution. Multiple families are
a generic feature in string theory, due to to topological
quantities like Hodge numbers of compactification man-
ifolds or intersection numbers of branes (although often
this notion is muddled by attempts to distinguish families
in order to explain mass hierarchies).

b. Landscape scans of the number of families. Landscape
studies of the number of families tend to suffer from lamp-
post artifacts: initial studies of simple models favor mul-
tiples of four or six families and disfavor three, but as
more general models are studied the number three be-
comes less and less challenged.

The number of families was studied first in the context
of heterotic Calabi-Yau compactifications (with SU(3)
spin connection embedded in E8) and their CFT real-
izations, especially Gepner models and orbifolds, where
the number of families is half the Euler number of the
manifold. Systematic studies of Gepner compactifica-
tions with E6 and SO(10) gauge groups were presented
by Fuchs et al. (1990) and Schellekens and Yankielowicz
(1990). In all but one exceptional case4 (Gepner, 1987),

4 This Gepner model is closely related the first three-family Calabi-
Yau manifold, see (Schimmrigk, 1987).

the number of families is a multiple of six or – less often–
four. Gato-Rivera and Schellekens (2010) enlarged the
scope by allowing broken GUT groups and asymmetric
realizations of space-time and world-sheet supersymme-
try (which are not required in the bosonic sector of the
heterotic string, but automatically imposed in symmetric
constructions). This did not lead to additional cases of
three-family models. The reason why the number three
was so hard to get has never been understood, but the
problem disappears in more general constructions. For
example, a much larger scan of Euler numbers of classes
of Calabi-Yau manifolds (Kreuzer and Skarke, 2002) does
not show a strong suppression of Euler number six. Fur-
thermore, in Gepner constructions the problem disap-
pears if one uses different building blocks for the left-
and the right-moving sector. Modular invariance makes
this hard to do, but matching building blocks which are
isomorphic (in the sense of the modular group) but not
identical can be constructed, and lead to family distribu-
tions that are peaked at zero (which is anthropically ex-
cluded) and fall of slowly (Gato-Rivera and Schellekens,
2011a,b) In these distributions, three families are about
as common as one, two and four, but numbers larger than
six occur only rarely. This behavior persists in the more
general class of orbifold permutations of Gepner models
(Maio and Schellekens, 2011).

A similar conclusion can be drawn for free-fermionic
constructions of heterotic strings. Here modular invari-
ance can be solved in general, and hence this approach
does not suffer from a bias towards symmetric construc-
tions, as do the Gepner models. However, it should be
kept in mind that most scan done in this context are bi-
ased towards three families because a special choice of
fermion boundary conditions, the so-called NAHE set
(Antoniadis et al., 1989) is used, a priori designed to
produce three families. It has been suggested that in
this context the number of families can be understood as
“(10-4)/2”, i.e. half the number of compactified dimen-
sions (Faraggi et al., 2004), but in a systematic scan of
this class (Faraggi et al., 2007) a distribution was found
that is peaked around zero, and with three families oc-
curring in about 15% of all cases.

In most other constructions only three family spectra
have been studied, so that we cannot be certain how spe-
cial they are. In the “heterotic mini-landscape”, see e.g.
Lebedev et al. (2007, 2008b), the requirement of having
thee families reduces the sample size by more than an
order of magnitude. This is in rough agreement with the
foregoing results.

In orientifold models the family distribution also peaks
at zero, but falls off more rapidly. In a study of Gep-
ner orientifolds with Standard Model gauge groups (Dijk-
stra et al., 2005) the number of three family spectra was
about two orders of magnitude less than those with two
families. Qualitatively similar results were obtained for
T 6/Z2 × Z2 orientifolds by Gmeiner et al. (2006). These
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authors found a large dip in the distribution precisely
for three families. However, a more detailed analysis of
the same class (Rosenhaus and Taylor, 2009) does not
show such a dip. These authors found most spectra in
the tail of the distribution at large moduli, not consid-
ered in (Gmeiner et al., 2006) (however, they also found
that in this tail there is a huge suppression due to K-
theory constraints, which was estimated, but not fully
taken into account). A general analysis of brane inter-
section numbers (giving rise to chiral fermions) for this
class, using both analytical and numerical methods, was
presented by Douglas and Taylor (2007). These conclu-
sions depend strongly on the kind of orbifold considered.
For example, Gmeiner and Honecker (2008) found large
numbers of three family models for T 6/Z ′6 orientifolds
(the prime indicates a certain action of Z6 on the torus
T 6. On the other hand, in an extensive study of free
fermion orientifolds, no three family models were found
((Kiritsis et al., 2009)).

Taking all these results together one may conclude that
getting three families may be slightly more difficult than
getting one or two, but it is at worst a landscape natu-
ralness problem at the level of a few percent, and even
this suppression may be due to the examples being too
special. Therefore it is legitimate at this point to view
the number of families simply as a number that came out
of a distribution, which requires no further explanation.

3. Grand Unification in String Theory

a. Fractional Charges. A remarkable feature of the quark
and lepton families is the absence of fractional electric
charges for color singlets. There is no evidence that free
fractionally charged particles exist in nature, with a limit
of less than 10−20 in matter (Perl et al., 2009), under
certain assumptions about their charges. If indeed there
are none, the global Standard Model gauge group is not
SU(3)× SU(2)×U(1), but S(U(3)×U(2)). The reason
is that the former allows representations with any real
values for the U(1) charge, whereas in the latter case the
charges are restricted by the rule

t3
3

+
t2
2

+
1

6
= 0 mod 1, (5.1)

where t3 is the triality of the SU(3) representation and
t2 the duality of SU(2), twice the spin modulo inte-
gers. This relation implies integral charges for color-
singlet states. But this is just an empirical rule. Nothing
we know at present imposes such a relation. Anomaly
cancellation restricts the allowed charges, but arbitrary
charges, even irrational ones, can be added in non-chiral
pairs or as scalar fields. In fundamental theories one may
expect charges to come out quantized (due to Dirac quan-
tization for magnetic monopoles), but that still does not
imply that they are quantized in the correct way.

Already for almost four decades we know an excellent
explanation for the empirical fact (5.1): Grand Unifica-
tion, which embeds the Standard Model in a single, sim-
ple gauge group SU(5) (Georgi and Glashow, 1974). So
far this idea remains just a theory. In its simplest form
it made a falsifiable prediction, the decay of the proton,
and this was indeed falsified. It also predicts magnetic
monopoles, but these are too heavy to produce in acceler-
ators, and any primordial ones would have been diluted
by inflation. Despite the falsification, the basic idea is
still alive, because it is not hard to complicate the theory
(for example by making it supersymmetric) and avoid
the falsification. Low energy supersymmetry lifts the ex-
pected proton life time from 1030 years to 1036 years,
just outside the range of current experiments (there are
other potential sources of proton decay in supersymmet-
ric theories, which must be carefully avoided). The idea
of group-theoretic unification is too compelling to give
up on, but to strengthen the argument we must convince
ourselves that the absence of fractional charges in our
universe could not have an anthropic origin.

It is obvious that the existence of fractionally charged
particles with suitable chosen masses and abundances
can be potentially catastrophic. For example, the elec-
tron might decay into two or more lighter half-integral
charges. But then one would still have to rule out atoms
using some of these particles instead of electrons. Obvi-
ously the lightest fractionally charged particle would be
stable, and this would seriously frustrate chemistry, stel-
lar dynamics and big bang nucleosynthesis. But it is hard
to see how one can turn this into an anthropic argument
against any such particle, regardless of mass, abundance,
and charge.

Hence we must conclude that the structure of the Stan-
dard Model gauge group strongly suggests an embedding
in SU(5) or a larger group, at a more fundamental level.
For a while it seemed reasonable that one day a new,
more symmetric theory would be found with a built-in
GUT structure.

Indeed, if Grand Unification is a fundamental law of
physics, one might hope to find a theory that unequivo-
cally predicts it. But string theory is not that theory. It
seemed like that for a while in 1984, when GUTs came
out “naturally” from Calabi-Yau compactifications of the
E8 × E8 heterotic string, but within a few years it be-
came clear that GUTs are by no means the only possible
outcome, and that furthermore the GUTs obtained from
Calabi-Yau related compactifications do not generically
break in the correct way to the Standard Model gauge
group. Let us first understand why GUT gauge groups
come out so easily.

b. Heterotic Strings. There are two equivalent ways of
understanding why Grand Unification emerges so easily
in E8 × E8 heterotic strings. In Calabi-Yau compact-
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ification this comes from the embedding of the SU(3)
holonomy group of the manifold in one of the E8 fac-
tors, breaking it to E6, an acceptable but not ideal GUT
group. In world-sheet constructions this is a consequence
of the “bosonic string map” (Lerche et al., 1987) used to
map the fermionic (right-moving) sector of the theory
into a bosonic one, in order to be able to combine it
in a modular invariant way with the left-moving sector.
The bosonic string map takes the fermionic sector of a
heterotic or type-II string, and maps it to a bosonic sec-
tor. The world-sheet fermions ψµ transform under the
D-dimensional Lorentz group SO(D−1, 1). The bosonic
string map replaces this by an SO(D+ 6)×E8 affine Lie
algebra, which manifests itself as a gauge group in space-
time. In (Lerche et al., 1987) this trick was used to map
the problem of finding modular invariants to the already
solved problem of characterizing even self-dual lattices.
This automatically gives rise to a four-dimensional the-
ory with an SO(10)×E8 gauge group and chiral fermions
in the spinor representation of the first factor.

Finding modular invariant partition functions for inter-
acting CFTs is a much harder problem. But one can start
with a canonical solution, a symmetric pairing of the left-
and the right-moving degrees of freedom, which is auto-
matically modular invariant. Unfortunately that is not
very suitable for heterotic strings, where the right sector
is fermionic and the left sector bosonic. This is where the
bosonic string map comes in. To get a modular invari-
ant heterotic string one can start with a symmetric and
modular invariant type-II string, and map the fermionic
sector to a bosonic sector. In the process, one obtains
an SO(D + 6) × E8 gauge symmetry for free. This was
indeed the method used in (Gepner, 1988). For D = 4
this yields SO(10) (we ignore the E8), and furthermore
it is automatic that space-time fermions belong to the
spinor representation of that group. This is the perfect
GUT theory. The 16-dimensional spinor of SO(10) con-
tains precisely one family of the Standard Model, with a
right-handed neutrino.

This SO(10) group is seen by many as the ideal GUT
group. The somewhat less ideal E6 appearing in typi-
cal Calabi-Yau compactifications is an artifact of these
constructions. This has to do with space-time super-
symmetry. If one requires the spectrum to be supersym-
metric in space-time, an additional is needed. This goes
by many names, such as GSO-projection, β-projection,
spectral flow, or adding a spinor root to the chiral alge-
bra. But in any cases it implies a modification of the
right, fermionic sector of the theory. This violates mod-
ular invariance unless we also change the left, bosonic
sector. The canonical way of doing that is by adding a
spinor root to SO(10), turning it into E6. But there are
other ways than the canonical one. In many cases, one
can find another operator that transforms under modu-
lar transformations exactly as the spinor root, but has a
different conformal weight (the eigenvalue of L0, which is

observed as mass). Consequently it is not visible in the
massless particle spectrum, and in particular SO(10) is
not extended to E6.

Therefore the appearance of E6 in early string con-
structions is probably best viewed as a “lamp-post” ef-
fect. It is what happens in the most easily accessible
fully symmetric constructions, but it is not generic. The
generic gauge group is SO(10) with matter in the spinor
representation.

These SO(10) GUTs are the best hope for believ-
ers in the uniqueness paradigm. There is indeed some-
thing unique about it: the (16) of SO(10) is the smallest
anomaly free complex irreducible representation for any
Lie-algebra. But this is spoiled a little because it oc-
curs three times. Still, with only slight exaggeration one
can state that this ideal GUT group emerges uniquely
from the heterotic string. All we had to do is specify
the space-time dimension, D = 4, and apply the bosonic
string map, and we get SO(10) for free.

But this is as good as it gets. Nothing in the struc-
ture of the Standard Model comes out more convinc-
ingly than this. A mechanism to break SO(10) to
SU(3)×SU(2)×U(1) can be found, but it does not come
out automatically. Furthermore, it works less nicely than
in field theory GUTs. The heterotic string spectrum does
not contain the Higgs representation used in field theory.
The breaking can instead be achieved by adding back-
ground fields (Wilson lines).

But in that case the full spectrum of these heterotic
strings will never satisfy (5.1), and it is precisely the deep
underlying structure of string theory that is the culprit.
In a string spectrum every state is relevant, as is fairly ob-
vious from the modular invariance condition. Removing
one state destroys modular invariance. In this case, what
one would like to remove are the extra gauge bosons in
SU(5) ⊂ SO(10) in comparison to SU(3)×SU(2)×U(1).
To do this one has to add something else to the spectrum,
and it turns out that the only possibility is to add some-
thing that violates (5.1) and hence is fractionally charged
(Schellekens, 1990). The possible presence of fractional
charges in string spectra was first pointed out by Wen
and Witten (1985) and the implications were discussed
further in Athanasiu et al. (1988).

c. Fractional charges in Heterotic spectra. The occurrence
of fractional charges in heterotic string spectra has been
studied systematically for free fermion constructions and
for heterotic Gepner models. All these models realize
the gauge group in the canonical heterotic way, as a sub-
group of SO(10) (which may be further extended to E6).
There is a total of four distinct subgroups that one may
encounter within SO(10). These subgroups are further
subdivided into several classes, distinguished by the min-
imal electric charge quantum that occurs in their spectra.
These charge quanta are not determined by group the-
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ory in quantum field theory, but by affine Lie algebras
in string theory. This gives a total of eight possibilities,
with charge quanta given in curly brackets:

SU(3)× SU(2)× U(1)× U(1) { 1
6 ,

1
3 ,

1
2}

SU(3)× SU(2)L × SU(2)R × U(1) { 1
6 ,

1
3}

SU(4)× SU(2)L × SU(2)R { 1
2}

plus SU(5)×U(1) and SO(10), which automatically yield
integer charges. This classification applies to all con-
structions in the literature where the Standard Model
is realized with level 1 affine Lie algebras, with a stan-
dard Y charge normalization, embedded via an SO(10)
group. The minimal electric charge must be realized in
the spectrum, but it is in principle possible that fraction-
ally charged particles are vector-like (so that they might
become massive under deformations of the theory), have
Planck-scale masses or are coupled to an additional in-
teraction that confines them into integer charges, just as
QCD does with quarks.

But how often does this happen? In (Assel et al.,
2011) a large class of free fermionic theories with Pati-
Salam spectra. These authors did find examples with
three families where all fractionally charged particles are
at the Planck mass, but only in about 10−5 of the chiral
spectra. In (Gato-Rivera and Schellekens, 2010, 2011a,b;
Maio and Schellekens, 2011) a similar small fraction was
seen, but examples were only found for even numbers of
families. These authors also compared the total number
of spectra with chiral and vector-like fractional charges,
and found that about in 5% to 20% of the chiral, non-
GUT spectra the fractional charges are massless, but
vector-like. They also found some examples of confined
fractional charges.

If one assumes that in genuine string vacua vector-
like particles will always be very massive, this is a mild
landscape naturalness problem. But avoiding fractional
charges by chance is an unattractive solution. There may
be a better way out. In orbifold models SO(10) is bro-
ken using background gauge fields on Wilson lines. In
this process fractional charges must appear, and there-
fore they must be in the twisted sector of the orbifold
model. If the Wilson lines correspond to freely acting
discrete symmetries of the manifold (see (Witten, 1985)),
the twisted sector fields are massive, and hence all frac-
tionally charge particles are heavy. This method is com-
monly used in Calabi-Yau based constructions, e.g. (An-
derson et al., 2010), but is chosen for phenomenological
reasons, and hence this does not answer the question why
nature would have chosen this option. Also in the het-
erotic mini-landscape an example was found (Blaszczyk
et al., 2010), but only after numerous examples with
massless, vector-like fractional charges. But these au-
thors suggested another rationale for using freely acting
symmetries, namely that otherwise the Standard Model
Y charge breaks if the orbifold singularities are “blown

up”. It is not clear how that would impact models at
the exact orbifold point without blow-up, but at least it
suggests a solution.

Another disappointment from the perspective of the
uniqueness paradigm is that the natural appearance
of SO(10) is really just a lamppost effect as well.
Generic heterotic strings constructed using free fermion
or bosonic methods can have many other gauge groups.
If SO(10) comes out, that is just by choice.

d. Higher Level Heterotic String GUTs. Within the con-
text of heterotic strings there is another way of dealing
with the unification problem. It is possible to construct
heterotic string theories with affine Lie algebras of levels
higher than 1. The first example was the aforementioned
E8 level 2 in 10 dimensions, which is non-supersymmetric
and tachyonic. In four dimension one can construct such
theories as well ((Lewellen, 1990)) and even get GUT
gauge groups ((Kakushadze and Tye, 1997)). This re-
moves one problem of the level 1 GUTs, namely that the
gauge group can now be broken in the standard way used
in field theory GUTs, by means of a Higgs mechanism.
By emulating field theory GUTs one can reproduce their
success The canonical case is the breaking of SU(5) to
SU(3) × SU(2) × U(1). This requires a Higgs boson in
the adjoint representation of SU(5), and matter in that
representation be massless if SU(5) is realized as a level
1 affine algebra. Adjoints can only appear in the gauge
boson sector, either as gauge bosons or as gauginos, but
not in the matter sector. Allowing higher levels solves
that problem, but at a price. Adjoint representations
are now allowed, but so are other tensor representations.
The beauty of the canonical heterotic GUTs is that only
fundamental representation of SU(3) and SU(2) are al-
lowed as massless states. This is a huge improvement over
quantum field theory, where there is no restriction on the
representations. But this is partly lost if one considers
higher levels. The Standard Model can be “accommo-
dated”, but there is no construction where it really comes
out as naturally as one might have hoped.

e. GUTs and Intersecting Brane Models. Yet another pos-
sibility to get the Standard Model is by means of stacks of
intersecting branes or similar constructions, as discussed
in section IV.F.11. The three main classes discussed
there allow various GUT groups, such as the Pati-Salam
group, trinification or SU(5). Fractional charges are au-
tomatically avoided for open strings with both ends on a
Standard Model stack, in all classes. But this is partly by
design: these brane configurations are constructed to give
at least all the particles in a Standard Model family, and
then it turns out that there is no room anymore for addi-
tional matter. If additional branes are added that do not
contribute to the Standard Model gauge group (as “hid-
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den” or “dark matter” sectors), the intersection of these
branes with the Standard Model does give rise to parti-
cles with fractional electric charge, except in the SU(5)
class, where charges are integer as in group-theoretical
SU(5) models. The fractional charges are half-integer
for the class of Fig. 2(a) and ±x modulo integers for the
class of Fig. 2(c))

But even in this case, one cannot speak of true unifica-
tion: intersecting brane models in this class include cases
(presumably the vast majority) where the U(5) stack is
pulled apart into a U(3) and a U(2) stack. This works
equally well for getting the Standard Model representa-
tions, but without any SU(5) GUT group. This is es-
sentially a realization of the S(U(3) × U(2)) group that
is sufficient to explain electric charge integrality for color
singlets. This substantially weakens any claim that un-
derstanding the structure of a Standard Model family
requires a full GUT group.

Intersecting brane SU(5) also have a disadvantage with
respect to heterotic models. In heterotic GUTs a basic
property of affine Lie algebra representations guarantees
that only vectors and asymmetric tensors can appear –
precisely what is needed. But in brane models symmetric
tensors are also allowed in principle, and indeed, in the
first examples of brane SU(5) models (Cvetic et al., 2003)
all spectra had chiral symmetric tensors. In later work
(Anastasopoulos et al., 2006) this problem was solved,
but only by selecting spectra where the chiral symmetric
tensors are absent. Since there is no obvious anthropic
argument against symmetric tensors, the conclusion is
once again that the Standard Model group only comes
out as a phenomenological constraint.

f. F-theory GUTs In F-theory, GUT spectra were found
only about twelve years after the invention of F-theory,
and it is therefore hard to argue that they appear natu-
rally. Since all research has focused on getting the Stan-
dard Model out – with some beautiful and fascinating
results – little can be said about alternative possibilities.
However the situation is presumably comparable to the
that of intersecting brane SU(5) GUTs, which is a limit-
ing case: GUTs are input, not output.

4. Coupling Constant Unification

a. Convergence. It has been known for decades that
the three running gauge coupling constants converge to
roughly the same value at an energy scale a few orders of
magnitude below the Planck scale. This works provided
one rescales the Standard Model U(1) by factor 3

5 com-
putable from the embedding in SU(5). After the preci-
sion measurements of LEP this statement required some
adjustment: the supersymmetric partners of all quarks
and leptons have to be taken into account above a scale
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FIG. 3 Distribution of Standard Model Couplings in a class
of intersecting brane models.

just above 1 TeV. Even though no evidence for super-
symmetry has been found, the sensitivity to their mass
scale is logarithmic, and hence coupling unification may
still be correct. Currently, this empirical fact still holds
at the level of a few percent. Since any new physics at
the unification scale will introduce threshold corrections
at the GUT scale, one can never do better than this from
just low energy data.

b. The GUT scale An important consequence of GUT
unification is proton decay. The lifetime of the proton
depends on M4

GUT, where MGUT is the unification scale.
In the early 80’s the proton lifetime was predicted to be
about 1030 years in the simplest GUT models, tantaliz-
ingly just a little bit above the bounds known at the time.
But proton decay was not found, and the current limit is
at about 1032 years. Supersymmetric unification moves
MGUT up towards the Planck scale, and enhances the
proton lifetime to about 1036 years, above the current
bounds (but it also introduces new mechanisms for pro-
ton instability, which must be avoided). The fact that
the scale moved towards the Planck scale is fascinating
in itself, and might be taken as a hint for a relation be-
tween Planck scale and GUT physics. Nevertheless, a
gap of about three orders of magnitude remains.

c. Coupling Unification in String Theory. Just as group
theoretic unification, gauge coupling unification is not
an automatic consequence of string theory, but a phe-
nomenological input. This is illustrated for a class of ori-
entifold modelsin Fig. 3. Here a distribution of αs/αw
is plotted versus sin2θw for about 200.000 intersecting
brane models obtained in Dijkstra et al. (2005). These
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spectra are of the Madrid model type depicted in Fig.
2(a). Since the gauge couplings are not related, one
would not expect them to respect gauge coupling uni-
fication, and indeed they do not. One gets a broad cloud
of points around the GUT point, indicated by the black
circle. In this corner of the landscape, coupling unifica-
tion is a mere coincidence.

In corners of the landscape with group-theoretic GUT
unification, coupling unification is often problematic.
This can perhaps be attributed to the fact that string
theory is simply more constraining than field theory, but
it is still an indication that the perfect string-GUT has
not yet been found.

Heterotic GUTs predict a value for the unification scale
that is substantially too large. In F-theory GUTs the
breaking of the SU(5) GUT group is usually achieved nei-
ther by Higgses in the (24) (as in field theory) nor by Wil-
son lines (as in heterotic strings) but by U(1) flux in the
hypercharge direction (see however (Marsano et al., 2013)
for an F-theory example with Wilson line breaking). This
may help solving the notorious doublet-triplet splitting
problem, but also spoils coupling unification (see Blu-
menhagen (2009) and also Donagi and Wijnholt (2011a)
for a discussion of various contributions to thresholds).
Since there are often exotics that can contribute to the
running it may still be possible to match the observed
low energy couplings, but this turns the apparent con-
vergence into a strange accident.

d. Unification versus anthropic arguments. Coupling con-
stant unification could lead to a clash between anthropic
tuning and fundamental symmetries. If the low energy
values of the three couplings g1, g2 and g3 are all tightly
anthropically constrained, it would be strange if they
could still meet each other at a higher scale. Put differ-
ently, to optimize the Standard Model for life, it would be
better not to be constrained by a coupling constant rela-
tion, unless this is an inevitable feature of a fundamental
theory. In the string landscape, it is not.

Of the three constants, g3 is indeed anthropically con-
strained. It determines ΛQCD and the proton mass. We
will discuss this in section V.C. The weak coupling g2

is much less constrained: thresholds of weak decays are
much more important than the decay rates themselves.
The constraints on g1, or almost equivalently on α, are
discussed below. It does not appear to be tightly con-
strained, except perhaps in fine-tunings of certain nu-
clear levels. Unless these are much more severe than we
currently know, coupling unification would not get in the
way of anthropic constraints. It has two free parameters,
a mass scale and the value of the unified coupling at that
scale, which allow sufficient freedom to tune both ΛQCD

and α. Alternatively, one could argue that the value of
ΛQCD is tuned to its anthropic value by means of tuning
of α, assuming Grand Unification (Carr and Rees, 1979;

Hogan, 2000).

e. Just a Coincidence? Standard model families have an
undeniable GUT structure. One might have hoped that
a bit more of that structure would emerge from a fun-
damental theory in a “natural” way, even taking into
account the fact that part of this structure has anthropic
relevance. GUTs can be found in several areas of string
theory; see Raby (2011) for a review. But a compelling
top-down argument in favor of GUTs is missing. Both
group-theoretical and coupling unification are options in
string theory, not predictions. Nevertheless, one could
still speculate that Grand Unification is chosen in the
string landscape either because GUTs are statistically fa-
vored – despite suggestions that symmetry is not favored
(Douglas, 2012) – or that it offers anthropic advantages.
For example, it might turn out to play a rôle in inflation
or baryogenesis after all, although the originally proposed
GUT-based baryogenesis mechanism does not work.

But is it just a coincidence that the three running cou-
pling constants seem to converge to a single point, close
to, but just below the Planck scale? It would not be
the only one. The little-known mass formula for lep-
tons pointed out by Koide (1983), me + mτ + mµ =
2
3 (
√
me +

√
mµ +

√
mτ )2, is seen by most people as a

coincidence, because it relates pole masses at different
mass scales. But it predicts the τ mass correctly with
0.01% accuracy, a whole lot better than the few percent
accuracy of GUT coupling unification. Another poten-
tial coincidence, allowed by the current data within two
standard deviations, is that the self-coupling of the Higgs
boson might run towards zero with vanishing β-function,
exactly at the Planck mass (Bezrukov et al., 2012), a
behavior predicted in the context of asymptotically safe
gravity (see however Hebecker et al. (2012) for an alter-
native idea in string theory). Note that this coincidence
is incompatible with GUT coupling unification: the lat-
ter requires low-energy supersymmetry, but the former
requires a pure Standard Model. So at least one of these
two coincidences must be just that.

5. The Fine-structure Constant

The fine-structure constant enters in nearly all an-
thropically relevant formulas, but it is often not very
sharply constrained. Rather than tight constraints, one
gets a large number of hierarchies of scales, such as sizes
of nuclei, atoms, living beings, planets, solar systems
and galaxies, as well as time scales and typical ener-
gies of relevant processes. See Barrow and Tipler (1986);
Bousso et al. (2009b); Carr and Rees (1979); and Press
and Lightman (1983) for attempts to express these scales
in terms of fundamental parameters, usually including α.

An example of a hierarchical condition is the require-
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ment that the Bohr radius should be substantially larger
than nuclear radii, i.e. α(me/mp) � 1, presumably an-
thropically required, but not a very strong restriction on
α. A stronger condition follows from the upper and lower
limits of stellar masses (Barrow and Tipler, 1986)(

α2mp

me

)3/4

Nmp .M? . 50 Nmp , (5.2)

where N is the typical number of baryons in a star, N =
(MPlanck/mp)

3. Requiring that the upper limit be larger
than the lower one yields α2 . 200(me/mp), or α . 0.3.
See Barnes (2012) and chapter IV of Tegmark (1998) for
fascinating plots of many other limits.

The value of α is constrained from above by the compe-
tition between strong and electromagnetic interactions.
The electromagnetic contribution to the neutron-proton
mass difference is about 0.5 MeV and proportional to
α. Changing α by a factor of three destabilizes the pro-
ton, but this is far from determining α. In nuclei, total
strong interaction binding energies scale with the number
of nucleons N , electromagnetic repulsion energy scales
as αN2/R, and R scales as N1/3. Hence the maximum
number of nucleons in a nucleus scales as α−3/2 (Hogan,
2000). Increasing α by a factor of three implies drastic
changes, but also here a tight bound is hard to obtain.
The precise location of nuclear levels is much more sensi-
tive to α, and might give tight lower and upper bounds,
for example via the Beryllium bottleneck. But to draw
any conclusions one would have to recompute all poten-
tially relevant nuclear levels and all types of nucleosyn-
thesis. As a function of α, levels may not just move out of
convenient locations, but also into convenient locations.

A lower bound on α can be derived from limits on the
CMB fluctuations Q (Tegmark and Rees, 1998). In our
universe, Q ≈ 10−5. If Q is too large, galaxies would be
too dense and planetary orbits would be disrupted too
frequently; if Q is too small the galaxies could be unable
to form stars or retain heavy elements after a supernova
explosion. Clearly these are not strict limits, but taking
them at face value one finds that the anthropic upper
limit on Q is ≈ 10−4, and scales with α16/7, whereas the
lower limit is Q ≈ 10−6, scaling with α−1[ln(−α)]−16/9.
For smaller α the upper limit decreases and the lower
limit increases. The window closes if α is about a factor
five smaller than 1/137.04. This assumes everything else
is kept fixed. Although the origin of the α-dependence
is a complicated matter, the fact that a lower bound is
obtained is ultimately traceable to the need for electro-
magnetic cooling of matter in galaxy formation, and the
rôle of electromagnetic radiation in the functioning of the
sun. Obviously, switching off electromagnetism is bad for
our health.

Although the fine-structure constant is obviously rele-
vant in chemistry, the lack of competition with another
force makes this an unlikely area for fine-tunings. In

King et al. (2010) the dependence of the chemistry of life-
supporting molecules on α as well as the electron/proton
mass ratio is studied. This includes the bond angle and
bond length of the water molecule, and many reaction
energies. Substantial changes are found only if α is in-
creased by an order of magnitude or more. Ultimately
the special properties of water (expansion upon freezing)
may be destroyed, but there is no useful limit here. It
cannot be excluded that somewhere in the chemical re-
action chain leading to complex biochemical molecules
there are bottlenecks that strongly depend on α, but we
may never know.

Lieb and Yau (1988) proved the existence of an upper
bound on α based on the stability of many-body systems
(i.e. many nuclei and many electrons), but the value of
that bound is too uncertain to be of any relevance.

The competition between gravity and electromag-
netism in stars is another place to look for anthropic re-
lations. An interesting one concerns the surface tempera-
ture of typical stars compared to the ionization tempera-
ture of molecules, Tion ≈ α2me. These two temperatures
are remarkably close. Since the former temperature de-
pends on the relative strength of gravity and the latter
does not, the coincidence implies a relation between the
strength of the two interactions. Equating these temper-
atures gives the fascinating relation

α6

(
me

mp

)2

≈
(

mp

MPlanck

)
. (5.3)

Numerically, both sides of this relation are 4.5 × 10−20

and 7.7 × 10−20. Although this is close, the actual tem-
peratures are proportional to the fourth root of these
numbers so that the sensitivity is less than the formula
suggests (often the square of this relation is presented,
making it look even more spectacular). But does the
closeness of those two temperatures have any anthropic
significance? Carter has conjectured that it might. Due
to the temperature coincidence, typical stars are on the
dividing line between radiative and convective, and he
argued that this might be linked to their ability to form
planetary systems (see Barrow and Tipler (1986) and
Carr and Rees (1979) for a discussion). Perhaps a more
credible relation was suggested by Press and Lightman
(1983), who argued that solar radiation would either be
too damaging or not useful for photosynthesis if these
temperatures were very different.

In a substantial part of the anthropic literature, start-
ing with Carr and Rees (1979), GUT relations are used
to link the value of α to the mass of the proton via log-
arithmic running. But it in the spirit of the discussion
in sec. III.A it is better not to do that. In the Stan-
dard Model there is a clear decoupling between known
physics and speculative physics (GUTs or strings), and
one should therefore consider unconstrained variations of
α. Such variations are physically meaningful even if we



54

find evidence for GUTs. Since the only landscape we can
talk about, the string theory landscape, does not impose
GUT unification, there is even less reason to impose it
as a constraint on valid low energy physics. In the string
landscape, there is no justification for the statement that
ratio mp/MPlanck is forced to small values by tuning α
(see e.g. (Hogan, 2000).

B. Masses and Mixings

1. Anthropic Limits on Light Quark Masses

In the Standard Model quark masses are eigenvalues of
Yukawa coupling matrices λ multiplied by the Higgs vev
v. Therefore anthropic constraints on these masses take
the form of long elongated regions in the Standard Model
(λ, v) parameter space, with rescalings in λ compensating
those of v. All constraints come from the effect of changes
in the quark masses on QCD, and do not depend on the
origin of these masses.

Several slices through this parameter space have been
considered in the literature. One can vary Yukawa cou-
plings while keeping v fixed. This allows masses of up to
200 GeV in order to avoid Landau poles in the couplings.
One may also vary v while keeping the Yukawa couplings
fixed. This allows arbitrarily large quark masses, but the
electron mass also varies, so that the sign of quantities
like md−mu−me cannot be flipped. In all cases a deci-
sion has to be made what to do with ΛQCD. Some authors
(e.g. Agrawal et al. (1998b)) assume a fixed coupling at
a high scale (inspired by GUTs) and take into account
renormalization group corrections to ΛQCD caused by the
other parameter changes. Others vary ΛQCD so that aver-
age nucleon masses remain unchanged Jaffe et al. (2009).
One may also simply leave ΛQCD unchanged, and vary
quark masses freely. Any choice of masses can be re-
alized in the Standard Model, so one could in principle
explore the full space of possibilities for all six quarks. If
one also allows the charged lepton and neutrino masses
to cover the full range, one gets a complicated patchwork
of regions with different degrees of habitability. But most
research in this area has focused on our own neighbor-
hood, assuming two or three quarks are light. An early
discussion of the environmental impact of fermion masses
– carefully avoiding mentioning anthropic implications –
can be found in Cahn (1996).

The only admissible variations in hadronic and nuclear
physics are those that can be derived from variations in
the relevant Standard Model parameters: the QCD scale
ΛQCD, and the dimensionless ratios

mu

ΛQCD
,

md

ΛQCD
,

ms

ΛQCD
, (5.4)

although we will often just write mu,md and ms. The
strange quark is light enough to make a sizable contribu-
tion to nucleon masses by virtual processes (see Kaplan

and Klebanov (1990)) and some authors take its vari-
ation into account (Jaffe et al., 2009), even allowing it
to become as light as the u and d quarks. In the limit
mu = md = 0, the chiral limit, the theory has an exact
SU(2)L×SU(2)R symmetry, which is spontaneously bro-
ken. In this limit the pion, the Goldstone boson of the
broken symmetry, is exactly massless. In the real world it
has a mass proportional to

√
ΛQCD(mu +md), and the

pions are the only hadrons whose mass vanishes in the
chiral limit. All other hadron masses are proportional to
ΛQCD.

Ideally, one would like to have a contour plot of the var-
ious anthropic constraints in the parameter plane (5.4).
Many older papers studying these effects discuss them
in terms of strong interaction parameters that cannot
be varied independently in QCD. The superior method
for QCD computations is lattice gauge theory, because it
can in principle fully simulate the full non-perturbative
theory. In practice, however, it is limited to relatively
simple operators, and has difficulties reaching the chi-
ral limit mu,md → 0 because the quark Compton wave
length exceeds the lattice size. The next best technique
in this limit is chiral perturbation theory, which treats
the quark masses as small perturbations of the chiral
limit theory. Other techniques that are used include the
MIT bag model, the Skyrme model and meson-exchange
nucleon-nucleon potentials.

The quark mass dependent anthropic bounds are re-
lated to the existence and stability of matter relevant for
complex chemistry and biology, the abundances of this
matter due to big bang and stellar nucleosynthesis, stel-
lar lifetimes and energy production in stars, roughly in
order of decreasing anthropocentricity. Some important
potentially catastrophic boundary lines one may cross
when changing parameters are:

• Instability or absence of hydrogen (
1
H). At this

boundary line our kind of life ceases to exist, but
there is no good reason why deuterium (or even
tritium) could not take over its rôle in biochem-
istry. Some life forms on earth tolerate heavy wa-
ter quite well, and did not even evolve in a pure
deuterium environment. A bigger worry is stellar
burning, which in our universe relies heavily on hy-
drogen fusion, and would be drastically different.
Even without hydrogen there are still plenty of al-
ternatives, but it is not clear whether such stars
would have the right lifetimes and other properties
to allow biochemical evolution. Finally, beyond the
hydrogen stability line the neutron becomes stable,
and on free neutron background can have a variety
of nasty consequences (Cahn, 1996; Hogan, 2006).
Note that Hydrogen instability by electron capture
occurs before free proton instability, because the
latter costs 2mec

2 more energy.

• Instability of all di-nucleons. Beyond this line any
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kind of synthesis of heavier elements from nucle-
ons would have to start with three-body processes.
In our universe stable deuterium serves as a step-
ping stone. Its importance can be observed in the
deuterium bottleneck in nucleosynthesis. Although
deuterium is stable, it is disintegrated by photons.
Therefore 4He synthesis only starts after the pho-
ton density has dropped sufficiently. Even with-
out stable deuterium, nucleosynthesis in stars may
still be possible in extremely dense environments.
Furthermore, even an unstable, but long-lived deu-
terium would still enhance the rates. But in any
case, beyond the di-nucleon stability line we are in
terra incognita.

• Instability or all hydrogen isotopes. Beyond this
line there is no stable hydrogen, deuterium or tri-
tium (nor higher isotopes). One would have to
argue that life can be based purely on complex
molecules without hydrogen of any kind.

• Instability of all heavy elements. Beyond this line
any elements beyond Helium become unstable. It
does not matter much which one we choose, because
their instability boundaries are close to each other.
So one can use 12

6 C (one of the most strongly bound
ones) as a benchmark. The instability of these el-
ements would deprive us of any scenario for the
existence of complexity. Low abundance of these
elements is a less serious issue, because it is hard
to decide what the minimal required abundance is.

Now let us see how these lines are crossed if we vary
Standard Model parameters. It is convenient to consider
variations along the mu−md and mu +md axes (isospin
violating and isospin preserving), because the effects of
these variations are rather different.

a. The proton-neutron mass difference. The most obvious
feature of the quark masses is the extremely small up
quark mass. This is especially noteworthy since in the
two heavy families the charge 2

3 quarks are considerably
heavier than the − 1

3 quarks. If the up and down quark
masses were equal the proton is expected to be heavier
than the neutron because of the larger electromagnetic
repulsion. The relevant parameter for weak decay of the
proton or neutron is ∆ = mn −mp −me = .782, in our
universe. We will keep neutrino masses negligibly small
in this section. To relate ∆ to quark masses we have
to overcome the problem that quarks are confined, so
that their masses can only be measured indirectly. Fur-
thermore, like all Standard Model parameters, the quark
masses depend on the energy scale at which they are
measured. The Particle data group gives the following
masses for the three light quarks (in the MS scheme at a

scale of ≈ 2 GeV)

mu= 2.3+0.7
−0.5MeV

md= 4.8+0.7
−0.3 MeV

ms= 95± 5MeV

The scale at which these are defined is not the right
one for computing nucleon masses. For example, the pro-
ton neutron mass difference has a contribution equal to
mu −md, provided one uses quark masses at the correct
scale. But the exact scale is hard to determine, and run-
ning the quark masses to low energy scales is complicated
because perturbation theory breaks down. An empirical
way of dealing with this is to scale the mu−md mass dif-
ference so that it equals the proton neutron mass differ-
ence minus the estimated electromagnetic contribution.
The latter is εEM ≈ .5 MeV, and is to first approximation
proportional to αΛQCD (see (Quigg and Shrock, 2009) for
more details). Hence the mass difference, in terms of the
quarks masses given above, is

mn −mp = Z(md −mu)− εEM (5.5)

Here Z is an empirical scale factor, relating quark masses
defined at some high scale to the observed mass differ-
ence. This parametrizes renormalization group running,
which cannot be reliably calculated at low energy. The
electromagnetic mass difference εEM ≈ 0.5 MeV is to first
approximation proportional to αΛQCD (see Quigg and
Shrock (2009) for more details). For the quark masses
at 2 GeV quoted by the Particle Data Group (Beringer
et al., 2012) one gets Z = 0.7.

The aforementioned hydrogen stability line is crossed
when this quantity changes sign. What happens after
that is qualitatively clear. As we move towards more
negative values all nuclei become unstable, because the
proton-neutron mass difference overcomes the binding
energy and protons inside nuclei can decay. Analogously,
if we increase mn − mp − me the neutron becomes less
stable and can decay within nuclei. Since nuclei with
only protons do not exist, this implies also that all nuclei
decay.

If md −mu is increased, the neutron becomes less sta-
ble, so that it starts decaying within nuclei. Since neu-
trons are required for nuclear stability, this eventually
implies instability of all nuclei. If md −mu is decreased,
the proton becomes unstable. First the hydrogen atom
becomes unstable against electron capture, for a slightly
higher value the free proton can decay, and eventually
all nuclei become unstable. It is convenient to express all
limits in terms of the available energy, ∆ = mn−mp−me

in neutron decay. We will assume that neutrino masses
remain negligible. From electron capture and β decay of
nuclei one gets respectively the following limits

M(A,Z)−M(A,Z−1) < δ(∆) < M(A,Z+1)−M(A,Z).
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The masses M(A,Z) used here are atomic masses, and
hence include electron masses. Changes in atomic bind-
ing energies are ignored. Furthermore it is assumed here
that the proton or neutron are not ejected from the
nucleus. This would lead to only marginally different
bounds, c.f. Jaffe et al. (2009). Near the nuclear stabil-
ity line the first bound is usually negative and the second
usually positive. If one of these limits is exceeded, the
atom (A,Z) is not stable.

To obtain exact quantitative results for these thresholds
one has to take into account changes in binding energies
as a function of the quark masses. This effect is probably
small (and zero if only me is varied) because the result
depends only on differences in binding energy of nuclei
with the same numbers of nucleons and the strong force
is isospin invariant. One may hope that the changes are
minimized if mu + md is kept fixed, because then the
mass of the pions and several other relevant mesons does
not change, and hence binding energies may not change
much either. But it is not always possible to keep mu +
md fixed, and vary mu − md while keeping the masses
positive.

Keeping all these caveats in mind, we get the following
limits for some nuclei of interest:

1H 0 < ∆
2H − 2.2 MeV < ∆ < 2.2 MeV
3H − 8.5 MeV < ∆ < .762 MeV

4He − 22.7 MeV < ∆< 23.6 MeV
12
6C − 12.6 MeV < ∆ < 18.12 MeV

14
7N .62 MeV < ∆ < 5.92 MeV

16
8O − 9.6 MeV < ∆ < 16.2 MeV

To obtain absolute bounds one should also consider
proton-rich or neutron-rich nuclides that are not stable
in our universe, but may be stable for different values
of ∆, such as 9

6C. In Agrawal et al. (1998b) arguments
are given against the stability of proton rich (Z � N)
nuclei. Even taking all this into account, the maximum
variation in ∆ is about ±25MeV (which translates to ±35
for the quark masses given earlier). Beyond that no sta-
ble nuclei exist. This is a very conservative bound. Long
before reaching this bound catastrophic changes occur,
and there is no guarantee that the few stable nuclei can
actually be synthesized.

Note that only the linear combination mn −mp −me

is bounded by these arguments. (Hogan, 2000) has ob-
served that the reaction

p+ p→ D + e+ + ν (5.6)

is sensitive to mn−mp+me, and shuts down if this quan-
tity is increased by more than .42 MeV. This reaction is
a step in hydrogen burning in the sun and hence this is
definitely a boundary of our domain in parameter space.

However, (Weinberg, 2005) has pointed out that one re-
place the outgoing e+ by an ingoing e−. The resulting
three-body interaction also does the job (although less
efficiently), but only restricts mn −mp −me.

b. Nuclear binding. While it is intuitively obvious that
increasing or decreasing mu −md by a few tens of MeV
in both directions will lead to instability of all nuclei, this
is far less obvious for variations in mu+md. An intuitive
argument is suggested by the lightness of the pion. The
pion mass increases with

√
mu +md, which decrease the

range of the one-pion exchange potential, and this could
make nuclei less stable. But one-pion exchange is not a
correct description of nuclear physics. In the literature,
estimates have been given of the effect of quark mass
changes on binding of heavy nuclei based on effective
field theory and models for nuclear matter. In Damour
and Donoghue (2008) the binding energy per nucleon for
heavy nuclei (16O and 208Pb were used as benchmarks)
was studied as a function of scalar and vector contact
interactions. These give contributions to the binding en-
ergies that are large, and opposite in sign. Scalar in-
teractions give a negative contribution that is an order
of magnitude larger than the actual binding energy, and
receive important contributions from two-pion exchange.
The latter decreases with increasing pion mass. Because
of the large cancellations, only a moderate increase in
pion mass would make the positive contributions over-
whelm the negative one and destabilize nuclei. These
arguments may not convince QCD purists, but do they
provide a rationale for substantial dependence of nuclear
binding on mu +md. According to these authors, a con-
servative estimate for the maximum allowed increase in
mu +md is about 64%.

c. Bounds on the Higgs vev. The limits discussed above
are often expressed in terms of allowed variations of the
Higgs vacuum expectation value, under the assumption
that the Yukawa couplings are kept fixed. The upper
bound of ∆ of 25 MeV translates into an upper bound
on v/v0 (where v0 is the observed value) of about 20. The
negative lower bound has no effect, because v cannot be
negative. But if one just requires stability of hydrogen
1H under electron capture, the bound is ∆ > 0, which
implies (but note that the error in md −mu is huge)

v

v0
>

εEM

Z(md −mu)−me
≈ 0.4 . (5.7)

Here we used the method of Damour and Donoghue
(2008); in Hogan (2006) the lower bound was estimated
as 0.6 ± 0.2 using lattice results on isospin violation
(Beane et al., 2007). If we also use the more model-
dependent nuclear binding bounds, the window for v/v0

is quite small, 0.4 < v/v0 < 1.64.
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Limits on v/v0 were first presented by Agrawal et al.
(1998b), who estimated an upper limit v/v0 < 5, from a
combination of the two arguments on stability of nuclei
discussed above. In this work the Higgs mass parame-
ter µ2 is varied over its entire range, from −M2

Planck to
+M2

Planck, while keeping all other parameters in the La-

grangian fixed. Then if µ2 is negative, v =
√
−µ2/λ,

and v/v0 can lie anywhere between 0 and 1017 GeV. The
anthropic range is in any case extremely small in com-
parison to the full allowed range.

Because of the possible implications for the gauge hi-
erarchy problem, it is important to exclude the entire
range, not just the small region around us. If v is in-
creased to much larger values, there is still an important
qualitative change. As the md −mu mass differences in-
creases, at some point the lightest three up-quark state
will be lighter than the proton. This is the ∆++, about
300 MeV heaver than the proton because of QCD effects.
There is a small range where both the proton and the
∆++ are stable. If there are no nuclear bound states (as
seems plausible) of these objects this universe is compa-
rable to a pure helium or helium plus hydrogen universe,
and probably lifeless (Agrawal et al., 1998b).

One may apply analogous arguments in the two-Higgs
case. In many models, there are separate Higgs bosons
for up and down quarks. Then an interesting variation
is to keep all Yukawa couplings fixed and allow the two
Higgs scales to vary independently. Then larger hierarchy
in the up-quark sector is taken as a given. (Barr and
Khan, 2007) argue that rough equality of mu and md is
anthropically required, so that the large ratio of the top
quark and bottom quark mass are predicted.].

Although the weak scale is linked to the Higgs mech-
anism, which operates for µ2 < 0, it is also interesting
to see if the mechanism itself is anthropically needed,
in other words if life plausibly exists for µ2 > 0. For
positive µ2 the Higgs potential does not have the famil-
iar “Mexican hat” shape, but now the weak interaction
symmetry is broken by quark condensates, 〈q̄q〉 ∝ f3

π ,
where fπ is the pion decay constant. (see Quigg and
Shrock (2009) for a interesting discussion of closely re-
lated cases.) This is the usual chiral symmetry breaking
mechanism of QCD, except that all quark flavors partic-
ipate democratically, because they are all massless prior
to chiral symmetry breaking. These vacuum expectation
values feed into the Higgs system via the Yukawa cou-
plings, and the dominant contribution comes from the
top quark. This generates a vev for the Standard Model
Higgs boson, which in its turn generates all quark and
lepton masses via the Yukawa couplings. The Higgs vac-
uum expectation value is given by v = λt(f

3
π/µ

2) for
µ2 >> f2

π (for simplicity we will focus on this case here).
The pion decay constant is proportional to ΛQCD, which,
in keeping with the philosophy behind this work, is kept
fixed. Hence all quark and lepton masses are computable
numbers, and they are smaller by a factor ≈ 10−9 than

the values observed in our universe. In particular the
electron mass is reduced by a factor 109, and hence the
characteristic time scale of chemistry becomes larger by
the same factor, while biochemical energies and tempera-
tures are reduced. Agrawal et al. (1998b) argued that in
that case it would take too long for the universe to cool
off sufficiently to allow biochemical life; stars would have
burned out already. They also point out that most pro-
tons would have decayed, but this can be circumvented
easily by not having Grand Unification.

An important loophole in this argument was pointed
out by Barr and Khan (2007). The original discussion
ignored accelerated expansion, which had not been dis-
covered yet. In a universe with accelerated expansion
cooling occurs much more rapidly, which invalidates the
argument. However Barr and Khan (2007) point another
limit: if the electrons mass decreases by a factor y plan-
ets increase in size by a factor y3, and their average den-
sity can drop below the cosmological constant density.
In that case the expansion would presumably rip them
apart. Note that the density of matter in Planck units is
≈ (αme)

3mp = 2.2× 10−93.

d. Big Bang Nucleosynthesis. Understanding the synthe-
sis of heavy elements in our universe has been one of
the great successes of last century physics. It is a com-
plicated and delicate process, starting with production of
some light elements during the hot phase of the Big Bang,
followed by synthesis of heavier elements in stars and su-
pernovae. Several of these processes are rather sensitive
to the values of Standard Model parameters, such as the
light quark masses, ΛQCD, α, and the scale and strength
of the weak interactions. It is important to distinguish
observational and anthropic constraints.

In our kind of universe Big Bang Nucleosynthesis
(BBN) leads mainly to production of 4He, 1H, and small
amounts of deuterium, tritium and lithium. The main
potential impact of BBN is therefore a destructive one:
there might be too little hydrogen left. A hydrogen-less
universe is anthropically challenged, but there are no ob-
vious arguments against the other extreme, a helium-less
universe (Carr and Rees, 1979). Helium is needed as a
stepping stone to heavier elements, but can also be made
in stars.

In which extreme we end up is to a large extent de-
termined by the electroweak freeze-out temperature (the
temperature where the rate of electroweak n↔ p conver-
sions drops below the expansion rate)

Tf ≈
(
GN
G4
F

) 1
6

= (v/MPlanck)
1
3 v ≈ 0.66 MeV , (5.8)

where v is the Higgs vev. At temperatures above Tf

protons and neutrons are in thermodynamic equilib-
rium, and their ratio is given by a Boltzmann factor,
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n/p = exp[−(mn − mp)/Tf ]. At Tf the ratio n/p is
“frozen”, and only decreases slightly because of neutron
decay. After freeze-out, the outcome of BBN is deter-
mined only by strong interactions, which conserve flavor.
They burn essentially all remaining baryons into helium,
removing equal amounts of p and n. Hence one ends up
with a fraction of hydrogen equal to (p − n)/(p + n) at
freeze-out. This fraction approaches the danger zone (no
1H) if (

mn −mp

v

)(
MPlanck

v

) 1
3

→ 0. (5.9)

This remarkable quantity involves all four interactions,
since mn − mp receives contributions from quark mass
differences (proportional to v) and electromagnetic ef-
fects. The latter are proportional to ΛQCD, and in this
way BBN is sensitive to changes in that scale (Kneller
and McLaughlin, 2003).

There are two remarkable order of magnitude coinci-
dences here: Tf ≈ mn−mp, and the neutron lifetime τn is
of order the duration of nucleosynthesis. It is not clear if
these have any anthropic relevance. Increasing mn −mp

and decreasing τn to more “natural” values leads to a
larger fraction of 1H. It is almost as if these quantities
are anti-anthropically tuned! The hydrogen fraction is
only moderately sensitive to increases of v, since for large
v the dependence cancels out in the first factor, and the
neutron lifetime decreases. Even if we ignore the latter,
an increase of v by a factor 1000 decreases the mass frac-
tion of hydrogen from 75% to 6%. It is hard to argue
that this would not be enough. It is fascinating that Tf

and mn − mp have the same order of magnitude, even
though they have a completely different origin. However,
the anthropic impact of this coincidence is not so clear,
as long as no thresholds are crossed (especially nucleon
and di-nucleon stability, see below). Note that to get into
the danger zone one would have to make mn −mp even
smaller than it already is: this would be anti-anthropic
tuning! The other natural way to get into the danger
zone is to enlarge v. But for large v the dependence on v
cancels out in the first factor. Consequently an increase
of v by a factor 103 still gives a universe with about 2%
of hydrogen, and it is hard to argue convincingly that
this is not enough. Another interesting fact is that in
our universe the free neutron decays with a life-time of
about 880 seconds, remarkably close to the duration of
Big Bang Nucleosynthesis, given the wide range of weak
interaction lifetimes. If the neutron decayed much faster,
we would end up with a universe consisting mostly out
of hydrogen.

No strict limit will follow from such an argument, but it
is quite possible that the number of observers per baryon
drops off sharply in the limit of vanishing hydrogen abun-
dance. In our universe we have ended up with about 75%
hydrogen and 25% Helium. It is possible that the opti-
mum is somewhere near this point.

e. Few-Nucleon systems. The stability properties of two
and three nucleon systems certainly look fine-tuned in our
universe: Deuterium is just bound by 1.1 MeV per nu-
cleon, di-protons and di-neutrons are just not bound by
about 60-70 keV. Tritium is much more strongly bound
than deuterium but β-decays to 3He. But a decrease of
the neutron-proton mass difference by a mere 20 keV(!)
would make it stable. Once β-decay is forbidden, tritium
may be stable even after the deuterium stability line has
been crossed, because of its higher binding energy.

Possible consequences of tritium stability on stars,
apart from its potential rôle in chemistry, were discussed
by Gould (2012). This author speculates that changes
in fusion processes in stars could affect the formation of
planets.

In much of the literature on anthropic tuning one finds
the claim that stability of the di-proton would have a
huge effect on BBN. The idea was that all protons would
be fused to di-protons (which then decays to Deuterium,
which is then burned into Helium), so that no 1H Hy-
drogen would be left (a stable di-neutron may also have
observable effects (Kneller and McLaughlin, 2004), but
they are less likely to have anthropic implications.)

This claim is based on the mistaken assumption that
the di-proton production cross-section should be compa-
rable to that of deuterium. However, there are impor-
tant differences: Coulomb repulsion for pp and identical
particle effects (Bradford, 2009; MacDonald and Mul-
lan, 2009). In particular, deuterium and di-proton/di-
neutron have different spin wave functions, because the
S = 1 state of the deuteron (the lowest state for dy-
namical reasons) is forbidden for two identical nucleons.
Although these authors consider illegitimate variations

of the “old-fashioned effective strong coupling constant”
(not αs) or nuclear potentials, the main point appears
to be a valid one: even if di-nuclei are stable, this will
not strongly affect big bang nucleosynthesis. But these
arguments do not demonstrate that there are any valid
parameter values for which the di-nucleons are stable.

Stability of di-nuclei does have a huge impact on stars.
If the di-proton were stable, the deuteron production rate
could be ten orders of magnitude larger than in our uni-
verse, with unknown consequences (Bradford, 2009). So
the di-proton stability line – if it exists at all – marks the
end of our region and the beginning of terra incognita.

The tritium stability line can undoubtedly be crossed
by changing the quark masses, but for the other stability
lines this cannot be decided without a more detailed look
at nuclear binding. The dependence of binding on quark
masses is still uncertain. For instance, it is not clear
if the deuteron is bound in the chiral limit; see Beane
and Savage (2003a,b); and Epelbaum et al. (2003). For
recent results and references on the impact of variations
of quark masses on nuclear forces and BBN see Berengut



59

et al. (2013)5.

There are many studies of the effect of quark masses
on nuclear binding in order to constrain possible varia-
tions of parameters since the time of BBN and/or solve
the primordial Lithium problem. According to Flam-
baum and Wiringa (2007) an upward change of the pion
mass of 60% would make the deuteron unbound, whereas
a downward change by 15% would make the di-neutron
bound; see also Carrillo-Serrano et al. (2012)

Lattice computations are still in their infancy, and can-
not get close enough to small quark masses (Beane et al.,
2012; Chen et al., 2012a; Ishii et al., 2007; Yamazaki
et al., 2011). A result that might have implications in this
context was presented in (Braaten and Hammer, 2003),
who pointed out that QCD is remarkable close to a criti-
cal infrared limit cycle in the three nucleon system, which
can possibly be reached by small quark mass variations.

Properties of few-nucleon systems are potentially an-
thropically relevant, and appear to be fine-tuned, but too
little is known about either to draw firm conclusions.

f. The triple alpha process. BBN ends with a universe
consisting mainly of protons, electrons and α-particles.
Fusion to heavier elements is inhibited because there are
no stable nuclei with A = 5 or A = 8. Hence there are no
paths with only two-particle reactions leading to heavier
nuclei. The most obvious path to 12C is α + α → 8Be,
followed by 8Be + α → 12C. But 8Be is unstable with
a lifetime of about 10−16 seconds, so this does not look
promising.

There are at least three remarkable facts that improve
the situation. First of all, the 8Be ground state is a very
narrow resonance in the αα-channel, enhancing the first
process. The narrowness of this resonance is due to a
remarkable tuning of strong versus electromagnetic in-
teractions (Higa et al., 2008). Secondly, there is a reso-
nance of 12C (the second excitation level) that enhances
the second process. Finally, a logical third step in this
chain, 12C + α → 16O, is not enhanced by a resonance.
If that were the case all 12C would be burned to 16O.
Indeed, there is a resonance in 16O (at 7.10 MeV) that
lies close to, but just below the 12C +α threshold at 7.16
MeV.

5 Many papers studying the impact of variations on BBN or the
triple-alpha process consider observational constraints, for the
purpose of detecting variations in constants of nature. This
should not be confused with anthropic constraints. Another
source of confusion is that some authors convert variations in
the strong force to variations in α via an assumed GUT relation,
as explained in Calmet and Fritzsch (2002) and Langacker et al.
(2002). This greatly enhances the sensitivity to variations in α,
see e.g. Ekstrom et al. (2010).

The reaction rate of the triple-α process is proportional
to (Burbidge et al., 1957)

r3α ∝ Γγ

(
Nα
kBT

)3

e−ε/kBT , (5.10)

where ε ≈ 397 keV is the energy of the 12C resonance
above the 3α threshold, Γγ is de width of its radiative
decay into 12C and Nα is the α-particle number den-
sity. Since the participating α-particles are from the tail
of a thermal distribution, raising the resonance energy
decreases the 12C production rate rapidly, lowering it in-
creases 12C production. This formula enters into the cal-
culation of element abundances, which can be compared
with observations. Assuming 12C synthesis takes place
in the late stage of red giants at temperatures of order
108K one can then fit ε to the observed abundances, by
moving the resonance along the exponential tail. This
was done by Hoyle (1954) and led to a prediction for ε,
which in its turn led to a prediction of an excited level of
12C at 7.65 MeV above the ground state. This resonance
(now known as the “Hoyle state”) was indeed found. For
an excellent account of the physics and the history see
Kragh (2010).

Since the abundance of Carbon is at stake, it is tempt-
ing to draw anthropic conclusions. But Hoyle’s result
is merely an observational statement, not an anthropic
statement. Determining the true anthropic relevance of
the Hoyle state is a difficult matter. Changing the res-
onance changes the stars themselves, because the triple-
alpha process is their source of energy. One must take
into account not only 12C production, but also the burn-
ing of 12C to 16O. These processes are all strongly tem-
perature dependent, and may occur in a variety of types
of stars of very different masses. Even if most 12C we
observe is made in red giants, one must allow for the pos-
sibility that in different universes other processes domi-
nate. Furthermore, an energy level of 12C is not a free
parameter; one would really have to study the full, com-
bined effect of changing Standard Model parameters on
all relevant processes. One has to make assumptions
about the chances for life in an environment with dif-
ferent 12C to 16O ratios. Even if all 12C is burned to 16O
and heavier elements, one has to rule out the possibility
of Carbon-less life based on heavier elements. It is there-
fore not surprising that different authors have come to
rather different conclusions.

Without the Hoyle state the third excited state of 12C
at 9.64 could take over its rôle, but then stars would
burn at such high temperatures that even primordial 12C
would be destroyed (Livio et al., 1989). Hence the exis-
tence of the Hoyle state is indeed important for our kind
of life. However, according to Weinberg (2005) the exis-
tence of the Hoyle state in 12C can be understood on the
basis of collective dynamics of α-particles. The same αα-
potential that produces the 8Be ground state would give
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rise to nα oscillator-like excitations in A = 4n,Z = 2n
nuclei, appearing above the nα threshold. This demysti-
fies the existence of the Hoyle state for n = 3, but does
not predict its location relative to (A − 4, Z − 2) + α
threshold. Both the sign and the size of that difference
are crucial.

The quantitative effect of changes of the resonance en-
ergy away from its value of 288 keV was studied by Livio
et al. (1989). These authors varied the excitation level in
large steps, and found that for an upward change of 277
keV or more very little 12C is produced, but for an in-
crease of 60 KeV they did not find a significant change. A
downward variation by 60 keV led to a four-fold increase
in the 12C mass fraction, suggesting that we are not liv-
ing at the anthropic optimum (“things could be worse,
but they could easily be much better”, in the words of
the authors); but this statement does not take into ac-
count the reduction of Oxygen. Schlattl et al. (2004),
using more advanced stellar evolution codes that follow
the entire evolution of massive stars, found that in a band
of ±100 keV around the resonance energy the changes in
abundances are small.

Compared to ε = 397 keV this suggest a tuning of no
more than about 20%, but the really relevant question is
how 12C and 16O production vary as function of Standard
Model parameters. This is an extremely complicated is-
sue, since a proper treatment requires keeping track of all
changes in nuclear levels, the rates of all processes and
the effect on models for stellar evolution. Processes that
are irrelevant in our universe may become dominant in
others. Most work in this area has focused just on finding
out how the Hoyle state moves.

To decide how fine-tuned this is one would like to see
the effect of Standard Model parameter changes. A first
step in that direction was made by Oberhummer et al.
(2000), who studied the effect on the resonance energy
of rescalings of the nucleon-nucleon and Coulomb poten-
tials. They concluded that changes of 0.5% and 4% re-
spectively led to changes in C or O abundances by sev-
eral orders of magnitude (factors 30 to a 1000). These
changes correspond to shift in the Hoyle state energy
of about 130 keV (Schlattl et al., 2004), and hence this
conclusion is in rough agreement with Livio et al. (1989).
However, in Schlattl et al. (2004) the same group consid-
ered a more sophisticated model of stellar evolution (in-
cluding the possibility of C-production in helium flashes),
and concluded that their conclusions on fine-tuning were
“considerably weakened”.

Although rescaling of the nuclear force is more mean-
ingful then an ad hoc rescaling of a nuclear energy level, it
is still not a valid parameter change. A step towards that
goal was made by Epelbaum et al. (2013). These authors
investigate the quark mass dependence of the 12C and
16O productions rates using “nuclear lattice simulations.”
This is a combination of chiral effective field theory with
simulations of non-perturbative nucleon-pion theory on

a lattice (not to be confused with lattice QCD). These
authors conclude that 12C and 16O production would sur-
vive a 2% change in the light quark masses or the fine
structure constant. Beyond this band (which corresponds
to a change of around 100 keV in the Hoyle state energy)
substantial changes can be expected.

One can try to convert these survivability bands in
terms of variations of the Higgs vev, the common scale of
the quark masses. The naive expectation is that enlarg-
ing the Higgs vev increases the pion mass, which weakens
the nuclear potential, which, according to Oberhummer
et al. (2000), increases the resonance energy and hence
lowers the C/O ratio. If one focuses only on 12C (assum-
ing Oxygen can be made elsewhere), this would put an
upper limit on the Higgs vev v.

Indeed, Hogan (2006) concludes that there is an upper
limit for v. Using the aforementioned simple potential
model for collective oscillations of α-particles suggested
by Weinberg (2005), the author estimates that the en-
ergy gap between the Hoyle state and the 3α thresh-
old scales with (v/v0)

1
2 . But since the triple alpha pro-

cess is main energy source of the star, it must scale its
temperature by the same factor to maintain equilibrium.
Then the triple alpha rate, and hence the 12C produc-
tion rate stays the same, but the change in temperature
affects all other reaction rates. For reaction rates that
are not thought to be very sensitive to changes in v, like
α + 12C → 16O this implies a change in reaction rates
by a factor exp[(E/T )((v/v0)

1
2 − 1)], where E/T is es-

timated to be about 30. For an increase of v/v0 by 5%
the 16O burning rate doubles, and most 12C is expected
to burn to 16O. For a decrease of v/v0

16O production
decreases, but perhaps 16O could still be produced in
hotter stars. Therefore Hogan (2006) only puts an upper
limit on the allowed increase of v of about 5%. This is
still an order of magnitude tighter than the upper bound
on v from nuclear binding (see sect. (V.B.1.c), but there
is a disturbing discrepancy in all these estimates. Sen-
sitivities differ by an order of magnitude, and there is
not even agreement on the existence of upper and lower
bounds. But Jeltema and Sher (2000), using the results
of Oberhummer et al. (2000) mentioned above, find a
lower limit on v about 1% below its observed value. Note
that this lower bound is derived assuming the same physi-
cal requirement, namely sufficient Carbon production. In
other words, Jeltema and Sher (2000) and Hogan (2006)
find a different sign for the dependence of the Carbon
production rate on v.Although the discrepancy may be
due to the different treatment of nuclear forces, there is
another difference: in the first work the strong interac-
tion scale is kept fixed, whereas in the second the strong
coupling is kept fixed at the GUT scale. Then ΛQCD

changes due to changes in quark mass thresholds affect-
ing the running of αs. This appears to be the dominant
effect.

Expressed in terms of changes if v, the results of Epel-
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baum et al. (2013) indicate that the Hoyle state energy
goes up when v is increased, but there are contributing
terms with different signs and large errors. Therefore the
opposite dependence is not entirely ruled out.

The Hoyle resonance has also received attention be-
cause it may give bounds on temporal variations of con-
stants of nature. If some constants were different during
the early stages of the universe this would affect 12C or
16O production, and this may lead to disagreement with
observed abundances. To investigate this (Ekstrom et al.,
2010) have studied massive (15 and 60 M�) population
III stars believed to be the earliest ones formed in our uni-
verse. To parametrize variations they allow a rescaling of
both the strong and the Coulomb interaction potential.
They find a sensitivity at the per mille level to changes
in the strong force. Note however that these are observa-
tional bounds and not anthropic bounds, and hence it is
not surprising that they are tighter than those mentioned
above. These authors also give bounds on allowed frac-
tional variations of the fine structure constant of order
10−5, but these are obtained from the strong interaction
bounds using the assumption of Grand Unification. The
direct bounds on α are far weaker than those of strong
force variations.

In (Higa et al., 2008) the αα resonance is examined
using effective field theory, and these authors observe
the scattering length is enhanced by a factor a 1000 in
comparison to its natural value. This is due to fine-
tuned cancellations between several strong interaction
contributions, as well as cancellations between strong and
Coulomb contributions. Since the cross section is propor-
tional to the square of the scattering length, this is a huge
effect. They also observed that an increase of the strong
interaction range by 20% would make 8Be ground state
stable. This would remove the Beryllium bottleneck al-
together, and lead to such drastic changes that the conse-
quences are hard to estimate. Perhaps 12C could already
be produced in Big Bang Nucleosynthesis. If stability of
8Be can be achieved within the Standard Model parame-
ter space, this would turn the anthropic question up-side
down: why do we live in a universe with 12C produc-
tion bottleneck, given the absence of that bottleneck in
others?

Even the most conservative interpretation of all this
work still implies that a minute change of v with respect
to ΛQCD in either direction has drastic consequences.
Note that the full scale of v/v0 goes up to 1017, and
the variations discussed above are by just a few percent.

2. The Top Quark Mass

The top quark may not seem an obvious target for
anthropic arguments, but it may well be important be-
cause of it large coupling to the Higgs boson, which plays
a dominant rôle in the renormalization group running

of parameters. In supersymmetric theories, this large
coupling may drive the Higgs µ2 parameter to negative
values, triggering electroweak symmetry breaking (see
Ibañez and Ross (1982); since this work preceded the top
quark discovery, the authors could only speculate about
its mass).

The large top quark mass may also play an important
rôle in the Standard Model, although the mechanism is
less clear-cut, see Feldstein et al. (2006). These authors
argue that in a landscape the top quark mass is pushed to
large values to enhance vacuum stability. This issue was
re-analyzed recently by Giudice et al. (2012) using the
recent data on the Higgs mass and under somewhat dif-
ferent assumptions. They conclude that the quark masses
may be understood in terms of a broad distribution cen-
tered around one GeV, with the light quark masses and
the top quark mass as outliers, pushed to the limits by
anthropic (atomic or stability) pressures.

3. Charged Lepton Masses

The electron mass is bounded from above by the limits
from nuclear stability already discussed in section V.B.
If the electron is a factor 2.5 heavier, hydrogen 1H is un-
stable against electron capture; if one can live with tri-
tium the bound goes up to about 10 MeV. Beyond that
bound most heavy nuclei are unstable as well. See Jenk-
ins (2009) for other, less restrictive bounds, for example
the fact that a much heavier electron (by a factor & 100)
would give rise to electron-catalyzed fusion in matter.

There are several arguments for smallness of the elec-
tron mass in comparison to the proton mass. The bound
(me/mp)

1/4 � 1 is important for having matter with lo-
calized nuclei (Barrow and Tipler, 1986), but there is no
clear limit. Limits on hierarchies of scales (e.g. Bohr
radius versus nuclear radius, see section V.A.5) are not
very tight because the electron mass is multiplied with
powers of α.

There are also lower bounds on the electron mass, but
mostly qualitative ones. Lowering the electron mass en-
hances the Thomson scattering cross section that deter-
mines the opacity of stars. It affects the temperature of
recombination and all chemical and biological tempera-
tures. The stellar mass window (5.2) gives a bound on me

because the lower limit must be smaller than the upper
one: me > 0.005 α2mp ≈ 250 eV.

If muon radiation plays an important rôle in DNA mu-
tations, then the location of the muon mass just below
the pion mass would be important (see footnote 17 in
Banks et al. (2004)). But the danger of anthropocentrism
is enormous here.
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4. Masses and Mixings in the Landscape

In theoretical ideas about quark masses one can clearly
distinguish two antipodes: anarchy versus symmetry. In
the former case one assumes that masses and mixings
result from Yukawa couplings that are randomly selected
from some distribution, whereas in the latter case one
tries to identify flavor symmetries or other structures that
give the desired result.

The quark mass hierarchies are very unlikely to come
out of a flat distribution of Yukawa couplings. However,
one can get roughly the right answer from scale-invariant
distributions (Donoghue, 1998)

f(λ) = ρ(λ)dλ , ρ(λ) ∝ 1

λ
, (5.11)

where f(λ) is the fraction of values between λ and λ+dλ.
A flat distribution is obtained for ρ = const. Scale invari-
ant distributions are generated by exponentials of ran-
dom numbers. In string theory, this can come out very
easily if the exponent is an action. A canonical example
is a “world-sheet instanton”, where the action is the area
of the surface spanned between three curves in a com-
pact space. In intersecting brane models of the Madrid
type shown in Fig. 2(a) this is indeed how Yukawa cou-
plings are generated from the branes whose intersections
produce the left-handed quarks, the right-handed quarks
and the Higgs boson. Note that both types of distribu-
tions require small and large λ cut-offs in order to be nor-
malizable. In the intersecting brane picture this comes
out automatically since on a compact surface there is a
minimal and a maximal surface area.

The smallness of the CKM angles makes a very con-
vincing case against flat distributions. This is illustrated
in Fig. 4(a). Here 2×2 random complex matrices M are
considered, with entries chosen from two different distri-
butions. What is plotted is the distribution of the values
of the rotation angle required to diagonalize the matrix
(this requires separate left- and right matrices, and the
angle is extracted from one of them). The gray line is for
a flat distribution of matrix elements, Mij = r1 + ir2,
where r1 and r2 are random numbers in the interval
[−1, 1]. The black line is for a scale invariant distribu-
tion, Mij = e−sr1e2πir2 , where r1 and r2 are random
numbers between 0 and 1, and s is a real parameter. In
the figure s = 5 was used. As s is increased, the angle
distribution starts developing a peak at small angles, but
also near 90◦. Clearly, small angles are unlikely for flat
distributions, but not for scale invariant ones.

This is easy to understand. If a random matrix is gen-
erated with a scale invariant distribution, typically one
matrix element will be much larger than all others, and
will select the required rotation. If it is on the diagonal,
no rotation is needed, and if it is off-diagonal one of the
two matrices will have to make a 90◦ rotation.

This becomes a bit more murky for 3×3 matrices, but
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FIG. 4 Distribution of CKM angles at small and large angles
for a scale invariant distribution. The black line is for θ12 and
θ23, the gray line is for θ13.
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FIG. 5 Distribution of up-type (u,c,t) and down-type (d,s,b)
masses. On the horizontal axis powers of ten are indicated.

the main trait persists in the full CKM matrix. In Fig.
4(b) we show the distribution for the three angles in the
CKM matrix, with Mu and Md distributed as above, but
with s = 12 (these dimensionless numbers are multiplied
with a Higgs vev to define the mass scale; we only look
at angles and mass ratios here). Only one phenomeno-
logical constraint was put in, namely that the top quark
mass must be at least ten times the bottom quark mass;
all other combinations of Mu and Md are rejected. The
largest mass was scaled to mt by means of a common fac-
tor (the Higgs vev). The distributions for θ12 and θ23 are
indistinguishable and symmetric on the interval [0◦, 90◦]
and are peaked at both ends, while the distribution for
θ13 is more strongly peaked and only near θ13 = 0. There
is a large plateau in the middle, and for θ12 and θ23 the
peak is 40 times above the value at 45◦. For larger val-
ues of s the peaks become more pronounced, and move
towards the asymptotes at 0◦ and 90◦.

The eigenvalue distribution is even more interesting
and is shown in Fig. 5. No special effort was made to fit
the single parameter s to the observed quark masses and
mixings; the value s = 12 was chosen just to get roughly
in the right ballpark, for illustrative purposes only. Note
that the difference between the two plots is entirely due
to the requirement mt > 10 mb. Renormalization group
running was not taken into account. This might favor
large top quark masses because of the infrared fixed point
of the Yukawa couplings (Donoghue, 1998).
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The angular distributions easily accommodate the ob-
served values θ12 = 13◦, θ23 = 2.38◦ and θ13 = 0.2◦, and
the mass distributions have no difficulties with the ob-
served mass hierarchies. Furthermore, the lowest eigen-
values have very broad distributions, so that they can
easily accommodate the anthropic requirements for mu,
md and the electron mass. Note that the angular distri-
butions predict that two of the three angles are just as
likely to be large (≈ 90◦) as small. Hence the observation
that all three are small comes out in about one quarter of
all cases. Furthermore there are large central plateaus.

A much more complete analysis, including renormal-
ization group running, was done by Donoghue et al.
(2006). These authors consider more general distribu-
tions, ρ(λ) = λ−δ, determine the optimal distribution
from the quark masses, and compute the median values
of the CKM matrix elements. They do indeed obtain
the correct hierarchies in the angles. They also work out
the distribution of the Jarlskog invariant and find that
it peaks at roughly the right value. The latter invariant
was also considered by Gibbons et al. (2009), who intro-
duced a natural measure on the 4-dimensional coset space
that is defined by the CKM matrix, U(1)2\SU(3)/U(1)2.
Taking the observed quark masses into account, they ob-
tained a likely value for J close to the observed one.

An analysis that is similar in spirit was done by Hall
et al. (2007, 2008). Instead of scale invariant distribu-
tions, these authors assume that Yukawa couplings de-
rive from overlap integrals of Gaussian wave functions
in extra dimensions, using a mechanism due to Arkani-
Hamed and Schmaltz (2000) to generate hierarchies and
small mixing from strongly localized wave functions in ex-
tra dimensions. An advantage of this mechanism is that
wrong pairings (large mixing angles between up-type and
down-type quarks of different families) are strongly sup-
pressed. This method also accommodates all observed
features of quark masses and mixings rather easily.

5. Landscape vs. Symmetries

The landscape ideas discussed above suggest that elab-
orate symmetries are not needed to understand the ob-
served masses and mixings. There are indications that
in a landscape, symmetries are strongly disfavored (Dou-
glas, 2012), and attempts to understand quark masses
and mixing using family symmetries have had only very
limited success.

But there might be structure in the Yukawa matrices.
An interesting suggestion is gauge-top unification, which
is found to occur in a subset of mini-landscape models.
This singles out the top quark and relates its Yukawa
couplings directly to the gauge couplings at the unifica-
tion scale. In addition there is a D4 discrete symmetry
relating the first two families. See Mayorga Peña et al.
(2012) for further discussion and references.

In the simplest possible orientifold models, for exam-
ples the ones depicted in Fig. 2, all families are on equal
footing. But this is not always the case, and there are
many examples where different families have their end-
points on different branes. This gives rise to Yukawa
coupling matrices where some entries are perturbatively
forbidden, but can be generated by D-brane instantons,
giving rise to a hierarchy of scales. Several possibilities
were investigated by Anastasopoulos et al. (2009).

Almost the exact opposite of landscape anarchy has
emerged in the context of F-theory. The most strik-
ing phenomenon is a stepwise enhancement of sym-
metries towards E8. Gauge fields live on D7 branes,
which have an eight-dimensional world volume. Four
of these dimensions coincide with Minkowski space, and
the other four wrap a four-dimensional volume in the
eight-dimensional Calabi-Yau fourfold that defines F-
theory. Two-dimensional intersection curves of the four-
dimensional curves correspond to matter, and point-
like triple intersections of matter curves correspond to
Yukawa couplings. This leads to fascinating enrichment
of old GUT ideas into higher dimensions: gravity sees
all dimensions, gauge groups live on eight-dimensional
surfaces, matter on six-dimensional surfaces, and three-
point couplings are localized in four dimensions, or just
a point in the compactified space.

The properties of gauge groups and matter are deter-
mined by ADE-type singularities defined by the embed-
ding of these surfaces in the elliptically fibered Calabi-
Yau fourfold. To get the required GUT group one starts
with seven-branes with an SU(5) singularity. The mat-
ter curves have an enhanced singularity; to get a (5̄) of
SU(5) the singularity must enhance SU(5) to SU(6), and
to get a (10) it must enhance it to SO(10). Further
enhancements occur for the point-like singularities that
correspond to Yukawa couplings: to get the 10.5̄.5̄ down-
quark couplings one needs an SO(12) singularity, and to
get the 10.10.5 up-quark couplings one needs E6.

The Yukawa couplings are, to first approximation,
rank-1 matrices, which implies that each has one non-
vanishing eigenvalue (t, b and τ) and two zero eigenval-
ues. But two arbitrary rank-1 matrices will have their
eigenvectors pointing in unrelated directions, and since
the CKM matrix is defined by the relative orientation, it
will in general not be close to 1, as it should be. This
can be solved by assuming that the top and down Yukawa
points lie very close to each other. If they coincide the
singularity is enhanced to E7 (which contains both E6

and SO(12)). Finally there are arguments based on neu-
trino physics that suggest that the singularity must be
further enhanced to E8 (Heckman et al., 2010). Al-
though this fascinating group-theoretic structure gained
attention in recent F-theory GUT constructions (Heck-
man and Vafa, 2010), it was described prior to that by
Tatar and Watari (2006) in a more general setting, ap-
plied to heterotic strings, M-theory and F-theory. These
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authors derived the E7 structure requiring the absence
of baryon number violation dimension-4 operators.

To get non-zero values for the other masses, a mech-
anism like the one of Froggatt and Nielsen (1979) was
proposed. This works by postulating one or more addi-
tional U(1)’s and assigning different charges to the dif-
ferent families. The U(1)’s are spontaneously broken
by charged scalar fields. In the unbroken theory some
Yukawa couplings are forbidden by charge conservation,
but there will in general be allowed non-renormalizable
couplings (defining a scale MFN) involving powers of
scalars. If the scalars get a vev, the forbidden couplings
are generated with coefficients proportional to powers of
that vev, normalized by powers MFN. This gives rise to
reasonable hierarchies if the scalar vevs are εMFN, with
ε of order .1.

Heckman and Vafa (2010) showed that similar U(1)
symmetries automatically exist in certain F-theory com-
pactifications, and that they could lead to the re-
quired hierarchies and small mixing angles. These
are parametrized in terms of a small parameter ε ≈√
αGUT ≈ 0.2. But to actually obtain deviations from

rank-1 matrices has been a fairly long struggle, since
some expected contributions turned out to respect the
exact rank-1 structure. For recent work and further ref-
erences see Font et al. (2013).

But important questions remain. Why would we find
ourselves at or close to an E8 point in the landscape? A
CKM matrix close to 1 is phenomenologically, but not an-
thropically required. It is not clear how the exact values
are distributed. One should also ask the question if, in
any of the methods discussed, the quark mass hierarchies
and mixings would have been even roughly predicted, if
we had not known them already.

6. Neutrinos

There is a lot to say about neutrino masses in string
theory and other theories, but here we will focus on land-
scape and anthropic issues. For for a summary of what
is known about neutrinos see chapter II, and for a recent
review of various new ideas see Langacker (2012).

Neutrinos differ from quarks and the other leptons in
several important ways: they are much lighter, some of
their mixing angles are large, they do not have a similar
hierarchical mass spectrum and they are not charged, so
that they can have Majorana masses. From the landscape
perspective, the objective is not only to find concrete
examples where all these features are realized, but to
understand also why we find ourselves in such a universe.
Here there is an interesting confrontation between “new
physics” and anthropic arguments.

On the one hand, small neutrino masses are explained
convincingly by the seesaw mechanism, which requires
nothing more than a number of singlet fermions, Yukawa
couplings between these singlets and the lepton doublets
and Majorana masses for the singlets. In the string land-
scape the singlets are generically present because most
Standard Model realizations are SO(10)-related and be-
cause singlets are abundant in nearly all string compact-
ifications. Unlike SO(10)-related singlets, generic sin-
glets usually do not have Yukawa couplings with charged
leptons, but those couplings may be generated by scalar
vevs; see Buchmuller et al. (2007) for an explicit heterotic
string example.

Majorana masses tend to be a bigger obstacle. It is
not obvious that string theory satisfies the QFT lore that
“anything that is allowed is obligatory”, which would im-
ply that all allowed masses are non-zero, and in particular
that all singlets must have Majorana masses. In an ex-
tensive study of the superpotential of a class of heterotic
strings, Giedt et al. (2005) found no examples of such
mass terms. Even if such examples were found in other
cases (e.g. Buchmuller et al. (2007) and Lebedev et al.
(2008a)), this still casts doubts on the generic presence of
Majorana masses. But perhaps the examples are too spe-
cial, and perhaps all singlet fermions have large masses
in generic, non-supersymmetric, fully stabilized vacua.
If not, string theory is facing the serious problem of pre-
dicting, generically, a plethora of massless or light singlet
fermions. Even if they do not have Dirac couplings and
hence do not participate in a neutrino see-saw, this is a
problem in its own right.

Just as Yukawa couplings, Majorana masses can be
generated by scalar vevs, but one can also obtain Ma-
jorana masses in exact string theory. In the context of
orientifold models of the Madrid type this can in principle
be achieved as follows. In these models there is always a
B−L symmetry. Usually this symmetry is exact and leads
to a massless gauge boson (Dijkstra et al., 2005). This
is in disagreement with experiment, and since massless
B−L gauge bosons are ubiquitous in string theory, it is
reasonable to ask why we do not see one in our universe.
The answer may be anthropic: B−L gauge bosons lead to
a repulsive force between protons and neutrons and may
destabilize nuclei. There would also be drastic changes
in atoms and chemistry. But let us take this for granted
and consider the small set of cases where the B−L sym-
metry is broken because of mixing with axions (this is
analogous to the Green-Schwarz mechanism for anoma-
lous U(1)’s, but in some cases this mechanism breaks
anomaly-free U(1)’s as well). In those cases a Majo-
rana mass may be generated by non-perturbative effects
due to D-brane instantons (Argurio et al., 2007; Blumen-
hagen et al., 2007a; Cvetic et al., 2007; Florea et al., 2007;
Ibañez and Uranga, 2007). This does indeed work, but in
practice the relevant instanton contributions are nearly
always killed by a surplus of zero-modes (Ibañez et al.,
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2007). Even if one assumes that this is an artifact of
special models, there is still another problem: instanton
generated terms have logarithmically distributed scales.
Since D-brane instantons have mass-scales that are unre-
lated to those of the Standard Model gauge group, their
scale is not linked to the Standard Model scale. But
there is also no particular reason why it would be the
large scale needed for small neutrino masses.

If a large number of singlet neutrinos is involved in
the see-saw mechanism, as string theory suggests, this
may have important benefits. It raises the upper limit
for leptogenesis (Eisele, 2008) and also raises the seesaw
scale (Ellis and Lebedev, 2007).

b. Anthropic arguments. Neutrinos are not constituents
of matter, so that they do not have to obey “atomic” an-
thropic bounds. Nevertheless, they have a number of po-
tential anthropic implications. In our universe, neutrinos
play a rôle in big bang nucleosynthesis, structure forma-
tion, supernova explosions, stellar processes, the decay of
the neutron, pions and other particles, the mass density
of the universe and possibly leptogenesis.

Many of these processes would change drastically if
neutrino masses were in the typical range of charged lep-
tons, but one should not jump to anthropic arguments
too quickly. The fact that universes may exist where
weak interactions – including neutrinos – are not even
necessary (Harnik et al., 2006) underscores that point.
But there are a few interesting limits nonetheless.

If the sum of all neutrino masses exceeds 40 eV they
would overclose the universe. But there is no need to ar-
gue if this is an observational or an anthropic constraint,
because for much larger masses (larger than the pion
mass) they would all be unstable, invalidating any such
argument. An interesting limit follows from leptogene-
sis (Fukugita and Yanagida, 1986), which sets an upper
bound to neutrino masses of 0.1 eV (Buchmuller et al.,
2003). If this is the only available mechanism for gener-
ating a net baryon density this would imply an anthropic
upper bound on neutrino masses.

Tegmark et al. (2005) gave a rationale for small neu-
trino masses based on galaxy formation. They argued
that fewer galaxies are formed in universes with larger
neutrino masses. If the distribution of neutrino masses
does not favor very small values, this leads to an optimum
at a finite value, which is about 1 eV (for

∑
mν). This

is barely consistent with the aforementioned leptogene-
sis limit. Note that this mechanism favors Dirac masses.
The seesaw mechanism with GUT-scale Majorana masses
gives distributions that are too strongly peaked at zero.

c. Landscape distributions. In the neutrino sector one
can still make predictions. Until recently, this included

the angle θ13, which until 2012 was consistent with zero,
an implausible value from the landscape perspective.

The other opportunities for prediction are the masses,
or at least their hierarchy. Generically, any model that
gives the required large quark and lepton mass hierarchies
will tend to produce hierarchies in the neutrino sector as
well. Therefore it is not surprising that all work listed
below prefers a normal hierarchy (the inverted hierarchy
requires two relatively large, nearly degenerate masses).

The two large neutrino mixing angles are an obvious
challenge for distributions that produce small quark mix-
ing angles. But there are several ways in which neutrino
masses could be different from quark and charged lepton
masses. First of all, right-handed neutrinos might not
belong to families the way quarks and leptons do. Sec-
ondly, there may be hundreds of them, not just three,
and thirdly the origin of their Majorana mass matrix is
not likely to be related to that of the Higgs coupling.

Donoghue et al. (2006) studied neutrino mixing angle
distributions using Dirac couplings distributed like those
of quarks, and with three right-handed neutrinos. These
were assumed to have a Majorana matrix with random
matrix elements, with various distributions. These au-
thors find that with these minimally biased assumptions
the likelihood of getting the observed mixing angles is
only about 5% to 18%, with the latter value occurring for
a small Majorana scale of about 107 GeV. They strongly
predict a normal hierarchy, a wide distribution of θ13 dis-
favoring the value zero, and a Majorana neutrino mass
(as would be observed in neutrinoless double-beta decay)
of order 0.001 eV.

The approach studied by Hall et al. (2007, 2009), men-
tioned above for quarks, can accommodate neutrino mix-
ing by assuming that wave functions of lepton doublets
are less localized than those of quarks. The Majorana
mass matrices are generated using overlap integrals of
randomized gaussian wave functions. This works, but is
more biased towards the observed result.

Neutrino masses and mixings have also been studied
in F-theory (Bouchard et al., 2010). An interesting pre-
diction is that the hierarchy is not just normal, but more
concretely m1 : m2 : m3 ≈ αGUT :

√
αGUT : 1 with

αGUT ≈ 0.04. Using the two mass splittings this gives
neutrino masses of approximately 2, 9 and 50 meV. The
predicted value for θ13 is equal to

√
αGUT, and is com-

patible with the recently observed vale.

C. The Scales of the Standard Model

The classic Standard Model has two scales, the strong
and the weak scale. To first approximation the strong
scale, ΛQCD, determines the proton mass, and the weak
scale determines the masses of the quarks and leptons.
The proton mass owes less than 1% of its mass to the
up and down quarks. Indeed, the proton mass is non-
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vanishing in the limit of vanishing quark masses, and
would be only a little bit smaller in that limit.

The weak scale and the strong scale have a rather dif-
ferent origin in the Standard Model. The former is di-
rectly related to the only dimensionful parameter in the
Lagrangian, the parameter µ2, whereas the latter comes
out as a pole in the running of the QCD coupling constant
towards the IR region. This produces a dimensionful pa-
rameter, ΛQCD, from a dimensionless one, αs = g2

s/4π.
This is known as “dimensional transmutation”. At one
loop order, the logarithmic running of αs determines
ΛQCD in the following way

αs(Q
2) =

1

β0 ln(Q2/Λ2
QCD)

, (5.12)

with β0 = (33 − 2Nf )/12π, where Nf is the number of
quark flavors, Nf = 6. Here Q is the relevant energy
scale. If we measure the function at one scale, it is de-
termined at any other scale. One can invert this relation
to obtain

ΛQCD = Q e−1/(2β0α(Q2)), (5.13)

Note that ΛQCD is a free parameter, which can be traded
for αs(Q

2) at some fixed scale, if desired.
Two things are remarkable about the weak and strong

scales. Both are very much smaller than the Planck scale

MPlanck =

√
~c5
GN

= 1.2209× 1019 GeV, (5.14)

and they are within about two or three orders of mag-
nitude from each other. The smallness of both scales is
responsible for the extreme weakness of gravity in com-
parison to the other forces. This fact has important an-
thropic implications.

There are many ways of varying these scales while
keeping other parameters fixed. Many papers on an-
thropic arguments in astrophysics, such as Carr and Rees
(1979), study the effect of varying mp/MPlanck. However,
mp is not a Standard Model parameter. It is mainly de-
termined by ΛQCD, but it is ultimately also affected by
the weak scale. If we move up that scale by a few orders
of magnitude while keeping the Yukawa couplings fixed,
the quark masses rather than ΛQCD dominate the pro-
ton mass. Many other things change as well, making it
hard to arrive at a clean conclusion. If we enlarge the
proton mass by enlarging ΛQCD, it is not just the proton
mass that changes, but also the strength of the strong
coupling.

1. Changing the Overall Scale

The cleanest way of studying the effect of varying the
QCD scale is to vary all Standard Model scales by the

same factor L with respect to MPlanck. This keeps all
of nuclear physics and chemistry unchanged, except for
the overall scale. No thresholds are crossed, and every
allowed process remains allowed in rescaled universes.
Hence the chemistry of life is unaffected.

This change keeps us within realm of quantum field
theory, except for a few caveats. To keep the argument
clean we should rescale everything by L, including new
scales that have not been observed yet, such as a GUT
scale or a Majorana mass scale for neutrinos. But we
should avoid pushing any scale beyond the Planck scale.
This would imply a maximum value for L. This caveat
applies only if such a new scale is relevant for the ex-
istence of life, and that does not seem very likely. The
other caveat is the fact that the Planck scale itself enters
into the argument, because we are comparing the Stan-
dard Model scale to it. Strictly speaking, this implies
that we are making implicit assumptions about the fun-
damental theory of gravity, and not just quantum field
theory. The only way this could be relevant is if for some
values of L no valid quantum field exists. This is the case
in theories with large extra dimensions, where the weak-
ness of gravity is explained by making the gravitational
field expand into a higher dimensional space that opens
up as soon as we probe some short distance. This dis-
tance could be as large as .1mm (Arkani-Hamed et al.,
1998). If nature is fundamentally like this, the Planck
scale is just an illusion, and there would be a maximum
to the allowed rescaling of the Standard Model; there
would simply be no theory that holds for values larger
than that maximum. If large extra dimensional models
are just realized in a corner in a landscape, but not due
to some presently unknown fundamental restriction, this
caveat is irrelevant.

If we increase all mass scales by a factor L, all time
scales will be reduced by a factor L, and hence we can
expect evolution to go L times faster in Planck time units.
But the lifetime of stars like our sun changes by a factor
L−3 (Carr and Rees, 1979) in the same units. For a
modest rescaling of L ≈ 10, this means that our sun
would last a factor 100 less compared to evolution, and
dies before evolution has produced anything of interest.
To make use of this argument, we will have to assume
that the time evolution needed on earth is about typical,
and at least not atypically slow. Furthermore one can
replace the sun by a star with less brightness and a longer
lifetime. For increasing L one will then slowly move out
to the tail of the distribution of stars. In the words of
Carr and Rees (1979): “there is no basis for being at all
quantitative”. But it seems clear that somewhere in the
range between 10−19 and 1 there will be an anthropic
boundary on the mp/MPlanck axis.

Indeed, if we go to extremes and make L is so large
that mp approaches MPlanck we encounter very adverse
conditions. Basic kinematics implies a maximum for the
number of nucleons in objects with gravitation balanced
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by internal pressure. This maximum is ≈ (MPlanck/mp)
3,

and determines the maximum number of nucleons in stars
to within a factor of order 10 (Carr and Rees, 1979). If we
increase mp (by increasing L) we will reach a point where
the maximum is smaller than the number of nucleons
in a human brain, which means that brain-sized objects
collapse into black holes. If we set the necessary number
of nucleons in a brain conservatively at about 1024, we
find a limit of mp � 10−8MPlanck. Here we are almost
certainly beyond the boundary.

These objects are just clusters of nucleons, not nec-
essarily hot enough to have nuclear fusion. It is proba-
bly not too anthropocentric to assume that stars should
ignite, not just to have stars as sources of energy but
even more importantly as processing plants of elements
heavier than Lithium. The conditions for this to hap-
pen have been analyzed by Adams (2008). In this paper,
the boundaries for existence of stars are determined as a
function of three parameters, the gravitational fine struc-
ture constant αG = (mp/MPlanck)2, the electromagnetic
fine structure α = e2/4π, and a composite parameter
C that determines nuclear reaction rates. The bound-
aries are shown in Fig. 5 of that paper, as a function
of log(G/G0) and log(α/α0), where G is Newton’s con-
stant and the subscript 0 indicates the value observed in
our universe. Three different boundary lines are shown
for three values of C. The maximum value of all curves
occurs for a value of G/G0 of about 107. Since a varia-
tion of G while keeping mp fixed is equivalent to a vari-
ation of m2

p keeping G fixed, this would imply that mp

could be three to four orders of magnitude larger than
observed without a catastrophic change in the existence
of stars. Some authors (Stenger, 2011) interpret this as
evidence against anthropic fine-tuning, However, as dis-
cussed in (Barnes, 2012), one can also look at it in the
opposite way, namely that this argument offers an an-
thropic understanding for about 80% of the smallness
of (mp/MPlanck), on a logarithmic scale. It all depends
on the definition of fine-tuning and which measure one
chooses. Furthermore, if we consider the scale variation
discussed above, the limit get considerably tighter. The
quantity C has the dimension [mass]−3. It depends in a
complicated way on the strong and the weak scale, but
if we enlarge both by the same factor while keeping ev-
erything else fixed, it is reduced by a factor L3. From
Fig. 5 of (Adams, 2008) we can then estimate the con-
sequences. The result is that the combined Standard
Model scale cannot be enlarged by more than about a
factor 10 without losing nuclear fusion in stars6. This
argument depends more strongly on keeping everything
but the scale fixed than the first one, but the broader
variations considered in Adams (2008) – including some

6 Thanks to Fred Adams for clarifying this point.

that may not be realizable in any underlying quantum
field theory – cover many possibilities already.

It is more difficult to find a lower bound on the over-
all scale. For smaller values, stars continue to exist, but
their average size increases with respect to those of be-
ings built out of the same number of protons as we are.
An interesting argument that get closer to fixing the scale
is the “Carter coincidence” (5.3), especially in the inter-
pretation of Press and Lightman (1983). For fixed val-
ues of α, this implies that if the overall Standard Model
scale is lowered, typical stars would become too hot for
biochemistry. The trouble with arguments of this kind
is however that parameters of stars have a distribution,
and one could move towards the tail of that distribution.
Then probabilistic arguments are needed, with all the
inherent caveats.

Variation of all Standard Model mass scales with re-
spect to the Planck mass was studied by Graesser and
Salem (2007). These authors consider the effect of chang-
ing the Planck mass on several cosmological processes,
such as inflation, baryogenesis, big bang nucleosynthe-
sis, structure formation and stellar dynamics, and find
that the anthropic window on the scale is narrow (less
than an order of magnitude in either direction), if other
cosmological parameters are kept fixed.

The most important point is the following. In texts
about particle physics one often finds the statement: “it
is a big mystery why the scale of the Standard Model is so
much smaller than the Planck mass”. Some authors make
that statement only about the weak scale, because they
consider the smallness of the strong scale understood in
terms of (5.13). It is indeed true that (5.13) makes it
much easier to get a small scale, if one tunes the scale by
tuning αs(MPlanck). But that does not change the fact
that the smallness of both scales is anthropically required.
The fact that the strong scale is distributed logarithmi-
cally is not in dissonance with anthropic reasoning, which
only requires logarithmic tuning. Note that we are not
assuming GUT coupling constant unification here, un-
like most of the anthropic literature, e.g. Carr and Rees
(1979) and Hogan (2000). We will return to that subject
later.

2. The Weak Scale

The smallness of the weak scale, also known as the
gauge hierarchy problem, is not just a matter of very
small ratios, but now there is also a fine-tuning prob-
lem. The small parameter µ2 gets contributions from
quantum corrections or re-arrangements of scalar poten-
tials that are proportional to M2, where M is the rele-
vant large scale. Hence it looks like these terms must be
tuned to thirty significant digits so that they add up to
the very small µ2 we observe. This is clearly a “why”
problem. Even if one decomposes µ2 into several terms,
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it remains a parameter in the Lagrangian which can take
any real value without violating any consistency condi-
tion. Some formulations of the hierarchy problem even
violate basic quantum mechanics. It makes no sense to
say that µ2 gets large quantum corrections, because that
statement would imply that individual quantum correc-
tions are observables. It is also dangerous to use lan-
guage like “stabilizing the hierarchy”, because there is
no instability. Unfortunately this is often confused with
the stability bound on the Higgs potential, see chapter
(II). If the Higgs boson were 10 GeV heavier, the lat-
ter problem would not exist, but the gauge hierarchy
fine-tuning is unaltered. On the other hand, although
the large gauge hierarchy is clearly anthropic, as argued
above, one should not jump to the conclusion that there-
fore the hierarchy problem does not require a solution in
terms of fundamental physics.

a. Anthropic Bounds on the Weak Scale. An obvious ef-
fect of changing the weak scale is a changing the mass
of the W and Z boson, and hence the strength of the
weak interactions. But the anthropic relevance of the
weak interactions is questionable, as discussed in section
(III.B.4). A much more important anthropic implication
of changing the weak scale is that this changes all quark
and charged lepton masses by a common factor. The
idea that the weak scale might be anthropically deter-
mined was suggested for the first time (at least in pub-
lic) by Agrawal et al. (1998a). All bounds follow from the
anthropic bounds on quark and lepton masses discussed
in section (V.B), if we keep the Yukawa couplings fixed
and vary µ2. This is certainly a legitimate change in the
Standard Model effective field theory. It has been ar-
gued that under certain conditions, this kind of variation
occurs generically in string theory landscapes (see sec-
tion (III.F.4) But what happens if we allow the Yukawa
couplings to vary as well?

One needs additional assumptions on the distribution
of Yukawa couplings in the landscape to arrive at a con-
clusion. If very small Yukawa couplings are extremely
unlikely, then the conclusion that the weak scale must be
small for anthropic reasons remains valid. Otherwise it is
merely an interesting observation about the value of µ2

given everything else. Donoghue et al. (2010) compute a
likelihood function for the Higgs vev using a scale invari-
ant distribution function of the Yukawa couplings, deter-
mined from the observed distribution of quark masses.
Using this distribution, and a flat distribution in v, both
the Higgs vev and the Yukawa couplings are allowed to
vary, under the assumption that the Yukawa distribution
does not depend on v. The conclusion is that values close
to the observed vev are favored.

However, Gedalia et al. (2011) make different assump-
tions. These authors also consider, among others, scale
invariant distributions. But scale invariant distributions

require a cutoff to be normalizable. If one assumes that
values as small as λy = 10−21 have a similar likelihood as
values of order 1, then it is statistically easier to get three
small masses (for the u and d quarks and for the electron)
using small Yukawa couplings and a large Higgs vev than
the way it is done in our universe. If furthermore one as-
sumes a weakless universe as discussed in Harnik et al.
(2006), the conclusion would be that in the multiverse
there are far more universes without than with weak in-
teractions, given atomic and nuclear physics as observed.
See however Giudice et al. (2012) for a way of avoiding
the runaway to small Yukawas and large Higgs vevs.

If indeed in the string landscape extremely small values
of Yukawa couplings are not strongly suppressed, and if
weakless universes are as habitable as ours (which is not
as obvious as Gedalia et al. (2011) claim), this provides
one of the most convincing arguments in favor of a so-
lution to the hierarchy problem: a mechanism that tilts
the distribution of µ2 towards smaller values. Note that
we are implicitly assuming here that µ2 comes out of
some “landscape” distribution. We will argue below that
this is the only sensible interpretation of essentially all
proposed solutions to the hierarchy problem.

b. Natural Solutions to the Hierarchy Problem. The fact
that a logarithmic behavior works for the strong scale
has led to speculation that a similar phenomenon should
be expected for the weak scale. At first sight the most
straightforward solution is to postulate an additional in-
teraction that mimics QCD and generates a scale by di-
mensional transmutation. The earliest idea along these
lines is known as “technicolor”. Another possibility is
that there exist large extra dimensions, lowering the
higher-dimensional Planck scale to the TeV region. But
the most popular idea is low energy supersymmetry
(susy). The spectacular results from the LHC experi-
ments have put all these ideas under severe stress, but
low energy susy remains a viable possibility. For this
reason this is the only option that we will consider more
closely here.

c. Low Energy Supersymmetry. Low energy susy does not
directly explain the smallness of the Higgs parameter
µ2, but rather the “technical naturalness” problem. In
the Standard Model, the quantum corrections to µ2 are
quadratically sensitive to high scales. In the supersym-
metric Standard Model, every loop contribution is can-
celed by a loop of a hypothetical particle with the same
gauge quantum numbers, but with spin differing by half
a unit, and hence opposite statistics: squarks, sleptons
and gauginos. None of these additional particles has been
seen so far. Supersymmetry is at best an exact symmetry
at high energies. Supersymmetry more than doubles the
particle content of the Standard Model; in addition to
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“superpartners” for each known particle, an additional
Higgs multiplet is needed. The up-type quarks get their
mass from one of them, Hu, and down-type quarks the
charged leptons get their mass from Hd. After weak sym-
metry breaking five massive scalar fields remain, instead
of the single Higgs boson of the Standard Model.

Rather than a single dimensionful parameter µ2 the
supersymmetrized Standard Model has at least two, a
parameter which, somewhat confusingly, is traditionally
called µ, and a scale MS corresponding to susy break-
ing. The latter scale may be generated by dimensional
transmutation, and this is the basis for susy as a solu-
tion to the hierarchy problem. But the additional scale
µ, which can be thought of as a supersymmetric Higgs
mass prior to weak symmetry breaking, requires a bit
more discussion. To prevent confusion we will equip the
supersymmetric µ-parameter with a hat.

All supermultiplets are split by an amount propor-
tional to MS , and there is a good reason why only the su-
perpartners are lifted, and not the Standard Model parti-
cles themselves: they can all get masses without breaking
SU(2) × U(1). The fact that none of the superpartners
has been observed so far implies that MS must be in the
TeV range, although precise statements are hard to make
without a much more detailed discussion. The parame-
ter µ̂ determines the mass of the fermionic partners of
the Higgs bosons, and it also determines the masses of
the Higgs bosons themselves, through mass terms of the
form ‖µ̂‖2(h†uhu + h†dhd), where hu and hd are the scalar
components of the Higgs multiplets. Unlike the Standard
Model Higgs mass terms these terms are positive definite.
The familiar “Mexican hat” potential can only be gen-
erated after supersymmetry breaking, which contributes
additional terms that can be negative.

Since we argued above that µ2, just as µ̂, is merely
a parameter that can take any value, it may seem that
nothing has been gained. The difference lies in the quan-
tum corrections these parameters get. For the µ2 pa-
rameter these quantum corrections take the (simplified)
form

µ2
phys = µ2

bare +
∑

αiΛ
2 + logarithms, (5.15)

whereas for µ̂ one finds

µ̂phys = µ̂bare

(
1 +

∑
βilog(Λ/Q) + . . .

)
. (5.16)

Here “bare” denotes the parameter appearing in the La-
grangian and “phys” the observable, physical parame-
ter, defined and measured at some energy scale Q; Λ de-
notes some large scale at which the momentum integrals
are cut off. Note that µ̂phys vanishes if µ̂bare vanishes.
This is because for vanishing µ̂ the theory gains an addi-
tional symmetry, a chiral symmetry for the fermions. All
amplitudes violating that symmetry must vanish in the
limit where the symmetry breaking parameter goes to

zero. This is ’t Hooft’s criterion for technical naturalness
(’t Hooft, 1980). No symmetry is gained if the Standard
Model parameter µ2 is set to zero (scale invariance is not
a quantum symmetry), and hence the quantum correc-
tions to µ2 do not vanish in that limit.

If one views this as a standard renormalization pro-
cedure where µ2

phys and µ̂phys are renormalized param-
eters there is strictly mathematically still no differ-
ence between these two situations, because the left-hand
sides are all that can be measured, and Λ is irrelevant.
But intuitively there are two important differences, the
quadratic Λ-dependence of (5.15) and the proportionality
of (5.16) with µ̂. Usually, discussions of naturalness do
not go beyond this intuitive level. However, this can be
made precise if we assume that all quantities are defined
in a landscape where all quantities are well-defined and Λ
is some large but finite scale, as would be the case in the
string theory landscape. Then (5.15) tells us that µ2

phys

is an infinite sum of terms proportional to Λ2 with coef-
ficients αi that are numbers of order 1 depending on the
location in the landscape. If we now consider the com-
plete distribution of values of µ2

phys over the landscape,

we find that µ2
phys is some number of order 1 times Λ2.

If the distribution is flat and Λ ≈ MPlanck, we need a
total number of about 1035 points to have a chance to
encounter one point in the landscape where µ2

phys is close
to the observed value. On the other hand, the same argu-
ment applied to µ̂ gives us no information about how it is
distributed. The logarithms are of order one, and do not
play a rôle in the discussion, and we need additional in-
formation about the distribution of µ̂ in the fundamental
theory in order to be able to say anything more. That dis-
tribution could be logarithmic, or even a delta-function
at zero, or it could even be flat in µ̂ (which is still better
than flat in µ̂2). The question why µ̂ is of order the weak
scale and not much larger is known as the “µ̂-problem”.
The advantage of low energy supersymmetry is that at
least there is a chance of finding a mechanism to make
µ̂ small, whereas without low energy supersymmetry we
have no other option than assuming that our universe
was picked out of a large enough distribution.

If there were nothing anthropic about µ2 it would be
preposterous to claim that we observe a very unlikely
small value just by chance. This might appear to lead
to the conclusion (Weinberg, 2005) “If the electroweak
symmetry breaking scale is anthropically fixed, then we
can give up the decades long search for a natural solution
of the hierarchy problem”. But the anthropic and the
natural solution are not mutually exclusive. Before
jumping to conclusions, we should ask ourselves why we
want a solution to the hierarchy problem.

The answer depends on whether one adopts the
uniqueness paradigm or the landscape paradigm. Ad-
vocates of the former might be perfectly happy if
µ2/M2

Planck came out as a combination of powers of π
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and other fundamental numbers, but they would not ex-
pect that. Hence they believe that there must exist a
missing ingredient that determines that scale. Low en-
ergy supersymmetry, with all of its parameters fixed by
some fundamental theory is then an excellent candidate.
If the µ̂-parameter as well as the scale of supersymmetry
breaking are determined by something analogous to di-
mensional transmutation, it is entirely possible that the
small number comes out as an exponential of numbers of
order 1, which conceivably could be computed exactly.
However, using just low energy physics it is not possible
to make this scenario precise. The scale of supersymme-
try breaking (which determines the mass of the super-
partners, the squarks, sleptons and gauginos) might be
several orders of magnitude above the weak scale, with
the gap being bridged by computable small numbers or
powers of coupling constants. In this case at least three
numbers must come out just right to get the anthrop-
ically required small mass scale: the strong scale, the
value of µ and the supersymmetry breaking scale.

But most discussions of naturalness, especially in the
technical sense, are implicitly assuming a landscape. As
stated in (Hall and Nomura, 2008): “It is very impor-
tant to notice that in talking about naturalness, we are
dealing, either explicitly or implicitly, with an ensemble
in which parameters of the theory are varied according to
some definite distribution. If one adopts the landscape
paradigm, the rationale for a natural solution of the hi-
erarchy problem would be that the unnatural solution
comes at a high statistical price, µ2/M2

Planck ≈ 10−35.

d. The Supersymmetry Breaking Scale. Low energy susy
lowers the statistical price by replacing MPlanck by Msusy,
the susy breaking scale. Here we define it as the typical
scale of super multiplet mass splittings7. This suggests
that the statistical price for a small weak scale can be
minimized by setting Msusy ≈ µ. This is the basis for
two decades of predictions of light squarks, sleptons and
gauginos, which, despite being much more sophisticated
than this, have led to two decades of wrong expectations.
But in a landscape, the likelihood P (µ) for a weak scale
µ is something like

P (µ) = Pnat(µ,Msusy)Plandscape(Msusy). (5.17)

The first factor is the naive naturalness contribution,
Pnat(µ,Msusy) ∝ µ2/M2

susy, and the second one is the
fraction of vacua with a susy breaking scale Msusy.

7 At least two distinct definition of the susy breaking scale are used
in the literature. Furthermore there exist several mechanisms for
“mediation” of susy breaking, such as gauge and gravity media-
tion. The discussion here is only qualitative, and does not depend
on this. See Douglas and Kachru (2007) for further details.

During the last decade there have been several at-
tempts to determine Plandscape(Msusy). One such argu-
ment, suggested by Douglas (2004b) and Susskind (2004)
suggested that it increases with a power given by the
number of susy breaking parameters (F and D terms).
If true, that would rather easily overcome the (Msusy)−2

dependence of the first factor. However, this assumes
that all these sources of susy breaking are independent,
which is not necessarily correct (Denef and Douglas,
2005). Other arguments depend on the way susy is bro-
ken (called “branches” of the landscape in Dine et al.
(2005)). The arguments are presented in detail in section
V.C of Douglas and Kachru (2007). An important con-
tributing factor that was underestimated in earlier work
is the fact that vacua with broken susy are less likely
to be stable. This can lead to a huge suppression (Chen
et al., 2012b; Marsh et al., 2012a). There are large factors
going in both directions, but the net result is uncertain
at present.

One might expect intuitively that there should be an-
other suppression factor Λ4/M4

susy in Eq. (5.17) due to
the fact that unbroken susy can help fine-tuning the cos-
mological constant Λ just as it can help fine-tuning µ
(Banks et al., 2004; Susskind, 2004). But this is wrong,
basically because it is not true that Λ = 0 in supergrav-
ity. In general one gets Λ ≤ 0, which must be canceled to
120 digit precision just as in the non-supersymmetric the-
ories. There is a branch with Λ = 0 before susy breaking,
but this requires a large (R-)symmetry, which is statisti-
cally unlikely (Dine and Sun, 2006).

Despite the inconclusive outcome there is an important
lesson in all this. Conventional bottom-up naturalness
arguments that make no mention of a landscape are blind
to all these subtleties. If these arguments fail in the only
landscape we are able to discuss, they should be viewed
with suspicion. Even if in the final analysis all uncertain
factors conspire to favor low energy susy in the string
theory landscape, the naive naturalness arguments would
have been correct only by pure luck.

e. Moduli. There is another potentially crucial feature
of string theory that conventional low energy susy argu-
ments are missing: moduli (including axions). This point
was made especially forcefully by Acharya et al. (2012)
and earlier work cited therein.

It has been known for a long time that moduli can lead
to cosmological problems (Banks et al., 1994; de Carlos
et al., 1993; Coughlan et al., 1983). If they are stable
or long-lived they can overclose the universe; if they de-
cay during or after BBN they will produce additional
baryonic matter and destroy the successful BBN predic-
tions. For fermionic components of moduli multiplets
these problems may sometimes be solved by dilution due
to inflation. But bosonic moduli have potentials, and
will in general be displaced from their minima. Their
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time evolution is governed by the equation

φ̈+ 3Hφ̇+
∂V

∂φ
= 0, (5.18)

where H is the Hubble constant. If V = 1
2m

2φ2 +
higher order and H � m then the second term domi-
nates over the third, and φ gets frozen at some constant
value (“Hubble friction”). This lasts until H drops be-
low m. Then the field starts oscillating in its potential,
and releases its energy. The requirement that this does
not alter BBN predictions leads to a lower bound on the
scalar moduli mass of a few tens of TeV (30 TeV, for
definiteness).

Furthermore one can argue (Acharya et al., 2010b) that
the mass of the lightest modulus is of the same order of
magnitude as the gravitino mass, m3/2. The latter mass
is generically of the same order as the soft susy breaking
scalar masses: the squarks and sleptons searched for at
the LHC. This chain of arguments leads to the prediction
that the sparticle masses will be a few tens of TeV, out of
reach for the LHC, probably even after its upgrade. But
there was also a successful (though fairly late and rather
broad) prediction of the Higgs mass8 (Kane et al., 2012).

However, there are loopholes in each step of the chain.
Light moduli can be diluted by “thermal inflation” (Lyth
and Stewart, 1996), and the mass relation between grav-
itinos and sparticles can be evaded in certain string the-
ories. The actual result of Acharya et al. (2010b) is that
the lightest modulus has a mass smaller than m3/2 times
a factor of order 1, which can be large in certain cases.
Hence this scenario may be generic, but is certainly not
general.

The relation between m3/2 and fermionic super par-
ticles (Higgsinos and gauginos) is less strict and more
model-dependent. They might be lighter than m3/2 by
one to two orders of magnitude and accessible at the
LHC. Gaugino mass suppression in fluxless M-theory
compactifications is discussed by Acharya et al. (2007).
This was also seen in type-IIB compactifications, with
typical suppression factors of order log(MPlanck/m3/2)
(Choi et al., 2004; Choi and Nilles, 2007; Conlon and
Quevedo, 2006).

A susy scale of 30 TeV introduces an unnatural fine-
tuning of five orders of magnitude9, the “little hierar-
chy”. This tuning requires an explanation beyond the
mere phenomenological necessity. The explanation could

8 The Higgs mass, ≈ 126 GeV was also correctly predicted in fi-
nite unified theories, see Heinemeyer et al. (2008) and on the
basis of asymptotically safe gravity, see Shaposhnikov and Wet-
terich (2010). Bottom-up supersymmetric models, ignoring mod-
uli, suggested an upper limit of at most 120 GeV.

9 In comparison with a weak scale of ≈ 100 GeV and expressed
in terms of the square of the scale, in accordance with the scale
dependence of quantum corrections.

be anthropic, which would be much better than observa-
tional. A universe that seems fine-tuned for our existence
makes a lot more sense than a universe that seems fine-
tuned just to misguide us.

Could this explain the 30 TeV scale? Statements like
“the results of BBN are altered” or “the universe is over-
closed” if moduli are lighter do indeed sound potentially
anthropic. But it is not that simple. Constraints from
BBN are mostly just observational, unless one can argue
that all hydrogen would burn to helium. Otherwise, what
BBN can do, stars can do better. Overclosure just means
disagreement with current cosmological data. Observers
in universes just like ours in all other respects might ob-
serve that they live in a closed universe with Ω � 1,
implying recollapse in the future. But the future is not
anthropically constrained. The correct way to compare
universes with light moduli anthropically to ours is to ad-
just the Hubble scale so that after inflation Ω ≈ 1. This
would give a universe with different ratios of matter den-
sities, but it is not at all obvious that those ratios would
be catastrophic for life. Without such an argument, the
claim that moduli require a 30 TeV susy scale is much
less convincing. See also Giudice and Rattazzi (2006) for
a different view on a possible anthropic origin of the little
hierarchy.

f. The Cost of Susy. Another anthropically relevant im-
plication of low-energy susy is stability of baryons. Su-
persymmetry allows “dimension-4” operators that vio-
late baryon number and lepton number that do not exist
in the Standard Model: they are group-theoretically al-
lowed, but contain an odd number of fermions. If all these
operators are present with O(1) coefficients they give rise
to anthropically disastrous proton decay. This can be
solved by postulating a discrete symmetry that forbids
the dangerous couplings (most commonly R-parity, but
there are other options, see Berasaluce-Gonzalez et al.
(2011) for a systematic summary). In the landscape
global symmetries are disfavored, but R-parity may be
an exception (Dine and Sun, 2006). Landscape stud-
ies of intersection brane models indicate that they occur
rarely (Anastasopoulos et al., 2013; Ibañez et al., 2012),
but since they are anthropically required one can tolerate
a large statistical price.

But apart from anthropically required tunings, susy is
also observationally fine tuned. There are dimension five
operators that can give rise to observable but not catas-
trophic proton decay. A generic supersymmetric exten-
sion of the Standard Model gives rise to large violations
of flavor symmetry: for general soft mass term, the diag-
onalization of squark matrices requires unitary rotations
that are not related to those of the quarks. There are
also substantial contributions to CP-violating processes.
All of these problems can be solved, but at a statistical
price that is hard to estimate, and hard to justify. Mov-
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ing the susy breaking scale to 30 TeV ameliorates some
of these problems, but does not remove them.

Since susy has failed to fully solve the hierarchy prob-
lem, we must critically examine the other arguments sup-
porting it. The so-called “WIMP-miracle”, the claim
that stable superpartners precisely give the required
amount of dark matter, has been substantially watered
down in recent years. On closer inspection, it is off by
a few orders of magnitude (Arkani-Hamed et al., 2006),
and a “non-thermal” WIMP miracle has been suggested
(Acharya et al., 2009) in its place. Although this is based
on WIMPs produced in out of equilibrium decays of mod-
uli, and fits nicely with string theory, two miracles is one
too many. Axions are a credible dark matter candidate,
and several authors have suggested scenarios where both
kinds of dark matter are present (Acharya et al., 2012;
Tegmark et al., 2006). But then we could also do with-
out WIMPs altogether. Furthermore dark matter is con-
strained anthropically. Although crude arguments based
on structure formation of Hellerman and Walcher (2005)
still allow a rather large window of five orders of mag-
nitude, this is not much larger than the uncertainty of
the WIMP miracle. Furthermore it is far from obvious
that life would flourish equally well in dense dark matter
environments so that the true anthropic bound might be
much tighter. The other main argument, gauge coupling
unification, has already been discussed in section V.A.4.
It is more seriously affected by problems at the string
scale than by the upward motion of the susy scale, on
which it only depends logarithmically.

Ideas like split supersymmetry (a higher mass scale
just for the superpartners of fermions) and high scale
supersymmetry (a larger susy scale) are becoming more
and more salonfähig in recent years. Perhaps counter-
intuitively, their scales are constrained from above by the
Higgs mass measurement (Giudice and Strumia, 2012):
in supersymmetric theories the Higgs self-coupling can-
not become negative, as it appears to be doing. It is
hard to avoid the idea that the most natural scenario is
no supersymmetry. But that would also imply that ev-
erything we think we know about the landscape is built
on quicksand. This is a huge dilemma that we will hear
a lot more about in the future.

D. Axions

Arguably the most serious problem of the Standard
Model – ignoring cosmology – is the absence of any expla-
nation why the CP-violating angle θ̄ of the strong inter-
actions is as small as it is, see section II. Unlike the large
gauge hierarchy, the extreme smallness of the strong CP-
violating angle θ̄ has few anthropic implications. Apart
from producing as yet unobserved nuclear dipole mo-
ments, θ̄ can have substantial effects on nuclear physics,
including anthropically relevant features like deuteron

binding energies and the triple-alpha process. In Ubaldi
(2010) the reaction rate of the triple-alpha process was
found to be ten times larger if θ̄ = 0.035. But at best this
would explain two to three of the observed ten orders of
magnitude of fine tuning.

In a huge landscape we could attribute the small value
of θ̄ to pure chance, but accepting that possibility un-
dermines any discussion of other fine-tuning problems.
Another option is that one of the quark masses (which
could only be mu) vanishes or is extremely small, but
that option is in 4σ disagreement with the data. Fur-
thermore this just shifts the fine-tuning problem from θ̄
to one of the quark masses. There are other options,
but one solution stands out because of its simplicity, the
mechanism discovered by There are several possible so-
lutions, but one stands out because of its simplicity: the
mechanism discovered by Peccei and Quinn (1977). It
requires nothing more than adding a scalar a and a non-
renormalizable coupling:

∆L =
1

2
∂µa∂

µa+
a

32π2fa

∑
a

F aµνF
a
ρσε

µνρσ, (5.19)

where fa is the “axion decay constant”. Since FF̃ (where
F̃µν = 1

2εµνρσF
ρσ) is a total derivative, after integration

by parts the second term is proportional to ∂µa. Hence
there is a shift symmetry a → a + ε. This allows us to
shift a by a constant −θ̄fa so that the FF̃ term (2.6)
is removed from the action. However, the shift symme-
try is anomalous with respect to QCD because the FF̃
term is a derivative of a gauge non-invariant operator.
Through non-perturbative effects the anomaly generates
a potential with a minimum at a = 0 of the form

V (a) ∝ Λ4
QCD (1− cos(a/fa)) . (5.20)

Note that θ̄ is periodic with period 2π, so that the shift
symmetry is globally a U(1) symmetry. It was pointed
out by Weinberg (1978) and Wilczek (1978) that this
breaking of the U(1) symmetry leads to a pseudo-scalar
pseudo-Goldstone boson, which was called “axion”. The
mass of this particle is roughly Λ2

QCD/fa, but if we take
into account the proportionality factors in (5.20) the cor-
rect answer is

ma =
mπfπ
fa

F (mq), (5.21)

where fπ is the pion decay constant and F (mq) a function
of the (light) quark masses that is proportional to their
product. The scale fa was originally assumed to be that
of the weak interactions, leading to a mass prediction of
order 100 KeV, that is now ruled out. But soon it was
realized that fa could be chosen freely, and in particular
much higher, making the axion “harmless” or “invisible”
(see Kim (1987) and references therein). This works if
the coupling fa is within a narrow window. For small fa
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the constraint is due to the fact that supernovae or white
dwarfs would cool too fast by axion emission. This gives
a lower limit fa > 109 GeV.

The upper limit is cosmological. In the early universe
the axion field would be in a random point θ0 in the range
[0, 2π] (“vacuum misalignment”). The potential (5.20) is
irrelevant at these energy scales. During the expansion
and cooling of the universe, the field remains at that value
until the Hubble scale drops below the axion mass. Then
the field starts oscillating in its potential, releasing the
stored energy, and contributing to dark matter densities.
The oscillating axion field can be described as a Bose-
Einstein condensate of axions. Despite the small axion
mass, this is cold dark matter: the axions were not ther-
mally produced. Axions may in fact be the ideal dark
matter candidate (Sikivie, 2012).

The axion contribution to dark matter density is pro-
portional to

Ωa ∝ (fa)1.18sin2(
1

2
θ0), (5.22)

(see Bae et al. (2008) for a recent update and earlier ref-
erences). The requirement that this does not exceed the
observed dark matter density leads to a limit fa < 1012

GeV, unless θ0 ≈ 0. This results in a small allowed win-
dow for the axion mass: 6 µeV < ma < 6 meV. Observ-
ing such a particle is hard, but one may use the fact that
axions couple (in a model-dependent way) to two pho-
tons. Several attempts are underway, but so far without
positive results. The location of the axion window is fas-
cinating. It is well below the GUT and Planck scales,
but roughly in the range of heavy Majorana masses in
see-saw models for neutrinos. It is also close to the point
where the extrapolated Higgs self-coupling changes sign,
although there are large uncertainties.

There are many string-theoretic, landscape and an-
thropic issues related to axions. Candidate axions oc-
cur abundantly in string theory (see Svrcek and Witten
(2006) for details and earlier references). Indeed, they
were already discussed in the very first paper on het-
erotic string phenomenology Witten (1984). There is a
“universal” or “model-independent” axion related to the
Bµν field that occurs in any string theory. In compacti-
fied strings one has, in addition to these, zero-modes of
the compactified ten-dimensional Bµν field with indices µ
and ν in the compactified directions. Then the number of
zero-modes depends on the topology of the compactifica-
tion manifold. These are called “model-dependent” ax-
ions. In type-II strings Kaluza-Klein modes of compact-
ified RR anti-symmetric tensor fields yield many many
more axions. Furthermore the required couplings are
present in string theory, and can be derived from the
tree-level or one-loop terms that cancel anomalies in the
Green-Schwarz mechanism.

But exact global symmetries, like axion shift symme-
tries, are not supposed to exist in theories of quantum

gravity, and hence they are not expected to exist in string
theory. Therefore one expects all the candidate axions to
acquire a mass. The Peccei-Quinn (PQ) mechanism can
only work if a light axion survives with couplings to QCD,
and with a mass contribution from other sources that is
much smaller than the QCD-generated mass.

There is a second worry. In supersymmetric theories
(which includes all string theories we can discuss) ax-
ions can be thought of as imaginary parts of complex
scalar fields in chiral multiplets. The real part is some-
times called the saxion, and is a modulus in string theory.
Moduli must be stabilized. Because axions have deriva-
tive couplings, they are far less constrained than mod-
uli. In particular, they are not constrained by fifth force
limits, nor do they decay to affect BBN abundances. For
moduli, those constraints give a lower mass limit of order
10 TeV (although there ways out). Mechanisms that give
such masses to moduli may give the same masses to the
axionic components, which is fatal for their rôle as PQ
axions. Axion-components of flux-stabilized moduli get
stabilized as well, and hence acquire a large mass. The
same is true for stabilization due to instanton induced
terms in the superpotential, of the form exp(aρ); these
terms stabilize both the real as the imaginary component
of the complex field ρ. Furthermore some axions are pro-
jected out by orientifold projections, while others can be
“eaten” by vector bosons in a Stueckelberg mechanism
that give mass to anomalous U(1)’s (and often even to
non-anomalous U(1)’s.

However, in most string theories there exist candidate
axions that are exactly massless to all orders in pertur-
bation theory, and which must therefore get their masses
from non-perturbative effects. These effects can be ex-
pected to give rise to axion masses proportional to e−S ,
where S is an instanton action.

It is not likely that a light axion exists just for QCD.
From the string theory perspective, it would seem strange
that out of the large number of candidate axions just
one survives. From the gauge theory perspective, many
different gauge groups with many different non-abelian
factors are possible. Either they generically come with
axions, or QCD is a special case for no apparent reason.
Even the Standard Model itself has a second non-abelian
factor. Although SU(2) has no observable θ-angle, it
would seem absurd that a PQ-mechanism exists just to
make the observable θQCD parameter vanish.

This has led to the notion of an “axiverse” (Arvan-
itaki et al., 2010), a plethora of axions, with masses
spread logarithmically over all scales; only the mass of
the QCD axion is determined by (5.21). Realizations
of an axiverse have been discussed in fluxless M-theory
compactifications (Acharya et al., 2010a) and in type-IIB
models in the LARGE Volume Scenario (Cicoli et al.,
2012a). Both papers consider compactifications with
many Kähler moduli that are stabilized by a single non-
perturbative contribution rather than a separate contri-



74

bution for each modulus. Then all Kähler moduli can be
stabilized, but just one “common phase” axion acquires
a large mass. All remaining ones get tiny masses from
other instantons. For supersymmetric moduli stabiliza-
tion (such as the KKLT scenario, but unlike LVS) a no-go
theorem was proved by Conlon (2006), pointing out that
for each massless axion there would be a tachyonic sax-
ion after up-lifting. But in Choi and Jeong (2007) a gen-
eralization of the KKLT scenario was considered where
this problem is avoided. Axions in the heterotic mini-
landscape were discussed by Choi et al. (2009). They
consider discrete symmetries that restrict the superpo-
tential, so that the lowest order terms have accidental
U(1) symmetries that may include a PQ symmetry.

The upper limit fa < 1012 GeV is problematic for ax-
ions in string theory, which generically prefers a higher
scale (Svrcek and Witten, 2006). A way out of this
dilemma is to assume that the misalignment angle in Eq.
(5.22) is small. This is an option if the PQ phase tran-
sition occurred before inflation, so that we just observe
a single domain of a multi-domain configuration with a
distribution of values of θ0. If the phase transition oc-
curred after inflation, we would instead observe an av-
erage of sin2θ0, equal to 1

2 . To allow an increase of fa
to the GUT or string scale of about 1016 GeV a value
of θ0 ≈ 10−3 would be sufficient. One could even as-
sume that this value came out “by accident”, which is
still a much smaller accident than required for the strong
CP problem. However, the fact that the upper limit on
fa is due to the axion’s contribution to dark matter has
led to the suggestion that we live in an inflated domain
with small θ0 not by accident, but for anthropic reasons
(Linde, 1991). Furthermore, the fact that this parame-
ter is an angle and that axions are not strongly coupled
to the rest of the landscape makes it an ideal arena for
anthropic reasoning (Wilczek, 2004). This was explored
in detail by Tegmark et al. (2006) and Freivogel (2010).
The upper bound on the axion decay constant can be
raised if there is a non-thermal cosmological history, for
example caused by decay of ≈ 30 TeV moduli (Acharya
et al., 2012).

Whatever solution is proposed for the strong CP prob-
lem, it should not introduce a fine-tuning problem that
is worse. Therefore models specifically constructed and
tuned to have a QCD axion in the allowed window, but
which are rare within their general class, are suspect.
This appears to be the case in all models suggested so far.
The “rigid ample divisors” needed in the M-theory and
type-II constructions mentioned above are not generic,
and the discrete symmetries invoked in heterotic con-
structions may be a consequence of the underlying math-
ematical simplicity of the orbifold construction. But it is
difficult to estimate the amount of fine tuning that really
goes into these models.

The anthropic tuning required to avoid the upper
bound on fa was discussed by Mack (2011). This au-

thor concludes that avoiding constraints from isocurva-
ture fluctuations in the CMB, which are observational
and not anthropic, requires tuning of both θ0 and the
inflationary Hubble scale to small values. The amount of
tuning is more than the ten orders of magnitude needed
to solve the strong CP problem. This problem increases
exponentially if there are many axions (Mack and Stein-
hardt, 2011).

There are numerous possibilities for experiments and
observations that may shed light on the rôle of axions
in our universe, and thereby provide information on the
string theory landscape. The observation of tensor modes
in the CMB might falsify the axiverse (Acharya et al.,
2010a; Fox et al., 2004). See Arvanitaki et al. (2010);
Marsh et al. (2012b); and Ringwald (2012) for a variety of
possible signatures, ongoing experiments and references.

E. Variations in Constants of Nature

If we assume that constants of nature can take different
values in different universes, it is natural to ask if they
might also take different values within our own universe.
In the Standard Model the parameters are fixed (with
a computable energy scale dependence) and cannot take
different values at different locations or times without
violating the postulate of translation invariance.

There is a lot of theoretical and observational interest
in variations of constants of nature, and for good rea-
sons. The observation of such a variation would have
a huge impact on current ideas in particle physics and
cosmology. See Langacker et al. (2002) for a concise
review and Uzan (2003) for a more extensive one, and
Chiba (2011) for an update on recent bounds and ob-
servations. The observations include high precision ex-
periments using atomic clocks, the Oklo nuclear site (a
natural occurrence of nuclear fission, about 2 billion years
ago), quasar absorption spectra, the CMB and Big Bang
Nucleosynthesis. Note that these phenomena occur on
hugely different timescales, so that they cannot be easily
compared. Some observations explicitly look for time de-
pendence, but for distant objects like quasars one cannot
disentangle time and space dependence so easily. The
observed phenomena depend on various combinations of
constants, and the results are most often presented in
terms of variations in α or the electron/proton mass ra-
tio µ = me/mp. In both cases the relevant limits or
reported signals are of order 10−15 per year. The best
current limits on ∆α/α are about 10−17 per year, from
atomic clocks and from the Oklo natural nuclear reactor.
Recently a limit ∆µ/µ < 10−7 was found by comparing
transitions in methanol in the early universe (about 7 bil-
lion years ago) with those on earth at present (Bagdon-
aite et al., 2012). This is for a look-back time of 7 billion
years, so this correspond to a limit on the average varia-
tion of 1.4 × 10−17 per year. There are also constraints
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on the variation of Newton’s constant from a variety of
high precision observations, such as lunar laser ranging,
binary systems, the Viking mars lander, Big Bang Nu-
cleosynthesis and the CMB. These give limits of order
10−12 per year.

But in addition to limits there have also been positive
observations. Using the Keck observatory in Hawaii and
the Very Large Telescope (VLT) in Chili, Webb et al.
(2011) reported a spatial variation of α. Earlier obser-
vations at Keck of a smaller value of α, at that time
interpreted as a temporal variation (Webb et al., 2001),
combined with more recent VLT observations of a larger
value, fit a dipole distribution in the sky. These results
have a statistical significance of 4-5σ. There are also re-
ports of variations in µ and the cosmological constant
along the same dipole direction, but with not more than
2σ significance, see Berengut et al. (2010) and Damour
and Donoghue (2011). Note hat the size of the ∆α/α
variation in a single direction is about 10−15 per year,
and hence would disagree with the atomic clock and Oklo
bounds, assuming a linear time dependence. But there
may be no such discrepancy if it is interpreted as a spatial
variation, even taking into account the Earth’s motion
through the dipole (Flambaum and Berengut, 2010). It
is not clear why α should vary more than other param-
eters, especially µ. The latter is sensitive to ΛQCD and
the Higgs vev. The former is expected to vary much
more strongly than α if one assumes GUTs (Calmet and
Fritzsch, 2002; Langacker et al., 2002); the former is ex-
pected, in certain landscape toy models, to vary much
strongly more than dimensionless parameters.

There are no good theoretical ideas for the expected
size of a variation, if any. In string theory, and quite gen-
erally in theories with extra dimensions, the couplings
are functions of scalar fields, and are determined by the
vacuum expectation value of those fields, subject to equa-
tions of motion of the form (5.18). This makes it possible
to maintain full Poincaré invariance and relate the varia-
tions to changes in the vacuum. For example, the action
for electrodynamics takes the form

L = − 1

4e2
e−φ/MPlanckFµνF

µν , (5.23)

where φ is the dilaton field or one of the other moduli.
Variations in φ lead to variations in α

∆α ∝ δφ

MPlanck
(5.24)

All other parameters of the Standard Model have a de-
pendence on scalar fields as well. Although this formal-
ism allows variations in α, it is clearly a challenge to
explain why they would be as small as 10−15 per year.
Note that this is about 10−66 in Planck units, the natural
units of a fundamental theory like string theory.

This is reminiscent of the cosmological constant prob-
lem and the flatness problem, where it seemed reason-

able to assume that a ridiculously small number is actu-
ally zero. But we have strong indications that at least
for the cosmological constant this assumption is wrong.
It is clear that Planck size variations in couplings are
anthropically not acceptable, nor are far smaller varia-
tions. Parameters should stay within the absolute an-
thropic bounds, and even much smaller variations than
that could be catastrophic. If parameters like α and
µ were to change substantially during evolution, there
would not be enough time for organisms to adapt to the
changes in energy levels of their molecules. Although
it is hard to arrive at a strict limit from such an argu-
ment, it seems clear that changes far larger than 10−15

per year would be acceptable, so that the near constancy
of parameters cannot be explained anthropically. It also
seems preposterous to assume that a complete function,
not just a value, is fine-tuned for the existence of life.
Furthermore any such argument would still allow almost
arbitrarily large spatial variations.

While fast changes have a negative impact, slow
changes might be beneficial. It is unlikely that the Stan-
dard Model parameters are at their optimal anthropic
value for BBN, Stellar Nucleosynthesis and biological
evolution simultaneously. If parameters could change
slowly, we might expect to find ourselves in a universe
where the parameters were optimized for each cosmolog-
ical epoch. Apparently that is not the case, because even
during BBN the parameters differed at most a few per-
cent from their current values.

Hence the observation of a variation in any Stan-
dard Model parameter would imply a huge fine-tuning
problem, with little hope of an anthropic explanation.
Then the most attractive way out is that within our
universe these parameters really are constants, although
they must vary in the multiverse.Then the most attrac-
tive way out is that within our universe these parameters
really are constants, although they must vary in the mul-
tiverse. The string theory landscape solves this problem
in an elegant way, because each of its “vacua” is at the
bottom of a deep potential, completely suppressing any
possible variations of the moduli at sub-Planckian ener-
gies.

This can be seen by considering the effect of changes in
vevs of moduli fields on vacuum energy. Here one encoun-
ters the problem that contributions to vacuum energy in
quantum field theory are quartically divergent. But this
cannot be a valid reason to ignore them completely, as
is often done in the literature on variations of constants
of nature. Banks et al. (2002) have pointed out that if a
cut-off Λcutoff is introduced in quantum field theory, then
the effect of a change in α on vacuum energy V is

δV ∝ ∆α(Λcutoff)4. (5.25)

With Λcutoff = 100 MeV, the QCD scale, and assuming
that vacuum energy should not dominate at the earliest
stages of galaxy formation (corresponding to the time
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when quasar light was emitted), this gives a bound of
∆α/α < 10−37. If one assumes that δV depends on ∆α
with a power higher than 1, this bound can be reduced,
but a power of at least 8 is required to accommodate
the observed variation. This can only be achieved by
a correspondingly extreme tuning of the scalar potential.
Spatial variations are restricted by similar arguments, al-
though less severely.

This is a general field theoretic argument, but it explic-
itly assumes a temporal, and not a spatial variation. It is
assumed that quasars observed today give us information
about the early stages of our own galaxy. In field theo-
retic models smooth spatial variations are harder to ob-
tain than temporal variations (Olive and Pospelov, 2008),
but it is possible the variation is due to the existence of
different domains, with changes of α across a domain
wall, which one can try to localize (Olive et al., 2012).

In the string theory landscape Λcutoff is of order the
Planck scale, and the cosmological constant is a sum of
terms of order M4

Planck which cancel with 120 digit preci-
sion. Even the tiniest change in one of the contributions
would completely ruin the cancellation, and the corre-
sponding part of space-time would either collapse or ex-
pand exponentially. It α changes by 10−5 in comparison
to the value on earth is simply not possible that we ob-
serve a quasar there, and this is true for both temporal
and spatial variations (for temporal changes the limit is
∆α/α < 10−104 (Banks et al., 2002)).

One may still entertain the thought that we are wit-
nessing a entirely different vacuum of the string land-
scape, with a vacuum energy tuned to a very small value
by a different combination of fluxes (or other features)
than in our own domain. But there is no good reason
why such a distinct vacuum would only differ from ours
by a minor variation of α, and nothing more substantial.
It is not even clear why it should couple to the same
photon. Another possibility is that one modulus has es-
caped moduli stabilization and has remained extremely
light, providing an almost flat direction along which sev-
eral “constants” vary, canceling each other’s contribution
to the cosmological constant. But light moduli that have
significant couplings tend to generate “fifth forces” vio-
lating the equivalence principle. This is a general prob-
lem associated with variations in constants of nature, as
observed a long time ago by (Dicke, 1957). For a recent
discussion see (Damour and Donoghue, 2011).

Currently the observation of variations in constants of
nature is still controversial, but there is a lot at stake.
Evidence for variations would be good news for half of
this review, and bad news for the other half. If the pa-
rameters of the Standard Model already vary within our
own universe, the idea that they are constants can be
put into the dustbin of history, where it would be joined
almost certainly by the string theory landscape. String
theory would be set back by about two decades, to the
time where it was clear that there were many “solutions”,

without any interpretation as “vacua” with a small cos-
mological constant.

VI. ETERNAL INFLATION

If string theory provides a huge “landscape” with a
large number of “vacua”, how did we end up in one par-
ticular one? Some process where new universes are cre-
ated from already existing is evidently required. This no-
tion precedes the string theory landscape by many years,
see for example Linde (1987), and especially Fig. 3. The
answer is eternal inflation, a nearly inevitable implication
of most theories of inflation. In theories of inflation it is
nearly inevitable that inflation is eternal. In slow-roll
inflation this happens if inflation stops only in certain
regions of the universe, whereas the rest continues ex-
panding. It may then happen that several distinct vacua
may be reached as the endpoint of inflation. This is called
slow-roll eternal inflation (SREI). Classically, the inflat-
ing universe is described by a dS space-time. But dS uni-
verses are not believed to be absolutely stable (Susskind,
2003). Locally, decays can occur, when bubbles of other
vacua form and expand. This is called false vacuum eter-
nal inflation (FVEI). Whether inflation really is eternal
depends on the decay rate: the total volume of false vac-
uum must grow faster than it decays or stops inflating. If
in the string theory landscape there is at least one such
vacuum, as soon as the multiverse ends up in such a con-
figuration it will start inflating eternally. Even our own
universe could be that vacuum, provided it lives an order
of magnitude longer than its current age. Then “typical”
universes will have a long period of eternal inflation in
their past. See Guth (2000); Linde (2002); and Freivo-
gel (2011) for more discussion and references. If there is
a possibility for transitions to other universes, then this
would inevitably trigger an eternal process of creation
of new universes. Here “eternal” means future eternal.
Whether this also implies past-eternal has been a mat-
ter of debate, see Mithani and Vilenkin (2012); Susskind
(2012b,c).

For different views on eternal inflation or on populat-
ing the landscape see respectively Mersini-Houghton and
Perry (2012) and Hawking and Hertog (2006).

A. Tunneling

In the case of FVEI the decays can take place in var-
ious ways. The best known process were described by
Coleman and De Luccia (1980) and by Hawking and
Moss (1982). The former describes tunneling between
false vacua, and the latter tunneling of a false vacuum
to the top of the potential. The precise interpretation
of these processes requires more discussion, see e.g. Af-
fleck (1981); Brown and Weinberg (2007); and Weinberg
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(2007). These processes generate the nucleation of bub-
bles of other vacua which expand, and then themselves
spawn bubbles of still more vacua (Lee and Weinberg,
1987). Tunneling between dS vacua may occur in both
directions, up and down in vacuum energy, although up-
tunneling is strongly suppressed with respect to down-
tunneling (see e.g. Schwartz-Perlov and Vilenkin (2006))

Γi→j = Γj→i exp

(
24π2

[
1

Λj
− 1

Λi

])
. (6.1)

The endpoint of tunneling may be another dS vacuum,
but it may also be a Minkowski or AdS vacuum. Whether
tunneling from Minkowski to AdS is possible is disputed
in (Dvali, 2011; Garriga et al., 2011). Minkowski vacua
do not inflate, and AdS universes collapse classically in
a finite amount of time. Up-tunneling from these vacua
to dS space is impossible, and therefore they are called
terminal vacua. They are “sinks in the probability flow”
(Ceresole et al., 2006; Linde, 2007). According to Bousso
(2012) and Susskind (2012a) their existence in the land-
scape may be essential for understanding the arrow of
time and for avoiding the Boltzmann Brain problem (see
below). Even though a large portion of an eternally
expanding universe ends up in a terminal vacuum, the
rest continues expanding forever. A typical observer is
expected to have a long period of eternal inflation in
his/her/its past (Freivogel, 2011).

B. The Measure Problem.

The word “eternal” suggests an infinity, and this is
indeed a serious point of concern. As stated in many pa-
pers: “In an eternally inflating universe, anything that
can happen will happen; in fact, it will happen an infinite
number of times”. This, in a nutshell, is the measure
problem (see reviews by Vilenkin (2006c); Guth (2007);
Freivogel (2011); and Nomura (2012)). If we want to
compute the relative probability for events A and B, one
may try to define it by counting the number of occur-
rences of A and those of B, and taking the ratio. But
both numbers are infinite.

At this point one may even question the very concept
of probability, in a situation where we will never more
than one item in a set. But cosmology is in exactly the
same situation, and this is what gives rise to the “cos-
mic variance” problem. In fact, all arguments in particle
physics that rely on naturalness make implicit assump-
tions about probabilities. The same is true for all predic-
tions in particle physics. Suppose a class of models fits
all the Standard Model data, and a large fraction of that
class has a certain property, for example an additional
Z ′ boson. We look like then to predict the existence
of this boson. But without a notion of probability and
a measure on the class of models, such statements are,
strictly speaking, meaningless. Usually the existence of a

notion of probability is take for granted, and some naive
measure is used.

Infinities are not unusual in physics, especially when
we wander into unknown territory. They may sometimes
be taken care of by some kind of regularization, where
the infinity is cut off. This then defines a “measure”.
One may hope that at the end one can take the cutoff to
infinity. During the past two decades many such regular-
izations (“measures”) have been tried. A first test is to
compute some ratios of probabilities, and check if they
even make sense. The earliest attempts led to absurd
paradoxes.

Infinities may also indicate that something fundamen-
tal is missing. For example, in quantum field theory
several kinds of infinities occur. Infrared divergences
merely tell us that we should use appropriate initial
states; renormalizable ultraviolet divergences tell us that
some parameters in the theory are “external” and cannot
be determined by the theory itself; Landau poles in the
running of couplings towards large energies point to new
physics. In the present case, it could well be that the
infinities signal that entirely new ingredients are needed
that do not follow from the underlying theory (string the-
ory and/or quantum mechanics). The final verdict about
this is not in yet.

It is not that hard to think of definitions that cut off the
infinities, but many of them make disastrous predictions.
For example, they may predict that observers – even en-
tire solar systems with biological evolution – created by
thermal or quantum fluctuations (“Boltzmann Brains”)
vastly outnumber ones like ourselves, with a cosmologi-
cal history that can be traced back in a sensible way. Or
they may predict that universes just a second younger
than ours are far more numerous (the “Youngness para-
dox”). See section VI.C for a more detailed explanation
of these paradoxes.If these predictions go wrong, they
go wrong by double exponentials, and a formalism that
gives this kind of a prediction cannot be trusted for any
prediction.

1. The Dominant Vacuum

An ingredient that could very well be missing is a the-
ory for the initial conditions of the multiverse. It would
be unduly pessimistic to assume that this is a separate
ingredient that cannot be deduced from string theory (or
whatever the theory of quantum gravity turns out to be).
If it cannot be deduced by logical deduction, it might be
impossible to get a handle on it.

But eternal inflation may make this entire discussion
unnecessary, provided all vacua are connected by physical
processes. In that case, successive tunneling events may
drive all of them to the same “attractor”, the longest
lived dS vacuum whose occupation numbers dominate
the late time distribution. This is called the “dominant
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vacuum” (Garriga et al., 2006; Garriga and Vilenkin,
1998; Schwartz-Perlov and Vilenkin, 2006). Since tun-
neling rates are exponentially suppressed, this vacuum
may dominate by a huge factor. Then the overwhelming
majority of vacua would have this attractor vacuum in
its history. This would erase all memory of the initial
conditions.

If the space of vacua is not physically connected, it
falls apart into disconnected components, each with a
separate dominant vacuum. Then we are faced with the
problem of determining in which component our universe
is located. A disconnected landscape is a nightmare sce-
nario. It is like having a multitude of “theories of every-
thing”, and given the numbers one usually encounters the
multitude might be a huge number. But in (Brown and
Dahlen, 2011) it was argued that despite some potential
problems (vacua not connected by instantons, or only
connected through sinks (Clifton et al., 2007) – all dS
vacua are reachable with non-zero transition rates. This
result holds for minima of the same potential, but argu-
ments were given for parts of the landscape with different
topologies as well. See Danielsson et al. (2007); Chialva
et al. (2008); and Ahlqvist et al. (2011) for a discussion
of connections between Calabi-Yau flux vacua.

The “dominant vacuum” may sound a bit like the old
dream of a selection principle. Could this be the math-
ematically unique vacuum that many people have been
hoping for? Since it can in principle be determined from
first principles (by computing all vacuum transition am-
plitudes) it is not very likely that it would land exactly
in an anthropic point in field theory space, see Fig. 1.
Douglas (2012) argues that the dominant vacuum may
be the dS vacuum with the lowest supersymmetry break-
ing scale, since broken supersymmetry destabilizes the
vacuum. That scale is likely to be many orders of magni-
tude below the Standard Model scale, and is assumed to
be not anthropic. Otherwise it would lead to the clearly
wrong prediction that the vast majority of observers in
the string theory landscape see an extremely small su-
persymmetry breaking scale. If the dominant vacuum is
not itself anthropic, the anthropic vacuum reached from
it by the largest tunneling amplitude is now a strong
candidate for describing our universe. With extreme op-
timism one may view this as an opportunity to compute
this vacuum from first principles (Douglas, 2012). Un-
fortunately, apart from the technical obstacles, there is a
more fundamental problem: the dominant vacuum itself
depends on the way the measure is defined.

2. Local and Global Measures

The earliest attempts at defining a measure tried to
do so globally for all of space-time by defining a time
variable and imposing a cut-off. Several measures of this
kind have been proposed, which we will not review here;

see the papers cited above and references therein.

But a comparison with black hole physics provides an
important insight why this may not be the right thing
to do. There is a well-known discrepancy between in-
formation disappearing into a black hole from the point
of view of an infalling observer or a distant observer.
In the former case information falls into the black hole
with the observer, who does not notice anything peculiar
when passing the horizon, whereas in the latter case the
distant observer will never see anything crossing the hori-
zon. A solution to this paradox is to note that the two
observers can never compare each others observations.
Hence there is no contradiction, as long as one does not
try to insist on a global description where both pictures
are simultaneously valid. This is called black hole com-
plementarity (and has come under some fire recently; see
Almheiri et al. (2013) and Braunstein et al. (2013) and
later papers for further discussion).

The same situation exists in eternal inflation. The ex-
panding dS space, just like a black hole, also has a hori-
zon. In many respects, the physics is in fact analogous
(Gibbons and Hawking, 1977). If it is inconsistent to
describe black hole physics simultaneously from the dis-
tant and infalling observer perspective, the same should
be true here. This suggests that one should only count
observations within the horizon. This idea has been im-
plemented by several authors in somewhat different ways.
The causal patch measure (Bousso, 2006) only takes into
account observations in the causal past of the future end-
point of a word line. Several variations on this idea exist
which we will not attempt to distinguish here. Remark-
ably, in some cases these local measures are equivalent
to global ones (local/global duality), see Bousso et al.
(2009a) and Bousso and Yang (2009).

Using only quantum mechanical considerations, No-
mura (2011) has developed a picture that only includes
observations by a single observer. In the end, proba-
bilities are then defined as in quantum mechanics, as
squares of absolute values of coefficients of a quantum
state. In this approach, “the multiverse lives in probabil-
ity space”, and this is claimed to be tantamount to the
many-world interpretation of quantum mechanics. Such
a relation has been pointed out by others as well (Aguirre
et al., 2011; Bousso and Susskind, 2012; Susskind, 2003;
Tegmark, 2009), but it is too early to tell whether all
these ideas are converging.

The current status can be summarized by two quotes
from recent papers. Nomura (2012) states emphatically
“The measure problem in eternal inflation is solved”,
whereas just a year earlier Guth and Vanchurin (2011)
concluded “We do not claim to know the correct answer
to the measure question, and so far as we know, nobody
else does either.”
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C. Paradoxes

1. The Youngness Problem

Attempts at regulating the infinities in the definition
of the measure can easily lead to bizarre results. One ap-
proach, the proper time cutoff (Linde and Mezhlumian,
1993; Vilenkin, 1995a) is to choose a cutoff in some global
time variable. This implies that there is a global notion
of time that applies not only to the eternally inflating
space, but also to all bubble universes created in it. This
obviously involves an arbitrary choice of reference frame,
and it has to be demonstrated that this does not mat-
ter. Now multiplicities of event can be made finite by
only counting events prior to the cutoff. This leads to
the problem that after our universe started, the eternally
inflating space around it continues to expand, produc-
ing other universes. While our universe goes through its
evolution, an immense number of others got started. Be-
cause of the global time definition, this number is well-
defined and calculable. If we analyze the resulting set
of universes at the present time, then we would find that
our own universe is vastly out-numbered by younger ones.
The use of a measure comes with a notion of typicality,
sometimes called the “principle of mediocrity” (Vilenkin,
1995a). One would like predict features of our own uni-
verse by postulating that among all universes the one we
live in is typical, given the required conditions for life.
Given a measure we can compute the relative rates of
various features, and check if we are typical or not. In
the present case, we would find that most observers simi-
lar to ourselves would find themselves in a much younger
universe (Guth, 2007). If such arguments go wrong, they
usually do not go wrong by a small percentage. In this
particular case, our own universe is outnumbered by uni-
verses just a second(!) younger than ours by a factor
exp[1037] (note the double exponential, which occurs fre-
quently in this kind of argument). This means that either
we are highly atypical (and with extremely high proba-
bility the only civilization in our own universe, as (Guth,
2000) remarks jokingly), or that there is something ter-
ribly wrong with the measure.

2. Boltzmann Brains

Another notorious problem is the Boltzmann Brain
paradox (Bousso and Freivogel, 2007; Dyson et al., 2002;
Page, 2008). If our universes continues an eternal expan-
sion it will eventually enter a stage where all stars have
burned out, all life has disappeared, all black holes have
evaporated and all protons have decayed (see (Dyson,
1979)(Adams and Laughlin, 1997) for a early accounts).
Even in the Standard Model the proton eventually de-
cays due to weak instantons or gravitational effects, and
therefore after a mere 10100 years there would be no pro-

ton left.

To appreciate the relevant time scales one can com-
pare this to the Poincaré recurrence time (Dyson et al.,
2002). This is defined by analogy with finite systems,
which cycle through all available states in a finite time.
The number of states, and hence the entropy of dS space
is indeed finite, and given by SdS = A/4GN (Gibbons
and Hawking, 1977), where A is the area of the even hori-
zon. The area is 4πL2 = 4π/Λ. Therefore SdS is roughly
equal to 10120 (the inverse of the cosmological constant in
Planck units), and this gives a recurrence time of roughly
exp[10120] years (there is no need to be precise about
times scales here, because expressed in Planck seconds
or Hubble times the number is essentially the same). On
this time scale, the first 10100 years during which the
visible universe lives and dies are irrelevant.

On such enormous time scales even the most unlikely
phenomena will eventually occur, and this includes the
fluctuation of observers, or even part of the universe
out of the vacuum. This can happen due to quan-
tum or thermal fluctuations. The latter (like a bro-
ken teacup that spontaneously re-assembles itself from
its fragments) are possible because an empty dS uni-
verse has a non-zero temperature TdS = HΛ/2π, where
HΛ =

√
Λ/3 is the Hubble parameter associated with the

expansion. For our universe, this gives a temperature of
about 2×10−30K, so that kT corresponds to 10−69 kg in
mass units. Hence the Boltzmann suppression for fluc-
tuating a single hydrogen atom out of the vacuum is
about exp(−1042) (this ignores suppression factors due
to baryon number violation, which give irrelevant con-
tributions to the exponent). If we define a minimal ob-
server as a human brain, this gives a suppression factor
of about exp(−1069). This sort of thermal fluctuation
occurs exp(10120) × exp(−1069) ≈ exp(10120) times per
recursion time. Quantum fluctuations are much less sup-
pressed if one only requires the state to exist for a very
short time; see (Page, 2007a) for a discussion of various
options. However the status of quantum fluctuations as
observers is more controversial (Carlip, 2007)(Davenport
and Olum, 2010).

Such a “Boltzmann brain” could be in any on the quan-
tum states a brain can have: most of them completely
non-sensical, but an extremely small fraction would have
the same memories as observers living today. The prob-
lem is that if our universe continuous expanding eternally,
freak observers outnumber ordinary ones by fantastically
large numbers.

To some this argument may seem absurd. Freak ob-
servers appear to be in no way comparable to us. One
may, for example, call their consciousness, scientific cu-
riosity, or their chances of survival into question. Perhaps
the flaw in the argument is a misuse of the notion of typ-
icality? See Bousso et al. (2008); Garriga and Vilenkin
(2008); Hartle and Srednicki (2007); and Page (2007b)
for different views on this. But one can make the ar-
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gument a lot less bizarre by assuming that our entire
solar system, or if necessary the entire galaxy, pops out
of the vacuum in the state it had 4 billion years ago (re-
placing a single brain by the entire Milky Way galaxy
changes the second exponent from 69 to 112, but there
would still be about exp[10120] freak galaxies per recur-
rence time). Then ordinary evolution can take place, and
intelligent beings would evolve that develop science and
that can in all respects be compared to ourselves, except
that they observe no other galaxies and no CMB. Such
observers would still outnumber us by a double exponen-
tial. As much as one would like to reject such reasoning
as nonsensical, it is difficult to find a convincing counter
argument.

But there are several ways out. The measure problem
is one possible culprit. In an infinite universe, both the
number of ordinary observers and the number of freak
observers becomes infinite. This infinity must be reg-
ulated. In a landscape, one has to consider not just
our universe, but all universes that can produce freak
observers (this includes universes that would not be an-
thropic in the conventional sense, because freak observers
can avoid most evolutionary bottlenecks; however com-
plexity is still a requirement). For discussion of the impli-
cations of the measure on the Boltzmann brain problem
see Bousso et al. (2008); De Simone et al. (2010); and
Vilenkin (2007). In addition to the choice of measure,
the lifetime of the universe is evidently relevant. For our
universe, attempts to derive a limit have led to vastly dif-
ferent estimates from as little as 20 billion years (Page,
2008) to exp(1040±20) years (“the least precise predic-
tion in the history of science”, as Freivogel and Lippert
(2008) proudly remark). The huge difference is due to
a different choice of measure: Page (2008) includes all
the volume created by the exponential expansion. This
includes regions that are not in causal contact, and that
perhaps should not be included (see below). If the limit
would be 20 billion years, it seems very unlikely that all
relevant vacua in the string landscape satisfy it, but for a
doubly-exponential limit chances are much better. This
is still a very strong constraint: every single vacuum in
the landscape should have a decay width per volume that
is larger than the production rate of freak observers. In
KKLT-type vacua this bound seems to be satisfied (Dine
et al., 2008; Freivogel and Lippert, 2008; Westphal, 2008).
There is yet another way out. If the fundamental param-
eters of the Standard Model are slowly varying, we may
gradually move out of the anthropic region of parameter
space (Carlip, 2007), so that for most of the future of
our universe observers can simply not exist. However,
slowly-moving parameters are not expected in the string
landscape.

VII. THE COSMOLOGICAL CONSTANT IN THE
STRING LANDSCAPE

The anthropic explanation for the smallness of Λ re-
quires a fundamental theory with a distribution of values
of Λ, realizable in different universes. In string theory,
this is provided by the Bousso-Polchinski discretuum (see
section IV.E). This yields a dense set of 10hundreds dis-
crete points over the full Planckian range10 of ρΛ. If this
set does indeed exist, it would be fair to say that string
theory combined with anthropic arguments explains the
first 120 digits of ρΛ on a particular slice through pa-
rameter space. Unfortunately, the point is weakened by
the fact that all those digits are zero, and that there is
no sound prescription for going beyond that. is not like
computing fifth order corrections in QED to get the next
digits of g−2.

To go beyond this we need better control of inflation,
to deal with variations in Q, better control of other as-
pects of cosmology to take into account the effect of other
parameters. We also need a solution to the measure prob-
lem and a better understanding of the issues of typicality
and the definition of observers. At this moment the sub-
ject is still very much in a state of flux, without clear con-
vergence to a definitive answer. For example, using dif-
ferent assumptions about the measure and different ways
of parametrizing observers, Bousso et al. (2007), De Si-
mone et al. (2008) and (Larsen et al., 2011) obtained
cosmological constant distributions that peak closer to
the observed value than earlier work using the Weinberg
bound. The first authors used the amount of entropy
produced in a causal patch as a proxy for observers. The
second used a global measure, and the last group used
the solution to the measure problem proposed by No-
mura (2011); the latter two use conventional anthropic
criteria.

An important test for solutions to the problem is
whether they can explain coincidences (see e.g. Garriga
and Vilenkin (2003)). The most famous of these is the
“why now” problem: why do we live fairly close (within a
few billion years) to the start of vacuum energy domina-
tion. By its very definition, this is an anthropic question.
Another striking coincidence is the order of magnitude of
the absolute value of upper and lower bounds on Λ (c.f.
Eq. (3.7)). In other words, the life span of typical stars
is comparable to the age of the universe and the starting
time of vacuum energy domination. This depends on an
apparent coincidence between cosmological parameters
and Standard Model parameters, ρΛ ≈ (mp/MPlanck)6.

In essentially all work determining Λ one of the co-
incidences is input, and determines the scale for the Λ

10 The smoothness of this distribution near zero is important, and
requires further discussion, see Schwartz-Perlov and Vilenkin
(2006) and Olum and Schwartz-Perlov (2007).



81

distribution. For example in work based on galaxy for-
mation, the quantity Q3ρeq determines that scale, but
the “why now” coincidence is not solved. On the other
hand, in Bousso et al. (2007) the time of existence of
observers is the input scale, so that the “why now” prob-
lem is solved if ρΛ peaks near 1 on that scale. This then
turns the proximity of the maximum ρΛ for galaxy for-
mation, i.e. the Weinberg bound, into a unexplained
coincidence. If the cosmological constant can be com-
puted as a pure number, as suggested for example by
Padmanabhan (2012), all these coincidences remain un-
explained. The same is true if ρΛ can be expressed in
terms of some Standard Model parameters, or if it is de-
termined by the lowest possible value in the discretuum
(see below). In all cases additional arguments will be
needed to explain these coincidences, or they will remain
forever as unsolved naturalness problems.

Still more coincidences are listed in Bousso et al.
(2009b). These authors attempt to explain them by argu-
ing that landscape distributions may drive us towards the
intersection of multiple catastrophic boundaries, beyond
which life is impossible. The boundaries are computed
using traditional anthropic arguments in universes with
Standard-Model-like particle physics. They conjecture
that the gauge hierarchy, via the aforementioned stellar
lifetime coincidence, might be related to the cosmological
constant hierarchy. The latter may then find an explana-
tion in the discreteness of the landscape, a possibility also
suggested by Bousso et al. (2011a). This requires a to-
tal number of (anthropic) string vacua of about 10120. A
very different approach to coincidences is used by Bousso
et al. (2011b), who argue that the coincidences can be
understood entirely in terms of the geometry of cutoffs
that define the measure in eternal inflation. They use
a minimal anthropic assumption, namely that observers
are made out of matter.

Several authors hope to avoid the anthropic argument,
even though they accept the existence of a landscape,
by suggesting that the probability distribution of ρΛ is
peaked at zero. However, strong peaking near zero for
pure dS spaces is not likely to work. Only gravity can
measure the cosmological constant, and in the early uni-
verse, when the ground state is selected, its value is
negligible in comparison to all other contributions. See
Polchinski (2006) for a more extensive explanation of this
point.

Despite this objection, some authors speculate that
somehow the cosmological constant is driven to the low-
est positive value Λmin. The value of Λmin is then roughly
equal to the inverse of N , the total number of vacua. For
variations on this idea see Kane et al. (2005) and Linde
and Vanchurin (2010). A different proposal was made in
Kobakhidze and Mersini-Houghton (2007), who suggest
Λmin = 1/N2. In Sarangi et al. (2009) and Tye (2006),
it is argued that due to “resonance tunneling” all vacua
have very short lifetimes, except some with very small

Λ. Ideas of this kind would leave all apparent anthropic
tunings unexplained.

In the full set of string vacua, not just pure dS but
including matter, there may well exist a unique vacuum,
defined by having the smallest positive Λ. But this is
not likely to be our universe, since a unique vacuum will
not satisfy the other anthropic requirements. Even if for
some reason it is strongly selected, this will generate run-
away behavior in other variables, or leads to the kind of
catastrophic predictions explained in section III.F.5.

Some authors use an analogy with solid state physics
to argue that because of tunneling the true ground state
wave function is a Bloch wave. But there is an important
difference. In solid state physics observation times are
much larger than tunneling times, whereas in the land-
scape it is just the other way around. If observations are
made at times much shorter than the tunneling time, this
leads to collapse of the wave function and decoherence.
Furthermore, in the landscape there must exist tunneling
processes that change gauge groups, representations and
parameters. These can therefore not be treated as su-
perselection sectors. The best one could hope to get is a
linear combination of amplitudes with different values of
all Standard Model and cosmological parameters, which
does not solve the problem of determining them.

Should we expect to understand why Λ > 0 in our uni-
verse, or is the sign just selected at random? On the one
hand, from the perspective of vacuum energy in quantum
field theory the point Λ = 0 is not special. Nor is it spe-
cial from the anthropic perspective: life with Λ < 0 seems
perfectly possible. On the other hand, classical physics
and cosmology at late times are extremely sensitive to
the sign: the universe either collapses or expands. One
might say that the sign of Λ matters, but the sign of ρΛ

does not. The difference in sign implies important differ-
ences in quantum physics. The definition of the S-matrix
in quantum field theory (and string theory) is problem-
atic in dS. There is an AdS/CFT correspondence but no
(known) dS/CFT correspondence. Tunneling amplitudes
between vacua are singular for Λ→ 0 (see section VI). In
AdS spaces any possibility of life finishes at the crunch,
and it matters how closely one can approach it; in dS
spaces life is not limited by a crunch, but by the burn-
ing out of stars within the Hubble horizon (see Peacock
(2007) for an interesting discussion). Note that many au-
thors consider only positive values for Λ, and some that
do not (e.g. Bousso et al. (2011b)) actually predict neg-
ative Λ more strongly than positive Λ. The differences
between AdS and dS are too large to assume blindly that
we ended up in a dS universe purely by chance.

Many other aspects of the cosmological constant prob-
lem and possible solutions are reviewed by Weinberg
(1989); Polchinski (2006); and Bousso (2008).
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VIII. CONCLUSIONS

Barring surprises, we are facing a choice between two
roads. One of them, the traditional symmetry-based
road of particle physics, may ultimately lead nowhere.
A uniquely determined theory of the universe and all of
its physics leaves us with profound conundrums regarding
the existence of life. The other road, leading towards a
huge landscape, is much more satisfactory in this respect,
but is intrinsically much harder to confirm. Low energy
supersymmetry might have helped, but is a luxury we
may not have. The Susy-GUT idea, the lamppost of the
symmetry road, is losing its shine. GUTs do not fit as
comfortably in the string landscape as most people be-
lieve, and susy does not fit well with the data; the ways
out are increasingly becoming epicyclical. Confusingly,
the opposite is also true: GUTs still look as attractive as
ever from a low energy perspective, and the landscape,
despite many arguments going both ways, may prefer low
energy susy after all.

Will we ever know? Here are some possible future de-
velopments that would cast serious doubts on the string
theory landscape

• The evidence for a well-distributed and connected
dS landscape in string theory crumbles.

• Low-energy supersymmetry is strongly predicted,
but not seen at LHC (or vice-versa).

• Solid evidence for variations of constants of nature
emerges.

There is movement on all of these fronts, and in twenty
years we will probably have a different view on all of
them. There are plenty of other possibilities for game-
changing developments.

In the string theory landscape, the key concept link-
ing all these issues is: Moduli. This is where all lines
meet: supersymmetry breaking and its scale, variations
of constants, axions and the strong CP problem, (eternal)
inflation, dark matter, the cosmological constant and/or
quintessence, and ultimately the existence and features
of the string landscape itself.

But suppose there is no convincing experimental falsi-
fication on any of these issues, then will we ever know?
Ultimately the convincing evidence may have to come
from theory alone. Of all the open theoretical issues,
the measure problem of eternal inflation is probably the
biggest headache. But not everything hinges on that. In
the context of string theory, the following problems can
be addressed without it.

• Derive string theory from a principle of nature.

• Establish its consistency.

• Prove that it has a landscape.

• Prove that the Standard Model is in that landscape.

• Show that all quantities are sufficiently densely dis-
tributed to explain all anthropic fine-tunings.

• Confirm that these vacua are connected by some
physical process, so that they can all be sampled.

Perhaps this is as far as we will ever be able to go.
We may never be able to derive our laws of physics, but
we may just feel comfortable with our place in the land-
scape. This requires understanding our environment, not
just the point where we live, but also the region around
it. This can fail dramatically and cast severe doubts on
certain landscape assumptions. Therefore a large part of
this review has been devoted to all the impressive work
that has been done in this area during the last decade.
There is great physics in anthropic reasoning!
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Ibañez, L., and A. Uranga (2007), JHEP 0703, 052,

arXiv:hep-th/0609213 [hep-th].
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