ASYMMETRIC GEPNER MODELS

(REVISITED)

New Modular Invariants for $\mathrm{N}=2$ Tensor Products and Four-Dimensional Strings

A. N. Schellekens
and

S. Yankielowicz ${ }^{\star} \dagger$

CERN, 1211 Geneva 23, Switzerland

ABSTRACT

The construction of modular invariant partition functions of tensor products of $N=2$ superconformal field theories is clarified and extended by means of a recently proposed method using simple currents, i.e. primary fields with simple fusion rules. Apart from providing a conceptually much simpler way of understanding space-time and world-sheet supersymmetry projections in modular invariant string theories, this makes a large class of modular invariant partition functions accessible for investigation. We demonstrate this by constructing thousands of $(2,2),(1,2)$ and $(0,2)$ string theories in four dimensions, including more than 40 new three generation models.

* Work supported in part by the US-Israel Binational Science Foundation, and the Israel Academy of Science.
\dagger Permanent address: School of Physics and Astronomy, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, Israel.

Heterotic Strings Considered:

Right	Left
NSR	$\mathrm{SO}(10) \times \mathrm{E}_{8}$
$\mathrm{~N}=2$ minimal k_{1}	$\mathrm{~N}=2$ minimal k_{1}
$\mathrm{~N}=2$ minimal k_{2}	$\mathrm{~N}=2$ minimal k_{2}
\ldots	\ldots
$\mathrm{~N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{~N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$
$\mathrm{~N}=2$ minimal k_{n}	$\mathrm{N}=2$ minimal k_{n}

Heterotic Strings Considered:

Right	Left
$\sum_{i} \frac{3 k_{i}}{k_{i}+2}=9$NSR $\mathrm{SO}(10) \times \mathrm{E}_{8}$ $\mathrm{~N}=2$ minimal k_{1} $\mathrm{~N}=2$ minimal k_{2} $\mathrm{~N}=2$ minimal k_{1} \ldots $\mathrm{~N}=2$ minimal k_{2} \ldots \ldots $\mathrm{~N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$ $\mathrm{~N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$ $\mathrm{~N}=2$ minimal k_{n} $\mathrm{N}=2$ minimal k_{n}	

Heterotic Strings Considered:

Modular invariance: bosonic string map(*)

Right	Left
NSR	$\mathrm{SO}(10) \times \mathrm{E}_{8}$
$\mathrm{~N}=2$ minimal k_{1}	$\mathrm{~N}=2$ minimal k_{1}
$\mathrm{~N}=2$ minimal k_{2}	$\mathrm{~N}=2$ minimal k_{2}
\ldots	\ldots
$\mathrm{~N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{~N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$
$\mathrm{~N}=2$ minimal k_{n}	$\mathrm{N}=2$ minimal k_{n}

(*) Lerche, Lüst, Schellekens, 1986

Heterotic Strings Considered:

World sheet susy: "alignment currents"

Right	Left
NSR	$\mathrm{SO}(10) \times \mathrm{E}_{8}$
$\mathrm{N}=2$ minimal k_{1}	$\mathrm{N}=2$ minimal k_{1}
$\mathrm{N}=2$ minimal k_{2}	$\mathrm{N}=2$ minimal k_{2}
...	...
$\mathrm{N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{N}=2$ minimal $\mathrm{k}_{\mathrm{n}-1}$
$\mathrm{N}=2$ minimal k_{n}	$\mathrm{N}=2$ minimal k_{n}

Heterotic Strings Considered:

Space-time susy: chiral algebra extension

Right	Left
NSR	$\mathrm{SO}(10) \times \mathrm{E}_{8}$
$\mathrm{~N}=2$ minimal k_{1}	$\mathrm{~N}=2$ minimal k_{1}
$\mathrm{~N}=2$ minimal k_{2}	$\mathrm{~N}=2$ minimal k_{2}
\ldots	\ldots
$\mathrm{~N}=2$ minimal k_{n-1}	$\mathrm{~N}=2$ minimal k_{n-1}
$\mathrm{~N}=2$ minimal k_{n}	$\mathrm{~N}=2$ minimal k_{n}

Start with the diagonal invariant, and modify it with simple currents without insisting on worldsheet or space-time supersymmetry in the left (bosonic) sector.

This gives $(2,2),(2,1)$ and $(2,0)$ heterotic strings with chiral fermions in (16)'s of $\mathrm{SO}(10)$ or (27)'s of E_{6}.

Result

A huge "phone-book" of tables of $(2,2)$ and $(2,1)$ spectra.

For example:

$(3,3,3,3,3)$									
nr.	N_{R}	N_{L}	(S, s)	(S, c)	$(S, 0)$	$(V, 0)$	(V, v)	(S, v)	order
1	1	1	101	1	330	4	-	-	1
2	1	1	49	5	258	4	-	-	2
3	1	1	21	1	210	4	-	-	4
4	1	1	23	7	222	4	-	-	3
5	1	1	21	17	234	4	-	-	2
6	1	1	13	9	210	4	-	-	3
7	1	0	56	0	252	9	-	48	2
8	1	0	40	0	212	9	-	32	3
9	1	0	32	0	192	9	-	24	4
10	1	0	32	0	178	13	-	20	4
11	1	0	30	2	232	5	-	32	3
12	1	0	26	6	232	5	-	32	2
13	1	0	22	2	212	5	-	24	4
14	1	0	24	8	218	9	-	28	3
15	1	0	24	8	178	13	-	20	3

But: the tables were not published and not properly stored...
(Scanned version and also a new complete set of spectra for the $(2,2)$ case available via my home page, www.nikhef.nl/~t58)

The $(2,2)$ spectra were also computed by Fuchs, Klemm, Scheich and Schmidt, but their results are also lost.

Number of families:

Quantized in certain units Δ for each of the 168 combinations of Gepner models.

The following values occur for the $120,96,72,60,48,40,36,32,24,12,8,6,4$ and 0 .

There is one known way to get multiples of 3 :
Use $(1,16,16,16)$ with exceptional invariants in all three factors with $\mathrm{k}=16$ (Gepner, unpublished).

This allowed us to get 3-family $(2,2),(2,1)$ and $(2,0)$ models with gauge groups $\mathrm{SO}(10)$ or E_{6} (44 distinct ones)

nr	N_{R}	N_{L}	(S, s)	(S, c)	$(S, 0)$	$(V, 0)$	(V, v)	(S, v)	currents
1	1	0	16	13	230	4	-	35	$[v,(0,0,0),(0,7,1),(16,16,0),(0,0,0)]$
2	1	0^{*}	16	13	204	4	-	29	$[v,(0,0,0),(0,14,0),(0,10,0),(0,-16,0)]$
3	1	1	15	12	201	3	-	-	$[v,(0,0,0),(0,0,0),(0,0,0),(0,11,1)]$
									$[0,(0,0,0),(16,-1,1),(16,-11,1),(0,1,1)]$
4	1	1	15	12	185	3	-	-	$[s,(1,-2,1),(0,0,0),(0,18,0),(16,-16,0)]$
5	1	0	15	12	258	4	-	39	$[c,(0,1,1),(0,-2,0),(0,-11,1),(0,1,1)]$
6	1	0	15	12	226	4	-	31	$[0,(0,2,0),(0,0,0),(0,9,1),(0,4,0)]$
7	1	0	15	12	210	4	-	31	$[0,(0,0,0),(0,16,10),(0,0,0),(0,1,1)]$

42	1	0	8	5	208	4	-	21	$\begin{aligned} & {[v,(1,1,0),(0,-9,1),(0,1,1),(0,-12,0)]} \\ & {[0,(0,0,0),(16,10,0),(0,1,1),(0,-6,0)]} \end{aligned}$
43	1	0	8	5	206	4	-	21	$\begin{aligned} & {[v,(0,0,0),(0,-16,0),(0,1,1),(0,0,0)]} \\ & {[v,(1,-1,0),(0,-16,0),(0,1,1),(16,0,0)]} \end{aligned}$
44	1	0	8	5	200	4	-	19	$\begin{aligned} & {[v,(1,-1,0),(0,9,1),(0,1,1),(0,0,0)]} \\ & {[s,(0,1,1),(16,-3,1),(0,0,0),(0,1,1)]} \end{aligned}$

6. Outlook and conclusions

Clearly the method we have advocated in this paper greatly extends the list of fourdimensional string theories accessible to exploration. However, this is by no means all one can do. Up to now we have always kept an unbroken $S O(10) \times E_{8} \mathrm{Kac}$-Moody algebra on the left. However, just as one can break the left-moving "space-time" and world-sheet supersymmetries, one can break this KM-algebra as well. To do so, one simply starts with characters of some conformal sub-algebra of $S O(10) \times E_{8}$. Of course one wants to get the full $S O(10) \times E_{8}$ algebra on the right, in order to be able to map this sector to a fermionic. one. But this can always be achieved by putting some projection matrices in front of the right-moving characters to add the missing $S O(10) \times E_{8}$ roots.

This opens the way to constructing string theories whose gauge group is something a bit closer to the standard model than $S O(10)$, perhaps even $S U(3) \times S U(2) \times U(1)^{n}$ (where n is almost inevitably larger than 1). There is no reason why one could not get 3 generations in such a model, and in fact there could well be many more models than those listed in table III, since the center of the conformal field theory one starts with is even larger. We hope to come back to this in the future.

6. Outlook and conclusions

Clearly the method we have advocated in this paper greatly extends the list of fourdimensional string theories accessible to exploration. However, this is by no means all one can do. Up to now we have always kept an unbroken $S O(10) \times E_{8} \mathrm{Kac}$-Moody algebra on the left. However, just as one can break the left-moving "space-time" and world-sheet supersymmetries, one can break this KM-algebra as well. To do so, one simply starts with characters of some conformal sub-algebra of $S O(10) \times E_{8}$. Of course one wants to get the full $S O(10) \times E_{8}$ algebra on the right, in order to be able to map this sector to a fermionic. one. But this can always be achieved by putting some projection matrices in front of the right-moving characters to add the missing $S O(10) \times E_{8}$ roots.

This opens the way to constructing string theories whose gauge group is something a bit closer to the standard model than $S O(10)$, perhaps even $S U(3) \times S U(2) \times U(1)^{n}$ (where n is almost inevitably larger than 1). There is no reason why one could not get 3 generations in such a model, and in fact there could well be many more models than those listed in table III, since the center of the conformal field theory one starts with is even larger. We hope to come back to this in the future.

6. Outlook and conclusions

Clearly the method we have advocated in this paper greatly extends the list of fourdimensional string theories accessible to exploration. However, this is by no means all one can do. Up to now we have always kept an unbroken $S O(10) \times E_{8}$ Kac-Moody algebra on the left. However, just as one can break the left-moving "space-time" and world-sheet supersymmetries, one can break this KM-algebra as well. To do so, one simply starts with characters of some conformal sub-algebra of $S O(10) \times E_{8}$. Of course one wants to get the full $S O(10) \times E_{8}$ algebra on the right, in order to be able to map this sector to a fermionic. one. But this can always be achieved by putting some projection matrices in front of the right-moving characters to add the missing $S O(10) \times E_{8}$ roots.

This opens the way to constructing string theories whose gauge group is something a bit closer to the standard model than $S O(10)$, perhaps even $S U(3) \times S U(2) \times U(1)^{n}$ (where n is almost inevitably larger than 1). There is no reason why one could not get 3 generations in such a model, and in fact there could well be many more models than those listed in table III, since the center of the conformal field theory one starts with is even larger. We hope to come back to this in the future.

The future is now!
 (work in progress with Beatriz Gato-Rivera)

6. Outlook and conclusions

Clearly the method we have advocated in this paper greatly extends the list of fourdimensional string theories accessible to exploration. However, this is by no means all one can do. Up to now we have always kept an unbroken $S O(10) \times E_{8}$ Kac-Moody algebra on the left. However, just as one can break the left-moving "space-time" and world-sheet supersymmetries, one can break this KM-algebra as well. To do so, one simply starts with characters of some conformal sub-algebra of $S O(10) \times E_{8}$. Of course one wants to get the full $S O(10) \times E_{8}$ algebra on the right, in order to be able to map this sector to a fermionic. one. But this can always be achieved by putting some projection matrices in front of the right-moving characters to add the missing $S O(10) \times E_{8}$ roots.

This opens the way to constructing string theories whose gauge group is something a bit closer to the standard model than $S O(10)$, perhaps even $S U(3) \times S U(2) \times U(1)^{n}$ (where n is almost inevitably larger than 1). There is no reason why one could not get 3 generations in such a model, and in fact there could well be many more models than those listed in table III, since the center of the conformal field theory one starts with is even larger. We hope to come back to this in the future.

The future is now!

(work in progress with Beatriz Gato-Rivera)

Meanwhile this idea was used by Blumenhagen en Wisskirchen (1996) See also Kreuzer (2009)

What I (probably) tried in 1989:
Consider $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{30} \times \mathrm{U}(1)_{20} \subset \mathrm{SO}(10)$
We extend this to $\mathrm{SO}(10)$, but only in the fermionic sector, then map it to NSR.

This should give chiral families of $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$.
Indeed, it does, but there was a major disappointment: All these spectra had fractionally charged particles.

This was easily seen to be a very general result. (Phys. Lett. B237, 363, 1990).

In heterotic strings unification $\left(\mathrm{SO}(10)\right.$ or $\left.\mathrm{E}_{6}\right)$ seems "natural" (bosonic string map, spin-connection embedded in E_{8})

But one beautiful feature of $\mathrm{SU}(5) \mathrm{GUTs}$, an explanation for the observed charge quantization, is lost when one breaks the GUT group in CFT.

This can in principle be avoided:

Q Massive or non-chiral fractional charges

- Additional confinement groups

Q Higher level affine Lie-algebras

- Non-GUT U(1) normalization

9 Other string theories (orientifolds, F-theory)

But only in the first case the nice heterotic realization of GUTs would remain more or less intact.

This was too hard to analyse in 1989.

Modular Invariant Partition Function:

For K minimal models:

$$
\begin{align*}
& N=3 \times 2 \times 60 \times 20 \times \prod_{i}^{K} N_{i} \\
& n \leq K+4 \tag{9}
\end{align*}
$$

$$
(3,3,3,3,3)
$$

$$
368.640 .000 .000
$$

Potentially a huge landscape:

For K currents of order p (prime)

(B. Gato-Rivera, A.N. Schellekens, Comm. Math. Phys. 145, 85 (1992))

$$
N_{\mathrm{MIPF}}=\prod_{l=0}^{K-1}\left(1+p^{l}\right)
$$

The seven Z_{5} factors in $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}_{30} \times \mathrm{U}_{20} \times(\mathrm{k}=3)^{5}$ contribute a factor

1.202.088.011.709.312

This is reduced by at most $5!\times 2^{8}$ (permutations, outer automorphisms), and enhanced by a factor 8 for $\left(Z_{3}\right)^{2}$ and an unknown, huge factor for $\left(Z_{2}\right)^{2} \times\left(Z_{4}\right)^{6}$

Some questions that remained unanswered in 1989:
9 How is Δ affected by breaking $\mathrm{SO}(10)$ and worldsheet supersymmetry?

Q Are the fractionally charge particles chiral?
Q What do distributions of families look like?
9 Can we get three families of $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$?

DISCRETE SM FEATURES FROM RCFT

Q The Standard Model spectrum can be obtained

Gauge group: $\mathrm{U}(3) \mathrm{x} \operatorname{Sp}(2) \mathrm{x} \mathrm{U}(1) \mathrm{x} \mathrm{U}(1)$

DISCRETE SM FEATURES FROM RCFT

Q The Standard Model spectrum can be obtained
Q But several unwanted features tend to come out too easily:
Non-chiral particles
Number of families
Fractional charges
Massless B-L
Why is this not what we see?
Q We have by now quite a bit of "statistical" information about the Standard Model embedded in orientifolds.

Q But very little is known about similar questions in heterotic strings (cf. Dienes et. al.)

Q This is why it would be nice to have the results of the abandoned 1989 project.

DISCRETE SM FEATURES FROM RCFT

Q The Standard Model spectrum can be obtained
Q But several unwanted features tend to come out too easily:
Non-chiral particles
Number of families
Fractional charges
Massless B-L
Why is this not what we see?
Q We have by now quite a bit of "statistical" information about the Standard Model embedded in orientifolds.

Q But very little is known about similar questions in heterotic strings (cf. Dienes et. al.)

Q This is why it would be nice to have the results of the abandoned 1989 project.

Other sources of inspiration:

- Heterotic mini-landscape
- Free fermionic 3-family models
- Philadelphia sushi bar

THE NUMBER OF FAMILIES

Supersymmetric standard model spectra from RCFT orientifolds. (Nucl.Phys.B710:3-57,2005)
T.P.T. Dijkstra, L.R. Huiszoon, A.N. Schellekens

One in a Billion: MSSM-like D-Brane Statistics (JHEP 0601:004,2006)
Florian Gmeiner, Ralph Blumenhagen, Gabriele Honecker, Dieter Lust, Timo Weigand

Tensor product (3,3,3,3,3)

$(2,2)$ models: gauge group E_{6}

$(2,0)$ models: various gauge groups; using one simple current

Δ is reduced by a factor two in this case; but multiples of 3 do not occur.

In most other cases we have considered so far (about 15), Δ remains unchanged.

THREE FAMILY

 MODELS
(1,16e, $\left.16_{\mathrm{E}}, 16_{\mathrm{E}}\right)$

$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

Representation	Particles	Multiplicity
$\left(3,2,1, \frac{1}{6}\right)$	Q	3
$\left(3^{*}, 1,2,-\frac{1}{6}\right)$	$\mathrm{U}^{*}+\mathrm{D}^{*}$	$4+1^{*}$
$\left(1,2,1,-\frac{1}{2}\right)$	L	$5+2^{*}$
$\left(1,1,2, \frac{1}{2}\right)$	$\mathrm{E}^{*}+\mathrm{N}^{*}$	$5+2^{*}$
$\left(3^{*}, 1,1, \frac{1}{3}\right)$	D^{*}	$5+5^{*}$
$(1,2,2,0)$	$\mathrm{H}_{1}+\mathrm{H}_{2}$	9
$(1,1,0,0)$	singlets	80
$\left(1,1,1, \frac{1}{3}\right)$		$41+41^{*}$
$\left(1,1,2,-\frac{1}{6}\right)$	Charge	$20+20^{*}$
$\left(1,2,1,-\frac{1}{6}\right)$		$19+19^{*}$
$(3,1,1,0)$		$17+17^{*}$
$\left(3,1,1, \frac{1}{3}\right)$		$8+8^{*}$
$\left(3,2,1,-\frac{1}{6}\right)$		$3+3^{*}$
$\left(3 *, 1,2, \frac{1}{6}\right)$		$3+3^{*}$
$\left(1,2,2, \frac{1}{3}\right)$		$2+2^{*}$
$\left(1,1,1,-\frac{2}{3}\right)$		$2+2^{*}$

FRACTIONAL CHARGES

$$
(1,4,4,4,4)
$$

Minimal charge	Chiral	Non-chiral
$\frac{1}{6}$	1048538	16614
$\frac{1}{3}$	709334	65809
$\frac{1}{2}$	12037	228183
1	0	219493

23% non-chiral
$(6,6,6,6)$

Minimal charge	Chiral	Non-chiral
$\frac{1}{6}$	0	0
$\frac{1}{3}$	0	0
$\frac{1}{2}$	41240	1076404
1	0	973604

98.5\% non-chiral

(Always at least a Pati-Salam extension)

(3,3,3,3,3)

Minimal charge	Chiral	Non-chiral
$\frac{1}{6}$	0	0
$\frac{1}{3}$	0	0
$\frac{1}{2}$	853368	$401795\left(^{*}\right)$
1	0	2409517

76% non-chiral

$\left.{ }^{*}\right)$ includes cases with just $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)^{6}$
$(5,5,5,12)$

Minimal charge	Chiral	Non-chiral
$\frac{1}{6}$	0	0
$\frac{1}{3}$	0	0
$\frac{1}{2}$	0	262987
1		755413

100\% non-chiral

It seems to be easy to get only non-chiral fractional charges.

Any chance of getting only massive fractional charges?
(3,3,3,3,3)

CONCLUSIONS

Q Asymmetric Gepner models provide a huge and largely unexplored part of the landscape.
9 Family distributions peak at small values.

- Three families still hard to get.

Q Fractional charges occur, but are reasonably often non-chiral.

Q Many other possibilities exist.

