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We show how the fusion rules can be used to associate with every, rational conformal field 
theory a discrete group, the center. The center is generated by primary fields having unique fusion 
rules with any other field. The existence of a non-trivial center implies the existence of non-diago- 
nal modular invariants, which are related to extended integer or fractional spin algebras. Applied 
to Kac-Moody algebras this method yields all known as well as many new infinite series of 
modular invariants. Some results on exceptional invariants are also presented, including an 
example of an exceptional integer spin invariant that does not correspond to a conformal 
embedding. 

1. Introduction 

The study of two-dimensional conformal field theories is central to the investiga- 
tion of both two-dimensional critical phenomena and string theories. A lot of efforts 
have been made in order to classify all (rational) conformal field theories. It was 
suggested that one way to understand conformal field theories is in terms of 
extended chiral algebras [1], which include the Virasoro algebra as a sub-algebra. A 
conformal field theory with c > 1 which has an infinite number of primary fields 
with respect to the Virasoro algebra may turn out to have only a finite number of 
primary fields with respect to the bigger extended algebra. Moreover, one can 
understand the appearance of some non-diagonal modular invariant theories as 
arising from a theory which is diagonal with respect to the extended chiral algebra 
generated by certain currents with integer conformal spin. 

Starting with the important work of Verlinde [2], the central role of the fusion 
rules of the conformal field theory became clear [2-6]. A great deal of the structure 
of the underlying conformal theory is encoded in the commutative and associative 
Verlinde algebra which these fusion rules define. There exists a deep relationship 
between the fusion algebra and the modular properties of the theory. The modular 
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ad− bc = 1; a, b, c, d ∈ Z
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Closed Strings 
on the Torus

P (τ, τ̄) = Tr e2πiτ(L0−c/24)e−2πiτ̄(L̄0−c̄/24)

Must be invariant under the modular group, SL(Z, 2)/Z2
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[S,M ] = [T,M ] = 0

χi(τ + 1) = Tijχj(τ)

χi(τ) = Tr e2πiτ(L0−c/24)

P (τ, τ̄) =
�
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χi(τ)Mijχj(τ̄)

Mij ∈ Z, Mij ≥ 0, M00 = 1

In (rational) CFT we express this in terms of 
characters of the representations

Then

The characters transform as

with

Hence the matrix M must satisfy

(MIPF: Modular Invariant Partition Function)



Known solutions (1988)
Mij = δij

Mij = Cij

Diagonal invariant

Charge conjugation invariant

ADE invariants for SU(2) affine Lie algebras at level k
Cappelli, Itzykson, Zuber (1987)

Other affine Lie algebras MIPFs
D. Bernard (1987)
Altschuler, Lacki, Zaugg (1988)
Itzykson (1988)



Fusion rules
Chiral algebra fusion rules
(Belavin, Polyakov, Zamolodchikov (1984))
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Simple currents
A representation J is a simple current if 

ΦJΦi = ΦJi

Where “Ji” denotes some representation.
This organizes all representations into orbits.
The orbit of the identity has order N.
The order of all other orbits is a divisor of N.

(precisely one term on the right hand side)

The fact that the fusion rules are simple allows us to define a 
“monodromy charge” which is conserved in operator products

QJ(i) = hi + hJ − hJi mod 1

hi :   conformal weight of representation i



Now we can write down a MIPF for any J 

hJ =
r(N − 1)

2N
mod 1

MJpi,Jqj = δij

N�

�=1

δ
Nj

q,p+� δ1
�
QJ(i) +

�
2p+ �

2N

�
r

�

(defines r)

Related work:
Fuchs, Gepner (1987)  (observed simple fusion in 4pt functions)
Intriligator (1989)      (“Bonus symmetry”)

This includes all aforementioned MIPFs except “E” of ADE



Gepner Models
“Internal sector” of a type-II or heterotic strings is built out of N=2 
minimal models.

An N=2 minimal model is characterized by an integer k and has 
central charge 

3k

k + 2

It has a large number of simple currents forming a discrete group

Z4k+8 for k odd

Z2k+4 × Z2 for k even

(Gepner, 1987)



Simple Current Description

Field identification
(in the coset construction to build the N=2 models)

World-sheet supersymmetry projections

Space-time supersymmetry projection (“GSO”)

Non-trivial MIPFs

All aspects of this construction can be described elegantly in terms of simple currents.
Explicit matrices S never needed.
(Schellekens, Yankielowicz (1989))

Use a product formula to build MIPFs

With implicit summation over             indicesO(1012)

P (τ, τ̄) = χ(τ)M(J1)M(J2) . . .M(Jk)χ̄(τ̄)



Results
Large number of heterotic spectra with SO(10) or E6 gauge 
group and an even number of chiral families.
(List available at www.nikhef.nl/~t58  (page “Hodge numbers”))

Related work
Lutken, Ross (1988)
Lynker, Schimmrigk (1988)
Fuchs, Klemm, Scheich, Schmidt (1989) 

Three families (with exceptional MIPF)
Gepner (1987) (see also Schimmrigk, 1987)

http://www.nikhef.nl/~t58
http://www.nikhef.nl/~t58


Hodge number comparison
Free Fermions (or Z2 × Z2 orbifolds):        26
Donagi, Wendland (2008)
Kirisis, Lennek, Schellekens (2008)

Gepner models:                                        906
Gato-Rivera, Schellekens (2010)
(see also 1989 results... if you can find them)

Calabi-Yau (reflexive polyhedra):        30108
Kreuzer, Skarke (2000)
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A new class of modular invariant partition functions associated with simple currents is discussed. These partition functions 
correspond to fusion rule automorphisms, but unlike the class that is already known, they are generated by currents of integral 
rather than fractional spin. 

The set o f  modular  invariant  part i t ion functions for 
given rat ional  conformal  field theories often has a 
rich, compl ica ted  and surprising structure. A sub- 
class o f  modu la r  invar iant  par t i t ion  functions that 
should show a more  regular behavior  is formed by 
the s imple current  invariants .  This class can be de- 
scribed as follows. Many  conformal field theories have 
p r imary  fields that  have unique fusion rules with any 
other  fields. The  complete  set o f  such fields ( " s imple  
currents")  forms a discrete Z~I ! . . .  ! Z~v~ group un- 
der  fusion. We have called this group the center o f  the 
conformal  field theory [ 1 ]. All other  p r imary  fields 
are organized into orbi ts  generated by  the currents. 
Two fields belong to the same orbi t  i f  they can be 
m a p p e d  to each other  by the act ion o f  a simple cur- 
rent  under  fusion. 

In ref. [ 1 ] we have proposed  a me thod  for obtain-  
ing off-diagonal  modu la r  invar lant  par t i t ion  func- 
t ions from simple currents. The s imple currents are 
used formally as twist  fields in an orbifold-l ike pro-  
cedure. The resulting par t i t ion  functions can be writ- 
ten in a very s imple and  general form [ 2 ]. In  this way 
one associates with every ~1 s imple current  J an off- 
diagonal  par t i t ion  funct ion given by a matr ix  M ( J )  
that  connects the ho lomorph ic  and an t iho lomorphic  
characters.  The set o f  modula r  invar iant  par t i t ion  
functions can be general ized further by  considering 

,i If the order N of J is even the conformal weight hs of the cur- 
rent must satisfy the level-matching condition Nhj= 0 mod I. 
The partition functions obtained with currents ./1 and ./2 are 
the same if Jl = (J2) n and .12= (Jl) ~ for some integers n and 
m .  

products  M(J1 ).. .M(Jk), each of  which defines a valid 
modu la r  invar iant  par t i t ion  funct ion [3] (o f  course 
these products  are not  all d i f ferent) .  

The par t i t ion  functions obta ined  in this way have 
the proper ty  that  Mab=O i f  a and  b lie on different 
orbits,  i.e. if  b is not  connected to a by the act ion o f  
one or  more  simple currents under  fusion. I t  is now 
natural  to ask whether  the converse is also true, 
namely whether  this procedure  yields all the modu la r  
invar iant  par t i t ion  functions that  have ma t r i x  ele- 
ments  only among fields on the same orbi t  ~2. In  this 
paper  we will show that  the answer to this quest ion is 
negative. This requires a more  precise def ini t ion o f  
the term "s imple  current  invar iant" .  F r o m  now on 
we will call a modu la r  invar iant  par t i t ion  funct ion a 
simple current invariant i f  it has the proper ty  that  Mab 
is non-zero only i f  a and  b are related by simple 
currents. 

A general feature of  all solutions ob ta ined  by  the 
method o f  ref. [ 1 ] is that  integer spin currents yield 
extensions o f  the chiral  algebra, whereas fractional  
spm currents yield fusion rule automorphisms.  I f  both 
types o f  currents are involved one gets more  compli-  
cated invar iants  o f  mixed  type. The class o f  modu la r  
invar iants  we will obtain in this paper  appears  for 
certain systems o f  purely integer spin currents,  but  
the invar iants  correspond to fusion rule au tomorph-  
isms, and  there is no extension o f  the chiral  algebra. 

The new invar iants  discussed here appear  for cen- 
ters that  consist  of  more  than one simple factor. The 

~2 This question was raised by Altschuler [4]. 
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Abstract. Simple currents have been used previously to construct various examples 
of modular invariant partition functions for given rational conformal field theories. 
In this paper we present for a large class of such theories (namely those with a 
center that decomposes into factors Zp, p prime) the complete set of modular 
invariants that can be obtained with simple currents. In addition to the fusion 
rule automorphisms classified previously for any center, this includes all possible 
left-right combinations of all possible extensions of the chiral algebra that can be 
obtained with simple currents, for all possible current-current  monodromies. 
Formulas for the number of invariants of each kind are derived. Although the 
number of invariants in each of these subsets depends on the current-current  
monodromies, the total number of invariants depends rather surprisingly only on 
p and the number of Zp factors. 

I. Introduction 

As part of the program to classify all rational conformal field theories (RCFT's) - 
which is difficult and still far from being completed one would like to classify 
all modular invariant partition functions of a given conformal field theory. This 
too has turned out to be a very hard problem, which so far has been solved completely 
only for a few special cases. In addition to some "free" theories, those include the 
SU(2) K a c - M o o d y  algebras at arbitrary level [1] and some coset theories based 
on them. Furthermore one can always solve the problem by explicit computation 
if the number of primary fields is not too large. So far such computations have 
not provided much insight into the general solution to the problem. 

There is however a subclass of modular invariants that should be more manage- 
able, namely the class of invariants that can be obtained with simple currents [2] 

* On leave of absence from "Instituto de Fisica Fundamental", Madrid 

Additional solutions that are not products of single current MIPFs
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f o r p = 4 m - l ,  w h e r e N = n l + n ,  a n d [ 2 1 i s t h e i n t e g e r p a r t o f 2 .  Sincethese 
results depend on N being odd or even, a double recursion is convenient. For  N 
odd one finds the recursion factor pN(pN+l__ 1), for p = 4m + 1 as well as for 
p = 4m - 1, by increasing nl or n, by two units and also by increasing nl and n. 
one unit each. Thus for N odd 

(N -  1)/2 
A(O, nl ,n,)=2 I] p21-1(p2t_ 1), (4.12) 

l = 1  

where use has been made of A(0,1, 0) = A(0, 0,1) = 2. For  N even the double 
recursion is more complicated that for N odd, but A(0, nl, n,) can be computed 
easily by increasing nl or n, by one unit in Eq. (4.12), using the recursion relations 
(4.8)-(4.11). One obtains, for p = 4m + j  (j = _+ 1), 

(N/2) - 1 
A(O, na,n,)=2[pN-I--jN/E(--1)"'P (N-2)/2] I] P21-1(PZl--1)" (4.13) 

/=1  

Now by using Eq. (4.3) one gets the recursion for the first argument 
no -  1 

A(no, nl,n,) = I-I PN+ZA(O, nl,n,)  9 (4.14) 
/ = 0  

Thus one obtains finally, for N odd 

A(no ' n l  ' tin) = 2p(1/2)k(k- 1)+(1/4)(1 - N  2) 

for N even, N ~ 0, 

(N-  1)/2 
1-[ (p2t_ 1), (4.15) 
/=1  

A(no, nl, n,) = 2p (1/2)k(k- 1)-(1/4)NZ[p N/2 __jN/2(_ 1)nl ]  
(N/2)- 1 

1-[ ( p 2 t  1), ( 4 . 1 6 )  
/=1  

where k = n o + N, and for N = 0, 
A(no, 0, 0) = pO/2)no(no - 1). (4.17) 

The Total Number of Modular Invariants. Now we will compute the number of 
modular invariants that provide extensions of the chiral algebra, for a given 
monodromy matrix r. By summing over all possible extensions (including the 
trivial one) and including for each extension all possible automorphisms, we obtain 
the total number of invariants T(r,p, k). Our conjecture is that T(r, k,p) is 
independent of r and depends on p and k in the following universal way: 

k - 1  

T(r,k,p) = T(k,p)= l-I (1 + if). (4.18) 
l=O 

We will calculate the number of invariants for any number of extensions of 
the algebra recursively. If one extends the algebra by l simple current orbits, one 
obtains a new theory with a new center and new monodromies. We have to know 
this information for two reasons: first of all to compute the number of fusion rule 
automorphisms of the new theory using the results of the previous subsection, and 
secondly to compute the number of single extensions, in order to go from I to l + 1. 

Total number of MIPFs

Results for (Zp)
k

Simple current structure characterized by the current-current monodromies. 

Independent of the matrix r

Qi(Jj) = Qj(Ji) ≡ Rij =
1

p
rij , rij ∈ Z
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We give a complete classification of all simple current modular invariants, extending previous
results for (7L~Y’to arbitrary centers. We obtain a simple explicit formula for the most general
case. Using orbifold techniques to this end, we find a one-to-one correspondence between
simple current invariants and subgroups of the center with discrete torsions. As a by-product, we
prove the conjectured monodromy independence of the total number of such invariants. The
orbifold approach works in a straightforward way for symmetries of odd order, but some
modifications are required to deal with symmetries of even order. With these modifications the
orbifold construction with discrete torsion is complete within the class of simple current
invariants. Surprisingly, there are cases where discrete torsion is a necessity rather than a
possibility.

1. Introduction

The problem of classifying and enumerating all modular invariant partition
functions of a given conformal field theory has been studied intensively during the
last five years, but is still far from solved. However, there is one subclass of
invariants that is almost under control, namely the simple current invariants.
Simple currents [lii correspond to primary fields that upon fusion with any other
field yield just one field. It is easy to see that the presence of simple currents
implies that the conformal field theory has an abelian discrete symmetry called the
center. A modular invariant partition function is called a simple current invariant
if all fields that are paired non-diagonally are related by simple currents.
Although not all modular invariants are of this type, experience suggests that

exceptions are rare. Hence by enumerating all of them one has probably listed

0550-3213/94/$07.OO © 1994 — Elsevier Science B.V. All rights reserved
SSDI 0550-3213(93)E0404-N
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where X is a matrix satisfying X + XT = R ~‘,

X11 = y~1/N~,~1 E 71. (2.8)

Note that the matrix elements of X are quantized precisely like those of R: since
X is defined modulo integers, x~must be defined modulo N1; furthermore, in
order to satisfy X + XT = R, x11 must be proportional to N1/GCD(N~,N), and
hence ~~N3-= 0 mod N1. In our previous notation X = e + or e + ~(R + E),
where the second expressions is used if R is not divisible by two. Note that the role
of the discrete torsions is simply to provide an antisymmetric part to R. The
invariant (2.7) is not yet normalized, but it is easy to see that one must simply
divide by the order of the group.
This result can be simplified further by observing that the sum over a is just a

5-function. This yields the final, and undoubtedly most simple and elegant formula
for the modular invariant partition function. Before presenting it, let us summarize
the main result of this paper.
Suppose one has a conformal field theory with simple currents generating a

center ~‘. Then the complete set of simple current invariants of that theory can be
obtained by the following procedure:
(1) Choose any subgroup 2’ of ~‘.

(2) Choose a basis of currents ~ ~~‘k that generate 2’.
(3) Compute the current—current monodromies R,1 in that basis.
(4) Choose any properly quantized matrix X (see (2.8)) whose symmetric part is

~R mod 1 (in other words X + XT = R). The modular invariant partition function
corresponding to this choice is then given by a matrix whose only non-zero
elements are

Ma [j3]a = Mult(a) fl5’[Q~(a) +X,1i3~], (2.9)

where ~1 is equal to unity if its argument is an integer, and vanishes otherwise.
The factor Mult(a) appears because a may be a fixed point of some currents. In
that case the /3-sum in (2.7) includes all terms involving a more than once, and
Mult(a) is the number of times this happens. This is the generalization of (1.2) to
more than one factor.
As we mentioned earlier, this is the complete set of solutions to a different set

of conditions than those considered in refs. [6,5] (and in most other papers on
modular invariance of conformal field theories other than those built out of free
bosons an fermions). Usually one tries to determine all positive and properly
normalized matrices M that commute with S and T, a given set of representations
of the (one-loop) modular group. In our case it turned out to be convenient to

* Note that X is defined modulo 1 and that R is defined modulo 2 on the diagonal and modulo 1

elsewhere. The equations are defined with exactly the same periodicities as R. In the following these
periodicities will be omitted from the equations.

The general formula
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The bi-homorphism

Lemma B.3 :
Let H be a subgroup in the effective center Pic◦(C), written in the form (B.1), and X
a k× k-matrix. For any two elements g, h of H , written in the form g =

∏
a(ga)ma and

h =
∏

a(ga)na , set

Ξ(g, h) := exp(2πi
k∑

a,b=1

maXabnb) . (B.7)

Then Ξ is a KSB if and only if X is a KS matrix.

Proof:
Suppose that Ξ(g, h) is a KSB, i.e. Ξ is a bihomomorphism with the additional property
Ξ(g, g) = θg. Then in particular it is a well-defined map G×G→ ×. Since gNa

a = e, where
Na is the order of the generator ga, we have

1 = Ξ(gNa
a , gb) = exp(2πiNaXab) (B.8)

for all a, b, i.e. NaXab ∈ Z, establishing that the matrix X has property (B.2 ii). Further,
by lemma 3.18, together with (2.21) and (2.22) we know that

exp(2πi(Xab+Xba)) = Ξ(ga, gb) Ξ(gb, ga) = β(ga, gb) = exp(2πiQga(gb)) . (B.9)

The matrix X thus also has property (B.2 i). Finally, property (B.3) of X follows from the
fact that a KSB by definition obeys Ξ(ga, ga) = θga , together with NaXab ∈ Z. Thus X is
indeed a KS matrix.

Suppose now that X is a KS matrix. We first check that Ξ as defined in (B.7) is a well-
defined map G×G→ ×. Note that the ma and na in g =

∏
a(ga)ma and h =

∏
a(ga)na

are defined only mod Na. Shifting ma $→ ma +kNa changes the right hand side of (B.7) by
exp(2πik

∑
b NaXabnb), which is equal to one by property (B.2 ii) of a KS matrix. Similarly,

shifting nb $→ nb + kNb changes the right hand side by

e2πik
∑

a maXabNb = e2πik
∑

a maQga (gb)Nb e−2πik
∑

a NbXbama

=
∏

a β(ga, gb)maNb =
∏

a β(ga, g
Nb

b )ma = 1 ,
(B.10)

where in the first step (B.2 i) is used, in the second step (B.2 ii) and (2.21), and in the
third and fourth step that β is a bihomomorphism and that gNb

b = e.

Thus Ξ is well defined. That Ξ is a bihomomorphism is then obvious. It follows that
q(g) =Ξ(g, g) is a quadratic form. To establish that Ξ is a KSB we must show that q coin-
cides with the quadratic form δ(g) = θg. By lemma B.2 it is enough to verify q(ga) = δ(ga)
and q(gagb) = δ(gagb) for a %= b. First note that by (B.2 i) and (2.21),

Ξ(ga, gb) Ξ(gb, ga) = e2πi(Xab+Xba) = β(ga, gb) . (B.11)

By definition (2.16), we have β(ga, ga) = δ(g2
a)/δ(ga)2. Now, δ is a quadratic form, and by

lemma B.2(ii) we know δ(g2
a) = δ(ga)4. Evaluating (B.11) for a = b thus yields

q(ga)
2 = δ(ga)

2 . (B.12)
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Definition 3.15 :

For G be a finite abelian group, an alternating bihomomorphism on G is a bihomomorphism

ζ : G × G → × (3.29)

such that ζ(g, g) =1 for all g∈G.

Note that ζ(g, g) =1 for all g ∈G implies that ζ(g, h) = ζ(h, g)−1 for all g, h∈G, but
the converse implication is not true. We also have [48, 49]

Lemma 3.16 :

The alternating bihomomorphisms on a finite abelian group G form an abelian group
AB(G, ×). The map

H2(G, ×) → AB(G, ×)

[ω] $→ ζ with ζ(g, h) :=
ω(g,h)
ω(h,g)

(3.30)

furnishes an isomorphism of abelian groups.

For abelian groups, this fact provides a convenient characterization of isomorphism
classes of twisted group algebras by their commutator two-cocycles as defined in (A.7).
We would like to have an analogous characterization of Schellekens algebras in modular
tensor categories. The trivializing two-cochain, however, is in general not closed, so we
cannot use an alternating bihomomorphism. The appropriate generalization is provided
by the following

Definition 3.17 :

Let H be a subgroup in the effective center Pic◦(C) of a ribbon category. A Kreuzer--Schel-
lekens bihomomorphism (or KSB , for short) on H is a (not necessarily symmetric) biho-
momorphism

Ξ : H × H → × (3.31)

which on the diagonal coincides with the quadratic form δ introduced in (2.13),

Ξ(g, g) = δ(g) ≡ θg for all g ∈H . (3.32)

Lemma 3.18 :

For any Kreuzer--Schellekens bihomomorphism on a subgroup H in Pic◦(C) we have

Ξ(g, h) Ξ(h, g) = β(g, h) (3.33)

for all g, h∈H , with β the bihomomorphism (2.16) associated to δ.

25From:
J. Fuchs, I. Runkel, C. Schweigert 
TFT construction of RCFT correlators. 3. Simple currents.   (Nucl.Phys. B694 (2004) 277-353)
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where X is a matrix satisfying X + XT = R ~‘,

X11 = y~1/N~,~1 E 71. (2.8)

Note that the matrix elements of X are quantized precisely like those of R: since
X is defined modulo integers, x~must be defined modulo N1; furthermore, in
order to satisfy X + XT = R, x11 must be proportional to N1/GCD(N~,N), and
hence ~~N3-= 0 mod N1. In our previous notation X = e + or e + ~(R + E),
where the second expressions is used if R is not divisible by two. Note that the role
of the discrete torsions is simply to provide an antisymmetric part to R. The
invariant (2.7) is not yet normalized, but it is easy to see that one must simply
divide by the order of the group.
This result can be simplified further by observing that the sum over a is just a

5-function. This yields the final, and undoubtedly most simple and elegant formula
for the modular invariant partition function. Before presenting it, let us summarize
the main result of this paper.
Suppose one has a conformal field theory with simple currents generating a

center ~‘. Then the complete set of simple current invariants of that theory can be
obtained by the following procedure:
(1) Choose any subgroup 2’ of ~‘.

(2) Choose a basis of currents ~ ~~‘k that generate 2’.
(3) Compute the current—current monodromies R,1 in that basis.
(4) Choose any properly quantized matrix X (see (2.8)) whose symmetric part is

~R mod 1 (in other words X + XT = R). The modular invariant partition function
corresponding to this choice is then given by a matrix whose only non-zero
elements are

Ma [j3]a = Mult(a) fl5’[Q~(a) +X,1i3~], (2.9)

where ~1 is equal to unity if its argument is an integer, and vanishes otherwise.
The factor Mult(a) appears because a may be a fixed point of some currents. In
that case the /3-sum in (2.7) includes all terms involving a more than once, and
Mult(a) is the number of times this happens. This is the generalization of (1.2) to
more than one factor.
As we mentioned earlier, this is the complete set of solutions to a different set

of conditions than those considered in refs. [6,5] (and in most other papers on
modular invariance of conformal field theories other than those built out of free
bosons an fermions). Usually one tries to determine all positive and properly
normalized matrices M that commute with S and T, a given set of representations
of the (one-loop) modular group. In our case it turned out to be convenient to

* Note that X is defined modulo 1 and that R is defined modulo 2 on the diagonal and modulo 1

elsewhere. The equations are defined with exactly the same periodicities as R. In the following these
periodicities will be omitted from the equations.

These multiplicities are due to simple current fixed points.

Stabilizer Sa of a: 
Subgroup of the simple current group G that fixes i.

The multiplicity Mult(a) equals │G│
│Sa│

Ja = a



Fixed point multiplicities (usually) imply that certain 
representations of the extended chiral algebra implied by the MIPF 
cannot be distinguished using the original algebra.  

The standard example is SU(2)4  extended to SU(3)1 

|χ0(τ) + χ4(τ)|2 + 2|χ2(τ)|2

|χSU(3)
(1) (τ)|2 |χSU(3)

(3) (τ)|2 |χSU(3)
(3̄)

(τ)|2

Not distinguished in SU(2)4 



Mult(a) =
�

i

mi|ni|2

There are two problems:
How exactly does Mult(a) split?

Absorbed in character normalization

What is the new matrix S of the extended theory?

χi(−
1

τ
) = . . .+ αχf1(τ) + βχf2(τ) + . . .



Both problems where solved for WZW models,  in:

From Dynkin diagram symmetries to fixed point structures.
Jurgen Fuchs, Bert Schellekens, Christoph Schweigert (NIKHEF, Amsterdam).  
Published in Commun.Math.Phys. 180 (1996) 39-98 

(Proving and extending earlier work with S. Yankielowicz)

4.
A Matrix S for all simple current extensions.
J. Fuchs (DESY), A.N. Schellekens (NIKHEF, Amsterdam), C. Schweigert (IHES, Bures-sur-Yvette)
Published in Nucl.Phys. B473 (1996) 323-366 

Can be generalized to coset CFT’s and extended WZW models. 

http://inspirebeta.net/record/396437
http://inspirebeta.net/record/396437
http://inspirebeta.net/author/Fuchs%2C%20Jurgen?ln=en
http://inspirebeta.net/author/Fuchs%2C%20Jurgen?ln=en
http://inspirebeta.net/author/Schellekens%2C%20Bert?ln=en
http://inspirebeta.net/author/Schellekens%2C%20Bert?ln=en
http://inspirebeta.net/author/Schweigert%2C%20Christoph?ln=en
http://inspirebeta.net/author/Schweigert%2C%20Christoph?ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=NIKHEF,%20Amsterdam
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=NIKHEF,%20Amsterdam
http://inspirebeta.net/record/415310
http://inspirebeta.net/record/415310
http://inspirebeta.net/author/Fuchs%2C%20J.?ln=en
http://inspirebeta.net/author/Fuchs%2C%20J.?ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=DESY
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=DESY
http://inspirebeta.net/author/Schellekens%2C%20A.N.?ln=en
http://inspirebeta.net/author/Schellekens%2C%20A.N.?ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=NIKHEF,%20Amsterdam
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=NIKHEF,%20Amsterdam
http://inspirebeta.net/author/Schweigert%2C%20C.?ln=en
http://inspirebeta.net/author/Schweigert%2C%20C.?ln=en
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=IHES,%20Bures-sur-Yvette
http://www.slac.stanford.edu/spires/find/inst/wwwinspire?icncp=IHES,%20Bures-sur-Yvette
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5.2. The main formula

We work here with the group characters of the untwisted stabilizer, which have the
usual properties, see section 4.1.

The primary fields of the extended theory can be described as follows. Each fixed
point a of the unextended theory is resolved into |Ua| distinct fields, which are labelled
by the group characters of the untwisted stabilizer Ua. Then the following is the formula
for the modular matrix S̃:

S̃(a,i),(b,j) =
|G|

√

|Ua| |Sa| |Ub| |Sb|

∑

J∈G

Ψa
i (J) SJ

a,b Ψb
j(J)∗ . (5.1)

Here the summation is formally over all G, but in fact the only contributing terms are
those with J ∈ Ua ∩ Ub. In particular, if a primary field a is not a fixed point of any
current, then Ua = {1}, and only S1 (the modular matrix S of the unextended theory)
contributes.

The formula (5.1) follows directly from the Fourier decomposition (4.4) with Ma =
Ua and the diagonality assumption (4.20), which in its turn is strongly suggested by the
arguments in sections 4.8 and 4.9.

5.3. Phase rotations

As mentioned in the previous section, all conditions on SJ are respected by the
‘gauge’ transformation

SJ $→ DJSJ (DJ)† , (5.2)

where DJ is a diagonal unitary matrix which, in order to preserve {6}, satisfies

DJ = (DJ−1

)∗ . (5.3)

A sufficient condition for preserving the group properties of η and F , {5b} and {4a} is

DJ1DJ2 = DJ1J2 . (5.4)

However, F and η change only by ratios of the matrix elements of DJ , and therefore
these latter conditions are necessary only for those ratios. These ratios are between
conjugate fields or fields on the same simple current orbits. There are thus many phase
rotations that are not restricted by (5.4).

Ua : Untwisted stabilizer (subgroup of Sa )

ψa
i : Character of Ua

The Dynkin diagram of the orbit Lie algebra is obtained by folding the 
original Dynkin diagram according to the simple current action.

SJ
ab Matrix S of the “orbit Lie algebra”



E6



E6E6(1)



E6E6(1)



E6

G2(1)

E6(1)
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a2

a2

a1

a3
a1

a1 a3 a4

a4

a5

a5 an+1

an+1

an

an

an-1

an-1

a2a1 an+1 a1an ana3 a2a3

Let us now examine the remaining conditions. Since we want to do this for arbitrary
WZW-models, not just those based on simple Lie algebras, we will first discuss how
the problem factorizes in the semi-simple case. Consider thus a tensor product of N
simple WZW-models. We denote their primary fields as (a1, a2, . . . , aN ). Consider an
integer spin simple current (J1, J2, . . . , JN ). It can only have fixed points if each of its
components Ji does. Each such component can only have a fixed point if it has integer
or half-integer spin. Note that the conditions {1} – {6} were only formulated for integer
spin simple currents J (while the current K appearing in F (a, K, J) can however have
any spin). Hence we will need to generalize them to half-integer spin currents. This
generalization has to be such that for any integral spin combination the conditions {1}
– {6} are automatically satisfied. Note that the need for such a generalization is not
limited to WZW-models, since the possibility of tensoring exists for any conformal field
theory.

It is clear that conditions {1} – {6} are satisfied for all extensions of any tensor
product if and only if they are satisfied for each factor in the tensor product, provided
that we also allow for currents J of half-integer spin.

The matrix SJ acts only on the fixed points of J , and therefore condition {1} is
satisfied. Furthermore SJ is unitary, so {2} is satisfied as well. Moreover, the matrices
SJ are symmetric, and they are identical for any two currents J that belong to the same
cyclic subgroup and have the same order, so that {6} is satisfied as well. Condition {3}
is also satisfied, as pointed out after (6.1) above.

Unless all fixed points are self-conjugate, the folded Dynkin diagram inherits a non-
trivial charge conjugation symmetry from the unfolded one. The matrix SJ satisfies
(SJ)2 = ηJCJ , where CJ = C̆ is the charge conjugation matrix derived from the folded
diagram. This is thus the unfolded charge conjugation matrix restricted to the fixed

Twisted affine 
Lie algebra



Finding the SJ matrices for arbitrary CFT’s is not straightforward 
(there is no known algorithm). 
Knowing S is not enough.
 
Apart from WZW models and cosets, we now have a formula for Z2 permutation
orbifolds of CFT’s for which SJ is known. 

with M. Maio, 2010
Based on Borisov, Halpern, Schweigert (1998) formula for S.
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Abstract.
Any automorphism of the Dynkin diagram of a symmetrizable Kac--Moody algebra g
induces an automorphism of g and a mapping τω between highest weight modules of
g. For a large class of such Dynkin diagram automorphisms, we can describe various
aspects of these maps in terms of another Kac--Moody algebra, the ‘orbit Lie algebra’
ğ. In particular, the generating function for the trace of τω over weight spaces, which
we call the ‘twining character’ of g (with respect to the automorphism), is equal to a
character of ğ. The orbit Lie algebras of untwisted affine Lie algebras turn out to be
closely related to the fixed point theories that have been introduced in conformal
field theory. Orbit Lie algebras and twining characters constitute a crucial step
towards solving the fixed point resolution problem in conformal field theory.
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Twining Characters

Other cases

“

”
(from the abstract of From Dynkin diagram symmetries to fixed point structures.)



Boundary Conformal Field Theory
 



Goal:  
Obtain boundary and crosscap coefficients for all simple current MIPFs 
(i.e. all possible discrete choices in the KS formula).  

Consider RCFT on a Riemann surface with boundaries and crosscaps.

Boundary

i

ic
Number of states coupling

to the boundary: Miic

Miic > 1 : fixed point issues



interpretation is therefore that when the closed string spectrum is restricted to the states
that can couple to a boundary (the Ishibashi states), then all matrix elements of Ln and Ln

are the same.

2.2. The constraints

The conditions for boundary states |B〉 and crosscaps |C〉 are as follows
[

Wn − (−1)hW W̃−n

]

|B〉 = 0 , (2.1)

[

Wn − (−1)hW +nW̃−n

]

|C〉 = 0 (2.2)

here Wn is a generator of the chiral algebra with weight hw.

The nature of these constraints is easy to understand for the free boson

X(τ, σ) = q + 2pτ + i
∑

n"=0

{

1

n
(αi

ne−in(τ+σ) + α̃i
ne−in(τ−σ))

}

If we impose the Neumann boundary condition

∂σX = 0

for fixed σ (say σ = 0) and all τ we get

(αi
n − α̃i

n)e−inτ = 0

In order for this to vanish at all times τ we clearly need

αi
n − α̃i

n = 0 ,

which simply means that a left-moving oscillation is reflected into a right-moving one with
the same “frequency” n.

The Ishibashi states, on the other hand, correspond to closed string states propagation away
from (or towards) a circular boundary, i.e. time is orthogonal to the boundary rather than
perpendicular. Then we get a boundary condition

∂τX = 0

for fixed τ (say τ = 0) and all σ. This condition yields p = 0 and

(αi
ne−inσ − α̃i

neinσ) = 0

for all σ. This implies

p = 0; αi
n + α̃i

−n = 0

In this case left-moving positive frequency modes are related to right-moving negative fre-
quency modes.

Derivation still to be worked out

9

2.3. Formal solution

Formally these constraints can be solved as follows. Consider an irreducible representation
of the chiral algebra. Denote the states in this representation as |!〉. Then the boundary and
crosscap states can be defined as

|B〉 =
∑

!

|!〉 ⊗ UB |!〉 , |C〉 =
∑

!

|!〉 ⊗ UC |!〉

here UB and UC are anti-unitary operators. This implies in particular

Uα! |!〉 = α∗
!U |!〉 ,

where α! is a set of complex coefficients. Furthermore these operators must satisfy

W̃nUB = (−1)hW UBW̃n ; W̃nUC = (−1)hW +nUCW̃n

Here A and Ã must be understood as A ⊗ 1 and 1⊗ Ã, and we should in principle make a distinction between
the two |!〉 in the definition of |B〉 and |C〉: perhaps it would be better to write |!〉 ⊗

∣

∣!̃
〉

to indicate that the
two states belong to different chiral halfs of the theory. However, the notation is sufficiently unambiguous as it
stands.

The proof goes as follows

Wn |B〉 = Wn |!〉 ⊗ UB |!〉
= (Wn)!κ |κ〉 ⊗ UB |!〉
= [(W−n)κ!]∗ |κ〉 ⊗ UB |!〉
= [(W̃−n)κ!]∗ |κ〉 ⊗ UB |!〉
= |κ〉 ⊗ [(W̃−n)κ!]∗UB |!〉
= |κ〉 ⊗ UB(W̃−n)κ! |!〉
= |κ〉 ⊗ UBW̃−n |κ〉
= (−1)hW W̃−n |κ〉 ⊗ |κ〉
= (−1)hW W̃−n |B〉

and analogously for |C〉. Here we used unitarity, namely W †
n = W−n, as well as the fact that

the matrix elements of Wn and W̃n are identical.

The states |B〉 and |C〉 are called Ishibashi states. For every representation of the chiral
algebra there is one such state. In the following we label them as |B〉i resp. |C〉i, where i
labels a representation of the chiral algebra. Obviously any linear combination of Ishibashi
states satisfies (2.1) resp. (2.2). A conformal field theory (and eventually a string theory) is
defined by fixing suitable linear combinations. These linear combinations are called boundary
states and crosscap states.

10

2.3. Formal solution

Formally these constraints can be solved as follows. Consider an irreducible representation
of the chiral algebra. Denote the states in this representation as |!〉. Then the boundary and
crosscap states can be defined as

|B〉 =
∑

!

|!〉 ⊗ UB |!〉 , |C〉 =
∑

!

|!〉 ⊗ UC |!〉

here UB and UC are anti-unitary operators. This implies in particular

Uα! |!〉 = α∗
!U |!〉 ,

where α! is a set of complex coefficients. Furthermore these operators must satisfy

W̃nUB = (−1)hW UBW̃n ; W̃nUC = (−1)hW +nUCW̃n
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and analogously for |C〉. Here we used unitarity, namely W †
n = W−n, as well as the fact that

the matrix elements of Wn and W̃n are identical.

The states |B〉 and |C〉 are called Ishibashi states. For every representation of the chiral
algebra there is one such state. In the following we label them as |B〉i resp. |C〉i, where i
labels a representation of the chiral algebra. Obviously any linear combination of Ishibashi
states satisfies (2.1) resp. (2.2). A conformal field theory (and eventually a string theory) is
defined by fixing suitable linear combinations. These linear combinations are called boundary
states and crosscap states.
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Ishibashi States
Conditions for preservation of symmetries at a boundary (or crosscap)

Formal solution (boundary/crosscap Ishibashi states)
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and analogously for |C〉. Here we used unitarity, namely W †
n = W−n, as well as the fact that

the matrix elements of Wn and W̃n are identical.

The states |B〉 and |C〉 are called Ishibashi states. For every representation of the chiral
algebra there is one such state. In the following we label them as |B〉i resp. |C〉i, where i
labels a representation of the chiral algebra. Obviously any linear combination of Ishibashi
states satisfies (2.1) resp. (2.2). A conformal field theory (and eventually a string theory) is
defined by fixing suitable linear combinations. These linear combinations are called boundary
states and crosscap states.
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Ishibashi States
Conditions for preservation of symmetries at a boundary (or crosscap)

Formal solution (boundary/crosscap Ishibashi states)

m m m m m m 

m: RCFT representation label



Boundary States
Boundary states  are linear combinations of Ishibashi states subject to integrality 
conditions for the annulus (“Cardy condition” (Cardy, 1989));  
Analogously for crosscap states, constrained by Moebius and Klein bottle coefficients.

There are as many boundary states as there are Ishibashi states
“completeness condition for boundaries” (Sagnotti, Pradisi, Stanev 1996). 
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Cardy-Rome Solution
If Mij = δj,ic

One Ishibashi states per RFCT representation

One boundary state per CFT representation

Bam = Sam

Γm = P0m

Cardy (1989)
Tor Vergata group (Sagnotti, Pradisi, Stanev, Bianchi, Fioravante e.a. (1994-1996)



General Solution

• What are the properly resolved Ishibashi states?

• How does one characterize the boundary states?

• What is the general formula for the boundary states?

• What are the allowed crosscap choices?

Several years of work by several groups(*) finally led to a 
general formula for all MIPFs in the KS formula.

For a general MIPF given by the KS formula:

(*) Rome group, Fuchs, Schweigert, Birke, Zuber, Petkova, Behrend, Pearce, Huiszoon, Sousa, Schellekens, (1995-2000)
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[a,ψa], ψa is a character of the group Ca

Ca is the Central Stabilizer of a

The quantity Fi is called the simple current twist, and the untwisted stabilizer Ui is the subgroup
of Si of currents that have twist 1 with respect to all currents in Si. To combine the results for
automorphisms and extensions, we introduce a modified twist F X

i by

F X
i (K, J) := e2πiX(K,J) Fi(K, J)∗ , (8)

and we define the central stabilizer Ci as

Ci := {J ∈Si |F X
i (K, J) = 1 for all K ∈Si} . (9)

(The prescription (8) is motivated as follows. The modified twist is an alternating bihomomor-
phism i.e. obeys F X

i (J, J) = 1 for all J ∈G. Such bihomomorphisms F X
i of an abelian group G

are in one-to-one correspondence to cohomology classes FX
i in H2(G, U(1)), thus leading to a

cohomological interpretation [27]. In particular, the central stabilizer provides a basis of the
centre of the twisted group algebra CFX

i
Si, which also motivates its name.)

The action (by the fusion product) of the simple currents in G organizes the labels i of
the Ā-theory into orbits. Moreover, in all known cases the boundary degeneracy is correctly
described by the order of the central stabilizer, and hence this is our ansatz for the general
case as well. We then choose the characters of Ci as the degeneracy labels. The boundaries are
therefore given by

a = [i, ψ] , (10)

where i is the label of a representative of a G-orbit, and ψ a character of Ci.

4. The boundary formula

Ishibashi states are nothing but conformal blocks for one-point correlation functions on the disk,
i.e. specific two-point blocks on the sphere. But we can think of the Ishibashi state labelled
by (i, J) also more as a three-point block on the sphere, with insertions i, ic and J . (This
is actually the natural interpretation when one wants to express such Ishibashi states in the
three-dimensional topological picture that was established in [28].) Moreover, already from [1]
it is known that the relation between Ishibashi and boundary states essentially expresses the
effect of a modular S-transformation. Together with the previous observation, it is then natural
to expect that the fixed point resolution matrices SJ appear in the boundary coefficients.

We are therefore ready to write down the following ansatz for the boundary coefficients:

B(i,J),[j,ψ] =

√

|G|
|Sj| |Cj|

α(J) SJ
i,j

√

S0,i

ψ(J)∗ , (11)

where α(J) is a phase to be discussed later, but which must satisfy α(0) = 1. All previously
studied cases are correctly reproduced by the remarkably simple formula (11). We have also
verified that the matrix (11) has a left- and right-inverse, given by (B−1)[j,ψ],(i,J) =S0,i B∗

(i,J),[j,ψ].
This establishes in particular the result that the number of boundaries equals the number of
Ishibashi labels, i.e. “completeness”. This implies rather non-trivial relations involving the
number of orbits of various kinds and the orders of stabilizers.

One can also check that the annuli obtained from (11) possess non-negative integral ex-
pansion coefficients Ai

ab with respect to the Ā-characters χi. (We assume, as usual, that the
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ab with respect to the Ā-characters χi. (We assume, as usual, that the

6

integers, where Ns is the order of Js. If Ns is odd, RssNs is always even, and hence Xss is
determined. If Ns is even, RssNs may be odd. Then there is no solution for Xss. In that case
the current Js does not belong to the “effective center”, and cannot be used to build modular
invariants. A second case in which 2X = R has no solutions is when Ns is even and NsRst is
odd for some value of t != s. Then there are only non-symmetric invariants. In all other cases
at least one solution exists. If both Ns and Nt are even the off-diagonal element Xst may be
shifted by a half-integer.

3. Ishibashi and boundary labels

The modular invariant Z(G, X) specified by X is to be multiplied with the charge conjugation
matrix. Hence the Ishibashi states correspond to the diagonal elements of Z(G, X), counting
multiplicities. The only currents that can contribute are those that satisfy Ji = i. They form a
group, the stabilizer Si of i. If this group is non-trivial, multiplicities larger than 1 may occur,
possibly leading to Ishibashi label degeneracies. For pure extensions this was analysed in [8,11],
and the conclusion is that the Ishibashi label degeneracy is actually equal to the fixed point
degeneracy. 3 It is natural to extend this result to the general case, and to label the degeneracy
by the currents that cause it. Hence our ansatz for the Ishibashi labels is

m = (i, J); J ∈Si with QK(i) +X(K, J) = 0 mod 1 for all K ∈G . (5)

This ansatz produces also the correct count for pure extension invariants, but the labelling
chosen here is not the same as in [8, 11]. In those papers the dual basis – the characters ψα of
Si – was used for the degeneracy labels. This is not possible for pure automorphisms because
the currents satisfying (5) do not form a group in that case. For pure extensions, the new basis
differs by a Fourier transformation from the old one. This allows us to compute the degeneracy
metric, given the fact that it was diagonal in the old basis. We find

gJ,K
j =

∑

αβ

ψα(J) ψβ(K) δα,β = δJ,Kc

. (6)

Now we turn to the boundary labels. The results for pure extensions and automorphisms
without fixed points is that the boundaries are in one-to-one correspondence with the complete
set of G orbits (of arbitrary monodromy charge). As usual, fixed points lead to degeneracies.
For pure automorphism invariants due to a half-integer spin simple current, the degeneracy
was found to be given by the order of the stabilizer of the orbit, whereas for pure extensions it
is the order of the untwisted stabilizer. The latter is defined as follows [24]. For every simple
current J with fixed points there exists a “fixed point resolution matrix” SJ ; these matrices
can be used to express the unitary modular S-transformation matrix of the extended theory
through quantities of the unextended theory. The matrices SJ are conjectured to be equal to
the modular S-transformation matrices for the J-one-point conformal blocks on the torus, and
are explicitly known for all WZW models [25,24], their simple current extensions [26] and also
for coset conformal field theories. Elements of the matrix SJ whose labels are related by the
action of a simple current K obey

SJ
Ki,j = Fi(K, J) e2πiQK(j) SJ

i,j . (7)
3 This result is non-trivial because the degeneracy in the extended theory is in general not equal to the fixed

point degeneracy, i.e. the order of the stabilizer, but rather to the size of a subgroup, the untwisted stabilizer.

5
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ψα(J) ψβ(K) δα,β = δJ,Kc

. (6)

Now we turn to the boundary labels. The results for pure extensions and automorphisms
without fixed points is that the boundaries are in one-to-one correspondence with the complete
set of G orbits (of arbitrary monodromy charge). As usual, fixed points lead to degeneracies.
For pure automorphism invariants due to a half-integer spin simple current, the degeneracy
was found to be given by the order of the stabilizer of the orbit, whereas for pure extensions it
is the order of the untwisted stabilizer. The latter is defined as follows [24]. For every simple
current J with fixed points there exists a “fixed point resolution matrix” SJ ; these matrices
can be used to express the unitary modular S-transformation matrix of the extended theory
through quantities of the unextended theory. The matrices SJ are conjectured to be equal to
the modular S-transformation matrices for the J-one-point conformal blocks on the torus, and
are explicitly known for all WZW models [25,24], their simple current extensions [26] and also
for coset conformal field theories. Elements of the matrix SJ whose labels are related by the
action of a simple current K obey

SJ
Ki,j = Fi(K, J) e2πiQK(j) SJ

i,j . (7)
3 This result is non-trivial because the degeneracy in the extended theory is in general not equal to the fixed

point degeneracy, i.e. the order of the stabilizer, but rather to the size of a subgroup, the untwisted stabilizer.
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• Boundary coefficients

• Crosscap coefficients

Boundaries and Crosscaps*

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

B[a,ψa](m,J) =

�
|H|

|Ca||Sa|
ψ∗
a(J)S

J
am

Γ(m,J) =
1�
|H|

�

L∈H

η(K,L)PLK,mδJ,0

“Open string version of the KS formalism for closed strings”



Orientifold Choices*
• “Klein bottle current” K  (element of      )

• “Crosscap signs” (signs defined on a subgroup of     ), 
satisfying

H

H

Orientifold specification

• A Klein bottle current K. This can be any simple
current that obeys

QI(K) = 0 mod 1 for all I ∈ H, I2 = 0.

• A set of phases βK(J) for all J ∈ H that satisfy

βK(J)βK(J ′) = βK(JJ ′)e2πiX(J,J ′) , J, J ′ ∈ H

with βK(J) = eiπ(hKL−hK)η(K, L), η(K, L) = ±1.
if H has N even factors, there are 2N free signs in
the solution of this equation.
These are called the crosscap signs

— This includes all know RCFT orientifold choices.
— Not all choices are inequivalent.

*Huiszoon, Sousa, Schellekens (1999-2000)

η(K,L) = eiπ(hK−hKL)β(L)
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• A set of phases βK(J) for all J ∈ H that satisfy
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with βK(J) = eiπ(hKL−hK)η(K, L), η(K, L) = ±1.
if H has N even factors, there are 2N free signs in
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*Huiszoon, Sousa, Schellekens (1999-2000)

{
KS bi-homorphism

η(K,L) = eiπ(hK−hKL)β(L)



Applications



• Gepner Orientifolds
Aldazabal, Andres, Juknevitch (2003, 2004)
Blumenhagen, Weigand (2004)
Dijkstra, Huiszoon, Schellekens (2004)
Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)

• Gepner Heterotic Strings
Gepner, many other authors (late 1980’s)
Blumenhagen, Wisskirchen, Schimmrigk (1995)
Gato-Rivera, Maio, Schellekens (2010)

Geometric connections: see (also for further references)
“Heterotic (0,2) Gepner Models and Related Geometries”
Maximilian Kreuzer 
in  Fundamental Interactions: A Memorial Volume for Wolfgang Kummer

} Using the full FHSSW 
formalism

Using the full KS formalism
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The Madrid Model*

Y =
1
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Qa −

1
2
Qc −

1
2
Qd

U(2), Sp(2)

U(1), O(2), Sp(2)

(*) Ibanez, Marchesano, Rabadan (2000)
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