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  Early String Theory Expectations: (≈ 1985)

thereby explicitly avoiding the field theory divergence. The spectrum of string theory
consists of an infinite “tower” of excited states, corresponding to quantized energy levels
of the various modes of the string. Any change in the spectrum of such a tower destroys
the crucial property of modular invariance.

5.2 Non-Uniqueness in String Theory

It is understandable that this rigidity of the spectrum fueled the hope that string theory
might lead us to a unique gauge theory, and perhaps a completely unambiguous derivation
of the Standard Model from first principles. This hope is very well described by the
following paragraph from the book “The Problems of Physics” by A.J. Legget, which
dates from 1987 [35].12 The author is not a string theorist (he received the Nobel Prize in
2003 for his work on superfluidity) but echoes very accurately the atmosphere in part of
the string community around that time:
The hope is that the constraints imposed on such theories solely by the need for mathe-
matical consistency are so strong that they essentially determine a single possible theory
uniquely, and that by working out the consequences of the theory in detail one might even-
tually be able to show that there must be particles with precisely the masses, interactions,
and so on, of the known elementary particles: in other words, that the world we live in is
the only possible one.

If this had been true, this would have led us to straight to the anthropic dilemma
explained in section (3). So how does string theory avoid this?

The answer to that question emerged during two periods of revolutionary change in
our understanding, one occurring around 1986, and the the other during the first years of
this century. I will refer to these periods as the first and second string vacuum revolution.
Although string theorists love revolutions, these two are usually not on their list.

It is important to distinguish two concepts of uniqueness: uniqueness of the theory
itself, or uniqueness of its “ground states” or “vacua”. I will use these notions in a loose
sense here, because one of the issues under dispute is even how they are defined (which is
especially problematic in a universe with a positive cosmological constant, as ours seems
to have). By “vacuum” I will simply mean anything that is suitable to describe our
universe, and anything that merely differs from it by being located in a different point
in the Gauge Theory Plane. I am not trying to argue that such vacua exist, but merely
that if they do exist there are likely to exist in huge quantities. The picture that seems to
emerge is that of a perhaps unique theory, but with a huge number of vacua. Although
this picture has started emerging more than twenty years ago, most people refused to
accept it as the final outcome, and instead were (and in surprisingly many cases still are)
hoping that one of the many candidate vacua would be singled out by some still to be

12
This book also contains a remarkably prescient description of what might be called an “anthropic

landscape”, even with references to an important rôle for higher-dimensional theories, a notion that also

appeared in equally prescient work by Andrei Sakharov from 1984 [36] about a possible anthropic solution

to the cosmological constant problem. However, precisely because of the cited text about string theory,

this remained an overlooked link in the idea for more than a decade.
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From “The Problems of Physics” by Antony Legget (1987)

  Early String Theory Expectations: (≈ 1985)
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A.N. Schellekens,
Contribution to the proceedings of the EPS conference, Uppsala, June 1987

.
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A.N. Schellekens,
Contribution to the proceedings of the EPS conference, Uppsala, June 1987

.

...

Lerche, Lüst, Schellekens (1986)
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   Huge landscape, so string theory must be wrong. 

   String theory is correct, but landscape must be wrong.

The string theory landscape is correct, and there is                           
nothing left to do.

Possible attitudes:

(‘t Hooft)

(Gross)

    (Susskind?)
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But:

There is plenty of structure in the standard model that seems 
neither “random” nor required for the existence of life.

So we should be able to extract more information from the 
landscape. 

This will require less focus on finding “the” SM and more 
focus on the way features are distributed. 

In doing so, we cannot avoid the “a-word”.

Ironically, the basic SM structure fits so easily in string theory 
that it is hard to decide where to start looking...
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Embedding the Standard Model 
in string theory

Heterotic strings:   November 1984 - December 1984 

Open Strings:         1975-2000

F-theory:                 1996-2008

Or: how long did it take to find it?
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SM structure

• SU(3) × SU(2) × U(1)

• Anomaly cancellation

• Small representations

• Absence of fractional electric charge

• Families fit nicely in (16) of SO(10)

• Three families

• Coupling unification

Partly “anthropic”; Fundamental insight from string theory not likely. 

String theory explains this very well.

To be discussed.

Almost inevitable consequence of the foregoing.

String theory (almost) explains this. 

To be discussed.

To be discussed.
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Open Strings
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The ends of open strings give rise to U(N), O(N) or Sp(2N) gauge groups. 

Since each open string has two ends, matter must be in bi-fundamentals 
(or rank-two tensors).

One may think of the endpoints as open strings ending on a membrane or 
a stack of N membranes. 

By considering suitable combinations of stacks of branes one may obtain 
the standard model.
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Classes of open String Models

Non-orientable

Non-orientable

Orientable

ΔQ=½ ΔQ=½

ΔQ=0 ΔQ=0

ΔQ=x ΔQ=−x
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The different models are distinguished by the realization of Y:
(assuming at most four participating branes)

The following three possibilities exist*

1.  x=½   (Madrid model, Pati-Salam model, ...)
2.  x=0    (SU(5), ...)
3.  x not quantized, strings orientable.  (Trinification, ...)

(*)Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)

� �� �� �� � � �� �U(3) U(2) or Sp(2) extra branes
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The Madrid Model*

Y =
1
6
Qa −

1
2
Qc −

1
2
Qd

U(2), Sp(2)

U(1), O(2), Sp(2)

(*) Ibanez, Marchesano, Rabadan (2000)
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(10)

(5*)

SU(5)
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Trinification:
SU(3) × SU(3) × SU(3)

(3, 3∗, 1) + (3∗, 1, 3) + (1, 3, 3∗)
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Open Strings: 
Fractional charge

• x=½ class:               Half-integer fractional charges.

• x=0 class:                Only integer charges:

• orientable class:     Fractional charge x.
                                 (e.g. third-integer for trinification)

All matter from intersections of standard model branes has integral charge.
But often there are additional “hidden sector” branes, intersecting the SM.
These have fractional charges x:

Note: fractionally charged matter must couple to the hidden sector, and 
may be confined by it 
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Open Strings: 
Small representations

Limited to fundamental representations and rank-2 tensors.
Still allows some wrong representations 
(6 of SU(3), adjoints, charge-2 particles)
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Open Strings: 
Coupling Unification

In all classes there are at least three in principle unrelated brane 
stacks. Each stack gives rise to its own gauge coupling. 

These are, in principle, unrelated. Therefore no coupling unification is 
expected.

In special cases, some stacks may coincide, and yield for example 
Pati-Salam or SU(5) models.

If we plot the coupling ratios for the entire class of x=½ models, we 
get the expected result:
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Open Strings: 
Number of families

 1

 10

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7  8  9
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N r of chira l families

S tandard model spectrum with 1  till 9  chira l families

type 4
type 2
type 0
type 5
type 3
type 1

Dijkstra, Huiszoon, Schellekens (2004)
See also Gmeiner et. al. “One in a billion”(x=½ models)

Thursday, 7 July 2011



Explicit 
realizations
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It’s easy enough to draw these pictures.
But finding an explicit example is another matter.
This involves: 

Finding a suitable CFT.

Finding a type-IIB modular invariant partition function. 

Computing the “boundary coefficients” and the “crosscap coefficients”(*)

Computing the Annulus, Klein bottle and Moebius coefficients.

Checking if the massless spectrum matches the Standard Model.

Checking if Y remains massless

Cancelling the disk and crosscap tadpoles

(*) Cardy (1989), Sagnotti, Pradisi, Stanev, Bianchi (1990-1996),
Fuchs, Schweigert, Huiszoon, Sousa, Walcher (1995-2000), ...
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      3 x ( V  ,V  ,0  ,0 ) chirality 3
      3 x ( V  ,0  ,V  ,0 ) chirality -3
      3 x ( V  ,0  ,V* ,0 ) chirality -3
      3 x ( 0  ,V  ,0  ,V ) chirality 3
      5 x ( 0  ,0  ,V  ,V ) chirality -3
      3 x ( 0  ,0  ,V  ,V*) chirality 3
     18 x ( 0  ,V  ,V  ,0 ) 
      2 x ( V  ,0  ,0  ,V ) 
      2 x ( Ad ,0  ,0  ,0 ) 
      2 x ( A  ,0  ,0  ,0 ) 
      6 x ( S  ,0  ,0  ,0 ) 
     14 x ( 0  ,A  ,0  ,0 ) 
      6 x ( 0  ,S  ,0  ,0 ) 
      9 x ( 0  ,0  ,Ad ,0 ) 
      6 x ( 0  ,0  ,A  ,0 ) 
     14 x ( 0  ,0  ,S  ,0 ) 
      3 x ( 0  ,0  ,0  ,Ad) 
      4 x ( 0  ,0  ,0  ,A ) 
      6 x ( 0  ,0  ,0  ,S ) 

Gauge group: Exactly SU(3) × SU(2) × U(1)!

[U(3)×Sp(2)×U(1)×U(1),  Massive B-L, No hidden sector]

Q 
U*
D*
L
E*+(E+E*)
N*
Higgs

Dijkstra, Huiszoon, Schellekens (2004)
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Vector-like matter
V=vector
A=Anti-symm. tensor
S=Symmetric tensor
Ad=Adjoint

      3 x ( V  ,V  ,0  ,0 ) chirality 3
      3 x ( V  ,0  ,V  ,0 ) chirality -3
      3 x ( V  ,0  ,V* ,0 ) chirality -3
      3 x ( 0  ,V  ,0  ,V ) chirality 3
      5 x ( 0  ,0  ,V  ,V ) chirality -3
      3 x ( 0  ,0  ,V  ,V*) chirality 3
     18 x ( 0  ,V  ,V  ,0 ) 
      2 x ( V  ,0  ,0  ,V ) 
      2 x ( Ad ,0  ,0  ,0 ) 
      2 x ( A  ,0  ,0  ,0 ) 
      6 x ( S  ,0  ,0  ,0 ) 
     14 x ( 0  ,A  ,0  ,0 ) 
      6 x ( 0  ,S  ,0  ,0 ) 
      9 x ( 0  ,0  ,Ad ,0 ) 
      6 x ( 0  ,0  ,A  ,0 ) 
     14 x ( 0  ,0  ,S  ,0 ) 
      3 x ( 0  ,0  ,0  ,Ad) 
      4 x ( 0  ,0  ,0  ,A ) 
      6 x ( 0  ,0  ,0  ,S ) 

Gauge group: Exactly SU(3) × SU(2) × U(1)!

[U(3)×Sp(2)×U(1)×U(1),  Massive B-L, No hidden sector]

Q 
U*
D*
L
E*+(E+E*)
N*
Higgs

Dijkstra, Huiszoon, Schellekens (2004)
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An SU(5) model

      3 x  (A  ,0  ,0 ) chirality 3
     11 x  (V  ,V  ,0 ) chirality -3
      8 x  (S  ,0  ,0 ) 
      3 x  (Ad ,0  ,0 ) 
      1 x  (0  ,A  ,0 ) 
      3 x  (0  ,V  ,V ) 
      8 x  (V  ,0  ,V ) 
      2 x  (0  ,S  ,0 ) 
      4 x  (0  ,0  ,S ) 
      4 x  (0  ,0  ,A ) 

Gauge group is just SU(5)!

U5 O1 O1U(5)

(10)

(5*)

(*)Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
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Heterotic
Strings
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Polyakov action:

2.3 Symmetries

The bosonic string action S[X, γ] has the following symmetries

• Poincaré invariance in D dimensions. This transformation acts only on X, not on
γαβ

X �µ(σ, τ) = Λµ
νX

ν(σ, τ) + aµ (2.17)

• Reparametrization invariance in 2 dimensions. This is taken over from the repara-
metrization invariance of the Nambu-Goto action, and must be present for the
same reason. It is also called diffeomorphism invariance, and is in fact nothing
but a general coordinate transformation in two dimensions. Such a transforma-
tion is performed as follows. We can introduce a new function X �µ(σ�, τ �) which
describes the space-time position of every point on the string in terms of a new
parametrization σ�(σ, τ) and τ �(σ, τ). By definition this new function is therefore
X �µ(σ�, τ �) = Xµ(σ, τ). Now we write the action entirely in terms of the new vari-
ables X �, σ� and τ �. For most variables, this simply implies that we replace them in
(2.4) by the primed variables. In particular, dσdτ is replaced by dσ�dτ � and ∂α by
∂�

α. Any action could be rewritten in this manner, but this is only a symmetry if we
re-obtain the original action when we express the primed variables back in terms of
the original ones. In this particular, changing back to the original variables intro-
duces two potential problems: the change of integration measure when expressing
σ�

α in terms of σα, and the change from ∂�
α back to ∂α. Even without prior knowledge

of general relativity, one realizes that in order for this to be a symmetry we have to
transform γ as well. The complete transformation is then:

X �µ(σ�, τ �) = Xµ(σ, τ)

γ�
γδ(σ

�, τ �) =
∂σα

∂σ�γ
∂σβ

∂σ�δ γαβ(σ, τ) ,
(2.18)

where the new coordinates σ� and τ � are functions of the old ones τ and σ. Note
that we are free to change γ as we wish. If we manage to find a transformation that
gives us back the original action, then we can call the combined transformation of
X and γ a symmetry.

• Weyl invariance. This is a symmetry not seen in the Nambu-Goto action, and is a
consequence of the free function Λ we found above. Indeed, it is easy to see that
the action is invariant under

γ�
αβ(σ, τ) = Λ(σ, τ)γαβ(σ, τ) (2.19)

without changing Xµ.

The last two symmetries are redundancies of the two-dimensional theory on the world
sheet. This means that the two-dimensional action has fewer variables than it seems to
have. This is completely analogous to gauge symmetry in electrodynamics: the invariance

13

defines the embedding of the string in space-time. 
Only consistent if D=26.(µ = 0, . . . ,D − 1)

This can be overcome by replacing part of the action by a more 
general conformal field theory (CFT). 

S[X, γ] = − 1
4πα�

�
dσdτ

�
−det γ

�

αβ

γαβ∂αXµ∂βXµ
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This is a recursion relation for the coefficients. Since A(1) = 0 the equation becomes

A(n + 1) =

�
n + 2

n − 1

�
A(n) (3.53)

The solution is

A(n) =
1

12
cn(n + 1)(n − 1) , (3.54)

and c can be fixed by means of the special case n = 2: this gives c = D. The final result
is a famous commutation relation,

[Lm, Ln] = (m − n)Lm+n +
1

12
c(m3 − m)δm+n , (3.55)

which is called the Virasoro algebra.

3.10 The Virasoro algebra

The Virasoro algebra is an example of a Lie-algebra, just as the familiar angular momen-
tum algebra [Ji, Jj] = i�ijkJk. Strictly speaking the Virasoro algebra given above is not
really a Lie-algebra. One of the properties of a Lie-algebra is a “product” that closes
and satisfies the Jacobi identities. For physicists, that product is usually a commutator.
However, if we regard the Ln’s as the elements, then the product does not close unless
c = 0. The solution is to add one extra element to the algebra, C, which commutes with
all the other elements and whose eigenvalues are c. An element that commutes with all
others but appears on the right hand side of commutators is called a central charge.

The Virasoro algebra has appeared here in a theory of D free bosons, with c = D. It
appears in fact in all two-dimensional field theories that have conformal invariance, but
with different values of c. Field theories with conformal invariance are called conformal
field theories.

There is another way to look at c. Remember that in the classical theory c = 0, but
that c �= 0 is generated by quantum effects. The classical form of the algebra is changed by
quantum effects. This means that the classical symmetry is broken. When this happens,
we speak of an anomaly. The coefficient c is often called the conformal anomaly.

3.11 Imposing the Virasoro constraints

In any case, the constant c �= 0 in the Virasoro algebra tells us once again that it is
inconsistent to require Ln |phys� = 0 for all n. Note however that for classical/quantum
correspondence we may accept a weaker condition, namely

�phys�| Ln |phys� = 0 (n �= 0) . (3.56)

For this to be satisfied it is sufficient to demand that

Ln |phys� = 0 for n > 0 , (3.57)

plus the reality condition L†
n = L−n. In addition there is the zero-mode condition (3.42).

26

Virasoro algebra:

The constant c measures the contribution of a term in the action. It is additive, 
and has to add up to 26.

Typically, the theory is build out of some simple building blocks, in order to get 
some computational control. 

In closed strings, there are separate algebras for left-moving and right-moving 
modes. 

One may build the left-moving sector and the right-moving separately out of 
different building blocks.
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Basic Bosonic String

c=26Xµ
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Fermionic Strings

Xµ

c=D=10

D=10, c=5

ψµ
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Compactified Bosonic String

CFT building block

Xµ

c=26

c=D=4
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Heterotic strings

Xµ

c=D=10

D=10, c=5ψµ
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Modular invariance

The freedom of associating left and right building blocks is 
severely limited by a constraint arising from the consistency of the 
simplest  one-loop diagram, the torus. 
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Modular invariance

The freedom of associating left and right building blocks is 
severely limited by a constraint arising from the consistency of the 
simplest  one-loop diagram, the torus. 
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Modular invariance restricts this severely. Solutions exist because 
of isomorphisms between modular group representations.

D=10ψµ

SO(16)

E8

SO(16) E8               ,        are special CFT building blocks called affine Lie algebras. 
They appear in the spectrum as gauge symmetries
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The Bosonic String Map

This also works in 4 dimensions:

D=4ψµ E8

SO(10)

Lerche, Lüst, Schellekens (1986)
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E8

SO(10)

Xµ

c=D=4

Now we can build 4-dimensional strings

D=4ψµ

Internal CFT
Must have c=9
and N=2 susy.
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Electric Charge 
Quantization

• All color singlets in the Standard Model have 
integer charges. 

• This can be most easily understood by 
assuming an embedding in SU(5) (or SO(10)).

• But how does this work in string theory?
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The future has finally arrived (Gato-Rivera, Schellekens, 2010)
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} D=4ψµ
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Gauge group H ⊂ SO(10) (× H’ ⊂ E8 × ....)

SO(10) currents replaced by 
operators of higher weight } D=4ψµ
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Consider* SU(3) × SU(2) × U(1)30 × U(1)20  ⊂  SO(10)

This should give chiral families of SU(3) × SU(2) × U(1) 
with standard gauge coupling unification. 

Indeed, it does, but there was a major disappointment:
All these spectra contain fractionally charged particles.

This was easily seen to be a very general result.
(A.N. Schellekens, Phys. Lett. B237, 363, 1990).

But there are ways out: they can be massive, vector-like 
(or confined by another gauge group)

Breaking SO(10)

(*)  A.N. Schellekens and S. Yankielowicz (1989)
      Other subgroups were considered by Blumenhagen, Wisskirchen, Schimmrigk (1995, 1996)
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SO(10) sub-algebras

Nr. Name Current Order Gauge group Grp. CFT

0 SM, Q=1/6 (1, 1, 0, 0) 1 SU(3)× SU(2)× U(1)× U(1)
1
6

1
6

1 SM, Q=1/3 (1, 2, 15, 0) 2 SU(3)× SU(2)× U(1)× U(1)
1
6

1
3

2 SM, Q=1/2 (3, 1, 10, 0) 3 SU(3)× SU(2)× U(1)× U(1)
1
6

1
2

3 LR, Q=1/6 (1, 1, 6, 4) 5 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
6

4 SU(5) GUT (3̄, 2, 5, 0) 6 SU(5)× U(1) 1 1

5 LR, Q=1/3 (1, 2, 3,−8) 10 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
3

6 Pati-Salam (3̄, 0, 2, 8) 15 SU(4)× SU(2)L × SU(2)R
1
2

1
2

7 SO(10) GUT (3, 2, 1, 4) 30 SO(10) 1 1

Table 1: List of all Standard Model extensions within SO(10) and the resulting group theory

and CFT charge quantization (last two columns). We refer to these subgroups either by the

label in column 1 or by the name in column 2, where “LR” stands for left-right symmetric.

29
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Results: 

Half-integer or third-integer charges can be avoided by clever 
choices of the CFT, but not simultaneously.

In about half of the cases the fractional charges are present, 
but at least they are vector-like: they can get masses under 
perturbations 
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A return to the 
heterotic string

II The number of families
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 Gato-Rivera, Schellekens (2010):                (2,2) , (1,2), (0,2), broken SO(10)

Number of families:

Turned out to be quantized in terms of a quantity Δ for each class of CFT’s (there 
are 168+59 classes, each containing thousands of distinct spectra)

The following values of Δ occur for the 168 minimal model combinations and 58 of 
the 59 exceptional ones:   120, 96, 72, 60, 48, 40, 36, 32, 24, 12, 8, 6, 4 and 0.

Schellekens, Yankielowicz (1989):                (2,2) , (1,2) unbroken SO(10)

There is one class with Δ=3, which indeed does contain 3-family models (Gepner, 1987)
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 Gato-Rivera, Schellekens (2010):                (2,2) , (1,2), (0,2), broken SO(10)

Number of families:

Turned out to be quantized in terms of a quantity Δ for each class of CFT’s (there 
are 168+59 classes, each containing thousands of distinct spectra)

The following values of Δ occur for the 168 minimal model combinations and 58 of 
the 59 exceptional ones:   12,6,2,0

Schellekens, Yankielowicz (1989):                (2,2) , (1,2) unbroken SO(10)

There is one class with Δ=3, which indeed does contain 3-family models (Gepner, 1987)
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Family Distribution
Nr. of MIPFs
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Heterotic weight 
lifting
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General Heterotic String

N=0 building block

N=2 building block

SO(10)

E8

} D=4ψµ
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... but we have to find a N=0 CFT with the 
same S, T, and central charge as some N=2 
model, without being identical to it. 

This looks difficult.

But there is something else we could try:
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Gato-Rivera, Schellekens, 2009
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Gato-Rivera, Schellekens, 2009

Thursday, 7 July 2011



Gato-Rivera, Schellekens, 2009
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Family distribution for 435 “lifted” Gepner models
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Conclusions

• The rough features of the Standard Model come out 
very easily and in several ways in string theory.

• But there is a problem with GUTs: either they don’t 
arise naturally, or they don’t work as they should.  

• The number of families is another worry. 

• But on closer inspection, for heterotic strings both 
worries are reduced.
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