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1985: Calabi-Yau manifolds, Narain Lattices, Orbifolds

1986: CY’s with torsion; Fermionic and Bosonic constructions

1987: Gepner models

    ........

1995: M-theory compactifications, F-theory, Orientifolds

    ........

2003: Non-uniqueness got a name: The Landscape
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My point of view: 
(physics/06041340 (1998))

A landscape of vacua is the only sensible outcome
for a “Theory of Everything” 

Therefore: A Success for String Theory

4-D Quantum gravity implies that the SM is part
of a huge landscape

Fits nicely with some of the great discoveries in the history of 
science (heliocentric model, theory of Evolution...)

String Theory has never looked better...

...but it has never looked harder.
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So what can we still do?

Explore unknown regions of the landscape

Establish the likelyhood of standard model features 
(gauge group, three families, ....) 

Convince ourselves that standard model is a plausible 
vacuum

Understand vacuum statistics

Understand cosmological likelyhood

Understand “anthropicity”

Sunday, 2 May, 2010



Orientifolds
of

Gepner Models

Sunday, 2 May, 2010



Earlier footprints

References

Susskind:2003kw [1] L. Susskind, arXiv:hep-th/0302219.

Schellekens:2006xz [2] A. N. Schellekens, arXiv:physics/0604134.

Denef:2006ad [3] F. Denef and M. R. Douglas, arXiv:hep-th/0602072.

Angelantonj:1996uy [4] C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B
385, 96 (1996) [arXiv:hep-th/9606169].

Honecker:2004kb [5] G. Honecker and T. Ott, Phys. Rev. D 70, 126010 (2004) [Erratum-ibid. D 71,
069902 (2005)] [arXiv:hep-th/0404055].

Angelantonj:1996mw [6] C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B
387 (1996) 743 [arXiv:hep-th/9607229].

Blumenhagen:1998tj [7] R. Blumenhagen and A. Wisskirchen, Phys. Lett. B 438, 52 (1998)
[arXiv:hep-th/9806131].

Aldazabal:2003ub [8] G. Aldazabal, E. C. Andres, M. Leston and C. Nunez, JHEP 0309, 067 (2003)
[arXiv:hep-th/0307183].

Brunner:2004zd [9] I. Brunner, K. Hori, K. Hosomichi and J. Walcher, arXiv:hep-th/0401137.

Blumenhagen:2004cg [10] R. Blumenhagen and T. Weigand, JHEP 0402 (2004) 041 [arXiv:hep-th/0401148].

Aldazabal:2004by [11] G. Aldazabal, E. C. Andres and J. E. Juknevich, JHEP 0405, 054 (2004)
[arXiv:hep-th/0403262].

Gmeiner:2005vz [12] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lust and T. Weigand, JHEP 0601
(2006) 004 [arXiv:hep-th/0510170].

Ibanez:2001nd [13] L. E. Ibanez, F. Marchesano and R. Rabadan, “Getting just the standard model at
intersecting branes,” JHEP 0111 (2001) 002 [arXiv:hep-th/0105155].

Fuchs:2000cm [14] J. Fuchs, L. R. Huiszoon, A. N. Schellekens, C. Schweigert and J. Walcher,
“Boundaries, crosscaps and simple currents,” Phys. Lett. B 495 (2000) 427
[arXiv:hep-th/0007174].

Dijkstra:2004ym [15] T. P. T. Dijkstra, L. R. Huiszoon and A. N. Schellekens, “Chiral supersymmetric
standard model spectra from orientifolds of Gepner models,” Phys. Lett. B 609
(2005) 408 [arXiv:hep-th/0403196].

Dijkstra:2004cc [16] T. P. T. Dijkstra, L. R. Huiszoon and A. N. Schellekens, “Supersymmetric standard
model spectra from RCFT orientifolds,” Nucl. Phys. B 710 (2005) 3
[arXiv:hep-th/0411129].

d-review [17] E. Kiritsis, “D-branes in standard model building, gravity and cosmology,” Fortsch.
Phys. 52 (2004) 200 [Phys. Rept. 421 (2005) 105] [arXiv:hep-th/0310001].

– 75 –

Sunday, 2 May, 2010



Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev (1996)
Chiral spectra from Orbifold-Orientifolds

Aldazabal, Franco, Ibanez, Rabadan, Uranga  (2000)
Blumenhagen,Görlich,Körs,Lüst (2000)
Ibanez, Marchesano, Rabadan (2001)
Non-supersymmetric SM-Spectra with RR tadpole cancellation

Cvetic, Shiu, Uranga  (2001)
Supersymmetric SM-Spectra with chiral exotics

Blumenhagen, Görlich, Ott  (2002)
Honecker (2003)
Supersymmetric Pati-Salam Spectra with brane recombination

Dijkstra, Huiszoon, Schellekens (2004)
 Supersymmetric Standard Model (Gepner Orientifolds)

Honecker, Ott (2004)
Supersymmetric Standard Model (Z6 orbifold/orientifold)

The long road to the chiral 
SSM

Sunday, 2 May, 2010



Closed String Partition Function

P (τ, τ̄) =
�

ij

χi(τ)Zijχj(τ̄)

Type IIB
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Transverse Channel

time

time

boundary stateS
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Gepner Models

c =
3k

k + 2
, k = 1, . . . ,∞

hl,m =
l(l + 2)−m2

4(k + 2)
+

s2

8

168 ways of solving 
�

i

cki = 9

(l = 0, . . . k; q = −k, . . . k + 2; s = −1, 0, 1, 2)

  (plus field identification)

simple currents4(k + 2)

Spectrum:

Building Blocks:
Minimal N=2 CFT
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Tensoring

Preserve world-sheet susy

Preserve space-time susy (GSO)

Use surviving simple currents to build 
MIPFs

This yields one point in the moduli space of 
a Calabi-Yau manifold
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Selecting MIPFs and Orientifolds

A subgroup      of    

A rational matrix          defined on 

An element      of

A set of signs            defined on  

Each tensor product has a discrete group
of simple currents:  

H

H

G

Xαβ

J · a = b
G

K

βK(J)

G

{
{

Choose:

H
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Conditions
Simple current MIPFs are specified by

• A group H that consists of simple currents.3

H =
∏

α ZNα.
The generator of the ZNα will be denoted as Jα;
Then J =

∏

α Jnα
α

• A symmetric matrix Xαβ that obeys

2Xαβ = QJα(Jβ) mod 1, α != β

Xαα = −hJα

NαXαβ ∈ Z for all α,β

Here QJ(a) = h(a) + h(J) − h(Ja), h is the
conformal weight.

Then Zij is the number of currents L ∈ H such that

j = Li

QM(i) + X(M,L) = 0 mod 1

for all M ∈ H. (X(J, J ′) =
∏

α,β nαmβXαβ)
3Satisfying Order x Weight = Integer

NJhJ ∈ Z, for all J ∈ H

Orientifold specification

• A Klein bottle current K. This can be any simple
current that obeys

QI(K) = 0 mod 1 for all I ∈ H, I2 = 0.

• A set of phases βK(J) for all J ∈ H that satisfy

βK(J)βK(J ′) = βK(JJ ′)e2πiX(J,J ′) , J, J ′ ∈ H

with βK(J) = eiπ(hKL−hK)η(K, L), η(K, L) = ±1.
if H has N even factors, there are 2N free signs in
the solution of this equation.
These are called the crosscap signs

— This includes all know RCFT orientifold choices.
— Not all choices are inequivalent.

Orientifold specification

• A Klein bottle current K. This can be any simple
current that obeys

QI(K) = 0 mod 1 for all I ∈ H, I2 = 0.

• A set of phases βK(J) for all J ∈ H that satisfy

βK(J)βK(J ′) = βK(JJ ′)e2πiX(J,J ′) , J, J ′ ∈ H

with βK(J) = eiπ(hKL−hK)η(K, L), η(K, L) = ±1.
if H has N even factors, there are 2N free signs in
the solution of this equation.
These are called the crosscap signs

— This includes all know RCFT orientifold choices.
— Not all choices are inequivalent.

[definition: QJ(a) ≡ h(a) + h(J)− h(Ja)]

H

Xαβ

βK(J)

K
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A MIPF
   (0+2)^2 + (1+3)^2 + (4+6)*(13+15) + (5+7)*(12+14)

 + (8+10)^2 + (9+11)^2 + (12+14)*(5+7) + (13+15)*(4+6)
 + (16+18)*(25+27) + (17+19)*(24+26) + (20+22)^2 + (21+23)^2
 + (24+26)*(17+19) + (25+27)*(16+18) + (28+30)^2 + (29+31)^2
 + (32+34)^2 + (33+35)^2 + (36+38)*(45+47) + (37+39)*(44+46)
 + (40+42)^2 + (41+43)^2 + (44+46)*(37+39) + (45+47)*(36+38)
 + (48+50)*(57+59) + (49+51)*(56+58) + (52+54)^2 + (53+55)^2
 + (56+58)*(49+51) + (57+59)*(48+50) + (60+62)^2 + (61+63)^2

....

 + 2*(2913)*(2915) + 2*(2914)*(2912) + 2*(2915)*(2913)
 + 2*(2916)^2 + 2*(2917)^2 + 2*(2918)^2 + 2*(2919)^2
 + 2*(2920)^2 + 2*(2921)^2 + 2*(2922)^2 + 2*(2923)^2

 + 2*(2924)*(2926) + 2*(2925)*(2927) + 2*(2926)*(2924)
 + 2*(2927)*(2925) + 2*(2928)^2 + 2*(2929)^2 + 2*(2930)^2

 + 2*(2931)^2 + 2*(2932)*(2934) + 2*(2933)*(2935)
 + 2*(2934)*(2932) + 2*(2935)*(2933) + 2*(2936)*(2938)
 + 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937)

 + 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2
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Boundary coefficients

Crosscap coefficients

Boundaries and Crosscaps*

Boundaries and crosscaps

• Boundary coefficients

R[a,ψa](m,J) =

√

|H|
|Ca||Sa|

ψ∗
a(J)SJ

am

• Crosscap coefficients

U(m,J) =
1

√

|H|

∑

L∈H

η(K, L)PLK,mδJ,0

SJ is the fixed point resolution matrix
Sa is the Stabilizer of a
Ca is the Central Stabilizer (Ca ⊂ Sa ⊂ H)
ψa is a discrete group character of cCa

P =
√

TST 2S
√

T

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

U(m,J) =
1�
|H|

�

L∈H

eπi(hK−hKL)βK(L)PLK,mδJ,0
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Ishibashi States
(0+2)^2 + (1+3)^2 + (4+6)*(13+15) + (5+7)*(12+14)
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+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937)
 + 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2

.....
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Ishibashi States
(0+2)^2 + (1+3)^2 + (4+6)*(13+15) + (5+7)*(12+14)

 + (8+10)^2 + (9+11)^2 + (12+14)*(5+7) + (13+15)*(4+6)

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937)
 + 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2

.....

(m,J) : J ∈ Sm

with QL(m) + X(L, J) = 0 mod 1 for all L ∈ H

Sm : J ∈ H with J ·m = m

(Stabilizer of m)
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Boundary States
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[a,ψa], ψa is a character of the group Ca

Ca is the Central Stabilizer of a

The quantity Fi is called the simple current twist, and the untwisted stabilizer Ui is the subgroup
of Si of currents that have twist 1 with respect to all currents in Si. To combine the results for
automorphisms and extensions, we introduce a modified twist F X

i by

F X
i (K, J) := e2πiX(K,J) Fi(K, J)∗ , (8)

and we define the central stabilizer Ci as

Ci := {J ∈Si |F X
i (K, J) = 1 for all K ∈Si} . (9)

(The prescription (8) is motivated as follows. The modified twist is an alternating bihomomor-
phism i.e. obeys F X

i (J, J) = 1 for all J ∈G. Such bihomomorphisms F X
i of an abelian group G

are in one-to-one correspondence to cohomology classes FX
i in H2(G, U(1)), thus leading to a

cohomological interpretation [27]. In particular, the central stabilizer provides a basis of the
centre of the twisted group algebra CFX

i
Si, which also motivates its name.)

The action (by the fusion product) of the simple currents in G organizes the labels i of
the Ā-theory into orbits. Moreover, in all known cases the boundary degeneracy is correctly
described by the order of the central stabilizer, and hence this is our ansatz for the general
case as well. We then choose the characters of Ci as the degeneracy labels. The boundaries are
therefore given by

a = [i, ψ] , (10)

where i is the label of a representative of a G-orbit, and ψ a character of Ci.

4. The boundary formula

Ishibashi states are nothing but conformal blocks for one-point correlation functions on the disk,
i.e. specific two-point blocks on the sphere. But we can think of the Ishibashi state labelled
by (i, J) also more as a three-point block on the sphere, with insertions i, ic and J . (This
is actually the natural interpretation when one wants to express such Ishibashi states in the
three-dimensional topological picture that was established in [28].) Moreover, already from [1]
it is known that the relation between Ishibashi and boundary states essentially expresses the
effect of a modular S-transformation. Together with the previous observation, it is then natural
to expect that the fixed point resolution matrices SJ appear in the boundary coefficients.

We are therefore ready to write down the following ansatz for the boundary coefficients:

B(i,J),[j,ψ] =

√

|G|
|Sj| |Cj|

α(J) SJ
i,j

√

S0,i

ψ(J)∗ , (11)

where α(J) is a phase to be discussed later, but which must satisfy α(0) = 1. All previously
studied cases are correctly reproduced by the remarkably simple formula (11). We have also
verified that the matrix (11) has a left- and right-inverse, given by (B−1)[j,ψ],(i,J) =S0,i B∗

(i,J),[j,ψ].
This establishes in particular the result that the number of boundaries equals the number of
Ishibashi labels, i.e. “completeness”. This implies rather non-trivial relations involving the
number of orbits of various kinds and the orders of stabilizers.

One can also check that the annuli obtained from (11) possess non-negative integral ex-
pansion coefficients Ai

ab with respect to the Ā-characters χi. (We assume, as usual, that the

6
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This establishes in particular the result that the number of boundaries equals the number of
Ishibashi labels, i.e. “completeness”. This implies rather non-trivial relations involving the
number of orbits of various kinds and the orders of stabilizers.

One can also check that the annuli obtained from (11) possess non-negative integral ex-
pansion coefficients Ai

ab with respect to the Ā-characters χi. (We assume, as usual, that the

6

integers, where Ns is the order of Js. If Ns is odd, RssNs is always even, and hence Xss is
determined. If Ns is even, RssNs may be odd. Then there is no solution for Xss. In that case
the current Js does not belong to the “effective center”, and cannot be used to build modular
invariants. A second case in which 2X = R has no solutions is when Ns is even and NsRst is
odd for some value of t != s. Then there are only non-symmetric invariants. In all other cases
at least one solution exists. If both Ns and Nt are even the off-diagonal element Xst may be
shifted by a half-integer.

3. Ishibashi and boundary labels

The modular invariant Z(G, X) specified by X is to be multiplied with the charge conjugation
matrix. Hence the Ishibashi states correspond to the diagonal elements of Z(G, X), counting
multiplicities. The only currents that can contribute are those that satisfy Ji = i. They form a
group, the stabilizer Si of i. If this group is non-trivial, multiplicities larger than 1 may occur,
possibly leading to Ishibashi label degeneracies. For pure extensions this was analysed in [8,11],
and the conclusion is that the Ishibashi label degeneracy is actually equal to the fixed point
degeneracy. 3 It is natural to extend this result to the general case, and to label the degeneracy
by the currents that cause it. Hence our ansatz for the Ishibashi labels is

m = (i, J); J ∈Si with QK(i) +X(K, J) = 0 mod 1 for all K ∈G . (5)

This ansatz produces also the correct count for pure extension invariants, but the labelling
chosen here is not the same as in [8, 11]. In those papers the dual basis – the characters ψα of
Si – was used for the degeneracy labels. This is not possible for pure automorphisms because
the currents satisfying (5) do not form a group in that case. For pure extensions, the new basis
differs by a Fourier transformation from the old one. This allows us to compute the degeneracy
metric, given the fact that it was diagonal in the old basis. We find

gJ,K
j =

∑

αβ

ψα(J) ψβ(K) δα,β = δJ,Kc

. (6)

Now we turn to the boundary labels. The results for pure extensions and automorphisms
without fixed points is that the boundaries are in one-to-one correspondence with the complete
set of G orbits (of arbitrary monodromy charge). As usual, fixed points lead to degeneracies.
For pure automorphism invariants due to a half-integer spin simple current, the degeneracy
was found to be given by the order of the stabilizer of the orbit, whereas for pure extensions it
is the order of the untwisted stabilizer. The latter is defined as follows [24]. For every simple
current J with fixed points there exists a “fixed point resolution matrix” SJ ; these matrices
can be used to express the unitary modular S-transformation matrix of the extended theory
through quantities of the unextended theory. The matrices SJ are conjectured to be equal to
the modular S-transformation matrices for the J-one-point conformal blocks on the torus, and
are explicitly known for all WZW models [25,24], their simple current extensions [26] and also
for coset conformal field theories. Elements of the matrix SJ whose labels are related by the
action of a simple current K obey

SJ
Ki,j = Fi(K, J) e2πiQK(j) SJ

i,j . (7)
3 This result is non-trivial because the degeneracy in the extended theory is in general not equal to the fixed

point degeneracy, i.e. the order of the stabilizer, but rather to the size of a subgroup, the untwisted stabilizer.

5
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Boundary coefficients

Crosscap coefficients

Boundaries and Crosscaps*

Boundaries and crosscaps

• Boundary coefficients

R[a,ψa](m,J) =

√

|H|
|Ca||Sa|

ψ∗
a(J)SJ

am

• Crosscap coefficients

U(m,J) =
1

√

|H|

∑

L∈H

η(K, L)PLK,mδJ,0

SJ is the fixed point resolution matrix
Sa is the Stabilizer of a
Ca is the Central Stabilizer (Ca ⊂ Sa ⊂ H)
ψa is a discrete group character of cCa

P =
√

TST 2S
√

T

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

U(m,J) =
1�
|H|

�

L∈H

eπi(hK−hKL)βK(L)PLK,mδJ,0
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The Fixed point resolution matrices

SJ
am

Modular transformation matrices 
of the WZW model WJ

defined by folding the extended 
Dynkin diagram of W by the 
symmetry defined by J

(of a WZW model W)

Schellekens, Yankielowicz (1989)
Fuchs,Schellekens,Schweigert (1995)
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The P-matrix*

P =
√

TST 2S
√

T

T : τ → τ + 1
S : τ → − 1

τ

*Sagnotti, Pradisi, Stanev
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Coefficients

Klein bottle

Annulus

Moebius

Partition functions

— Klein bottle:

Ki =
∑

m,J,J ′

Si
mU(m,J)g

Ω,m
J,J ′ U(m,J ′)

S0m

— Unoriented Annulus:

Ai
[a,ψa][b,ψb]

=
∑

m,J,J ′

Si
mR[a,ψa](m,J)g

Ω,m
J,J ′ R[b,ψb](m,J ′)

S0m

— Moebius:

M i
[a,ψa] =

∑

m,J,J ′

P i
mR[a,ψa](m,J)g

Ω,m
J,J ′ U(m,J ′)

S0m

Here gΩ,m is the Ishibashi metric

gΩ,m
J,J ′ =

Sm0

SmK
βK(J)δJ ′,Jc .

Partition functions

— Klein bottle:

Ki =
∑
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Ω,m
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S0m
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J,J ′ =

Sm0

SmK
βK(J)δJ ′,Jc .
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Partition Functions

Closed

Open

• Closed string projection

1

2





∑

ij

χi(τ)Zijχi(τ̄) +
∑

i

Kiχi(2τ)





• Open string projection

1

2





∑

i,a,n

NaNbA
i
abχi(

τ

2
) +

∑

i,a

NaM
i
aχ̂i(

τ

2
+

1

2
)





Na = Chan-Paton Multiplicity

     :  Chan-Paton multiplicityNa
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Tadpole cancellation condition:

Cubic           anomalies cancel

Remaining anomalies by Green-Schwarz 
mechanism

In rare cases, additional conditions for
global anomaly cancellation*

TrF 3

• Tadpoles and Anomalies

Cancellation of massless tadpoles between disk and crosscap

X

b

NbRb(m,J) = 4ηmU(m,J) ,

Determines Chan-Paton multiplicities Nb

Then: purely cubic Tr F 3 anomalies cancel

Remaining ones cancelled by Green-Schwarz terms

Two-point RR-twoform/gauge boson vertices generate masses for anomalous
U(1) and some non-anomalous ones

In these models: B+L massive, Y massless (required), B-L massive or massless

Baryon and Lepton number remain as perturbative symmetries

*Gato-Rivera, Schellekens (2005)

tadpoles & Anomalies
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Abelian Masses

• Tadpoles and Anomalies

Cancellation of massless tadpoles between disk and crosscap

X

b

NbRb(m,J) = 4ηmU(m,J) ,

Determines Chan-Paton multiplicities Nb

Then: purely cubic Tr F 3 anomalies cancel

Remaining ones cancelled by Green-Schwarz terms

Two-point RR-twoform/gauge boson vertices generate masses for anomalous
U(1) and some non-anomalous ones

In these models: B+L massive, Y massless (required), B-L massive or massless

Baryon and Lepton number remain as perturbative symmetries

Green-Schwarz mechanism

RR-axion

• Tadpoles and Anomalies

Cancellation of massless tadpoles between disk and crosscap

X

b

NbRb(m,J) = 4ηmU(m,J) ,

Determines Chan-Paton multiplicities Nb

Then: purely cubic Tr F 3 anomalies cancel

Remaining ones cancelled by Green-Schwarz terms

Two-point RR-twoform/gauge boson vertices generate masses for anomalous
U(1) and some non-anomalous ones

In these models: B+L massive, Y massless (required), B-L massive or massless

Baryon and Lepton number remain as perturbative symmetries

Axion-Vector boson vertex

Generates mass vector bosons of anomalous symmetries

But may also generate mass for non-anomalous ones
(Y, B−L)

(e.g . B + L)
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Scope of the Search
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Scope of the Search

168 Gepner models

5403 MIPFs

49322 Orientifolds

45761187347637742772 combinations of 
four boundary labels (brane stacks)
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Scope of the Search

168 Gepner models

5403 MIPFs

49322 Orientifolds

45761187347637742772 combinations of 
four boundary labels (brane stacks)

Essential to decide what to search for!
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a d

c

b

(u,d)
(e-,!)

u
c e+

!
c

d
c

Chiral SU(3) x SU(2) x U(1) spectrum:

• Chirality

Chiral with respect to SU(3) × SU(2) × U(1)

3(u, d)L + 3uc
L + 3dc

L + 3(e−, ν)L + 3e+
L

Chiral with respect to Chan-Paton group but not with
respect to SU(3) × SU(2) × U(1)

• 3 Left-handed anti-neutrinos [100%]
• Higgs (w.r.t. U(2)b) [0.3%]
• Mirrors of (u, d) or (e−, ν) (w.r.t. U(2)b) [1.5%]
• SM singlets from hidden sector [12.5%]

Y massless

What to search for
The Madrid model

N=1 Supersymmetry
No tadpoles, global anomalies

Y =
1
6
Qa −

1
2
Qc −

1
2
Qd
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The hidden Sector

a d

c

b

(u,d)
(e-,!)

u
c e+

!
c

d
c

lepto-quark

Higgs

charge 1/2
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Chirality

Non-chiral (vector-like): no restrictions

CP-chiral, SM-non-chiral: Mirrors, Higgs 
pairs or righthanded neutrinos

SM-chiral: 3 families
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Type CP Group B-L
0 U(3)  x Sp(2) x U(1) x U(1) massless
1 U(3)  x U(2) x U(1) x U(1) massless
2 U(3)  x Sp(2) x O(2) x U(1) massless
3 U(3)  x U(2) x O(2) x U(1) massless
4 U(3)  x Sp(2) x Sp(2) x U(1) massless
5 U(3)  x U(2) x Sp(2) x U(1) massless
6 U(3)  x Sp(2) x U(1) x U(1) massive
7 U(3)  x U(2) x U(1) x U(1) massive

Brane Configurations
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statistics

Total number of 4-stack configurations 45761187347637742772
(45.7 x 1018)

Total number scanned 4.37522E+19

Total number of SM configurations 45051902
fraction: 1.0 x 10-12

Total number of tadpole solutions
1649642 

fraction: 3.8 x 10-14 (*)

Total number of distinct solutions 211634

(*) cf. Gmeiner, Blumenhagen,Honecker,Lüst,Weigand: “One in a Billion”
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sin2(θw) = .3610368 α3

α2
= .8660246

Gauge group: U(3) x Sp(2) x Sp(2) x U(1) x Sp(6) x Sp(4) x Sp(2)

Number of representations: 19

              3 x (V ,V ,0 ,0 ,0 ,0 ,0 ) chirality 3
               3 x (V ,0 ,V ,0 ,0 ,0 ,0 ) chirality -3
              3 x (0 ,V ,0 ,V ,0 ,0 ,0 ) chirality 3

               3 x (0 ,0 ,V ,V ,0 ,0 ,0 ) chirality -3
  2 x (V ,0 ,0 ,V ,0 ,0 ,0 )
  2 x (0 ,V ,V ,0 ,0 ,0 ,0 )
  2 x (V ,0 ,0 ,0 ,V ,0 ,0 )
  2 x (V ,0 ,0 ,0 ,0 ,V ,0 )
  2 x (V ,0 ,0 ,0 ,0 ,0 ,V )
  1 x (0 ,V ,0 ,0 ,V ,0 ,0 )
  1 x (0 ,0 ,V ,0 ,V ,0 ,0 )
  2 x (0 ,0 ,0 ,V ,0 ,V ,0 )
  1 x (0 ,0 ,0 ,0 ,V ,0 ,V )
  2 x (0 ,0 ,0 ,0 ,0 ,V ,V )
  2 x (0 ,0 ,0 ,0 ,A ,0 ,0 )
  1 x (0 ,0 ,0 ,0 ,S ,0 ,0 )
  5 x (0 ,0 ,0 ,0 ,0 ,A ,0 )
  5 x (0 ,0 ,0 ,0 ,0 ,S ,0 )
  1 x (0 ,0 ,0 ,0 ,0 ,0 ,S )

Summary:
Higgs: (2,1/2)+(2*,1/2)              2

Non-chiral SM matter (Q,U,D,L,E,N):  0  0  0  0  0  0
Adjoints:                            0  0  0  0
Symmetric Tensors:                   0  0  0  0
Anti-Symmetric Tensors:              0  0  0  0

Lepto-quarks: (3,-1/3),(3,2/3)       1  0
Non-SM (a,b,c,d)                    12  6  6  4

Hidden (Total dimension)            162 (chirality 0)
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Standard model type: 6
Number of factors in hidden gauge group: 0
Gauge group: U(3) x Sp(2) x U(1) x U(1)

Number of representations: 19

              3 x  (V ,V ,0 ,0 ) chirality 3
               3 x  (V ,0 ,V ,0 ) chirality -3
               3 x  (V ,0 ,V*,0 ) chirality -3
              9 x  (0 ,V ,0 ,V ) chirality 3

               5 x  (0 ,0 ,V ,V ) chirality -3
               3 x  (0 ,0 ,V ,V*) chirality -3 

  2 x  (V ,0 ,0 ,V )
 10 x  (0 ,V ,V ,0 )
  2 x  (Ad,0 ,0 ,0 )
  2 x  (A ,0 ,0 ,0 ).......

Higgs:   (2,1/2)+  2*,1/2)              5
    Non-chiral SM matter   (Q,U,D,L,E,N):  0  0  0  3  1  0

Adjoints:                            2  0  9  3
Symmetric Tensors:                   1 10  7  3
Anti-Symmetric Tensors:              1 14  3  2

Lepto-quarks:   3,-1/3),  3,2/3)       1  0
Non-SM   a,b,c,d)                     0  0  0  0

       Hidden   Total dimension)             0   (chirality 0)

sin2(θw) = .5271853
α3

α2
= 3.2320501
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• Number of families

 1

 10

 100

 1000

 10000

 100000

 1  2  3  4  5  6  7  8  9

N
r 

o
f 
s
o
lu

ti
o
n
s

Nr of chiral families

Standard model spectrum with 1 till 9 chiral families

type 4
type 2
type 0
type 5
type 3
type 1

Note: includes type-1 spectra with massive B-L
(for 1,2 and 4 families; not found with 3 families)
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Unbiased search*

U(3) from a single brane

U(2) from a single brane

Quarks and leptons, Y from at most four branes

GCP  ⊃   SU(3) × SU(2) × U(1)

Chiral GCP fermions reduce to quarks, leptons                                  
(plus non-chiral particles) but 

No fractionally charged mirror pairs

Massless Y

Require only:
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Allowed Features
(Anti)-quarks from anti-symmetric tensors

leptons from anti-symmetric tensors

family symmetries

non-standard Y-charge assignments

Unification (Pati-Salam, (flipped) SU(5), trinification)*

Baryon and/or lepton number violation

....

*a,b,c,d may be identical
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Chan-Paton gauge group

GCP = U(3)a ×
� U(2)b

Sp(2)b

�
×Gc (×Gd)

Y = αQa + βQb + γQc + δQd + Wc + Wd

Embedding of Y:

Q:  Brane charges (for unitary branes)

W: Traceless generators
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Classification

Distributed over
c and d

Y = (x− 1
3
)Qa + (x− 1

2
)Qb + xQC + (x− 1)QD

�

Allowed values for x

  1/2        Madrid model, Pati-Salam, Flipped SU(5)
   0          (broken) SU(5)
   1          Antoniadis, Kiritsis, Tomaras
-1/2, 3/2
  any       Trinification (              )   (orientable)x = 1/3
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The basic orientable model

not cancel in each sector separately, and hence the two components of the would-be Y -

boson must have Green-Schwarz couplings to axions that give it a mass. In principle

these contributions could cancel for Y , but that seems improbable, and hence reduces the

statistical likelihood of this sort of configuration in a search. Furthermore lepton Yukawa

couplings are perturbatively forbidden in such models.

The same four options exist for left-handed anti-neutrinos, but we do not impose any

requirements on our construction with regard to their multiplicity. If they come from

strings not attached to any of the previous branes, we regard them as part of the hidden

sector.2 Furthermore, we do not allow Y to have contributions from branes that do not

couple to charged quarks and leptons. Otherwise one could extend Y by arbitrarily large

linear combinations that only contribute non-chiral states. This implies that we regard a

brane configuration as complete (prior to tadpole cancellation) if all charged quark and

leptons exist chirally, and if all cubic U(N) anomalies cancel. This configuration may

already contain a few candidate right-handed neutrinos, and additional ones may appear,

after tadpole cancellation, from hidden sector states, or strings between the standard model

and the hidden sector.

Clearly this still leaves a huge number of possibilities to realize this kind of configura-

tion, but there is an obvious maximally economical choice, namely identifying all branes of

equal charge with each other, and the brane with opposite charge with its conjugate. This

then results in a U(3)× U(2)× U(1)× U(1) model with the following chiral spectrum

3 × (V, V ∗, 0, 0)

3 × (V ∗, 0, V, 0)

3 × (V ∗, 0, 0, V )

6 × (0, V, V ∗, 0)

3 × (0, V, 0, V ∗
)

3 × (0, 0, V, V ∗
)

Although we anticipated the possible need for anti-symmetric tensors, it turns out that they

are not needed at all in this particular configuration. All anomalies are already cancelled.

This is a consequence of standard model anomaly cancellation. The formula for Y is

Y = (x− 1

3
)Qa + (x− 1

2
)Qb + xQc + (x− 1)Qd (2.6)

This model has the feature that it can be realized entirely in terms of oriented strings,

which is of course implies that x is not fixed (the converse is not true because one can

allow U(1) anti-symmetric tensors; they do not yield massless particles and hence give no

restriction on x). By construction, this is the minimal realization of the standard model

in terms of oriented strings. It has three mirror lepton doublet pairs, which could be

2In the actual search we have relaxed this condition slightly, and allowed a brane d that just yields

anti-neutrinos.

– 8 –

not cancel in each sector separately, and hence the two components of the would-be Y -

boson must have Green-Schwarz couplings to axions that give it a mass. In principle

these contributions could cancel for Y , but that seems improbable, and hence reduces the

statistical likelihood of this sort of configuration in a search. Furthermore lepton Yukawa

couplings are perturbatively forbidden in such models.

The same four options exist for left-handed anti-neutrinos, but we do not impose any

requirements on our construction with regard to their multiplicity. If they come from

strings not attached to any of the previous branes, we regard them as part of the hidden

sector.2 Furthermore, we do not allow Y to have contributions from branes that do not

couple to charged quarks and leptons. Otherwise one could extend Y by arbitrarily large

linear combinations that only contribute non-chiral states. This implies that we regard a

brane configuration as complete (prior to tadpole cancellation) if all charged quark and

leptons exist chirally, and if all cubic U(N) anomalies cancel. This configuration may

already contain a few candidate right-handed neutrinos, and additional ones may appear,

after tadpole cancellation, from hidden sector states, or strings between the standard model

and the hidden sector.

Clearly this still leaves a huge number of possibilities to realize this kind of configura-

tion, but there is an obvious maximally economical choice, namely identifying all branes of

equal charge with each other, and the brane with opposite charge with its conjugate. This

then results in a U(3)× U(2)× U(1)× U(1) model with the following chiral spectrum

3 × (V, V ∗, 0, 0)

3 × (V ∗, 0, V, 0)

3 × (V ∗, 0, 0, V )

6 × (0, V, V ∗, 0)

3 × (0, V, 0, V ∗
)

3 × (0, 0, V, V ∗
)

Although we anticipated the possible need for anti-symmetric tensors, it turns out that they

are not needed at all in this particular configuration. All anomalies are already cancelled.

This is a consequence of standard model anomaly cancellation. The formula for Y is

Y = (x− 1

3
)Qa + (x− 1

2
)Qb + xQc + (x− 1)Qd (2.6)

This model has the feature that it can be realized entirely in terms of oriented strings,

which is of course implies that x is not fixed (the converse is not true because one can

allow U(1) anti-symmetric tensors; they do not yield massless particles and hence give no

restriction on x). By construction, this is the minimal realization of the standard model

in terms of oriented strings. It has three mirror lepton doublet pairs, which could be

2In the actual search we have relaxed this condition slightly, and allowed a brane d that just yields

anti-neutrinos.
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Results

Searched all MIPFs with < 1750 boundaries
(4557 of 5403 MIPFs)

19345 chirally different SM embeddings found 

Tadpole conditions solved in 1900 cases                   
(18 “old” ones)
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Statistics
Value of x Total

0 21303612

1/2 124006839*

1 12912

-1/2, 3/2 0

any 1250080

*Previous search:   45051902
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Realizations

Bottom-Up configuration: any brane 
configuration that yields 3 chiral families

Top-Down configuration: any such 
configuration realized with boundary states

String Vacuum: Top-down configuration 
with tadpole cancellation (with or without 
hidden sector)
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Bottom-up vs Top-down (1)

and the latter in table (5). In both tables, the number of bottom-up configurations
satisfying the criteria is listed in column 5. In column 6, we list the number of
those bottom-up configurations that was encountered in our search, and in column
7 the total number of occurrences of the given class11of configurations, summed
over all three or four brane combination considered in the search. This is the same
information as in column 6 of table (3), but with the limit on the numbers M, N

and H imposed. In column 8 we list the number of distinct configurations for which
the tadpole conditions were solved. In these tables the top-down spectra are only
distinguished on the basis of criteria that can be directly compared to the bottom-up
approach. Brane unification is ignored and the masses of U(1) vector bosons are not
taken into account. This means that some models that were distinct in the previous
table are considered identical here, because they merely differ by branes that are
not on top of each other, or by different embeddings of an additional massless U(1)
factor. This affects column 6 and column 8, but not column 7, which is simply the
sum of all occurrences within the class. Note for example the in the class (x = ∗,
UUUU, c=C, d=(C,D)) there is a total number of occurrences of 521372 in both
tables. This implies that all models satisfy the constraints on the number of Higgs,
mirrors and neutrinos. In table 1 these models correspond to 32 distinct cases with 7
distinct solutions, whereas in table 4 they form only 7 distinct models with 3 distinct
solutions.

Table 4: Bottom-up versus Top-down results for spectra with at most three mir-

ror pairs, at most three MSSM Higgs pairs, and at most six singlet neutrinos.

x Config. stack c stack d Bottom-up Top-down Occurrences Solved

1/2 UUUU C,D C,D 27 9 5194 1
1/2 UUUU C C,D 103441 434 1056708 31
1/2 UUUU C C 10717308 156 428799 24
1/2 UUUU C F 351 0 0 0
1/2 UUU C,D - 4 1 24 0
1/2 UUU C - 215 5 13310 2
1/2 UUUR C,D C,D 34 5 3888 1
1/2 UUUR C C,D 185520 221 2560681 31
1/2 USUU C,D C,D 72 7 6473 2
1/2 USUU C C,D 153436 283 3420508 33
1/2 USUU C C 10441784 125 4464095 27
1/2 USUU C F 184 0 0 0

Continued on next page

11By “class” we mean here all brane configurations that match the criteria in the first four
columns.
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≤ 3 CP-chiral mirror pairs
≤ 3 CP-chiral Susy Higgs pairs
≤ 6 CP-chiral singlets (right-handed neutrinos)
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Table 4 – continued from previous page

x Config. stack c stack d Bottom-up Top-down Occurrences Solved

1/2 USU C - 104 2 222 0
1/2 USU C,D - 8 1 4881 1
1/2 USUR C C,D 54274 31 49859327 19
1/2 USUR C,D C,D 36 2 858330 2
0 UUUU C,D C,D 5 5 4530 2
0 UUUU C C,D 8355 44 54102 2
0 UUUU D C,D 14 2 4368 0
0 UUUU C C 2890537 127 666631 9
0 UUUU C D 36304 16 6687 0
0 UUU C - 222 2 15440 1
0 UUUR C,D C 3702 39 171485 4
0 UUUR C C 5161452 289 4467147 32
0 UUUR D C 8564 22 50748 0
0 UUR C - 58 2 233071 2
0 UURR C C 24091 17 8452983 17
1 UUUU C,D C,D 4 1 1144 1
1 UUUU C C,D 16 5 10714 0
1 UUUU D C,D 42 3 3328 0
1 UUUU C D 870 0 0 0
1 UUUR C,D D 34 1 1024 0
1 UUUR C D 609 1 640 0
3/2 UUUU C D 9 0 0 0
3/2 UUUU C,D D 1 0 0 0
3/2 UUUU C, D C 10 0 0 0
3/2 UUUU C,D C,D 2 0 0 0
∗ UUUU C,D C,D 2 2 5146 1
∗ UUUU C C,D 10 7 521372 3
∗ UUUU D C,D 1 1 116 0
∗ UUUU C D 3 1 4 0

Some bottom-up solutions can exist for more than one value of Y . The most obvious
example is the class x = ∗, which can exist for all values of Y . In making the
comparison we have used the actual massless linear combination of Y allowed by the
axion-gauge boson couplings in the top-down Gepner model. Only for the x = ∗ case
we have ignored the precise form of Y , because this would split this class into an
indefinite number of subclasses. However, in those cases where Y was of the form
corresponding to x = 0, 1

2 or 1, we have compared those top-down models twice:
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Most frequent models
tensor and “T” that both occur. Column 6 gives the value of x, and the last column
indicates if a solution to the tadpole conditions was found (“Y”), and if a solution
was found without additional branes (“Y!”).

Table 6: The list of 19345 models sorted according to frequency

nr Total occ. MIPFs Chan-Paton Group spectrum x Solved

1 9801844 648 U(3)× Sp(2)× Sp(6)× U(1) VVVV 1/2 Y!
2 8479808(16227372) 675 U(3)× Sp(2)× Sp(2)× U(1) VVVV 1/2 Y!
3 5775296 821 U(4)× Sp(2)× Sp(6) VVV 1/2 Y!
4 4810698 868 U(4)× Sp(2)× Sp(2) VVV 1/2 Y!
5 4751603 554 U(3)× Sp(2)×O(6)× U(1) VVVV 1/2 Y!
6 4584392 751 U(4)× Sp(2)×O(6) VVV 1/2 Y
7 4509752(9474494) 513 U(3)× Sp(2)×O(2)× U(1) VVVV 1/2 Y!
8 3744864 690 U(4)× Sp(2)×O(2) VVV 1/2 Y!
9 3606292 467 U(3)× Sp(2)× Sp(6)× U(3) VVVV 1/2 Y
10 3093933 623 U(6)× Sp(2)× Sp(6) VVV 1/2 Y
11 2717632 461 U(3)× Sp(2)× Sp(2)× U(3) VVVV 1/2 Y!
12 2384626 560 U(6)× Sp(2)×O(6) VVV 1/2 Y
13 2253928 669 U(6)× Sp(2)× Sp(2) VVV 1/2 Y!
14 1803909 519 U(6)× Sp(2)×O(2) VVV 1/2 Y!
15 1676493 517 U(8)× Sp(2)× Sp(6) VVV 1/2 Y
16 1674416 384 U(3)× Sp(2)×O(6)× U(3) VVVV 1/2 Y
17 1654086 340 U(3)× Sp(2)× U(3)× U(1) VVVV 1/2 Y
18 1654086 340 U(3)× Sp(2)× U(3)× U(1) VVVV 1/2 Y
19 1642669 360 U(3)× Sp(2)× Sp(6)× U(5) VVVV 1/2 Y
20 1486664 346 U(3)× Sp(2)×O(2)× U(3) VVVV 1/2 Y!
21 1323363 476 U(8)× Sp(2)×O(6) VVV 1/2 Y
22 1135702 350 U(3)× Sp(2)× Sp(2)× U(5) VVVV 1/2 Y!
23 1050764 532 U(8)× Sp(2)× Sp(2) VVV 1/2 Y
24 956980 421 U(8)× Sp(2)×O(2) VVV 1/2 Y
25 950003 449 U(10)× Sp(2)× Sp(6) VVV 1/2 Y
26 910132 51 U(3)× U(2)× Sp(2)×O(1) AAVV 0 Y
. . .

34 869428(1096682) 246 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y!
153 115466 335 U(4)× U(2)× U(2) VVV 1/2 Y
225 71328 167 U(3)× U(3)× U(3) VVV 1/3
303 47664 18 U(3)× U(2)× U(1)× U(1) AAVA 1/2 Y
304 47664 18 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
343 40922(49794) 63 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y!

Continued on next page
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Most frequent models
tensor and “T” that both occur. Column 6 gives the value of x, and the last column
indicates if a solution to the tadpole conditions was found (“Y”), and if a solution
was found without additional branes (“Y!”).

Table 6: The list of 19345 models sorted according to frequency

nr Total occ. MIPFs Chan-Paton Group spectrum x Solved

1 9801844 648 U(3)× Sp(2)× Sp(6)× U(1) VVVV 1/2 Y!
2 8479808(16227372) 675 U(3)× Sp(2)× Sp(2)× U(1) VVVV 1/2 Y!
3 5775296 821 U(4)× Sp(2)× Sp(6) VVV 1/2 Y!
4 4810698 868 U(4)× Sp(2)× Sp(2) VVV 1/2 Y!
5 4751603 554 U(3)× Sp(2)×O(6)× U(1) VVVV 1/2 Y!
6 4584392 751 U(4)× Sp(2)×O(6) VVV 1/2 Y
7 4509752(9474494) 513 U(3)× Sp(2)×O(2)× U(1) VVVV 1/2 Y!
8 3744864 690 U(4)× Sp(2)×O(2) VVV 1/2 Y!
9 3606292 467 U(3)× Sp(2)× Sp(6)× U(3) VVVV 1/2 Y
10 3093933 623 U(6)× Sp(2)× Sp(6) VVV 1/2 Y
11 2717632 461 U(3)× Sp(2)× Sp(2)× U(3) VVVV 1/2 Y!
12 2384626 560 U(6)× Sp(2)×O(6) VVV 1/2 Y
13 2253928 669 U(6)× Sp(2)× Sp(2) VVV 1/2 Y!
14 1803909 519 U(6)× Sp(2)×O(2) VVV 1/2 Y!
15 1676493 517 U(8)× Sp(2)× Sp(6) VVV 1/2 Y
16 1674416 384 U(3)× Sp(2)×O(6)× U(3) VVVV 1/2 Y
17 1654086 340 U(3)× Sp(2)× U(3)× U(1) VVVV 1/2 Y
18 1654086 340 U(3)× Sp(2)× U(3)× U(1) VVVV 1/2 Y
19 1642669 360 U(3)× Sp(2)× Sp(6)× U(5) VVVV 1/2 Y
20 1486664 346 U(3)× Sp(2)×O(2)× U(3) VVVV 1/2 Y!
21 1323363 476 U(8)× Sp(2)×O(6) VVV 1/2 Y
22 1135702 350 U(3)× Sp(2)× Sp(2)× U(5) VVVV 1/2 Y!
23 1050764 532 U(8)× Sp(2)× Sp(2) VVV 1/2 Y
24 956980 421 U(8)× Sp(2)×O(2) VVV 1/2 Y
25 950003 449 U(10)× Sp(2)× Sp(6) VVV 1/2 Y
26 910132 51 U(3)× U(2)× Sp(2)×O(1) AAVV 0 Y
. . .

34 869428(1096682) 246 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y!
153 115466 335 U(4)× U(2)× U(2) VVV 1/2 Y
225 71328 167 U(3)× U(3)× U(3) VVV 1/3
303 47664 18 U(3)× U(2)× U(1)× U(1) AAVA 1/2 Y
304 47664 18 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
343 40922(49794) 63 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y!

Continued on next page
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Curiosities
Table 6 – continued from previous page

nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

411 31000 17 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
417 30396 26 U(3)× U(2)× U(1)× U(1) AAVS 0 Y
495 23544 14 U(3)× U(2)× U(1)× U(1) AAVS 0
509 22156 17 U(3)× U(2)× U(1)× U(1) AAVS 0 Y
519 21468 13 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
543 20176(*) 38 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
617 16845 296 U(5)×O(1) AV 0 Y
671 14744(*) 29 U(3)× U(2)× U(1)× U(1) VVVV 1/2
761 12067 26 U(3)× U(2)× U(1) AAS 1/2 Y!
762 12067 26 U(3)× U(2)× U(1) AAS 0 Y!
1024 7466 7 U(3)× U(2)× U(2)× U(1) VAAV 1
1125 6432 87 U(3)× U(3)× U(3) VVV * Y
1201 5764(*) 20 U(3)× U(2)× U(1)× U(1) VVVV 1/2
1356 5856(*) 10 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
1725 2864 14 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
1886 2381 115 U(6)× Sp(2) AV 1/2 Y!
1887 2381 115 U(6)× Sp(2) AV 0 Y!
1888 2381 115 U(6)× Sp(2) AV 1/2 Y!
2624 1248 3 U(3)× U(2)× U(2)× U(3) VAAV 1
2880 1049 34 U(5)× U(1) AS 1/2 Y!
2881 1049 34 U(5)× U(1) AS 0 Y!
2807 1096(*) 8 U(3)× U(2)× U(1)× U(1) VVVV 1/2
2919 1024 2 U(3)× U(2)× U(2)×O(3) VAAV 1
4485 400(*) 2 U(3)× U(2)× U(1)× U(1) VVVV 1/2
4727 352 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2
4825 332 20 U(4)× U(2)× U(2) VAS 1/2 Y!
4902 320(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
4996 304 30 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y
6993 128(**) 1 U(3)× U(2)× U(2)× U(1) VVVV 1/2
7053 124 4 U(3)× U(2)× U(2)× U(1) VASV 1/2 Y!
7241 116(**) 4 U(3)× U(2)× U(2)× U(1) VVVV 1/2
7280 114 3 U(3)× Sp(2)× U(1) AVS 1/2
7464 108 1 U(3)× Sp(2)× U(1) VVT 1/2
7905 96(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2
8747 68(**) 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2
8773 68 4 U(3)× U(2)× U(1)× U(1) VVVV 1/2
11347 32(**) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

Continued on next page
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Table 6 – continued from previous page

nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

11462 32(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

12327 24 1 U(3)× U(3)× U(3) VVV 1/2

15824 8 1 U(3)× U(2)× U(1)× U(1) VVVV 0

15846 8 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

16674 6 1 U(3)× U(2)× U(1) AVT 1/2 Y!

17055 4 1 U(3)× U(2)× U(1)× U(1) VVVV *

19345 1 1 U(5)× U(2)×O(3) ATV 0

The first 25 models are all relatives of the U(3)×Sp(2)×U(1)×U(1) models that

dominated the search results of [12]. The variations include replacing the third factor

by O(2) or Sp(2), absorbing the family multiplicity of some of the quarks or leptons in

the Chan-Paton multiplicities of the c and d branes, unifying the baryon and lepton

brane to get a Pati-Salam-like structure, and other brane unifications. Models 17

and 18 occur with the same frequency because they are closely related. They only

differ by a traceless generator diag(
1
3 ,

1
3 ,−

2
3) from the U(3) factor contributing to Y ,

changing the distribution of some quarks and leptons. There are several other cases of

closely related models with identical frequencies, and one such set, nrs. 1886 . . . 1888

will be discussed in more detail in section 6.5. In the bottom part of the table we

display several lines of special interest, which will be discussed in more detail below.

Entry nr. 26 in the table is the first one that cannot be viewed as a relative of

the “Madrid model”. It has x = 0 and three anti-symmetric tensors on the QCD

and the weak brane. It can be viewed as a broken SU(5) model.

There exist several infinite series of models. In the top of the list one can observe

the beginning of the series U(2n) × Sp(2) × G, n > 2, where G can be O(2), O(6),

Sp(2) or Sp(6), with a chiral spectrum consisting of
6

Nc
(V, 0, V ) + 3(V, V, 0).

In column 2 we indicate between parentheses if a certain type of model was

searched for in [12], and how often it was found. It is interesting to compare this

with table (1). Observe that the number of four-stack configurations we consider in

the present paper is considerably smaller than in [12], but nevertheless we recover

a large fraction of the standard model configurations of that paper. For example,

in [12], 2.8× 1015 configurations of type USUS were examined, in the present paper

only 26× 1014, ten times less. Nevertheless, we have already found about half of the

standard model configurations. This is because the number of brane configurations

is dominated by cases with a large number of branes, but very few standard model

spectra. This in particular true for the charge conjugation invariant (the simplest

case, for which the boundary coefficients were derived by Cardy [29]) which in essen-

tially all cases has by far the largest number of boundaries. The explanation may be
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Curiosities
Table 6 – continued from previous page

nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

411 31000 17 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
417 30396 26 U(3)× U(2)× U(1)× U(1) AAVS 0 Y
495 23544 14 U(3)× U(2)× U(1)× U(1) AAVS 0
509 22156 17 U(3)× U(2)× U(1)× U(1) AAVS 0 Y
519 21468 13 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
543 20176(*) 38 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
617 16845 296 U(5)×O(1) AV 0 Y
671 14744(*) 29 U(3)× U(2)× U(1)× U(1) VVVV 1/2
761 12067 26 U(3)× U(2)× U(1) AAS 1/2 Y!
762 12067 26 U(3)× U(2)× U(1) AAS 0 Y!
1024 7466 7 U(3)× U(2)× U(2)× U(1) VAAV 1
1125 6432 87 U(3)× U(3)× U(3) VVV * Y
1201 5764(*) 20 U(3)× U(2)× U(1)× U(1) VVVV 1/2
1356 5856(*) 10 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
1725 2864 14 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
1886 2381 115 U(6)× Sp(2) AV 1/2 Y!
1887 2381 115 U(6)× Sp(2) AV 0 Y!
1888 2381 115 U(6)× Sp(2) AV 1/2 Y!
2624 1248 3 U(3)× U(2)× U(2)× U(3) VAAV 1
2880 1049 34 U(5)× U(1) AS 1/2 Y!
2881 1049 34 U(5)× U(1) AS 0 Y!
2807 1096(*) 8 U(3)× U(2)× U(1)× U(1) VVVV 1/2
2919 1024 2 U(3)× U(2)× U(2)×O(3) VAAV 1
4485 400(*) 2 U(3)× U(2)× U(1)× U(1) VVVV 1/2
4727 352 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2
4825 332 20 U(4)× U(2)× U(2) VAS 1/2 Y!
4902 320(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
4996 304 30 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y
6993 128(**) 1 U(3)× U(2)× U(2)× U(1) VVVV 1/2
7053 124 4 U(3)× U(2)× U(2)× U(1) VASV 1/2 Y!
7241 116(**) 4 U(3)× U(2)× U(2)× U(1) VVVV 1/2
7280 114 3 U(3)× Sp(2)× U(1) AVS 1/2
7464 108 1 U(3)× Sp(2)× U(1) VVT 1/2
7905 96(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2
8747 68(**) 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2
8773 68 4 U(3)× U(2)× U(1)× U(1) VVVV 1/2
11347 32(**) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

Continued on next page
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nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

11462 32(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

12327 24 1 U(3)× U(3)× U(3) VVV 1/2

15824 8 1 U(3)× U(2)× U(1)× U(1) VVVV 0

15846 8 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

16674 6 1 U(3)× U(2)× U(1) AVT 1/2 Y!

17055 4 1 U(3)× U(2)× U(1)× U(1) VVVV *

19345 1 1 U(5)× U(2)×O(3) ATV 0

The first 25 models are all relatives of the U(3)×Sp(2)×U(1)×U(1) models that

dominated the search results of [12]. The variations include replacing the third factor

by O(2) or Sp(2), absorbing the family multiplicity of some of the quarks or leptons in

the Chan-Paton multiplicities of the c and d branes, unifying the baryon and lepton

brane to get a Pati-Salam-like structure, and other brane unifications. Models 17

and 18 occur with the same frequency because they are closely related. They only

differ by a traceless generator diag(
1
3 ,

1
3 ,−

2
3) from the U(3) factor contributing to Y ,

changing the distribution of some quarks and leptons. There are several other cases of

closely related models with identical frequencies, and one such set, nrs. 1886 . . . 1888

will be discussed in more detail in section 6.5. In the bottom part of the table we

display several lines of special interest, which will be discussed in more detail below.

Entry nr. 26 in the table is the first one that cannot be viewed as a relative of

the “Madrid model”. It has x = 0 and three anti-symmetric tensors on the QCD

and the weak brane. It can be viewed as a broken SU(5) model.

There exist several infinite series of models. In the top of the list one can observe

the beginning of the series U(2n) × Sp(2) × G, n > 2, where G can be O(2), O(6),

Sp(2) or Sp(6), with a chiral spectrum consisting of
6

Nc
(V, 0, V ) + 3(V, V, 0).

In column 2 we indicate between parentheses if a certain type of model was

searched for in [12], and how often it was found. It is interesting to compare this

with table (1). Observe that the number of four-stack configurations we consider in

the present paper is considerably smaller than in [12], but nevertheless we recover

a large fraction of the standard model configurations of that paper. For example,

in [12], 2.8× 1015 configurations of type USUS were examined, in the present paper

only 26× 1014, ten times less. Nevertheless, we have already found about half of the

standard model configurations. This is because the number of brane configurations

is dominated by cases with a large number of branes, but very few standard model

spectra. This in particular true for the charge conjugation invariant (the simplest

case, for which the boundary coefficients were derived by Cardy [29]) which in essen-

tially all cases has by far the largest number of boundaries. The explanation may be
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Curiosities
Table 6 – continued from previous page

nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

411 31000 17 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
417 30396 26 U(3)× U(2)× U(1)× U(1) AAVS 0 Y
495 23544 14 U(3)× U(2)× U(1)× U(1) AAVS 0
509 22156 17 U(3)× U(2)× U(1)× U(1) AAVS 0 Y
519 21468 13 U(3)× U(2)× U(1)× U(1) AAVA 0 Y
543 20176(*) 38 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
617 16845 296 U(5)×O(1) AV 0 Y
671 14744(*) 29 U(3)× U(2)× U(1)× U(1) VVVV 1/2
761 12067 26 U(3)× U(2)× U(1) AAS 1/2 Y!
762 12067 26 U(3)× U(2)× U(1) AAS 0 Y!
1024 7466 7 U(3)× U(2)× U(2)× U(1) VAAV 1
1125 6432 87 U(3)× U(3)× U(3) VVV * Y
1201 5764(*) 20 U(3)× U(2)× U(1)× U(1) VVVV 1/2
1356 5856(*) 10 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
1725 2864 14 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
1886 2381 115 U(6)× Sp(2) AV 1/2 Y!
1887 2381 115 U(6)× Sp(2) AV 0 Y!
1888 2381 115 U(6)× Sp(2) AV 1/2 Y!
2624 1248 3 U(3)× U(2)× U(2)× U(3) VAAV 1
2880 1049 34 U(5)× U(1) AS 1/2 Y!
2881 1049 34 U(5)× U(1) AS 0 Y!
2807 1096(*) 8 U(3)× U(2)× U(1)× U(1) VVVV 1/2
2919 1024 2 U(3)× U(2)× U(2)×O(3) VAAV 1
4485 400(*) 2 U(3)× U(2)× U(1)× U(1) VVVV 1/2
4727 352 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2
4825 332 20 U(4)× U(2)× U(2) VAS 1/2 Y!
4902 320(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y
4996 304 30 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y
6993 128(**) 1 U(3)× U(2)× U(2)× U(1) VVVV 1/2
7053 124 4 U(3)× U(2)× U(2)× U(1) VASV 1/2 Y!
7241 116(**) 4 U(3)× U(2)× U(2)× U(1) VVVV 1/2
7280 114 3 U(3)× Sp(2)× U(1) AVS 1/2
7464 108 1 U(3)× Sp(2)× U(1) VVT 1/2
7905 96(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2
8747 68(**) 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2
8773 68 4 U(3)× U(2)× U(1)× U(1) VVVV 1/2
11347 32(**) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

Continued on next page
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Table 6 – continued from previous page

nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

11462 32(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

12327 24 1 U(3)× U(3)× U(3) VVV 1/2

15824 8 1 U(3)× U(2)× U(1)× U(1) VVVV 0

15846 8 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

16674 6 1 U(3)× U(2)× U(1) AVT 1/2 Y!

17055 4 1 U(3)× U(2)× U(1)× U(1) VVVV *

19345 1 1 U(5)× U(2)×O(3) ATV 0

The first 25 models are all relatives of the U(3)×Sp(2)×U(1)×U(1) models that

dominated the search results of [12]. The variations include replacing the third factor

by O(2) or Sp(2), absorbing the family multiplicity of some of the quarks or leptons in

the Chan-Paton multiplicities of the c and d branes, unifying the baryon and lepton

brane to get a Pati-Salam-like structure, and other brane unifications. Models 17

and 18 occur with the same frequency because they are closely related. They only

differ by a traceless generator diag(
1
3 ,

1
3 ,−

2
3) from the U(3) factor contributing to Y ,

changing the distribution of some quarks and leptons. There are several other cases of

closely related models with identical frequencies, and one such set, nrs. 1886 . . . 1888

will be discussed in more detail in section 6.5. In the bottom part of the table we

display several lines of special interest, which will be discussed in more detail below.

Entry nr. 26 in the table is the first one that cannot be viewed as a relative of

the “Madrid model”. It has x = 0 and three anti-symmetric tensors on the QCD

and the weak brane. It can be viewed as a broken SU(5) model.

There exist several infinite series of models. In the top of the list one can observe

the beginning of the series U(2n) × Sp(2) × G, n > 2, where G can be O(2), O(6),

Sp(2) or Sp(6), with a chiral spectrum consisting of
6

Nc
(V, 0, V ) + 3(V, V, 0).

In column 2 we indicate between parentheses if a certain type of model was

searched for in [12], and how often it was found. It is interesting to compare this

with table (1). Observe that the number of four-stack configurations we consider in

the present paper is considerably smaller than in [12], but nevertheless we recover

a large fraction of the standard model configurations of that paper. For example,

in [12], 2.8× 1015 configurations of type USUS were examined, in the present paper

only 26× 1014, ten times less. Nevertheless, we have already found about half of the

standard model configurations. This is because the number of brane configurations

is dominated by cases with a large number of branes, but very few standard model

spectra. This in particular true for the charge conjugation invariant (the simplest

case, for which the boundary coefficients were derived by Cardy [29]) which in essen-

tially all cases has by far the largest number of boundaries. The explanation may be
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Pati-Salam

Type:       U  S  S 
Dimension   4  2  2
      5 x ( V ,0 ,V ) chirality -3
      3 x ( V ,V ,0 ) chirality 3
      2 x ( Ad,0 ,0 ) chirality 0
      2 x ( 0 ,A ,0 ) chirality 0
      7 x ( 0 ,0 ,A ) chirality 0
      4 x ( A ,0 ,0 ) chirality 0
      2 x ( 0 ,S ,0 ) chirality 0
      5 x ( 0 ,0 ,S ) chirality 0
      7 x ( 0 ,V ,V ) chirality 0
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Pati-Salam (2)

Type:       U  U  U  U  U  S  U  O  U  O 
Dimension   4  2  2  6  2  2  2  2  2  2
      4 x ( V ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 2
      1 x ( V ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 1
      1 x ( V ,0 ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -1
      2 x ( V ,0 ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -2
      2 x ( 0 ,V ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -2
      2 x ( V ,0 ,0 ,0 ,V*,0 ,0 ,0 ,0 ,0 ) chirality 0
      4 x ( V ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,S ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( A ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      1 x ( Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,0 ,S ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      4 x ( 0 ,V ,0 ,0 ,0 ,0 ,V*,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,V ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,0 ,V ,0 ,0 ,0 ,V*,0 ,0 ,0 ) chirality 0
      1 x ( 0 ,Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,0 ,V*,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ) chirality 0
      1 x ( 0 ,0 ,Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,V ,0 ,0 ,0 ,0 ,0 ,0 ,V*,0 ) chirality 0
      2 x ( 0 ,0 ,V ,0 ,0 ,0 ,0 ,0 ,V ,0 ) chirality 0
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Pati-Salam (2)

Type:       U  U  U  U  U  S  U  O  U  O 
Dimension   4  2  2  6  2  2  2  2  2  2
      4 x ( V ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 2
      1 x ( V ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 1
      1 x ( V ,0 ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -1
      2 x ( V ,0 ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -2
      2 x ( 0 ,V ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -2
      2 x ( V ,0 ,0 ,0 ,V*,0 ,0 ,0 ,0 ,0 ) chirality 0
      4 x ( V ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,S ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( A ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      1 x ( Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,0 ,S ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      4 x ( 0 ,V ,0 ,0 ,0 ,0 ,V*,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,V ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,0 ,V ,0 ,0 ,0 ,V*,0 ,0 ,0 ) chirality 0
      1 x ( 0 ,Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,0 ,V*,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ) chirality 0
      1 x ( 0 ,0 ,Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,V ,0 ,0 ,0 ,0 ,0 ,0 ,V*,0 ) chirality 0
      2 x ( 0 ,0 ,V ,0 ,0 ,0 ,0 ,0 ,V ,0 ) chirality 0
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Trinification

U  U  U  O  O  U  U  O  U  O 
3  3  3  4  2  6 12 12 12  4

        3 x  (V ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 3
         3 x  (V ,0 ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -3
         3 x  (0 ,V ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -3
         1 x  (0 ,0 ,0 ,V ,0 ,V ,0 ,0 ,0 ,0 ) chirality -1
        1 x  (0 ,0 ,0 ,0 ,0 ,S ,0 ,0 ,0 ,0 ) chirality 1
        5 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ,V ,0 ) chirality 1
        3 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ) chirality 1

         1 x  (0 ,0 ,0 ,0 ,0 ,A ,0 ,0 ,0 ,0 ) chirality -1
         2 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,A ,0 ) chirality -2
        1 x  (0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ,V ,0 ) chirality 1
        1 x  (0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,V ,0 ) chirality 1
        1 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,V ,0 ,0 ) chirality 1

         1 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,V ,0 ) chirality -1
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,V ,V ,0 ,0 ) chirality 1

         1 x  (0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V ,0 ) chirality -1
         1 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,V ) chirality -1
        1 x  (0 ,0 ,0 ,V ,V ,0 ,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,S ,0 ,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,Ad,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,Ad,0 ,0 ,0 ) chirality 0
        3 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ,0 ) chirality 0
        3 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,Ad,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ) chirality 0
        2 x  (0 ,0 ,0 ,0 ,V ,V ,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,V ,0 ,0 ,V ,0 ,0 ) chirality 0
        2 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,V*,0 ) chirality 0
        2 x  (0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V*,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ,V ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V ) chirality 0Sunday, 2 May, 2010



Trinification

U  U  U  O  O  U  U  O  U  O 
3  3  3  4  2  6 12 12 12  4

        3 x  (V ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 3
         3 x  (V ,0 ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -3
         3 x  (0 ,V ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -3
         1 x  (0 ,0 ,0 ,V ,0 ,V ,0 ,0 ,0 ,0 ) chirality -1
        1 x  (0 ,0 ,0 ,0 ,0 ,S ,0 ,0 ,0 ,0 ) chirality 1
        5 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ,V ,0 ) chirality 1
        3 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ) chirality 1

         1 x  (0 ,0 ,0 ,0 ,0 ,A ,0 ,0 ,0 ,0 ) chirality -1
         2 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,A ,0 ) chirality -2
        1 x  (0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ,V ,0 ) chirality 1
        1 x  (0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,V ,0 ) chirality 1
        1 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,V ,0 ,0 ) chirality 1

         1 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,V ,0 ) chirality -1
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,V ,V ,0 ,0 ) chirality 1

         1 x  (0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V ,0 ) chirality -1
         1 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,V ) chirality -1
        1 x  (0 ,0 ,0 ,V ,V ,0 ,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,S ,0 ,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,Ad,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,Ad,0 ,0 ,0 ) chirality 0
        3 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ,0 ) chirality 0
        3 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,Ad,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ) chirality 0
        2 x  (0 ,0 ,0 ,0 ,V ,V ,0 ,0 ,0 ,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,V ,0 ,0 ,V ,0 ,0 ) chirality 0
        2 x  (0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,V*,0 ) chirality 0
        2 x  (0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V*,0 ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ,V ) chirality 0
        1 x  (0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V ) chirality 0Sunday, 2 May, 2010
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(flipped) SU(5) models
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SU(5)

      3 x  (A ,0 ,0 ) chirality 3
      11 x  (V ,V ,0 ) chirality -3
      8 x  (S ,0 ,0 ) chirality 0
      3 x  (Ad,0 ,0 ) chirality 0
      1 x  (0 ,A ,0 ) chirality 0
      3 x  (0 ,V ,V ) chirality 0
      8 x  (V ,0 ,V ) chirality 0
      2 x  (0 ,S ,0 ) chirality 0
      4 x  (0 ,0 ,S ) chirality 0
      4 x  (0 ,0 ,A ) chirality 0

Type:       U  O  O 
Dimension   5  1  1

Note: gauge group is just SU(5)!
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Flipped SU(5)

  
                    

     11 x  (0 ,S ) chirality 3
      3 x  (A ,0 ) chirality 3

       5 x  (V ,V ) chirality -3
      8 x  (S ,0 ) chirality 0
      9 x  (Ad,0 ) chirality 0
      5 x  (0 ,Ad) chirality 0
      4 x  (0 ,A ) chirality 0
     12 x  (V ,V*) chirality 0

Type:       U  U   
Dimension   5  1  

Y =
1
6
Qa +

1
2
Qc

Sunday, 2 May, 2010



Flipped SU(5)

  
                    

     11 x  (0 ,S ) chirality 3
      3 x  (A ,0 ) chirality 3

       5 x  (V ,V ) chirality -3
      8 x  (S ,0 ) chirality 0
      9 x  (Ad,0 ) chirality 0
      5 x  (0 ,Ad) chirality 0
      4 x  (0 ,A ) chirality 0
     12 x  (V ,V*) chirality 0

Type:       U  U   
Dimension   5  1  

Y =
1
6
Qa +

1
2
Qc

Non-trivial U(1) anomaly cancellation!
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SU(5) x U(1)

  
                    

     11 x  (0 ,S ) chirality 3
      3 x  (A ,0 ) chirality 3

       5 x  (V ,V ) chirality -3
      8 x  (S ,0 ) chirality 0
      9 x  (Ad,0 ) chirality 0
      5 x  (0 ,Ad) chirality 0
      4 x  (0 ,A ) chirality 0
     12 x  (V ,V*) chirality 0

Type:       U  U   
Dimension   5  1  

Y = −2
3
Qa +

1
2
Qb
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Yukawa couplings

One of the fundamentals in Oi can be substituted with the H
a
α scalar. This will

provide a weak singlet. Moreover as we have seen this vev breaks SU(4)×SU(2)→
SU(3), and if the hypercharge of the scalar is 1/2, then it will provide at the same
time the proper, electroweak symmetry breaking. However, the same considerations
as above indicate than no reasonable mass terms are generated.

The final case to be considered is the possibility to include a scalar vev in the
antisymmetric representation, R

αβ. In this case we must start from SU(5), which
the vev will break to SU(3). Upon choosing a convenient basis this vev is

∼ R
αβ
∼





0 1 0 0 0
−1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




(7.9)

We also assume that there are fundamentals F
α with a vev in the 4 and 5 directions,

so that it does not break SU(3) further. Then we may write the following operators

O4 = (Q̄c)αqβγF
α
R

βγ
, O5 = �

αβγδ�(Q̄c)αqβγρδ� �α�β�γ�δ���F
α�

R
β�γ�

R
δ���

(7.10) hh7

The operatorO4 provides masses for the various singlets after the breaking. Operator
O5 provides masses for the standard quarks. However the two extra triplets emerging
from the of SU(5) will remain massless.

It therefore seems that orientifold models with anti-quarks in antisymmetric
representations are phenomenologically untenable.

7.2 Masses in SU(5) and flipped SU(5) vacuaUFiveMasses

The case of standard U(5) group deserves special attention17. The SM particles are in
the antisymmetric representation ψ

αβ as well as the anti-fundamental, ψα. The min-
imal set of scalar needed for symmetry breaking is an adjoint Φα

β whose expectation
value diag(2V, 2V, 2V,−3V,−3V,−3V ) breaks SU(5)→ SU(3)×SU(2)×U(1)Y and
a fundamental, H

α whose expectation value (0, 0, 0, 0, v) breaks SU(2) × U(1)Y →

U(1)em The standard mass terms

O1 ∼ (ψ̄c)αψ
αβ

Hβ , O2 ∼ �αβγδ�(ψ̄
c)αβ

ψ
γδ

H
� (7.11)

give masses to all SM fermions. However here, O2 which gives masses to up-type
quarks is not allowed, since it carries charge +5 under the overall U(1) of the U(5).
This charge can be cancelled by multiplication by �

αβγδ�
H

I
αH

J
β H

K
γ H

K
δ H

L
� , which how-

ever requires the presence of 5 fundamental Higgs scalars with vevs that are aligned,
and of the order of the electroweak scale. However, such a mass is suppressed by a

17Several of the remarks below were independently put forward recently in
bere
[29].
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Standard SU(5) couplings

1-2+1=0 -2-2-1=5

SU(5):               no u,c,t couplings
flipped SU(5):  no d,s,b coupings

Possible ways out:
     * Higher dimension operators
     * Composite condensate with charge 5
     * Instantons	

 	

 	



U(5) brane charges

Requires additional and implausible dynamics
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The unification dilemma

Data suggest: Coupling unification*, no fractional charges

Heterotic string: Wrong scale, fractional charges

             brane models: No unification, fractional charges
                                     No prediction for scale

U(5) brane models: Unification, no fractional charges 
                                  No prediction for scale
                                  No (u,c,t) Yukawa’s

x =
1
2

* assuming gauginos
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Calabi-Yau dependence (1)

8. Dependence of the results on the Calabi-Yau topology

Table 7 lists the MIPFs for which the standard model spectrum was found, and how

often it occurred. The table is ordered according to standard model frequency, that

is the total number of standard model configurations divided by the total number of

three and four brane configurations. Note that this does not take into account tadpole

cancellation, since we have not systematically solved the tadpole conditions for all

standard model configurations. Column 2 gives the MIPF id-number using the same

sequential labelling used in [12]. We can provide further details on these MIPFs on

request. To help identifying them, we list in columns 3,4 and 5 the resulting heterotic

Calabi-Yau spectrum (Hodge numbers and the number of E6 singlets). In columns

6,7 and 8 we list the total number of configurations for each value of x. The last

column gives the frequency.

Table 7: Standard model success rate for various MIPFs.

Tensor product MIPF h11 h12 Scalars x = 0 x =
1
2 x = ∗ Success rate

(1,1,1,1,7,16) 30 11 35 207 1698 388 0 2.1× 10
−3

(1,1,1,1,7,16) 31 5 29 207 890 451 0 1.35× 10
−3

(1,4,4,4,4) 53 20 20 150 2386746 250776 0 4.27× 10
−4

(1,4,4,4,4) 54 3 51 213 5400 5328 4248 3.92× 10
−4

(6,6,6,6) 37 3 59 223 0 946432 0 2.79× 10
−4

(1,1,1,1,10,10) 50 12 24 183 1504 508 36 2.63× 10
−4

(1,1,1,1,10,10) 56 4 40 219 244 82 0 2.01× 10
−4

(1,1,1,1,8,13) 5 20 20 140 328 27 0 1.93× 10
−4

(1,1,1,1,7,16) 26 20 20 140 157 14 0 1.72× 10
−4

(1,1,7,7,7) 9 7 55 276 7163 860 0 1.59× 10
−4

(1,1,1,1,7,16) 32 23 23 217 135 20 0 1.56× 10
−4

(1,4,4,4,4) 52 3 51 253 110493 8303 0 1.02× 10
−4

(1,4,4,4,4) 13 3 51 250 238464 168156 0 1.01× 10
−4

(1,1,1,2,4,10) 44 12 24 225 704 248 0 1.01× 10
−4

(1,1,1,1,1,2,10) 21 20 20 142 2 1 0 1.00× 10
−4

(1,1,1,1,1,4,4) 124 0 0 78 729 0 0 9.8× 10
−5

(4,4,10,10) 79 7 43 215 0 57924 0 9.39× 10
−5

(4,4,10,10) 77 5 53 232 0 1068926 0 8.29× 10
−5

(1,4,4,4,4) 77 3 63 248 0 1024 0 8.12× 10
−5

(4,4,10,10) 74 9 57 249 0 1480812 0 8.06× 10
−5

(1,1,1,1,1,2,10) 24 20 20 142 0 0 6 7.87× 10
−5

(1,2,4,4,10) 67 11 35 213 0 14088 1008 7× 10
−5

(1,1,1,1,5,40) 5 20 20 140 303 36 0 6.73× 10
−5

Continued on next page
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Calabi-Yau dependence (2)

Table 7 – continued from previous page

Tensor product MIPF h11 h12 Scalars x = 0 x = 1
2 x = ∗ Success rate

(2,8,8,18) 8 13 49 249 0 1506776 0 6.03× 10−5

(1,1,7,7,7) 7 22 34 256 2700 68 0 5.5× 10−5

(1,4,4,4,4) 78 15 15 186 20270 6792 0 5.39× 10−5

(2,8,8,18) 28 13 49 249 0 670276 0 5.25× 10−5

(1,2,4,4,10) 75 5 41 212 304 580 244 4.87× 10−5

(1,1,7,7,7) 17 10 46 220 1662 624 108 4.76× 10−5

(2,2,2,6,6) 106 3 51 235 0 201728 0 4.74× 10−5

(1,1,1,16,22) 7 20 20 140 244 19 0 4.67× 10−5

(1,2,4,4,10) 65 6 30 196 0 1386 0 4.41× 10−5

(4,4,10,10) 66 6 48 223 0 61568 0 4.33× 10−5

(1,4,4,4,4) 57 4 40 252 0 266328 58320 4.19× 10−5

(1,4,4,4,4) 80 7 37 200 0 1968 1408 4.15× 10−5

(6,6,6,6) 58 3 43 207 0 190464 0 3.93× 10−5

(1,1,1,1,10,10) 36 20 20 140 266 26 6 3.82× 10−5

(1,1,1,4,4,4) 125 12 24 214 351 0 0 3.62× 10−5

(4,4,10,10) 14 4 46 219 0 114702 0 3.3× 10−5

(1,1,1,1,10,10) 33 20 20 140 47 5 0 3.21× 10−5

. . . . . .
(3,3,3,3,3) 6 21 17 234 0 192 0 6.54× 10−6

. . . . . .
(3,3,3,3,3) 4 5 49 258 0 24 0 8.17× 10−7

. . . . . .
(3,3,3,3,3) 2 49 5 258 6 27 6 1.65× 10−9

. . . . . .

The complete table has 1639 cases with non-zero frequency. Therefore we only
present the top of the table here, which starts with a frequency as high as .2%. The
last three entries are modular invariants of the tensor (3, 3, 3, 3, 3), corresponding to
the quintic. They occur much further down the list, but are shown here because
the quintic is a well-studied Calabi-Yau manifold. The lowest non-zero frequency we
encountered is 3.5× 10−12 (for a total of 4 configurations found).

In column 2 an asterisk indicates that at least one tadpole solution was found for
that MIPF in [12]. Note that we did not perform an exhaustive search for tadpole
solutions in the present work. Indeed, if all brane configurations occurring for a given
MIPF are of a type for which the tadpoles have already been solved before (for a
different MIPF), no further attempts are made to solve them. Therefore we cannot
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Conclusions

Classification and construction of bottom-up models

Huge number of bottom-up possibilities

Huge number of top-down models

Still, only small fraction of bottom-up options realized

Results dominated by x=1/2

Very clean SU(5)’s....

....But are they good for anything?
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It’s just one small step:
874 Hodge numbers scanned
at least 30000 known (M. Kreuzer)
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