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“What I'm really interested 
in is whether God could 
have made the world in a 

different way; that is, 
whether the necessity of 

logical simplicity leaves any 
freedom at all.”

A. Einstein



I would like to state a theorem which at present can 
not be based upon anything more than a faith in the 
simplicity, i.e. intelligibility, of nature: There are no 
arbitrary constants that is to say, nature is so 
constituted that it is possible logically to lay down 
such strongly determined laws that within these laws 
only rationally completely determined constants 
occur (not constants, therefore, whose numerical value 
could be changed without destroying the theory)

Quoted by Andre Linde in arXiv:1402.0526



There is a most profound and 
beautiful question associated with 
the observed coupling constant…. It 
is a simple number that has been 
experimentally determined to be 
close to 1/137.03597. It has been a 
mystery ever since it was discovered 
more than fifty years ago, and all 
good theoretical physicists put this 
number up on their wall and worry 
about it. 

R. Feynman
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H. Georgi,
Fourth workshop on Grand Unification, Philadelphia,1983
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in te ra c t io n s  a t  

"".  

M o s t  o f  th e s e  a re  "w h y ? s ".  w h y  s u ( 3 )  x  s u ( 2 )  x

u ( 1 )  ?  w h y  th re e  fa m i l ie s  ( o r  h o w e v e r  m a n y  th e re  a re )  o f  s u a rk s  a n d

le p to n s ?  W h y  d o  L h e  fe rm io n  m a s s e s  a n d  m ix in g  a n g le s  ta k e  th e  v a lu e s

th e y  d o ?  W e  e x p e c t  th e  q u e s t io n s  to  b e  a n s w e re d  in  th e  s t ru c tu re  o f

th e  p h y s ic s  a t  la rg e r  s c a le s .

I t  s e e m s  c le a r  th a t  a t  le a s t  o n e  s u c h  la rg e  s c a le  e x i - s ts ,  th e
1 0

P la n c k  s c a le ,  

"o  

=  1 0 - '  G e v  a s s o c ia t  e r j  i - n  s o m e  w a y  w ith  th e  g ra v i ta -

t io n a l  in te ra c t io n .

A n o th e r  s c a le  w h ic h  j - s  p re s u m e d  to  e x is t  is  th e  g ra n d  u n i f  ic a t  io n

s c a le  M ^,  d t  w h ic h  t , h e  s u ( 3 )  x  s u ( 2 )  x  u ( 1 )  g a u g e  in re ra c r io n s  a p p e a r
G

a s  d i f fe re n t  m a n j- fe s ta t io n s  o f  th e  s a m e  u n i fy in g  g a u g e  s y m m e try ,  s u c h

a s  S U ( 5 ) .  T h e  p h y s ic s  o f  g ra n d  u n i f ic a t io n  c a n  p ro v id e  a  p a r t ia l

a n s l ' r e r  to  s o m e  o f  th e  q u e s t io n s  le f t  u n a n s w e re d  a t  t f , r e r  s c a le s  b y

c o r re la t in g  th e  p ro p e r t ie s  o f  q u a rk s  a n d  le p to n s .  B u t  th e  fu n d a m e n ta l

p ro b le m  s t i l l  r e m a in s :  W h a t  m a k e s  th e  g a u g e  s t ru c tu re  a n d  fe rm io n

c o n L e n t  o f  th e  w o r ld  s p e c ia l  a n d  u n iq u e ?

T h is  p u z z L e ,  w h ic h  r  w i l l  c a l l  th e  "u n iq u e n e s s " p u z z ] . e ,  s im p ly

c a n n o t  b e  a n s w e re d  in  th e  c o n te x t  o f  c o n v e n t io n a l  q u a n tu m  f ie ld

th e o ry  ( Q F T ) .  C o n v e n t io n a l  Q F T  d o e s  n o t  s in g le  o u t  a n y  p a r t j - c u la r  g a u g e

s t ru c tu re .  T h u s  w e  m ig h t  e x p e c l  th e  u n iq u e n e s s  q u e s ; io n  to  b e  a n s w e re d

a t  s o m e  la rg e  s c a le  u u  w h e re  c o n v e n t io n a l  q u a n tu m  f ie ld  th e o ry  b re a k s

d o w n .

I t  is  r e a s o n a b le  to  a s s u m e  th a t  l ln  a n d  t { n  a re  re la te d  in  s o m e

w & Y ,  b e c a u s e  c o n v e n t  io n a l  Q F T  is  in a d e q u a te  in  b o th  c a s e s .  S o m e  o f

th e  w i ld e r  c u r re n t  th e o re t ic a l  id e a s ,  s u c h  a s  e x te n d e d  s u p e rg ra v i ty ,

s u p e rs t r in g s  a n d  K a lu z a - K le in  m o d e ls ,  a re  a t te m p ts  to  im p le m e n t  th j_ s

p h y s ic s .  M y  o r , t r l  f  e e l in g  is  th a t  th e s e  id e a s  a re  n o t  w i ld  e n o u g h  a n d

th a t  i t  m a y  b e  v e ry  d i f f ic u l t  to  g u e s s  w h a t  is  g o in g  o n  a t  th e s e  la rg e

s c a le s .

L e t  m e  n o t  g iv e  th e  im p re s s io n  th a t  I  a m  s u g g e s t in g  th a t  th e o r j - s ts

s p e n d  th e ir  t im e  w o rk in g  o n  b iz a r re  g e n e ra L iz a t io n s  o f  Q F T .  Q u ite  th e

c o n t ra ry '  I  b e l ie v e  th a t  th e  q u e s t io n s  a re  to o  h a rd ".  N a tu re  is  m u c h

m o re  im a g in a t iv e  th a n  w e  a n d  w e  s im p ly  d o  n o t  h a v e  e n o u g h  e x p e r im e n ta l

in fo rm a t io n  a b o u t  th e s e  s h o r t  d is ta n c e s  to  g u id e  u s .  I t  is  o k a y  to

s p e n d  a n  h o u r  a  w e e k  o n  s u c h  m e ta p h y s ic s .  B u t  i t  s e e m s  to  m e  th a t  a

th e o r is t  w h o  s p e n d s  a l l  h is  t im e  s p e c u la t in g  a b o u t  th e  p h y s ic s  o f  th e

P la n c k  s c a le  is  s u f fe r in g  f ro m  e i th e r  a n  o v e rd e v e lo p e d  E in s te in

c o m p le x  o r  a n  u n d e rd e v e lo p e d  j - n s t  in c t  f  o r  s e l f  _ p re s e rv a t  io n .



Expectations for String Theory

From “The Problems of Physics” by Antony Legget (1987)

thereby explicitly avoiding the field theory divergence. The spectrum of string theory
consists of an infinite “tower” of excited states, corresponding to quantized energy levels
of the various modes of the string. Any change in the spectrum of such a tower destroys
the crucial property of modular invariance.

5.2 Non-Uniqueness in String Theory

It is understandable that this rigidity of the spectrum fueled the hope that string theory
might lead us to a unique gauge theory, and perhaps a completely unambiguous derivation
of the Standard Model from first principles. This hope is very well described by the
following paragraph from the book “The Problems of Physics” by A.J. Legget, which
dates from 1987 [35].12 The author is not a string theorist (he received the Nobel Prize in
2003 for his work on superfluidity) but echoes very accurately the atmosphere in part of
the string community around that time:
The hope is that the constraints imposed on such theories solely by the need for mathe-
matical consistency are so strong that they essentially determine a single possible theory
uniquely, and that by working out the consequences of the theory in detail one might even-
tually be able to show that there must be particles with precisely the masses, interactions,
and so on, of the known elementary particles: in other words, that the world we live in is
the only possible one.

If this had been true, this would have led us to straight to the anthropic dilemma
explained in section (3). So how does string theory avoid this?

The answer to that question emerged during two periods of revolutionary change in
our understanding, one occurring around 1986, and the the other during the first years of
this century. I will refer to these periods as the first and second string vacuum revolution.
Although string theorists love revolutions, these two are usually not on their list.

It is important to distinguish two concepts of uniqueness: uniqueness of the theory
itself, or uniqueness of its “ground states” or “vacua”. I will use these notions in a loose
sense here, because one of the issues under dispute is even how they are defined (which is
especially problematic in a universe with a positive cosmological constant, as ours seems
to have). By “vacuum” I will simply mean anything that is suitable to describe our
universe, and anything that merely di�ers from it by being located in a di�erent point
in the Gauge Theory Plane. I am not trying to argue that such vacua exist, but merely
that if they do exist there are likely to exist in huge quantities. The picture that seems to
emerge is that of a perhaps unique theory, but with a huge number of vacua. Although
this picture has started emerging more than twenty years ago, most people refused to
accept it as the final outcome, and instead were (and in surprisingly many cases still are)
hoping that one of the many candidate vacua would be singled out by some still to be

12This book also contains a remarkably prescient description of what might be called an “anthropic
landscape”, even with references to an important rôle for higher-dimensional theories, a notion that also
appeared in equally prescient work by Andrei Sakharov from 1984 [36] about a possible anthropic solution
to the cosmological constant problem. However, precisely because of the cited text about string theory,
this remained an overlooked link in the idea for more than a decade.
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“String theory was supposed to explain why 
elementary particles could only have the precise 
masses and forces that they do. After more than 30 
years investment in each of these ideas, theorists 
have found that they are not able to achieve these 
ambitious goals”

Paul Steinhardt 
Albert Einstein Professor in Science, Departments of Physics 
and Astrophysical Sciences, Princeton University

2014

http://edge.org/memberbio/paul_steinhardt


I. The Multiverse





This is the earliest light we can observe.

We have only one such picture. 
It is like having a single event in an LHC detector.

But is this the only event that ever occurred?





Common sense suggests that it is not.
Is all we can see all there is? 

Furthermore the theory that correctly describes 
the CMB fluctuations, inflation, predicts that 
there is an infinity of such “events”.

“If the universe contains at least one inflationary 
domain of a sufficiently large size, it begins 
unceasingly producing new inflationary domains.”

Andrei Linde (1994)



Eternal Inflation

© D. Baumann



© A. Linde



So what would these other universe look like?
(and is there anyone to look at them?)

At the very least the CMB fluctuations would be 
different.





But is that all that changes?

Could the laws of physics themselves be different?

If so, what are the allowed changes?



Quantum Mechanics:
Cannot be modified in any way we know

General Relativity:
We can change space-time dimension, cosmological constant 
(“vacuum energy”), curvature.

The Standard Model:
Many options for change: the gauge group, the particle 
representations (charges), and all continuous parameters.

Consider the pillars of modern physics:



Phenomenological objection:
Shouldn’t we be satisfied in understanding just 
our own universe?

Philosophical objection:
We (probably) cannot see these other universes.
(perhaps as signals of “bubble collisions” in the CMB. 
Or perhaps as information encoded in the CMB radiation?)

So this is not science…?

But who cares about alternatives?







The answer to the phenomenological objection is 
that most of Standard Model phenomenology is 
aimed at the “why” questions. 

Why SU(3)×SU(2)×U(1), why quarks and leptons, 
why three families, why these strange masses, 
why such large hierarchies?

Surely, if these could be different in other 
universes, this is relevant to the answer.



Suppose the number of families could be different.
Then clearly we can never derive this number.

Then just the following options are left:

In our universe, the number 3 came out purely by chance.

In the full ensemble of universes, 3 is statistically favored.  
Very tricky: all multiplicities are infinite, so it is not immediately obvious how to compare them.  
This is know as the “multiverse measure problem”.  
Despite a lot of work and some progress, there is no generally accepted solution yet.

Any number other than 3 cannot be observed, because life cannot 
exist unless there are 3 families.  
This is (a form of) the anthropic principle.  



( )
In this case there is no known anthropic argument.  

A guess might be: 
1. Three families are needed for CP-violation in the CKM matrix,
2. CP-violation is needed for baryogenesis
3. A net number of baryons is crucial for life.

But: 

• This argument would also allow four families.

• The CP-phase in the CKM matrix is not sufficient.

• There are probably other CP violating phases in 
the couplings of Majorana neutrinos.  
They can lead to baryogenesis via leptogenesis. 
This requires only two families.



The philosophical objection

Let us assume the worst-case scenario: 
Other universes are unobservable in principle.

Then it is still possible that we will find a theory that 
demonstrably contains our Standard Model,
and contains many other gauge theories as well.  

We could confirm that theory either 

By correct predictions in our own Universe

By deriving it from a principle of Nature



Fundamental Theory

The Standard Model 

Instead of:



Fundamental Theory

Our Standard Model 

Someone else’s 
Standard Model? 

Someone else’s 
Standard Model? 

Someone else’s 
Standard Model? 

Someone else’s 
Standard Model? 

Someone else’s 
Standard Model? 

We would have:



pose and design found in modern science, the Catholic Church
will again defend human nature by proclaiming that the imma-
nent design evident in nature is real. Scientific theories that try
to explain away the appearance of design as the result of ‘chance
and necessity’ are not scientific at all, but, as John Paul put it,
an abdication of human intelligence.”

It’s nice to see work in cosmology get some of the attention given these days
to evolution, but of course it is not religious preconceptions like these that
can decide any issues in science.

It must be acknowledged that there is a big difference in the degree
of confidence we can have in neo-Darwinism and in the multiverse. It is
settled, as well as anything in science is ever settled, that the adaptations
of living things on earth have come into being through natural selection
acting on random undirected inheritable variations. About the multiverse,
it is appropriate to keep an open mind, and opinions among scientists differ
widely. In the Austin airport on the way to this meeting I noticed for sale
the October issue of a magazine called Astronomy, having on the cover the
headline “Why You Live in Multiple Universes.” Inside I found a report of
a discussion at a conference at Stanford, at which Martin Rees said that
he was sufficiently confident about the multiverse to bet his dog’s life on
it, while Andrei Linde said he would bet his own life. As for me, I have
just enough confidence about the multiverse to bet the lives of both Andrei
Linde and Martin Rees’s dog.

‘
This material is based upon work supported by the National Science

Foundation under Grants Nos. PHY-0071512 and PHY-0455649 and with
support from The Robert A. Welch Foundation, Grant No. F-0014, and
also grant support from the US Navy, Office of Naval Research, Grant Nos.
N00014-03-1-0639 and N00014-04-1-0336, Quantum Optics Initiative.
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S. Weinberg, in “Living in the Multiverse” (2005)



II. Unification



Electro-weak

GUT?

String Theory?



Grand Unification
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String Theory



The 1986 String Revolution

Candelas,Horowitz, Strominger, Witten 
Dixon, Vafa, Harvey, Witten 
…………… 
Strominger 
Kawai, Tye, Lewellen 
Lerche, Lüst, Schellekens 
Antoniadis, Bachas, Kounnas 
Ibanez, Nilles, Quevedo 
Narain, Sarmadi, Vafa 
…………… 

An explosion of papers and vacua:

Calabi-Yau manifolds
Orbifolds



Lerche, Lüst, Schellekens 
“Chiral, Four-dimensional Heterotic Strings From Self-Dual Lattices”, 1986

A. Strominger  
“Superstrings with Torsion”, 1986

A. Strommger / Superstrmgs 281  

Another feature of metrics such as (2.2) or (4.44) is that the Christoffel connec- 
tion has off diagonal components which mix up the internal and external spaces. 
Vectors tangent to R or  M 4 do not remain tangent under parallel transport. This 
can affect the wave equations governing massless particles with spacetime indices. 
For example the Dirac operator no longer obeys 7,10= 7,6+ 7,4, rather the right- 

~ 2 D _ 4  hand side has a correction proportional to 7,6D(y) for g4  = c  o~,~. This can be 
corrected by redefining the spinors by a power of e °. The usual analysis of 
harmonic expansion can thus be carried through with minor modifications. Similar 
statements apply to the other fields. 

A final intriguing observation concerns the local value of the four-dimensional 
cosmological constant defined as the full Ricci tensor contracted with the four- 
dimensional metric. This is not in general zero and depends on the coordinate y of 
the internal manifold. Its value is 

A(y)  = g 4 ' ° " R , a  v = - 41-q6D + 40(17"6D) 2. (4.46) 

This function has isolated zeros. The minimal number of such zeros is a topological 
invariant, determined from Morse theory as the Euler character of the internal 
manifold! 

5. Conclusions 

The focus of this paper has been the mathematical properties of superstrings in 
torsion backgrounds, but we would like to conclude with comments on some 
physical implications. With the inclusion of non-zero torsion, the class of supersym- 
metric superstring compactifications has been enormously enlarged. It is barely 
conceivable that all zero-torsion solutions could be classified, and that the phenome- 
nologically acceptable ones (at string tree level) might then be a very small number, 
possibly zero. It does not seem likely that non-zero torsion solutions, or even just 
the subset of phenomenologically acceptable ones, can be classified in the foresee- 
able future. As the constraints on non-zero torsion solutions are relatively weak, it 
does seem likely that a number of phenomenologically acceptable (at string tree 
level!) ones can be found. Indeed, it is argued in [16} that some of the generic 
problems of the zero-torsion solutions are likely to be absent in many non-zero 
torsion solutions. While this is quite reassuring, in some sense life has been made 
too easy. All predictive power seems to have been lost. 

All of this points to the overwhelming need to find a dynamical principle for 
determining the ground state, which now appears more imperative than ever. 

This work was done in bits and pieces over the last year and I have benefited 
from conversations with many people at various stages including P. Candelas, L. 
Dixon, D. Gieseker, J. Harvey, G. Horowitz, C. Hull, R. Lazarsfeld, V. Nair, M. 
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7. Conclusions 

As anticipated in [7, 8], we have found that the covariant lattice construction, 
which provided a simple and elegant way of classifying all ten-dimensional string 
theories, has similar advantages for constructing chiral string theories below ten 
dimensions. We expect that all theories discussed in this paper have the same degree 
of consistency as the well-known ten-dimensional theories. Although the general 
class of theories we find has already been constructed fermionically in [9], the lattice 
approach gives far more immediate insight in their structure. Although the number 
of chiral theories of this type is finite, our results suggest that there exist very many 
of them, so that a complete enumeration appears impossible. Perhaps some interest- 
ing subclass can be classified completely. 

It seems that not much is left of the once celebrated uniqueness of string theory. 
Of course string theory never really was unique even in ten dimensions, and it is 
already known for some time that the situation is much worse in four dimensions. 
Up to now, one may have taken comfort from the fact that four-dimensional 
theories are just compactifications of the ten-dimensional ones, at least if one 
believes that it is better to have one string theory with many vacua than many string 
theories. If this kind of uniqueness is what is desired, one would be better off if all 
fermionic strings could be shown to originate from the bosonic string, which seems 
the best candidate for a really unique theory. Our construction puts the ten- and 
lower-dimensional theories on equal footing in this respect. 

Even if all that string theory could achieve would be a completely finite theory of 
all interactions including gravity, but with no further restrictions on the gauge 
groups and the representations, it would be a considerable success. But the situation 
is better than that; although gauge groups are not very much restricted except that 
in chiral models their rank cannot exceed 22, the representations are. The fact that 
weights of length larger than 2 cannot appear in the massless sector selects 
low-dimensional representations; therefore, it is impossible to obtain many models 
that have been considered in the past, such as those with large Higgs representations 
or color exotics. Furthermore, one is not free to select fermion and scalar represen- 
tations in an arbitrary way, and couple them with arbitrary coupling constants. 

In our models, there is a built-in mechanism for naturally producing several 
generations. The multipficity occurring in the spectra (6.10) and (6.15) of our 
examples is a quite general phenomenon; it arises due to the possibility of assem- 
bling length-squared two vectors in the right-moving sector in different ways. 

A rank-22 gauge group may seem excessively large in comparison with the 
standard model, but this problem can be dealt with in the same way as the "second" 
E 8 from the ten-dimensional heterotic string. There should be many cases where a 
large part of the gauge group does not act on the massless chiral fermions or where 
several parts of the gauge group act on several sets of fields separately. In fact, there 
is a slight tendency in favor to such a situation because of the limited weight length 
of massless states; we have indeed found examples where that is the case. Further- 

…
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very successful in ten dimensions, where only 24-dimensional lattices have to be 
considered [8]. 

In four dimensions things are far more complicated. In the worst possible case we 
have a lattice F22;14 = (F22)L X (D 5 X (DI)9)R,  which can be mapped to (F22 X D 3 X 
(D7)9)L, a euclidean lattice of dimension 88. A lower limit on the total number of 
such lattices is provided by the Siegel mass formula [21] [22] 

4k-1 
E g ( A )  - 1 =  (8k)-lB4k H (4J) - IB2j ,  (5.1) 
A j= l  

where the sum is over all even self-dual lattices of dimension 8k, and g(A)  is the 
order of the automorphism group of A. Because g(A)  >/1 the fight hand side is a 
lower limit of the number of lattices (B2y are the Bernoulli numbers). For k = 11 
this number  is of order 101500! The requirement that A should contain D 3 X (D7) 9 
with a triplet constraint will reduce the number considerably, but clearly this is not 
a viable approach towards classification. It only tells us that the number of chiral 
theories is finite, but most likely extremely large*. 

However, it is easy to construct many examples already from the 24-dimensional 
Niemeier lattices; a list of those may be found in [23]. To do so, one decomposes 
such a lattice in D, factors by using one of the following regular embeddings 

E 8 D D 8 , 

E v D D 6 X A 1 ,  

E 6 D D 5 X U(1) ,  

A . D [ D 3 ] k×u ( 1 )  k - l ,  ( k =¼ ( n + l ) )  

A 2 z A 1 X U(1) .  (5.2) 

After these decompositions one is left with factors A 1 and several Dl's.  An even 
number  of Al ' s  can be combined to D2's because D 2 = m I X A 1. In all cases we have 
considered all m remaining factors can be rotated to a (D~) m lattice, and it is not 
unlikely that this is always possible, even for the Leech lattice. Note that we are not 
doing anything to the lattices; we simply regard them as root-lattices plus weights of 
subalgebras of the original algebras. Some of the weights may have length two and 

*A more reasonable but less rigorous estimate can be made by observing that the 88-dimensional 
lattice has (at most) 32 factors, so that combinatoricaUy their classification should be similar to the 
classification of even self-dual lattices of dimension 32 with D 1 lattices as building blocks. On the 
basis of such an estimate one would still expect a very large number of solutions. 
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The actual number is 

8890257039991534914852297716511137991261717351484783559586371147072406920152764667336616389653819346
4168146364205130292397170746149318720379630387200000000000000000000000000

∼ 10930

This is a mathematical lower limit on the number of Euclidean Self-dual lattices of dimension 
88, needed for our construction.  The upper limit on the number of such lattices is 

∼ 101090

The actual number of heterotic strings is much smaller than any of these numbers.



III. Scalars



The first scalar particle, the Higgs boson, has just been found.  
It is a Lorentz singlet, but it couples to quarks and leptons.

It was hard enough to find, but gauge singlet scalars are even 
harder to find, especially if they are very massive.

Is all we can see all there is?

If fundamental scalars exist, polynomials of these scalars would 
multiply all terms in the Langrangian.



1

↵
Fµ⌫F

µ⌫ ! P (�i

M )Fµ⌫F
µ⌫

(M is the Planck Mass)

The value of the fine structure constant α is determined by the v.e.v. 
of the fields φi. 

The same is true for all other Standard Model parameters:
All Standard Model parameter are “environmental”.

For example, in QED



In string theory, hundreds of such scalars exist (“moduli”). 
Their potentials are believed to have a huge number of minima 
(“The String Theory Landscape”), of order 10 hundreds

“The Anthropic Landscape of String Theory”
L. Susskind (2003)

Bousso, Polchinski (2000)
Kallosh, Linde, Kachru, Trivedi (2003)
Douglas (2003)



Flux compactifications



Particle Physics in the Multiverse



2

Our comparison between the distributions of large values of quantities I(�,✏)(✓
i,�i) for the real

Planck temperature map and purely statistical HEALPix maps may weaken this belief. We see
di↵erences between the real and artificial maps which are both qualitative and quantitative.

First of all, for ✏ = 0.08 we find two directions around which there is a significant concentration
of circular structures distinguished by the large values of I(✏,�0)(✓,�) confirming the earlier findings

in [2]. The Galactic coordinates of these two directions are approximately (✓̃1, �̃1) = (2.60, 3.70)
(which correlates with the so called “cold spot”) and (✓̃2, �̃2) = (2.59, 2.89) (this spot with opposite
values of the integral was first noticed in [2] and is confirmed by the present analysis). Actually,
looking at Figures 1 and 2, one sees two significant centers of the red circles. The center of the
dominant red circles has coordinates (✓̃2, �̃2) = (2.59, 2.89), and the center of the fainter ones is
(✓̃3, �̃3) = (2.40, 3.08).

Figure 2. This is a Figure 1 in a di↵erent projection. We plotted rings having the width ✏ = 0.08
radians, as visible on the Planck CMB temperature maps in the frequency band 70GHz, but now in
the stereographic projections from the respective Galactic Poles.

The quantitative comparison between the real and simulated maps is deferred to the future
publication [6]. Here we only note that for ✏ = 0.08 the measure � of the extremality of (positive
or negative) values, as introduced in [7, 2], gives on the real map a value bigger than any �
calculated on 298 (out of 300) artificial maps.

Figure 3. Plot of rings having the width ✏ = 0.04 as visible on the Planck temperature map with
frequency band 70GHz, in the same stereographic projections as in Figure 2. Note that these rings
are more scattered than those with the width ✏ = 0.08 radians. But observe that the rings which were
present at the picture with ✏ = 0.08 have also their counterparts in the rings with this value of ✏.

An, Meissner, Nurowski
(see also Gurzadyan and Penrose)



IV. Anthropic Arguments



Anthropic Features of the 
Standard Model

The proton (uud) is stable against decay to a neutron (ddu) 
 
 
  
 
Electromagnetic forces lower the neutron mass with respect to the proton mass.  
This is solved by the fact that the up-quark is extremely light.

The neutron should be unstable, to prevent a neutron dominated universe.  
This limits the electron mass to 

p� n + e+ + �
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A Linde, 
“Eternally Existing Selfreproducing Chaotic Inflationary Universe.”, 1986

“… an enormously large number of compactifications which 
exist e.g. in the theories of superstrings should not be 

considered as a difficulty but as a virtue of these theories, 
since it increases the probability of the existence of mini-

universes in which life our type may appear… “



Levels of anthropic reasoning

Tautological:  
There exist fundamental theory points outside the anthropic contours. We don’t live there.  
 
Analog: there exist other planets.  

Explanation of apparent anthropic fine-tunings:  
With a sufficiently dense point cloud, it is no surprise that one point falls within an anthropic domain  

    Analog: there are so many other planets that the existence of a habitable one is no surprise.  

Post/Predictive:  
If we can actually compute the most likely parameter values. This requires knowledge of multiverse 
probabilities. Furthermore it requires the “principle of mediocrity” (Vilenkin).  
 
Analog: compute the length of a day from habitability.   (Press, Lightman, Peierls, Gold, 1983)



Fallacies and misconceptions
Brandon Carter introduced the term “Anthropic Principle” in 1973, as an alternative to the “Copernican 
Principle”. The latter states that we do not have a privileged position in the universe, whereas the Anthropic 
Principle states that we do. But this is only true in the sense of observer bias. Copernicus stated that nothing in 
the fundamental laws of astronomy singled out planet Earth, and analogously I am assuming that nothing in the 
fundamental laws of nature will refer to human beings. But that is an assumption…  

Some people think that the notion of “observer” in quantum mechanics, or the nebulous concept of 
“consciousness” may cast some doubts on that assumption. 

Rejecting this assumption leads to the “strong anthropic principle”, which states that the laws of physics must 
be such that humans or observers must exist. We do not consider this. 

From our perspective, “Anthropic Principle” is a double misnomer. It is not a principle of nature, and it is not 
about human beings, only “observers”. 

Anthropic arguments as discussed earlier are merely an inevitable consequence of parameter variation in the 
multiverse. I don’t know how to discuss them outside the context of a multiverse. 

Once we understand the fundamental laws of physics, anthropic arguments will be nothing more than a 
footnote. 



Fallacies and misconceptions

But as long as we do not know the fundamental laws of physics, anthropic 
arguments can provide a guiding principle. 

Anthropic arguments do not have to make falsifiable predictions. It is the 
fundamental theory (the blue dots) that must be falsifiable, at least theoretically. 

Anthropic arguments will never fully determine the Standard Model. Plenty of SM 
parameters (e.g. the τ mass) are irrelevant for life.  

Furthermore, one should expect a (large?) multitude of habitable regions.



Fallacies and misconceptions

Even in combination with a fundamental theory, anthropic arguments will not 
uniquely determine the Standard Model (it is unreasonable to expect that just one 
blue dot lands in an anthropic contour). 

If there is a ensemble of laws of physics with well-defined statistical distributions, 
this by itself will not determine the Standard Model either. 

If we are really lucky, a statistical ensemble together with anthropic contours may 
determine the Standard Model. But:



Fallacies and misconceptions

Anthropic contours are rarely sharp lines. They are contour plots showing the region 
in parameter space exceeding a value we think is essential for observers to exist. 
Even particle decay thresholds are not sharp. Beyond the line where the proton 
becomes unstable, there is a region where it lives “long enough”. 

We should avoid the “anthropocentric trap”. Perhaps life can exist without Oxygen, 
Carbon, Hydrogen. Perhaps hydrogen can be replaced by deuterium or tritium in 
chemistry, etc.  

On the other hand, the fact that we cannot possible explore the full parameter space 
of QFT does not make the entire exercise worthless. We can stay “close to home” 
and see how the SM stands out from its environment (or not).  

Some people adopt the point of view that life is “generic” in QFT. But if that is the 
case, one must still wonder why it was realized in such an apparently fine-tuned way 
in our own environment. Generic regions in QFT space will not look fine-tuned at all.



An extremely optimistic scenario 
(Having your cake and eating it too)

Imagine an ensemble with an extremely large hierarchy of probabilities. 
Suppose the different universes in the multiverse, ordered according to 
probability have probabilities 1, 10-100, 10-200, 10-300, etc. Then the first one to 
land within the anthropic contours is vastly more probably then the second. 
This would be nearly as good as a unique derivation of the SM, but would still 
have the huge ensemble to explain anthropic fine-tunings.  

However, in such a scenario one would expect to end up deeply in the tail of 
the distributions.  



have constructed ensembles of flux vacua that are labeled
by λFMW ∈ 1=2þ Z. Each one of those ensembles consists
of vacua that lead to effective theories with common
algebraic information [SU(5) GUT with chiral matter in
the 10þ 5̄ representation], but their topological informa-
tion Ngen ∝ λFMW varies from one ensemble to another. To
compare the number of vacua that the individual ensembles
contain, one simply needs to integrate ρI over M", which
is to ignore the difference in the value of the effective
coupling constants of the vacua in a given ensemble. Since
the integral of ρI overM" usually yields a number of order
unity (some region of M" may have to be excluded; cf the
discussion of D-limits in [7]), we simply make an approxi-
mation

R
M"

ρI ≈ 1. Only the prefactor ð2πL"ÞK=2=½ðK=2Þ!&
in (5) is then used as an estimate of the number of vacua
in a given ensemble. We can use the value of K in Table I,
and the Ngen-dependence of L" has already been discussed
in this article. The number of vacua depends on Ngen in a
way the volume of a K-dimensional sphere changes as
the radius-square L" decreases quadratically in Ngen. There
is an absolute upper limit on Ngen for a given family
π∶ Y → MA4

" due to the D3-tadpole constraint L" ≥ 0.
In the examples of ðB3; ½S&Þ we have chosen at the

beginning of this section, however, we have L" ≪ K (see
Table I). The continuous approximation [7] is not particu-
larly good for such families, and should be replaced by
eL" ln ð

ffiffiffiffi
2π

p
K=L"Þ, see [9] for a more detailed discussion.

In fact, it is commonplace to find L" ≪ K, not just in
the families considered in this section, but in a broader
class of families π∶ Y → MR

" of interest. For B3 with
h1;1ðB3Þ ≈Oð1Þ, for example, h1;1ðYÞ still remains Oð1Þ,
while h3;1 is much larger, due to the degrees of freedom for
the complex structure of fibration. It is then a quite natural
consequence that h2;2V and h2;2RM are not as large as h2;2H . From
this, we find that K ≈ χðYÞ ≈ 24Lmax

" ≈ 8πLmax
" ≫ L". The

number of flux vacua for a family Y → MR
" is then

estimated by

eL" ln ð
ffiffiffiffi
2π

p
K=L"Þ ≈ eK=6e−5cN

2
gen ; ð11Þ

where c is the coefficient of N2
gen in (10), which remains of

order unity. The expansion in N2
gen in the exponent is valid

for Ngen ≲ 10, since χðYÞ=24 is often around 100–1000.
The first factor of (11) depends on the choice of the 7-brane
symmetry R [and on ðB3; ½S&Þ], while the second factor is a
Gaussian distribution on Ngen for robust choice of ðB3; ½S&Þ.
Algebraic and topological data of effective theories have a
factorized distribution. One may further bring the distri-
bution ρI on the effective coupling constants back to (11),
without integrating it over MR

" .

B. Cost of higher-rank gauge groups

The distribution (5), (6), (11) can be used to derive
the statistical cost of requiring a higher rank gauge group
on 7-branes. This idea was pursued already in [6], using
Y ¼ K3 × K3 for F-theory compactification; more exam-
ples are obtained in this article to estimate the systematics.
The choices of ðB3; ½S&Þ here are also more realistic than
that of K3 × K3.
The SO(10) version of the family, π∶ Y → MD5

" , can
also be constructed for the choice of ðB3; ½S&Þ in (9) using
toric geometry. Various topological data for the families
over MD5

" , MA4
" and M (where no 7-brane gauge

symmetry is required) can be computed and the results
are recorded in Table II for the n ¼ 0 case. For more details
of computations, see [9].
One can see from (11) that the difference in the value of

K for different choices of 7-brane symmetry R determines
the relative number of the corresponding flux quanta
(vacua). Ensembles with higher rank 7-brane gauge group
have smaller dimension K (Table II), confirming the same
observation in [6] based on the family Y ¼ K3 × K3. This
leads to the observation that the rank-4 gauge group on
7-branes is not as statistically “natural” as vacua without
a gauge group on 7-branes. In the choice of ðB3; ½S&Þ in (9)
with n ¼ 0, for example, vacua with the rank-4 SU(5)
unification constitutes only the fraction e−ΔK=6 ≈ e−3000 of
the entire flux vacua (smaller than the fraction 10−120 for
the cosmological constant). The authors do not provide
their interpretations for this inconvenient prediction; a
popular attitude will be to hint at poor understanding of
string theory, to count on cosmological factors that we did
not study here, and/or to resort to anthropics.

IV. OUTLOOK

This article only deals with the easiest applications
of the method explained in Sec. II. Various ideas of using
(11) and ρI to address questions of practical interest are
described in detail in [9].
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Arguments against uniqueness

✓ Eternal Inflation. 
(or at least: no argument for uniqueness of our universe) 

✓ Unification. 
(all current ideas allow many low energy options) 

✓ Scalars. 
(Why should Standard Model parameters be absolute constants?) 

✓ Anthropic arguments. 
(The Standard Model does not look like a mathematically unique point in 
QFT space)



Arguments in favor of uniqueness



The Cosmological Constant



13

status of the universe that would appear to be catas-
trophic at least for our kind of life, and hence it is at
least possible that this is part of the reason we observe
the values we do.

But we should not jump to conclusions. An extreme
example is the smoothness and isotropy of the cosmic mi-
crowave background. This fact may be regarded as envi-
ronmental, and if it were a wildly fluctuating distribution
this could have a very negative impact on the prospects
for life (Tegmark and Rees, 1998). But surely one cannot
assume that the entire density perturbation function is
tuned this way just for life to exist in one galaxy. The
most popular solution to this “horizon problem” is in-
flation, which solves another problem with anthropic rel-
evance, the flatness problem, but also introduces some
new fine-tunings.

Inflationary cosmology o↵ers interesting opportuni-
ties for predictions based on landscape and/or anthropic
ideas, especially for observations of the CMB, see e.g.
Ashoorioon (2010); Frazer and Liddle (2011); Holman
et al. (2008); Tegmark (2005); and Yamauchi et al.
(2011). Furthermore, the CMB may even give direct
hints at the existence of a multiverse. There is a chance of
observing collisions with other bubbles in the multiverse,
see for example Aguirre et al. (2007) and WMAP results
presented by Feeney et al. (2011). Gonzalez-Dı́az and
Alonso-Serrano (2011) consider an even more exotic pos-
sibility involving non-orientable tunneling. In principle
there might be information about other universes in the
detailed structure of the cosmic microwave background,
but at best only in the extreme future (Ellis, 2006b).

Anthropic predictions for the density parameter ⌦ were
already made a long time ago by Garriga et al. (1999).
This work, as well as Freivogel et al. (2006), points out
the plausibility of observing negative spatial curvature,
(i.e. ⌦k > 0, where ⌦k ⌘ 1 � ⌦) in a multiverse pic-
ture. They argue that sixty e-folds of inflation are an-
thropically needed, and having a larger number of e-
folds is statistically challenged. The current observa-
tional constraint is |⌦k| < 10�2. Furthermore, Guth
and Nomura (2012) and Kleban and Schillo (2012) point
out that observation of even a small positive curvature
(⌦k < �10�4) would falsify most ideas of eternal infla-
tion, because tunneling in a landscape gives rise to open
FRW universes.

That the baryon to photon ratio ⌘ ⇡ 6 ⇥ 10�10 may
have anthropic implications was already observed a long
time ago (see Carr and Rees (1979); Nanopoulos (1980);
Linde (1985) but also Aguirre (2001) for critical com-
ments), but it is not simply a tunable free parameter.
Inflation would dilute any such initial condition, as would
any baryon number violating process that gets into equi-
librium in the early stages of the universe. See Shaposh-
nikov (2009) for a list of 44 proposed solutions to the
baryogenesis problem. Most of these solutions generate
new anthropic issues themselves.

This brief summary does not do justice to the vast
body of work on string and landscape cosmology. Further
references can be found in reviews of string cosmology,
e.g. Burgess and McAllister (2011).

3. The Cosmological Constant

The cosmological constant ⇤ is a parameter of classical
general relativity that is allowed by general coordinate in-
variance. It has dimension [length]�2 and appears in the
Einstein equations as (the metric signs are (�, +, +, +))

Rµ⌫ � 1

2
gµ⌫R + ⇤gµ⌫ = 8⇡GNTµ⌫ . (3.1)

Without a good argument for its absence one should
therefore consider it as a free parameter that must be fit-
ted to the data. It contributes to the equations of motion
with an equation of state P = w⇢, where P is pressure
and ⇢ is density, with w = �1 (matter has w = 0 and
radiation w = 1

3

). As the universe expands, densities are
diluted as (the initial values are hatted)

⇢w = ⇢̂w

⇣a

â

⌘�3(1+w)

. (3.2)

As a result, if ⇤ 6= 0 it will eventually dominate if the
universe lasts long enough. The natural length scale as-
sociated with ⇤ is the size of the universe.

The parameter ⇤ contributes to the equations of mo-
tion in the same way as vacuum energy density ⇢

vac

,
which has an energy momentum tensor Tµ⌫ = �⇢

vac

gµ⌫ .
Vacuum energy is a constant contribution to any (quan-
tum) field theory Lagrangian. It receives contributions
from classical e↵ects, for example di↵erent minima of a
scalar potential and quantum corrections (e.g. zero-point
energies of oscillators). However, it plays no rôle in field
theory as long as gravity is ignored. It can simply be set
to zero. Since vacuum energy and the parameter ⇤ are
indistinguishable it is customary to identify ⇢

vac

and ⇤.
The precise relation is

⇤

8⇡
=

GN⇢
vac

c2

:= ⇢
⇤

. (3.3)

This immediately relates the value of ⇤ with all other
length scales of physics, entering in ⇢

⇤

, which of course
are very much smaller than the size of the universe. The
extreme version of this comparison is to express ⇢

⇤

in
Planck mass per (Planck length)3, which gives a value
smaller than 10�120. This was clear long before ⇢

⇤

was
actually measured.

More recently, observations of redshifts of distant type-
Ia supernovae gave evidence for accelerated expansion
(Perlmutter et al., 1999; Riess et al., 1998), which can be
fitted with the ⇤-parameter. Combined with more recent
data on the cosmic microwave background, this indicates
that the contribution of ⇤ to the density of the universe is
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tum) field theory Lagrangian. It receives contributions
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scalar potential and quantum corrections (e.g. zero-point
energies of oscillators). However, it plays no rôle in field
theory as long as gravity is ignored. It can simply be set
to zero. Since vacuum energy and the parameter ⇤ are
indistinguishable it is customary to identify ⇢
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The precise relation is
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length scales of physics, entering in ⇢
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, which of course
are very much smaller than the size of the universe. The
extreme version of this comparison is to express ⇢
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in
Planck mass per (Planck length)3, which gives a value
smaller than 10�120. This was clear long before ⇢

⇤

was
actually measured.

More recently, observations of redshifts of distant type-
Ia supernovae gave evidence for accelerated expansion
(Perlmutter et al., 1999; Riess et al., 1998), which can be
fitted with the ⇤-parameter. Combined with more recent
data on the cosmic microwave background, this indicates
that the contribution of ⇤ to the density of the universe is

Irrelevant in the absence of gravity.
But gravity sees it as a contribution to Λ. 

Vacuum Energy





Excluded !
(universe expands too  
rapidly for galaxies to form)!
Weinberg, 1987

�

Anthropic Bounds

We are here ⇢⇤ = 1.3⇥ 10�123

⇢⇤

Excluded 

 (universe collapses too fast)!
Barrows and Tipler, 1987
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baryogenesis problem. Most of these solutions generate
new anthropic issues themselves.

This brief summary does not do justice to the vast
body of work on string and landscape cosmology. Further
references can be found in reviews of string cosmology,
e.g. Burgess and McAllister (2011).

3. The Cosmological Constant

The cosmological constant ⇤ is a parameter of classical
general relativity that is allowed by general coordinate in-
variance. It has dimension [length]�2 and appears in the
Einstein equations as (the metric signs are (�, +, +, +))

Rµ⌫ � 1

2
gµ⌫R + ⇤gµ⌫ = 8⇡GNTµ⌫ . (3.1)

Without a good argument for its absence one should
therefore consider it as a free parameter that must be fit-
ted to the data. It contributes to the equations of motion
with an equation of state P = w⇢, where P is pressure
and ⇢ is density, with w = �1 (matter has w = 0 and
radiation w = 1

3

). As the universe expands, densities are
diluted as (the initial values are hatted)

⇢w = ⇢̂w

⇣a

â

⌘�3(1+w)

. (3.2)

As a result, if ⇤ 6= 0 it will eventually dominate if the
universe lasts long enough (and if there is no “phantom
matter” with w < �1).

However, ⇤ itself a↵ects the expansion. For ⇤ < 0
the universe collapses in a time ct = ⇡

p
3/⇤ whereas

for ⇤ > 0 the universe goes into exponential expansion
as exp(

p
⇤/3ct). These two cases correspond to exact

maximally symmetric solutions to the Einstein with ⇤ 6=
0 and without matter, and are called Anti-de Sitter (AdS)
and de Sitter (dS) spaces respectively. The latter has a
horizon at a distance (

p
⇤/3 from the observer. Light

emitted by matter beyond that horizon can never reach
the observer because of the expansion. The fact that
our universe has existed billions of years and that we
observe galaxies at distances of billions of light years gives
immediately an upper limit on |⇤| (see Eq. (3.4) below)
which is already known for decades (Barrow and Tipler,
1986)).

The fact that the length associated with ⇤ is of cos-
mological size is not surprising in itself, but there is
second interpretation of ⇤ that puts this in an entirely
di↵erent perspective. The parameter ⇤ contributes to
the equations of motion in the same way as vacuum en-
ergy density ⇢

vac

, which has an energy momentum ten-
sor Tµ⌫ = �⇢

vac

gµ⌫ . Vacuum energy is a constant con-
tribution to any (quantum) field theory Lagrangian. It
receives contributions from classical e↵ects, for example
di↵erent minima of a scalar potential and quantum cor-
rections (e.g. zero-point energies of oscillators). How-
ever, it plays no rôle in field theory as long as gravity

is ignored. It can simply be set to zero. Since vacuum
energy and the parameter ⇤ are indistinguishable it is
customary to identify ⇢

vac

and ⇤. The precise relation is

⇤

8⇡
=

GN⇢
vac

c2

:= ⇢
⇤

. (3.3)

This immediately relates the value of ⇤ with all other
length scales of physics, entering in ⇢

⇤

, which of course
are very much smaller than the size of the universe. The
extreme version of this comparison is to express ⇢

⇤

in
Planck mass per (Planck length)3, which gives a value
smaller than 10�120. This was clear long before ⇢

⇤

was
actually measured.

This huge di↵erence in length scales implies a huge
fine-tuning problem. It was noted a long time ago by
(Linde, 1974; Veltman, 1975) that the Standard Model
Higgs mechanism induces a huge change in vacuum en-
ergy. Other contributions are expected to come from dy-
namical symmetry breaking in QCD and inflation. The
latter is especially hard to avoid, because in most mod-
els the exponential is driven by vacuum energy, which
must therefore have been vastly larger in the inflationary
period than it is now. Quantum corrections to vacuum
energy are due to vacuum bubble diagrams (coupling to
gravitons to generate the

p�g factor). There are contri-
butions from all particles, with opposite sign for bosons
and fermions. These diagrams are quartically ultra-violet
divergent: they are infinite if we naively integrate over
arbitrarily large momenta, and they are proportional to
M4

cuto↵

if we assume that nature cuts o↵ the divergence
at some scale M4

cuto↵

(note that that quantum correc-
tions contribute to the density ⇢

vac

, and hence ⇤ gets
quartic corrections, not quadratic ones as its dimension
might suggest). It is likely that the divergent integral are
cut o↵ by a consistent theory of quantum gravity (and
indeed, string theory does that), and in that case the
cut o↵ scale would be the Planck scale. In that case, the
naive order of magnitude for ⇢

⇤

is the Planck density, one
Planck mass per Planck volume (5.15 ⇥ 1096 kg/m3). In
these units the aforementioned old observational limits,
using y ⇥ 109 (light)years for the assumed cosmic time
(length) scale, are3

|⇢
⇤

| < 3.4y�2 ⇥ 10�121 (3.4)

The fact that this number is so absurdly small is called
“the cosmological constant problem”. The problem can
be mitigated by assuming a smaller cuto↵ scale for the
quantum corrections, but even if we choose the TeV scale
there are still sixty orders of magnitude to be explained.
It seems unlikely that the cut-o↵ can be less than that,
because then we are in known quantum field theory ter-
ritory, and furthermore we then have the classical con-
tributions to worry about as well. One may consider

3 In the rest of this section we use ~ = c = GN = 1.

⇡ �1.8⇥ 10�122

Units: Planck mass per Planck volume

Riess et. al, Perlmutter et. al. (1998)



C.C. versus S.M.

An anthropic explanation requires more than 10120 points.

But:
Λ is less obviously a true variable of the laws of physics than the standard model 
parameters.

The latter are clearly decoupled from what we do not know yet: gravity.
But Λ only makes sense in the presence of gravity.  
And gravity is precisely the big unknown.

But one candidate theory of gravity, string theory, does seem to have the required 
large number of “vacua” (minima of the scalar potential).



Fluxes

To have a chance of finding one minimum in the anthropic domain, we need a 
moduli potential with at least 10120 minima. 

Each minimum would not only have a different vacuum energy, but different 
values for all parameters, like α.

This can be achieved by quantized background fields (“fluxes”) winding around 
topological cycles of a compactification manifold.

These fields are multi-index anti-symmetric tensor generalizations of the vector 
potential Aμ of the electromagnetic field:  

In Minkowski space, these fields manifest themselves as three-form fields 

Aµ1,...,µn

Aµ⌫⇢

Bousso, Polchinski (2000)



S =
⇤

d4x
⇥
�g

�
1

2�2
R� �bare �

Z

48
F 2

4

⇥

Ignoring the brane sources (we will consider them shortly), the four-form
equation of motion is ∂µ (

√
−g F µνρσ) = 0, with solution

F µνρσ = cϵµνρσ , (2.4)

where ϵµνρσ is the totally antisymmetric tensor and c is any constant. Thus
there is no local dynamics. One has F 2

4 = −24c2, and so the on-shell effect
of the four-form is indistinguishable from a cosmological constant term. The
Hamiltonian density is given by

λ = λbare −
Z

48
F 2

4 = λbare +
Zc2

2
. (2.5)

Only λ is observable: λbare and the four-form cannot be observed sepa-
rately in the four-dimensional theory. Therefore, the bare cosmological con-
stant can be quite large. For example, it might be on the Planck scale or on
the supersymmetry breaking scale. In order to explain the observed value of
the cosmological constant, λbare must be very nearly cancelled by the four-
form contribution.

2.2 Four-form quantization

In the original work [5], and in many recent applications, it as assumed that
the constant c can take any real value, thus cancelling the bare cosmological
constant to arbitrary accuracy. However, we are asserting that the value of c
is quantized. Since this is somewhat counterintuitive, let us first discuss two
things that the reader might think we are saying, but are not.

First, if there is a gravitational instanton, a Euclidean four-manifold X,
then it is natural to expect that the integral of the Euclidean four-form over
X is quantized,

∫

X

F4 =
2πn

e
, n ∈ Z . (2.6)

This is the generalized Dirac quantization condition [19–22]. It arises from
considering the quantum mechanics of membranes, which are the natural
objects to couple to the potential A3,

S = e

∫

W

A3 (2.7)

5

� = �bare +
1
2

Zc2

2

Action with four-form contribution

Solution to equations of motion

Contribution to the cosmological constant

Aµ⇥⇤ � Fµ⇥⇤⌅ = �[⌅Aµ⇥⇤]

Three form fields



In String Theory:

The constant c is quantized
There are many such four-form fields

� = �bare +
1
2

Nflux�

i

n2
i y

2
i

If the values of yi are incommensurate and Nflux

su⇥ciently large, � can be tuned to a very small value
(starting with negative �bare of natural size).

Nvacua � [Nvalues]
Nflux



interest into subsets, such that correlations are possible
only within each subset, we can hope to divide up the
problem into manageable pieces.

These arguments and examples illustrate how, under
certain possible outcomes for the actual number and
distribution of vacua, we could make well motivated
predictions. Of course the actual numbers and distri-
bution are not up to us to chose, and one can equally
well imagine scenarios in which this type of predictiv-
ity is not possible. For example, Nvac ∼ 101000 would
probably not lead to predictions, unless the distribu-
tion were very sharply peaked, or unless we make fur-
ther assumptions which drastically cut down the num-
ber of vacua.

5. Absolute numbers

The basic estimate for numbers of flux vacua [4] is

Nvac ∼ (2πL)K/2

(K/2)!
[cn]

where K is the number of distinct fluxes (K = 2b3 for
IIb on CY3) and L is a “tadpole charge” (L = χ/24 in
terms of the related CY4). The “geometric factor” [cn]
does not change this much, while other multiplicities
are probably subdominant to this one.

Typical K ∼ 100− 400 and L ∼ 500− 5000, leading
to Nvac ∼ 10500 . This is probably too large for statis-
tical selection to work.

On the other hand, this estimate did not put in all the
consistency conditions. Here are two ideas, still rather
speculative.
– Perhaps stabilizing the moduli not yet considered

in detail (e.g. brane moduli) is highly non-generic,
or perhaps most of the flux vacua become unstable
after supersymmetry breaking due to KK or stringy
modes becoming tachyonic. At present there is no
evidence for these ideas, but neither have they been
ruled out.

– Perhaps cosmological selection is important: almost
all vacua have negligible probability to come from
the “preferred initial conditions.” Negligible means
P <<< 1/Nvac, and almost all existing proposals for
wave functions or probabilty factors are not so highly
peaked, but eternal inflation has been claimed to
be (as reviewed in [26]), and it is important to know
if this is relevant for string theory (see for example
[20]).
Such considerations might drastically cut the num-

ber of vacua. While we would then need to incorpo-
rate these effects in the distribution, it is conceivable
that to a good approximation these effects are statisti-
cally independent of the properties of the distribution
which concern us, so that the statistics we are com-

puting now are the relevant ones. Even if not, it seems
very unlikely to us that cosmology will select a unique
vacuum a priori; rather we believe the problem with
these considerations taken into account will not look so
different formally (and perhaps even physically) from
the problem without them, and thus we proceed.

6. Stringy naturalness

The upshot of the previous discussion is that in this
picture, either string theory is not predictive because
there are too many vacua, or else the key to making
predictions is to count vacua, find their distributions,
and apply the principles of statistical selection.

To summarize this, we again oversimplify and de-
scribe statistical selection as follows: we propose to
show that a property X̄ cannot come out of string the-
ory by arguing that no vacuum realizing X̄ reproduces
the observed small c.c. (actually, we are considering all
properties along with the c.c.). One might ask how we
can hope to do this, given that computing the c.c. in a
specific vacuum to the required accuracy is far beyond
our abilities. The point is that it should be far easier to
characterize the distribution of c.c.’s than to compute
the c.c. in any specific vacuum. To illustrate, suppose
we can compute it at tree level, but that these results
receive complicated perturbative and non-perturbative
corrections. Rather than compute these exactly in each
vacuum, we could try to show that they are uncorre-
lated with the tree level c.c.; if true and if the tree level
distribution is simple (say uniform), the final distribu-
tion will also be simple.

If so, tractable approximations to the true distri-
bution of vacua can estimate how much unexplained
fine tuning is required to achieve the desired EFT, and
this is the underlying significance of the definition of
“stringy naturalness” we gave above.

Thus, we need to establish that vacua satisfying the
various requirements exist, and estimate their distri-
bution. We now discuss results on these two problems,
and finally return to the question of the distribution of
supersymmetry breaking scales.

7. Constructing KKLT vacua

The problem of stabilizing all moduli in a concrete
way in string compactification has been studied for al-
most 20 years. One of the early approaches was to de-
rive an effective Lagrangian by KK reduction, find a
limit in which nonperturbative effects are small, and
add sufficiently many nonperturbative corrections to
produce a generic effective potential. Such a generic

4

(M. Douglas, 2003)

A nuisance turned into a virtue!





The Standard Model



If the multiverse picture is true, one would expect to find some not 
especially nice gauge theory, with a not especially nice choice of matter 
and not especially nice parameter values, which can be consistently 
extrapolated to the Planck scale, because that is where it came from.  

Which is more or less what we have right 
now, after the Higgs discovery.

This is a historic moment: 
Atomic, nuclear and hadronic physics do not qualify.



Why Now?

Atomic Physics  
 
 
 
 
 

Nuclear Physics

Nuclei as fundamental particles, plus an electron:
Masses not fine-tuned.
Fine-structure constant α not fine-tuned. 
Charges belong to the set of integers;  
changing them does not reduce complexity.
Landau Poles!

Not a theory, nothing can be varied. 
Not even the proton mass.
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Most variations in Nuclear Physics are invalid.
By now we know what really can be varied:  
The QCD coupling constant and the quark masses. 
You can’t draw any conclusions if you move “out of physics”.

But how can a theory ever be immune to what we do not know yet?

Physics at shorter distances (space-time structure, new 
particles) gives rise to an infinity of unknowns....

e-

e+

X-

X+



But: 

In the Standard Model all these unknowns can be “packaged” together in a 
finite number of parameters (plus corrections of order E/MNew).

This makes the theory intrinsically insensitive to MNew

Experimentally MNew is at least about 1 TeV, well beyond the scale of 
Nuclear Physics.

Theoretically, the Standard Model can be extrapolated much further than 
that, perhaps until MPlanck=1019 GeV. 

Furthermore this is equally true for the relatives of the Standard Model: 
other gauge theories, with other groups, representations and parameters.



What can be varied?
Answer: everything! 

For all (sufficiently small) changes we stay in the domain of well-defined QFT’s. 
Furthermore, all changes can be made independently.  

No need to ask questions like: 
“Can I change the up-quark mass without changing the top quark mass?” 

“Can I change α without changing ΛQCD or the weak coupling, assuming coupling unification?” 

We do not have to take any new physics into account, because it all decouples from the 
nuclear/atomic physics computations relevant for the anthropic contours.  

Suppose some fundamental UV completion of the SM complete determines me=.511 MeV. 

Even then we can still talk about atomic physics with different values of me.   

If we limit our variations to SM parameters, there is a complete decoupling between the 
following computations:



A

C

B

Contours in QFT space 
determined by nuclear 
physics,atomic physics, 

chemistry, biology



and



Some computation in a fundamental theory 
(e.g. Calabi-Yau compactification with fluxes, branes, etc)



The ultimate scientific goal is this: 

So what is the point of computing this?



What’s the point of anthropic computations?

Appreciate the SM and its special place in QFT. 

Make correct decisions about what is really fine-tuned  
and what is not.  

Postdictions: understand the value of certain parameters  
anthropically. 

Predictions? 
Requires a parameter value that has not yet been measured to be crucial for our 
existence. Not likely, because our existence constitutes a measurement. 

   





The Standard Model

(3, 2,
1

6
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3
) + (1, 2,�1

2
) + (1, 1, 1)

Quarks and leptons

+(1, 0, 0)

Higgs (1, 2,�1

2
) Gives masses to all quark and leptons

Most general interactions respecting all the symmetries: 28 parameters
These can only be measured, not computed.
Some of them have strange value (small dimensionless ratios, like 10-6)

This gives a theory that correctly describes all known interactions except gravity.

Gauge Group SU(3)⇥ SU(2)⇥ U(1)

3 {                                                                   }     



Parameters

g1, g2, g3  → α, ΛQCD, sin2(θW) 
λ, μ2 
Yukawa coupling matrices (for charge 2/3, -1/3, -1):  
3 complex 3 × 3 matrices with 54 parameters 
→ 6 quark masses, 3 lepton masses, 4 CKM angles 
θQCD < 10-10, strong interaction CP violation 

Neutrinos: probably 3 masses, 4 PMNS angles and 2 Majorana 
phases (assuming see-saw mechanism with unobservable heavy 
singlet neutrinos)  

19 parameters in the SM, 28 with the standard neutrino extension
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Model can be extrapolated all the way to MPlanck, but that for large values one will en-
counter the pole before MPlanck.

If we increase MH the scale Q1 will decrease, and at some point they meet. It is easy
to solve Eq. (5.37) with Q1 = MH, and one finds MH ⇡ 8MW ⇡ 650 GeV. It does not
make sense to increase MH beyond this point, because then the mass of the scalar is larger
than the scale up to which the theory makes sense.

All this was based on extrapolation of perturbation theory beyond its limits. It can
be made more precise by putting the theory on a lattice to deal correctly with the non-
perturbative physics. This confirms in a more rigorous way that there is an upper bound of
about 700 GeV for the Higgs mass. For values of MH below that bound, the theory should
be viewed as an e↵ective theory, valid only up to Q1. Sometimes this is also formulated
in the following way: if we really want to make sense of the theory for arbitrarily large
scales, we are forced to set the coupling constant to 0. Then the theory is “trivial”, it
is a free theory that is certainly valid for arbitrary scales, but not very interesting. The
upper bound on MH is usually referred to as the “triviality bound”.

The Stability Bound. The expression for the �4 �-function given above ignored all
other interactions. It is instructive to consider the complete �-function at one loop order:

�(�) =
1

16⇡2


6�2 � 24y4 + 12�y2 � �(9g2

2

+ 3g2

1

) +
9

2
g4

2

+ 3g2

2

g2

1

+
3

2
g4

1

�
+ . . . (5.38)

Here y can be any quark or lepton Yukawa coupling (leptons contribute with a relative
factor 1

3

, since the quark contribution is enhanced by a color factor). In fact, each occur-
rence of y is an implicit sum over all quarks and leptons, but of course to a very good
approximation only the top quark contributes.

If � is small it is not the first term that dominates (as assumed earlier), but the second
one. Then � will decrease rather than increase, and one has to worry that it does not go
through zero, since negative values of � would correspond to an unstable Higgs potential.
Requiring that this should not happen puts a lower bound on � and hence on the Higgs
mass. A detailed two-loop analysis of the coupled equations [6] (using the known top
quark mass of about 175 GeV) gives a lower limit on the Standard Model Higgs mass
of about 150 GeV. If we combine it with the upper bound coming from the requirement
that � remains finite below M

Planck

we are left with a very small window between 150 and
160 GeV. Of course both bounds are di↵erent if we add extra particles to the Standard
Model. But if we don’t want to do that, and the Higgs is not found within this window,
we can be pretty sure that the Standard Model must loose its validity in some way before
the Planck mass is reached.

Note that even though � may initially decrease with increasing energy scale, the
Yukawa coupling decreases as well, and its contribution will eventually be smaller that
the first term. Then at higher scales the value of � starts to increase again, and hence
the triviality problem is not solved by including the Yukawa coupling. Here we are using
the fact that the top quark mass is still below the bound of 200 GeV mentioned in the
previous section.
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5.2.3 Summing Leading Logarithms

The renormalization group equation can formally be solved in the following way (using
�(F (g)) = @F (g)

@g
�(g))

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) , (5.21)

where the function ḡ is the solution to the di↵erential equation

d

dt
ḡ(t) = �(ḡ(t)) , (5.22)

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ
(here t = log(Q/µ)). In this solution all explicit dependence on µ via logarithms log(Q/µ)
is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into
the coupling “constant” (which is actually not a constant, but depends on Q; hence the
somewhat contradictory name “running coupling constant”).

At one loop the di↵erential equation for the running coupling constant can easily be
solved, and the solution is

ḡn�1(t) =
gn�1

(1 � (n � 1)b
0

tgn�1)
(5.23)

If we expand this solution to order gn we get precisely the one-loop contribution discussed
above. However, even if we take for �(g) just the one-loop expression b

0

gn we see that
ḡ contains an infinite number of terms. These correspond to the so-called “leading log”
contributions to higher loop diagrams. Higher terms in �(g) correspond to “next-to-
leading logs”, which are down by one or more powers of log(Q/µ). This solution is valid
only if g is small, since otherwise it is certainly not correct to ignore the higher order
terms in the � function. If we extrapolate to higher energies (t = log(Q/µ) ! 1) we
observe that gn�1 becomes smaller and smaller if b

0

< 0. However, if b
0

> 0 the coupling
constant increases until it becomes formally infinite for t = 1/((n � 1)b

0

gn�1) (we assume
that g > 0). This is called a “Landau pole”. Here perturbation theory breaks down, and
hence one cannot conclude exactly what happens to the theory. Theories with b

0

< 0,
which are well-behaved at higher energies, are called asymptotically free. This is a very
desirable property since it makes it plausible that no new dynamics will appear at higher
energy; in order words, if we understand the theory at low energies, we can be quite
confident that it harbors no surprises when extrapolated to arbitrarily large energies. In
practice, however, we still have to worry about interactions with other theories, most
notably gravity, disturbing our extrapolations.

5.2.4 Asymptotic freedom

To see which theories are asymptotically free we list here the values of b
0

for some popular
theories. For non-abelian gauge theories coupled to Weyl fermions:

b
0

= � 1

96⇡2

✓
11I

2

(A) � 2I
2

(Rf ) � 1

2
I
2

(Rs)

◆
, (5.24)
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t / log(Energy)

All Standard Model parameters “run” with energy

In particular, the Higgs self-coupling λ runs
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Anthropic Features of the Standard Model

Structure:  
- U(1) with massless photon seems essential.  
- Strong interactions (nuclear physics, sun)  
- Weak interactions to protect chiral fermions?

Scales:  
- Strong scale (ΛQCD) determines proton mass.  
- Weak scale determines quark, lepton masses  
- Both must be much smaller than Mplank (1019 GeV) 
   and not too different from each other.

Parameters:  
mu, md, me, α, αQCD are clearly important.  
(Other masses in order of decreasing relevance:  
mH, mt, mν ; ……. ms, mμ ; …….    mc, mb, mτ)



Particle Physics in the Multiverse



Problems and Worries

• Gravity
• Dark matter
• Baryogenesis
• Inflation.

Problems: 
(Clearly requiring something beyond the Standard Model)

•Choice of gauge group and representations
•Why three families?
•Charge quantization
•Quark and lepton mass hierarchies, CKM matrix.
•Small neutrino masses.
•Strong CP problem.
•Gauge hierarchy problem
•Dark Energy (non-zero, but very small)

Worries: 
(Problems that may exist only in our minds)



The Hierarchy Problem



“Weakness of gravity”

 
 
Maximal number of constituents of a compact object:  
 
 

 
 
 
 
For a “brain” with 1024 protons to be stable, we need 
mp < 10-8 mPlanck

 

✓
mPlanck

mp

◆3
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Stars In Other Universes: Stellar structure with

different fundamental constants

Fred C. Adams

Michigan Center for Theoretical Physics, Department of Physics, University of
Michigan, Ann Arbor, MI 48109

E-mail: fca@umich.edu

Abstract. Motivated by the possible existence of other universes, with possible
variations in the laws of physics, this paper explores the parameter space of
fundamental constants that allows for the existence of stars. To make this problem
tractable, we develop a semi-analytical stellar structure model that allows for physical
understanding of these stars with unconventional parameters, as well as a means to
survey the relevant parameter space. In this work, the most important quantities that
determine stellar properties — and are allowed to vary — are the gravitational constant
G, the fine structure constant α, and a composite parameter C that determines nuclear
reaction rates. Working within this model, we delineate the portion of parameter
space that allows for the existence of stars. Our main finding is that a sizable fraction
of the parameter space (roughly one fourth) provides the values necessary for stellar
objects to operate through sustained nuclear fusion. As a result, the set of parameters
necessary to support stars are not particularly rare. In addition, we briefly consider
the possibility that unconventional stars (e.g., black holes, dark matter stars) play the
role filled by stars in our universe and constrain the allowed parameter space.
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accuracy; although it requires the numerical solution of the Lane-Emden equation, the

numerically determined quantities can be written in terms of dimensionless parameters

of order unity, so that one can obtain analytic expressions that show how the stellar

properties depend on the input parameters of the problem. Given this stellar structure

model, and the reduced (α, G, C) parameter space outlined above, finding the region of

parameter space that allows for the existence of stars becomes a well-defined problem.
As is well known, and as we re-derive below, both the minimum stellar mass and

the maximum stellar mass have the same dependence on fundamental constants that

carry dimensions [11]. More specifically, both the minimum and maximum mass can be

written in terms of the fundamental stellar mass scale M0 defined according to

M0 = α−3/2
G mP =

(

h̄c

G

)3/2

m−2
P ≈ 3.7 × 1033g ≈ 1.85M⊙ , (1)

where αG is the gravitational fine structure constant,

αG =
Gm2

P

h̄c
≈ 6 × 10−39 , (2)

where mP is the mass of the proton. As expected, the mass scale can be written as

a dimensionless quantity (α−3/2
G ) times the proton mass; the appropriate value of the

exponent (–3/2) in this relation is derived below. The mass scale M0 determines the
allowed range of masses in any universe.

In conventional star formation, our Galaxy (and others) produces stars with masses

in the approximate range 0.08 ≤ M∗/M⊙ ≤ 100, which corresponds to the range

0.04 ≤ M∗/M0 ≤ 50. One of the key questions of star formation theory is to understand,

in detail, how and why galaxies produce a particular spectrum of stellar masses (the

stellar initial mass function, or IMF) over this range [12]. Given the relative rarity of high
mass stars, the vast majority of the stellar population lies within a factor of ∼ 10 of the

fundamental mass scale M0. For completeness we note that the star formation process

does not involve thermonuclear fusion, so that the mass scale of the hydrogen burning

limit (at 0.08 M⊙) does not enter into the process. As a result, many objects with

somewhat smaller masses – brown dwarfs – are also produced. One of the objectives

of this paper is to understand how the range of possible stellar masses changes with
differing values of the fundamental constants of nature.

This paper is organized as follows. We construct a polytropic model for stellar

structure in §2, and identify the relevant input parameters that determine stellar

characteristics. Working within this stellar model, we constrain the values of the stellar

input parameters in §3; in particular, we delineate the portion of parameter space that

allow for the existence of stars. Even in universes that do not support conventional
stars, those generating energy via nuclear fusion, it remain possible for unconventional

stars to play the same role. These objects are briefly considered in §4 and include black

holes, dark matter stars, and degenerate baryonic stars that generate energy via dark

matter capture and annihilation. Finally, we conclude in §5 with a summary of our

results and a discussion of its limitations, including an outline for possible future work.
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If we approximate the integral using Laplace’s method [16], the reaction rate R12 for

two nuclear species with number densities n1 and n2 can be written in the form

R12 = n1n2

8√
3παZ1Z2mRc

S(E0)Θ
2 exp[−3Θ] , (14)

where we have defined

Θ ≡
(

EG

4kT

)1/3

. (15)

2.3. Stellar Luminosity and Energy Transport

The luminosity of the star is determined through the equation
dL

dr
= 4πr2ε(r) , (16)

ε is the luminosity density, i.e., the power generated per unit volume. This quantity can

be written in terms of the nuclear reaction rates via

ε(r) = Cρ2Θ2 exp[−3Θ] , (17)

where Θ is defined above, and where

C =
⟨∆E⟩R12

ρ2Θ2
exp[3Θ] =

8⟨∆E⟩S(E0)√
3παm1m2Z1Z2mRc

, (18)

where ⟨∆E⟩ is the mean energy generated per nuclear reaction. In our universe
C ≈ 2 × 104 cm5 s−3 g−1 for proton-proton fusion under typical stellar conditions.

The total stellar luminosity is given by the integral

L∗ = C4πR3ρc
2
∫ ξ∗

0
f 2nξ2Θ2 exp[−3Θ]dξ ≡ C4πR3ρc

2I(Θc) , (19)

where the second equality defines I(Θc), and where Θc = Θ(ξ = 0) = (EG/4kTc)1/3. Note

that for a given polytrope, the integral is specified up to the constant Θc: T = Tcf(ξ),

Θ = Θcf−1/3(ξ).

At this point, the definition of equation (4), the mass integral constraint (7), and

the luminosity integral (19) provide us with three equations for four unknowns: the
radial scale R, the central density ρc, the total luminosity L∗, and the coefficient K in

the equation of state. Notice that if the star is degenerate, then the coefficient K is

specified by quantum mechanics, Γ = 5/3, and one could solve the first two of these

equations for R and ρc, thereby determining the physical structure of the star. Note

that the quantum mechanical value of K represents the minimum possible value. If the

star is not degenerate, but rather obeys the ideal gas law, then the central temperature
is related to the central density through RTc = Kρc

1/n, so that Tc does not represent

a new unknown, and the stellar luminosity L∗ is the only new variable introduced by

luminosity equation (19).

For ordinary stars, one needs to use the fourth equation of stellar structure to finish

the calculation. In the case of radiative stars, the energy transport equation takes the

form

T 3dT

dr
= −

3ρκ

4ac

L(r)

4πr2
, (20)

Adams considers variations of α,  αG

and the “nuclear burning constant” C  

Stellar luminosity is proportional to C  
(dimension m-3)



Stars In Other Universes: Stellar structure with different fundamental constants 18

-10 -5 0 5 10
-10

-5

0

5

10

Figure 5. Allowed region of parameter space for the existence of stars. Here the
parameter space is the plane of the gravitational constant log10[G/G0] versus the fine
structure constant log10[α/α0], where both quantities are scaled relative to the values
in our universe. The allowed region lies under the curves, which are plotted here for
three different values of the nuclear burning constants C: the standard value for p-p
burning in our universe (solid curve), 100 times the standard value (dashed curve),
and 0.01 times the standard value (dotted curve). The open triangular symbol marks
the location of our universe in this parameter space.



The Hierarchy Problem

is needed, and there are indeed anthropic arguments that get much closer to the observed
hierarchy, but they make much stronger assumptions about the laws of physics. See [40]
and [39] for further discussion and references.

Nothing we assumed so far precludes using pure QED with elementary particles as
building blocks for life. This idea encounters numerous challenges. There would be
no fusion-fueled stars, but degenerate stars, like neutron stars or white dwarfs in our
Universe, could take over their rôle [41]). There would be no possibility for Big Bang or
stellar nucleosynthesis. Instead one needs a mechanism analogous to baryogenenis in our
Universe, where a net surplus of fundamental particles over anti-particles is created for all
relevant building blocks of matter. It is totally unclear how to realize that in pure QED.
But we will focus here on another problem, namely the huge hierarchy problem caused
by a substantial number of light particles.4

2.3 The Gauge Hierarchy

In the Standard Model the proliferation of light particles is solved by obtaining all masses
of the light fundamental fermions from a single scale, the mass of the Higgs boson. Note
that the strong scale (set in a natural way by means of dimensional transmutation) dom-
inates the proton and neutron masses, but that is only true because the quark masses are
small.

Inspired by this we add the Higgs mechanism to our list of assumptions. We will
require that the fundamental theory has some high energy gauge group G, broken at
some small scale by the vev of a Higgs to a subgroup H. This is not really an anthropic
assumption, but an assumption about landscape statistics. We are assuming that it is
statistically less costly to make a single scalar light than a number (at least three) of
fermions. If that is the case, one would expect that the high energy gauge group has a
chiral, massless spectrum, with just one light scalar. Anything non-chiral, and all other
bosons would be very massive, because it is too unlikely for them to be light. Of course
this is precisely what we observe.

2.3.1 Naturalness and the Hierarchy Problem

The aforementioned statistical assumptions may seem to run counter to the idea of techni-
cal naturalness. The µ2 mass parameter in the Higgs potential receives quadratic correc-
tions from any high scale, so that its perturbative expansion takes roughly the following
form

µ2
phys = µ2

bare +
X

i

ai⇤
2 , (1)

For simplicity we use here a single large scale ⇤. The existence of a hierarchy problem
is indisputable if there exist particles with masses larger than the weak scale. In string
theory there are particles with Planck masses, and hence in this context one cannot solve

4The particles must be light, but not massless, since massless charged particles have disastrous impli-
cations. We will return to this later.
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the hierarchy problem by denying its existence. Eq. (1) does not imply that µ2
phys is of

order ⇤2, but only that in a su�ciently large ensemble of theories with coe�cients ai of
order 1, the fraction of theories with a desired mass scale µphys = m is of order m2/⇤2.

By contrast, technically natural parameters � renormalize as

�phys = �bare

 
X

i

bilog(⇤/Q)

!
(2)

where Q is some low energy reference scale. The important di↵erence with (1) is not only
that the corrections are logarithmic, and hence of order 1, but also that the corrections
are all proportional to the parameter itself. Hence if the parameter is small, it stays small.

However, whereas (1) determines the statistical distribution of the parameter, (2) does
not. Any fundamental distribution of µ2

bare is washed out by the loop corrections, but this
has the advantage that we can at least estimate the statistical cost. This is not the case
for (2), since knowing the distribution requires knowing something about the fundamental
theory. If, for example, a non-chiral fermion mass is given by �v, where v is a Planck
scale vev (one may think of a modulus), and if � has a flat distribution, the statistical
cost of a single light fermion with mass m is m/⇤, and three light fermions would be more
costly than a single boson, i.e. (m/⇤)3 ⌧ (m/⇤)2. The observed Yukawa couplings for
quarks and leptons do not suggest a flat, but scale invariant distribution [42]. However,
such a distribution requires a cut-o↵ at small �, or else exponentially small values are
highly preferred. This is apparently not the case for the observed Yukawa couplings, nor
for masses of vector-like fermions (since we have not seen any yet). In some string theory
examples, those couplings originate from exponents of actions, which are given by the
surface area of a world-sheet enclosed by three branes (word-sheet instantons). On a
compact surface, these areas are geometrically limited. This would lead to a sharp fall-o↵
of the distribution at small values of the coupling constant, which could well be much
stronger than a power law.

All of this shows that the intuitive idea that “technically natural” always wins against
“technically not natural” is not a foregone conclusion. For technically not natural param-
eters the statistical cost can be computed assuming all terms in (1) have their natural
size. But for technically natural parameters we need to know the unknown cost of a pa-
rameter being very far from its natural value. We are assuming that for three or more
fermions the latter is higher. Then statistically a single Higgs always wins against three
or more non-chiral light fermions. Basically we are viewing the Higgs mechanism as a
solution rather than the cause of the hierarchy problem! An additional advantage of this
assumption is that it is very unlikely that there is more than one Higgs. Models requiring
several low scale Higgs mechanisms to arrive at atomic physics are severely challenged
statistically in comparison to the Universe we observe.

The previous argument would be more convincing if the Higgs hierarchy problem is
reduced by low energy supersymmetry (or other mechanisms such as large extra dimen-
sions or compositeness). Then it would be much more plausible that the statistical cost
of a single Higgs scale outweighs that of three or more fermions [43]. However, since the

10

Renormalization of scalar masses

Renormalization of fermion masses

Computable statistical cost of about 10−34 for the observed 
hierarchy. This is the “hierarchy problem”.

Statistical cost determined by landscape distribution of λbare



The Hierarchy Problem

Four competing options for getting the required hierarchy: 

1. Just a Higgs boson 
2. Fundamental Dirac Masses  
3. Low energy supersymmetry 
4. Dynamical symmetry breaking



Quark masses



Quark masses I: Nuclear Stability





binding energies may not change much either. But it is not always possible to keep
mu +md fixed, and vary mu �md while keeping both quark masses positive.

Keeping all these caveats in mind, we get the limits for some nuclei of interest shown
in table 1. To obtain absolute bounds one should also consider proton-rich or neutron-

Atom �
min

�
max

�
min

�
max

1H 0 1 �.782 1
2H �2.2 +2.2 �3.0 +1.44
3H �8.5 +.762 �9.27 �.018
4He �22.7 +23.6 �23.5 +22.8
12

6

C �12.6 +18.12 �13.4 +17.34
14

7

N +.62 +5.92 �.157 +5.14
16

8

O �9.6 +16.2 �10.4 +15.4

Table 1: Allowed mass shifts for stability of nuclei. The second and third column show the
minimum and maximal values of � = mn � mp � me, the fourth and fifth column display the
allowed shift of this quantity away from its observed value of .782 MeV. All numbers are in MeV.

rich nuclides that are not stable in our universe, and hence cannot be found in nuclear
tables, but which may be stable for di↵erent values of �, such as 9

6

C. In [15] arguments
are given against the stability of proton rich (Z � N) nuclei. Even taking all this into
account, the maximum variation in � is about ±25 MeV (which translates to ±35 MeV
for the quark masses given earlier). Beyond that no stable nuclei exist. This is a very
conservative bound. Long before reaching this bound catastrophic changes occur, and
there is no guarantee that the few stable nuclei can actually be synthesized.

One can try to improve this bound by insisting on the existence of certain atoms, but
a lot of care is needed. For example, we see from the table that 14

7

N becomes stable if �
is decreased by a mere 157 MeV, long before 1H becomes unstable. So one could try to
argue that Nitrogen is somehow needed for life, and that if the electron mass were 157
MeV larger than what we observe, life would not exist. But 15

7

N could take over the rôle
of 14

7

N in chemistry. This isotope is stable for �9.77 < � < 2.748 MeV. In our universe the
abundances of the two isotopes are 99.632% and .368% respectively. Its abundance in an
alternative universe would have to be re-computed from scratch, but at best this would
lead to the conclusion that our universe is a bit more hospitable than the alternative one;
no rigorous bound will come out of this. It is however true that this boundary marks
the end of our region. Beyond this line life, if it exists, is di↵erent, because an isotope
making up 3% of our body mass is no longer stable, and its substitute may have a totally
di↵erent cosmic abundance.

Note that only the linear combination mn � mp � me is bounded by the foregoing
arguments. In [333] it was observed that the reaction

p+ p ! D + e+ + ⌫ (48)

is sensitive to mn �mp +me, and shuts down if this quantity is increased by more than
.42 MeV. This reaction is a step in hydrogen burning in the sun and hence this is definitely
a boundary of our domain in parameter space. However, in [557] it was pointed out that
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Quark masses II: Abundances

Big Bang Nucleosynthesis





Quark masses II: Abundances

Stellar Nucleosynthesis
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is Fred Hoyle’s prediction in 1953 of a definite resonance state in carbon-12, the one
that most frequently has appeared in the anthropic literature.

To summarize this well-known case, in 1953 Hoyle realized that to make enough
carbon inside the stars, there had to exist a resonance state of the carbon-12 nucleus
at 7.68 MeV above the ground level. At the time this state was not known experimen-
tally. Although Hoyle’s theoretical arguments were at first met with some skepticism,
experiments made at the California Institute of Technology (Caltech) soon confirmed
the predicted resonance. Hoyle had apparently shown that an unknown property of
the carbon nucleus, a manifestation of the precise strength of the nuclear and electro-
magnetic forces, follows from the undeniable existence of carbon-based life. We exist,
consequently there must be a 7.68 MeV carbon-12 resonance! The story of how Hoyle
made his famous and alleged anthropic prediction has been told numerous times, in
many cases as evidence of the predictive power of anthropic arguments. “Hoyle was
rigorously applying what would later become known as the anthropic principle,” one
can read.5 “This was the first and only time that a scientist had made a prediction using
the anthropic principle and had been proved right.” Statements like this abound, both
in published sources and, not least, on the internet.

To my knowledge, the first time that the case of the carbon resonance appeared
explicitly in an anthropic context was in an influential article by Bernard Carr and
Martin Rees of 1979, in which the two scientists discussed and summarized all the
arguments for the anthropic principle known at the time. However, apparently Carr
and Rees did not consider the 7.65 MeV resonance level a proper case of anthropic
prediction, for they concluded that the anthropic principle “is entirely post hoc: it has
not yet been used to predict any feature of the Universe.”6 Ten years later, Rees, now in
a popular book written jointly with the astrophysicist and science writer John Gribbin,
gave a much more detailed account of the case and its anthropic nature. As the two
authors noted, most anthropic arguments are made with the benefit of hindsight, the
predictions being really postdictions. “But Hoyle’s prediction is different, in a class
of its own,” they said, “It is a genuine scientific prediction, tested and confirmed by
subsequent experiments.”7 They elaborated:

Hoyle said, in effect, “since we exist, then carbon must have an energy level
at 7.6 MeV.” Then the experiments were carried out and the energy level was
measured. As far as we know, this is the only genuine anthropic principle pre-
diction; all the rest are “predictions” that might have been made in advance of
the observations, if anyone had the genius to make them, but that were never in
fact made in that way. . . . There is no better evidence to support the argument
that the Universe has been designed for our benefit—tailor-made for man.8

5 Singh (2004, p. 395).
6 Carr and Rees (1979, p. 612). The Russian physicist Iosif Rozental included Hoyle’s resonance as an
example of anthropic fine-tuning in an article of 1980 in Soviet Physics Uspekhi; see Rozental (1980, English
translation of 1981).
7 Gribbin and Rees (1989, p. 247).
8 Ibid.
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Abstract The case of Fred Hoyle’s prediction of a resonance state in carbon-12,
unknown in 1953 when it was predicted, is often mentioned as an example of anthropic
prediction. However, an investigation of the historical circumstances of the prediction
and its subsequent experimental confirmation shows that Hoyle and his contempo-
raries did not associate the level in the carbon nucleus with life. Only in the 1980s,
after the emergence of the anthropic principle, did it become common to see Hoyle’s
prediction as anthropically significant. At about the same time mythical accounts of
the prediction and its history began to abound. Not only has the anthropic myth no
basis in historical fact, it is also doubtful if the excited levels in carbon-12 and other
atomic nuclei can be used as an argument for the predictive power of the anthropic
principle.

1 Introduction

In the early days of 1953 the British astrophysicist and cosmologist Fred Hoyle
famously predicted the existence of an excited state in the carbon-12 atomic nucleus,
arguing that such a state was necessary for the production of appreciable amounts of
carbon in the stars. The prediction was quickly confirmed in laboratory experiments
and is today recognized as a breakthrough in the understanding of stellar nucleogene-
sis. When the Royal Swedish Academy of Sciences awarded the prestigious Crafoord
Prize of 1997 to Hoyle for his pioneering contributions to astrophysics, it mentioned
specifically his prediction of the carbon energy level as “perhaps his most important
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Quark masses III: Distributions
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Lepton masses



The Structure of the Standard Model

Beatriz Gato-Rivera, Bert Schellekens

Nucl.Phys. B883 (2014) 529-580 



Our goal: 
  
Derive the discrete structure of the Standard Model: 
The gauge group and representations.  

The standard approach is to use Grand Unification. 

But this does not really work.



Grand Unification

(3, 2,
1

6
) + (3⇤, 1,

1

3
) + (3⇤, 1,�2

3
) + (1, 2,�1

2
) + (1, 1, 1) +(1, 0, 0)

Fits beautifully in the (16) of SO(10)  
 
And the coupling constants meet each other if there is low energy 
supersymmetry.

The simplicity is undeniable: 

SU(3)×SU(2)×U(1)   ⊂   SU(5)   ⊂   SO(10) 

One family matter representation (left-handed) 

So how could this be wrong?



Grand Unification

Even the smallest group, SU(5), can break in two ways, to 
SU(3)×SU(2)×U(1) or SU(4)×U(1).

The Standard Model Higgs is not determined, and does not fit in an 
SU(5) multiplet. 

In QFT the representations are determined if one assumes some kind of 
minimality, but what is the motivation for that? 

No top-down arguments selecting SU(5) or SO(10).

Even if correct, GUTs do not lead to a derivation of the SM structure: 



We will show that in a certain minimal string setting 
where GUT realizations are available, anthropic 
arguments work far better: 

Gauge group determined to be SU(3)×SU(2)×U(1).

Matter determined to be a number of standard families. 
Correct charge quantization without GUTs. 
Standard Model Higgs determined. 

Assuming at least one unbroken non-abelian and at 
least one unbroken electromagnetic interaction



GUTs, Anomalies and Charge Quantization



GUTs, Anomalies and Charge Quantization

If there is no low-energy supersymmetry, the three gauge coupling 
constants do not converge.  

This removes one of the arguments in favor of GUTs.  
 
 
 
 
 
 
 
 

But the arguments based on family structure and charge quantization 
remain valid.  
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GUTs, Anomalies and Charge Quantization

The observed charged quantization is excellent evidence 
for BSM physics. 

Imagine we end up with a consistent theory of quantum 
gravity that imposes no constraints on QFT. Then this 
would allow particles with arbitrary real charges. It is hard 
to accept that we just happen to live in a universe with 
quantized charges. 

One often hears the arguments that anomaly cancellation 
imposes charge quantization.  



Triangle anomalies



SU(3) SU(2) SU(3)2 x U(1) SU(2)2 x U(1) U(1)3 (Grav) x U(1)

(3,2,1/6) 2 0 1/3 1/2 1/36 1

(3*,1,-2/3) -1 0 -2/3 0 -8/9 -2

(3*,1,1/3) -1 0 1/3 0 1/9 1

(1,2,-1/2) 0 0 0 -1/2 -1/4 -1

(1,1,1) 0 0 0 0 1 1

Sum 0 0 0 0 0 0

Q

U*

D*

L

E*



Old QFT arguments

Geng and Marshak (1989) 
A single SM family (without right-handed neutrino) is the 
smallest non-trivial chiral anomaly-free representation of 
SU(3)×SU(2)×U(1). 

OK, but: 

There are three families. 
There probably are right-handed neutrinos. 
Why is the smallest representation preferred anyway? 

See also: 
Minahan, Ramond, Warner (1990), Geng and Marshak (1990)



GUTs, anomalies and Charge Quantization

Anomaly cancellation does not impose charge quantization: 

One can add scalars or Dirac fermions of arbitrary real charge. 

But even for chiral matter anomaly cancellation is not enough: 
one could add an entire family with rescaled charges. 

Such rescalings are not possible if one wishes to couple the 
extra family to the SM Higgs. 



GUTs, anomalies and Charge Quantization

One can try to impose one-family charge quantization on all three families 
by requiring that they all couple to the same Higgs. 

But even that does not work: 
One can have chiral fermions with irrational charges (in SM units) that get 
their mass from the SM Higgs

(3, 2,
1

6
� x

3
) + (3̄, 1,�2

3
+

x

3
) + (3̄, 1,

1

3
+

x

3
)

+(1, 2,�1

2
+ x) + (1, 1, 1� x) + (1, 1,�x)



Charge Quantization

We need some kind of BSM physics to explain charge quantization. 

The most promising candidate for such a theory is string theory. 

String theory is likely to quantize the charges.  
 

If we already have string theory, do we also need GUTs?



The String Theory Landscape

String theory certainly not predict the Standard Model uniquely.  
As far as we know it leads to a huge ensemble (“landscape”) of 
possibilities, realized in a multiverse.  

So then how can we hope to derive the Standard Model? 

We still have two clues, that are inevitable in a large landscape:

Anthropic arguments 

Landscape distributions



The String Theory Landscape

The anthropic argument we will use is that the spectrum must be 
sufficiently complicated. In our universe this is achieved by quarks 
binding into protons and neutrons, which bind into nuclei, which 
together with electrons form atoms.  

We cannot really derive this from SU(3)×SU(2)×U(1), and hence we 
can certainly not expect to be able to derive this from any QFT that is 
more complicated.  

But in some simpler theories the existence of a complicated set of 
bound states can be plausibly ruled out.  



The String Theory Landscape

More complicated QFT’s that cannot be anthropically ruled 
out certainly exist, for example

SU(5)×SU(2)×U(1)

With fifth-integer fractionally charged quarks.  

So anthropic arguments alone will not do, given our current 
knowledge about strongly interacting gauge theories.



The String Theory Landscape

The hope is then that we can establish that the Standard Model is the 
simplest one with a complicated spectrum. 

Then one may also hope that landscape statistics prefers simpler QFT’s 
over more complicated ones.
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The String Theory Landscape

The hope is then that we can establish that the Standard Model is the 
simplest one with a complicated spectrum.  

Then one may also hope that landscape statistics prefers simpler QFT’s 
over more complicated ones. 

Here “simpler” means smaller gauge groups, smaller representations, 
fewer participating building blocks (e.g. membranes). 

In string theory all these quantities are indeed fundamental limited, and 
hence their distribution will approach zero for large values. 



Towards a derivation of the Standard Model
Main anthropic assumption: 

To have observers we will need  
electromagnetism and a handful  
of particles with various charges.  

We are not asking for a particular quantization, and we are not 
requiring particles of charge 6 (Carbon) to exist, but too simple 
sets will not do (e.g. charges −1,1,2: just Hydrogen and Helium) 

So perhaps one could just “emulate” atomic physics with some 
fundamental particles with charges −1,1,2,…,N for sufficiently 
large N: fundamental “electrons” and “nuclei”.



Towards a derivation of the Standard Model

So to get a substantial number of light atoms, we have to solve a 
hierarchy problem for each of the constituents. 

In the Standard Model this is solved by getting the particle masses 
from a single Higgs. 

There may be landscape distribution arguments to justify this. 

Is having N light fermions* statistically more costly than having a 
single light boson? (The N fermions can be either elementary nuclei  
or the two light quarks and the electron; then N=3 )

(*) Our nuclei can be bosons and fermions, but that is not essential  



The Hierarchy Problem

One would also have to show that one fundamental scalar wins 
against dynamical Higgs mechanism or low energy supersymmetry. 

Not enough is known theoretically to decide this, so we take 
experiment as our guiding principle. 

Currently it seems we have a single Higgs + nothing. 

This suggests that in a landscape the Higgs is not the origin but the 
solution of the Hierarchy problem: it could be the optimal way to 
create the anthropically required large hierarchy.  

This would immediately imply that there is only a single Higgs. 



No Higgs?

Statistically, no Higgs is better than one. 
If there is a credible alternative to the SM with only dynamical symmetry breaking, that would be a 
serious competitor.  

But generically these theories will have a number of problems. 

Consider the SM without a Higgs. It is well-known that in that case the QCD chiral condensate will act 
like a composite Higgs and give mass to the quarks. The photon survives as a massless particle.  

But the quark masses are not tuneable, and the leptons do not acquire a mass. 

Massless charged leptons turn the entire universe into an opaque particle-antiparticle plasma.  
(C. Quigg, R. Shrock, Phys.Rev. D79 (2009) 096002) 

Lessons: 
1. Dynamical Symmetry Breaking can play the role of the Higgs mechanism 
2. Dynamical Symmetry Breaking should not make the photon massive 
3. There should not be any massless charged leptons



String Theory



String Theory Input

We would like to enumerate all QFT’s with a gauge group and chiral matter. All 
non-chiral matter is assumed to be heavy, with the exception of at most one scalar 
field, the Higgs. We demand that after the Higgs gets a vev, and that when all 
possible dynamical symmetry breakings have been taken into account, at least 
one massless photon survives, and all charged leptons* are massive. 

This condition is very restrictive, but still has an infinite number of solutions in QFT.  

So at this point we invoke string theory. Its main rôle is to restrict the 
representations. It also provides a more fundamental rationale for anomaly 
cancellation. 

*lepton: a fermion not coupling to any non-abelian vector boson
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Intersection brane models

Intersections of branes in extra dimensions determine the massless 
spectrum. 

Brane multiplicities are subject to a constraint: tadpole cancellation 
(automatically implies absence of triangle anomalies in QFT). 

Massless photons may mix with axions and acquire a mass.  

Axion

(Green-Schwarz mechanism)



Intersecting Brane Models

We will assume that all matter and the Higgs bosons are massless particles 
in intersecting brane models. Then the low-energy gauge groups is a 
product of U(N), O(N) and Sp(N) factors. 

The low energy gauge group is assumed to come from S stacks of branes. 
There can be additional branes that do not give rise to massless gauge 
bosons: O(1) or U(1) with a massive vector boson due to axion mixing.  

All matter (fermions as well a the Higgs) are bi-fundamentals, symmetric or 
anti-symmetric tensors, adjoints or vectors (open strings with one end on a  
neutral brane)  

We start with S = 1, and increase S until we find a solution. 



Intersecting Brane Models: S=1
Chan-Paton group can be U(N), O(N) or Sp(N), but only U(N) can be chiral. 

Matter can be symmetric or anti-symmetric tensors or vectors.  
Chiral multiplicities S, A, K; charges 2q, 2q, q. 

Anomaly cancellation:

and anti-symmetric tensors, all belonging to a single brane stack, and bi-fundamentals
stretching between stacks. We allow for open strings with just one endpoint on the stack,
and another endpoint on a neutral object. This might for example be a O(1) brane or
a U(1) brane with an anomalous gauge symmetry, so that the gauge boson gets a mass
from a Green-Schwarz mechanism. These give rise to vectors on the stack to which the
other end of the string is attached.

The first option to consider is that the electromagnetic U(1) is embedded in a single
brane stack. This must be a unitary stack, since otherwise all representations are non-
chiral. The gauge group is U(N). The spectrum of the single stack consists of K vectors
of charge q, S symmetric tensors of charge 2q and A anti-symmetric tensors of charge 2q,
where the charge refers to the overall phase U(1) of the stack. Here K,S and A can be
both positive and negative (a sign change implies a chirality change), and q can be zero
– if the U(1) is broken by the Green-Schwarz mechanism – or non-zero. The U(1) has to
satisfy the following cubic and mixed (gauge and gravity) anomaly cancellation conditions

KNq3 + 1
2N(N + 1)S(2q)3 + 1

2N(N � 1)A(2q)3 = 0

KNq + 1
2N(N + 1)S(2q) + 1

2N(N � 1)A(2q) = 0

Kq + (N + 2)S(2q) + (N � 2)A(2q) = 0

These can only be solved if either K = S = A = 0 or q = 0. In the latter case K,S
and A are only constrained by cubic SU(N) anomaly cancellation, and a chiral spectrum
can be obtained. But then the electromagnetic U(1) must emerge from a Higgs breaking
SU(N). The choice of Higgs bosons is: a vector, a symmetric tensor, an anti-symmetric
tensor or an adjoint. The resulting symmetry breaking patters have been worked out
in [41] (with a correction in [43]). A vector breaks SU(N) to SU(N�1), a symmetric
tensor breaks it to SO(N) or to SU(N � 1) (depending on the Higgs potential) and
an anti-symmetric tensor breaks SU(N) to Sp(N) (if N is even) or Sp(N�1) (if N is
odd), or to SU(N�2) ⇥ SU(2). The only way these symmetry breakings could yield a
U(1) is if SU(2) is broken by means of a symmetric tensor to SO(2). But SU(2) has
no complex representations, and hence is not a suitable high-energy theory by itself; it
violates assumption 3. An adjoint representation breaks SU(N) to SU(p)⇥SU(q)⇥U(1),
p + q = N . This looks promising, because at least it produces a U(1). But it is easy to
see that this can never break a chiral representation to a non-chiral one. We will discuss
this in more detail for two-stack models in section 4.2.3.

4.2 Two Stack Models

The next possibility is to obtain the U(1) from two brane stacks. In this paper we will
only consider the possibility that both are unitary, and consider a general U(M)⇥U(N)
two-stack model. The gauge group is SU(M)⇥ SU(N)⇥U(1)2, but anomalies (canceled
by a Green-Schwarz mechanism) will leave at most one linear combination of the two
U(1)’s unbroken. We will write it as Y = qaQa + qbQb where Qa and Qb are the brane
charges of the two stacks. The possibilities for chiral matter representations are then
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Solutions: K=S=A=0 or q=0. In the former case, there is no chiral spectrum, in the 
latter case no electromagnetism. 

Higgs symmetry breaking could still produce a U(1), but the choice of Higgses is limited to vectors and rank-2 (anti)-symmetric tensors or adjoints.  

Adjoints never turn a chiral spectrum into a non-chiral one.  

The others produces a U(1) only for a symmetric tensor breaking SU(2) to SO(2). But SU(2) is not chiral, so by assumption all matter then has Planck scale masses.   



Two stack models

Y = qaQa + qbQb
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see that this can never break a chiral representation to a non-chiral one. We will discuss
this in more detail for two-stack models in section 4.2.3.

4.2 Two Stack Models

The next possibility is to obtain the U(1) from two brane stacks. In this paper we will
only consider the possibility that both are unitary, and consider a general U(M)⇥U(N)
two-stack model. The gauge group is SU(M)⇥ SU(N)⇥U(1)2, but anomalies (canceled
by a Green-Schwarz mechanism) will leave at most one linear combination of the two
U(1)’s unbroken. We will write it as Y = qaQa + qbQb where Qa and Qb are the brane
charges of the two stacks. The possibilities for chiral matter representations are then
(note that adjoints are not chiral, so we do not have to consider them)

Q (M,N, qa + qb)

U (A, 1, 2qa)

D (M, 1,�qa)

S (S, 1, 2qa)

X (M,N, qa � qb) (10)

L (1, N,�qb)

T (1, S, 2qb)

E (1, A, 2qb)

where A, S denote (anti)symmetric tensors. We have given these multiplets suggestive
names referring to the Standard Model, but of course those names can correspond to
genuine quarks and leptons only for M = 3 and N = 2. We will use variables Q,U,D, . . .,
which can be any integer, to denote the multiplicity of these representations. If a mul-
tiplicity is negative this implies a positive multiplicity for the conjugate representation.
The representations themselves will be denoted asQ,U,D, . . .. We have chosen to use the
anti-vectors for L and D, because then the Standard Model multiplicities will be positive
integers. Note however that for notational convenience we have not added superscripts
to denote anti-particles. So U and D correspond to anti-quarks in the Standard Model,
and L corresponds to anti-leptons.

4.2.1 Anomaly cancellation conditions

The integer multiplicities are subject to anomaly cancellation. We will denote anomalies
by a three-letter code, where ‘S’,‘W’ and ‘Y’ refer to SU(M), SU(N) and U(1), and ‘G’
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SU(M)⇥ SU(N)⇥ U(1)

qa, qb determined by axion couplings

(We have only considered unitary branes so far)



Anomalies

There are six kinds of anomalies: 

SSS
WWW
YYY
SSY
WWY
GGY

SU(M)⇥ SU(N)⇥ U(1)

S     W     Y

Mixed gauge-gravity

} From tadpole cancellation: also for M, N < 3

At most one linear combination of the U(1)’s is anomaly-free 



Anomalies

to gravity. Hence we have anomalies of type SSS, SSY, WWW, WWY, YYY and GGY.
Note that the WWW anomaly is trivial in field theory for N = 2, but in a brane model
the requirement of tadpole cancellation still imposes it as if it were a non-abelian anomaly.
Hence the anomaly contributions of vectors, symmetric and anti-symmetric tensors are 1,
N + 4 and N � 4 respectively, even for N = 2 (the case N = 1 is discussed below). We
will see however that there is a linear dependence among the six anomalies, so that the
WWW anomaly is not really needed. Since we want to assume as little as possible about
the string theory origin of these gauge groups, it is useful to know that the anomalies we
use are really just the field-theoretic ones. Furthermore, we can use the linear dependence
to trade the awkward YYY anomaly for the much more manageable WWW anomaly.

The condition of anomaly cancellation constrains the parameters qa and qb as well as
the particle multiplicities. Note that in brane models, U(1)’s do not have to be anomaly
free, because their anomalies are canceled by the Green-Schwarz mechanism. But in
that case the corresponding gauge boson acquires a mass, and cannot be the one of the
Standard Model. In brane models it may also happen that a non-anomalous U(1) acquires
a mass from mixing with axions, but this is irrelevant for our purposes. There exist models
where this is not the case, and those are the only ones of interest.

The anomaly cancellation conditions can be greatly simplified and brought to the
following form

(S + U)q̃a = C1

(T + E)q̃b = �C2

(D + 8U)q̃a = (4 +M)C1 +NC2 (11)

Lq̃b +Dq̃a = 0

2Eq̃b + 2Uq̃a = C1 � C2

Here q̃a ⌘ Mqa, q̃b ⌘ Nqb, C1 = �(Q�X)q̃b and C2 = (Q +X)q̃a. The Standard model
parameter values are q̃a = �1, q̃b = 1, C1 = C2 = �3, Q = U = D = L = E = 3 and
S = T = X = 0, and of course satisfy these equations for M = 3, N = 2. For any M and
N there are just five independent equations, demonstrating that the WWW equation is
redundant even if N 6= 2.

In the derivation of these equations we used N 6= 1, M 6= 1, qa 6= 0 and qb 6= 0. If
N or M are equal to one, the SSS and WWW anomaly conditions continue to hold in a
brane model, because they follow from the requirement of tadpole cancellation. If N = 1
this leads to the strange results that the open string sector E contributes to anomaly
cancellation, even though it contains no massless states! However, the reason (11) is not
necessarily valid is that the SSY and/or WWY anomaly cancellation conditions have no
meaning anymore if M and/or N are equal to 1.

If we choose just one of the two brane stack multiplicities equal to one, we lose one
equation, but we still have five left. Since the original set of six equations has a redun-
dancy, one may expect to obtain exactly the same equations, and by inspection this is
indeed correct. Note that for N = 1 or M = 1 the anomaly cancellation conditions are
not just the field theoretic ones, but that there is one stringy SSS or WWW condition.
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Only five independent ones. In most cases of interest,the 
stringy SU(2)3 anomaly is not an independent constraint. 

Cubic charge dependence can be linearized. 
(qa = 0 and/or qb = 0 must be treated separately)



Abelian theories

Single U(1):  Higgs must break it, no electromagnetism left 
U(1)×U(1):  No solution to anomaly cancellation for two stacks

So in two-stack models we need at least one non-abelian factor in 
the high-energy theory.



Strong Interactions

It is useful to have a non-abelian factor in the low-energy theory as well, since the 
elementary particle charge spectrum is otherwise too poor. We need some additional 
interaction to bind these particles into bound states with larger charges (hadrons and 
nuclei in our universe).  

For this to work there has to be an approximately conserved baryon number. 
This means that we need an SU(M) factor with M ≥ 3, and that this SU(M) factor 
does not become part of a larger group at the “weak” scale. 

Note that SU(2) does not have baryon number, and the weak scale is near the 
constituent mass scale. We cannot allow baryon number to be broken at that scale. 

But let’s just call this an additional assumption. 



Higgs Choice

Therefore we do not consider bi-fundamental Higgses breaking both U(M) 
and U(N). We assume that U(N) is the broken gauge factor. Then the only 
Higgs choices are L,T and E. 

This implies that at least one non-abelian factor is not broken by the Higgs. 
We take this factor to be U(M).

We will assume thatU(M) it is strongly coupled in the IR-regime and stronger 
than U(N).



SU(M)×U(1) (i.e. N=1) 

Higgs can only break U(1), but then there is no electromagnetism. 

Hence there will be a second non-abelian factor, broken by the Higgs. 



M = 3, N = 2

Higgs = L
Decompose L, E, T: chiral charged leptons avoided only if  

                                      L = E, T = 0 

Substitute in anomaly equation:

For M = 3, N = 2: S = 0

Sq̃a =

✓
5�N �M

2M

◆
C1

Therefore we get standard QCD without symmetric tensors.



M = 3, N = 2

Sq̃a =
1
2(C2 � C1). Now we substitute this into the third equation of (11), and obtain

(5�N)C1 = MC2 (12)

For N = 2 and M = 3 this result implies that C1 = C2, and hence S = 0 (note that
there is a second solution to the condition C2 = C1, namely M = 4, N = 1, and we will
see later what that implies). Hence to avoid chiral leptons for M = 3 we must set S = 0.
Since the anti-symmetric tensor of SU(3) is an anti-triplet we are now in the desirable
situation of an SU(3) gauge group with matter only in the fundamental representation.

We will present the rest of the argument without directly using the anomaly conditions
(11), because this is more insightful, and the derivation of (11) is straightforward, but
rather tedious. The quark multiplets split up in the following way

Q(3, qa) +Q(3, qa + 2qb) +X(3, qa) +X(3, qa � 2qb)� U(3,�2qa)�D(3, qa) , (13)

where we have conjugated U and D in order to have only triplets. We have to pair all
these components. The first term can be paired with a component of X and with D,
without any constraints on charges. But the second component can only be paired with
U, since qb 6= 0. Hence if Q 6= 0, we find the relation qa+2qb = �2qa, i.e. 3qa = �2qb, and
Q = U . This charge relation implies immediately that there is no partner for the second
component of X, so that X must vanish. Then the first component of Q can only pair
with D, and we get D = Q. If Q = 0, we can apply the same reasoning to X, with the
result 3qa = +2qb, and X = U = D. This is just the solution with X $ Q interchange
that exists on general grounds. If Q and X both vanish there is no solution, since qa 6= 0.

All anomalies involving SU(3) already cancel, and the quark contribution to the U(1)
trace anomaly cancels by itself. The relation between the charges qa and qb is the familiar
one from SU(5), and so we know that all particles have their familiar charges. We choose
the Standard Model normalization conventions. We get the following equations for L, T
and E

SSY 1
2Q� 1

2L+ 4T = 0

GGY �L+ 3T + E = 0

YYY �3
4Q� 1

4L+ 3T + E = 0

which imply that L = E = Q and T = 0. Note that the SU(2) anomaly 3Q�L+6T �2E
is not really needed, and follows from the others. We do not need to check that the Higgs
does indeed give mass to all quarks and leptons, because this is the Standard Model.

Triplet Higgs

The triplet Higgs can break SU(2)⇥U(1) in two ways [52], depending on the signs of two
terms in the Higgs potential. The Higgs vev can either take the form

hHi =
✓
0 0
0 v

◆
, (14)
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Quark sector

Q+X−D = 0 
Q = U  if and only if  qa+2qb  = −2qa

                    or 
X = U  if and only if  qa−2qb  = −2qa 

In both cases we get an SU(5) type charge relation, and 
hence standard charge quantization



M = 3, N = 2

Hence either Q = 0 or X = 0; the choice is irrelevant. 
 
Take X = 0. 
Then D = Q = U, T = 0, L = E 
Remaining anomaly conditions: L = Q 

Hence the only solution is a standard model family, occurring Q times.

The branes a and b are in principle unrelated, and can generally not 
be combined to a U(5) stack 



M = 3, N = 2

Higgs = T
The symmetric tensor can break SU(2)×U(1) in two ways, either to U(1), in the 
same way as L, or to SO(2).

No allowed Higgs couplings to give mass to the charged components of L, E and T,  
so we must require E = L = T = 0. Then there is no solution.

Breaking to U(1)  (same subgroup as L)

Breaking to SO(2)
Then SO(2) must be electromagnetism. Y-charges forbid cubic T couplings, so T = 0 
to avoid massless charged leptons. Quark charge pairing (to avoid chiral QED, broken 
by QCD) requires Q =−X. If we also require S = 0, everything vanishes.

Note: stronger dynamical assumption: S = 0



M > 3  and/or  N > 2: lepton pairing

Lepton charge pairing:

at least possible in principle to obtain a solution. It follows that any solution must involve
the U(1), and that there can be only one U(1), because otherwise a linear combination
would live entirely within G, which was already ruled out.

The Main Argument

We will now determine the possibilities for the surviving U(1), assuming Q 6= �X. It
will in any case be a linear combination of a generator of the non-abelian flavor group
SU(N) and Y .

Qem = ⇤+ Y (21)

Note that we use the entire unbroken flavor group here. The Higgs just breaks SU(N) to
a subgroup, which by dynamical symmetry breaking is broken to a smaller subgroup. But
in any case, the final result is of the form (21), with ⇤ = diag(�1, . . . ,�N), and

P
i �i = 0.

The advantage of working with the full group SU(N) is that the results can be applied
directly to all choices for the broken subgroup G listed above. Furthermore it will contain
all possibilities of dynamical symmetry breaking of the flavor group as well as the most
general Higgsless case.

To avoid massless charged leptons it is in any case essential to avoid chiral ones. This
implies that the trace of Qem in the lepton sector much vanish. Note that this trace is
also the leptonic contribution to the mixed anomaly of Qem with gravity. So if this trace
does not vanish, the strong SU(M) interactions would have to produce chiral massless
charged baryons to match it. But we have already assumed that this will not happen.
This trace yields the equation

� L+ (N � 1)E + (N + 1)T = 0 . (22)

which can be added to the set of anomaly equations.
These can now be solved completely in terms of C1 and C2. The result is

U = 3+M
6 C1

S = 3�M
6 C1

D = NC2 � M
3 C1

Lq̃b = �NC2 +
M
3 C1

Eq̃b = �1
2C2 +

M
6 C1

T q̃b = �1
2C2 � M

6 C1

For M = 3 this implies S = 0. As was the case for N = 2 this follows from lepton
charge pairing, but under the slightly stronger condition that no non-abelian factor is left
unbroken in the flavor group. Note that in the case N = 2 we also used T = 0. We see
now that only (22) is needed.

The derivation of (22) holds only if there is a non-vanishing contribution to Qem from
Y . Hence it can be avoided if the Higgs mechanism breaks the Y charge. This happens
for the SU(N) ! SO(N) breaking pattern for H = T, and for the SU(N) ! Sp(N)
breaking pattern for H = E, N even. We will discuss these cases separately in section 5.
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Combined with the five anomaly constraints this gives the following solution

For M = 3, S = 0 automatically!
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following form

(S + U)q̃a = C1

(T + E)q̃b = �C2

(D + 8U)q̃a = (4 +M)C1 +NC2 (11)

Lq̃b +Dq̃a = 0

2Eq̃b + 2Uq̃a = C1 � C2

Here q̃a ⌘ Mqa, q̃b ⌘ Nqb, C1 = �(Q�X)q̃b and C2 = (Q +X)q̃a. The Standard model
parameter values are q̃a = �1, q̃b = 1, C1 = C2 = �3, Q = U = D = L = E = 3 and
S = T = X = 0, and of course satisfy these equations for M = 3, N = 2. For any M and
N there are just five independent equations, demonstrating that the WWW equation is
redundant even if N 6= 2.

In the derivation of these equations we used N 6= 1, M 6= 1, qa 6= 0 and qb 6= 0. If
N or M are equal to one, the SSS and WWW anomaly conditions continue to hold in a
brane model, because they follow from the requirement of tadpole cancellation. If N = 1
this leads to the strange results that the open string sector E contributes to anomaly
cancellation, even though it contains no massless states! However, the reason (11) is not
necessarily valid is that the SSY and/or WWY anomaly cancellation conditions have no
meaning anymore if M and/or N are equal to 1.

If we choose just one of the two brane stack multiplicities equal to one, we lose one
equation, but we still have five left. Since the original set of six equations has a redun-
dancy, one may expect to obtain exactly the same equations, and by inspection this is
indeed correct. Note that for N = 1 or M = 1 the anomaly cancellation conditions are
not just the field theoretic ones, but that there is one stringy SSS or WWW condition.
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at least possible in principle to obtain a solution. It follows that any solution must involve
the U(1), and that there can be only one U(1), because otherwise a linear combination
would live entirely within G, which was already ruled out.

The Main Argument

We will now determine the possibilities for the surviving U(1), assuming Q 6= �X. It
will in any case be a linear combination of a generator of the non-abelian flavor group
SU(N) and Y .

Qem = ⇤+ Y (21)

Note that we use the entire unbroken flavor group here. The Higgs just breaks SU(N) to
a subgroup, which by dynamical symmetry breaking is broken to a smaller subgroup. But
in any case, the final result is of the form (21), with ⇤ = diag(�1, . . . ,�N), and

P
i �i = 0.

The advantage of working with the full group SU(N) is that the results can be applied
directly to all choices for the broken subgroup G listed above. Furthermore it will contain
all possibilities of dynamical symmetry breaking of the flavor group as well as the most
general Higgsless case.

To avoid massless charged leptons it is in any case essential to avoid chiral ones. This
implies that the trace of Qem in the lepton sector much vanish. Note that this trace is
also the leptonic contribution to the mixed anomaly of Qem with gravity. So if this trace
does not vanish, the strong SU(M) interactions would have to produce chiral massless
charged baryons to match it. But we have already assumed that this will not happen.
This trace yields the equation

� L+ (N � 1)E + (N + 1)T = 0 . (22)

which can be added to the set of anomaly equations.
These can now be solved completely in terms of C1 and C2. The result is

Uq̃a = 3+M
6 C1

Sq̃a = 3�M
6 C1

Dq̃a = NC2 � M
3 C1

Lq̃b = �NC2 +
M
3 C1

Eq̃b = �1
2C2 +

M
6 C1

T q̃b = �1
2C2 � M

6 C1

For M = 3 this implies S = 0. As was the case for N = 2 this follows from lepton
charge pairing, but under the slightly stronger condition that no non-abelian factor is left
unbroken in the flavor group. Note that in the case N = 2 we also used T = 0. We see
now that only (22) is needed.

The derivation of (22) holds only if there is a non-vanishing contribution to Qem from
Y . Hence it can be avoided if the Higgs mechanism breaks the Y charge. This happens
for the SU(N) ! SO(N) breaking pattern for H = T, and for the SU(N) ! Sp(N)
breaking pattern for H = E, N even. We will discuss these cases separately in section 5.
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M > 3  and/or  N > 2: quark pairing

Q ≠ −X:  Left-handed and righthanded quark representations have different 
dimensions. Then no subgroup of SU(N) is non-chiral. 
Hence dynamical symmetry breaking breaks SU(N) completely. 

But SU(N)×U(1) does contain a current that is non-chiral.  
Note that now U and D participate, which are neutral under SU(N), but carry a U(1) 
charge. The surviving U(1) symmetry must be a linear combination  

                                       Qem =  Λ + Y, 

where Λ ∈ SU(N). There can be at most one such U(1) factor. 
This is the only symmetry that can survive DSB+Higgs breaking. 
  

(Q = −X: see paper)



M > 3  and/or  N > 2

⇤ = diag(�1, . . . ,�N )

qb + �i = ↵qa

Quark charge pairing is possible only for α = 0, ±3 

Charges of Q:  
Charges of X: 
Charges of D: 
Charges of U,S: 
Lepton Charges:

qa � qb � �i

qa + qb + �i

qb + �i; 2qb + �i + �j

�qa

2qa

Define

All solutions satisfy Standard Model charge quantization! 

(surviving Higgs + any DSB)



M > 3  and/or  N > 2

Tr ⇤ = q̃b

✓
3

M
� 1

◆

⇤ : n⇥ {�qb}+ n+ ⇥ {�qb + 3qa}+ n� ⇥ {�qb � 3qa}

R = �(Q+X)
q̃a
q̃b

2 Z
n+ =

Q

R

n� = �X

R

N = n+ n+ + n�

We can obtain a solution for any Q and X

The trace of Λ must vanish

Hence M = 3!



M > 3  and/or  N > 2

D = n(Q+X)

U = (N � n)(Q+X)

L = nR

E =
1

2
(N � n+ 1)R

T = �1

2
(N � n� 1)R

The spectrum can be computed

Absence of massless charged leptons only for N = 2!



Conclusions

The Standard Model is the only anthropic solution within the set of two-stack models. 

Family structure, charge quantization, the weak interactions and the Higgs choice are 
all derived. 

Standard Model charge quantization works the same way, for any value of N, 
even if N+3 ≠ 5. 

The GUT extension offers no advantages, only problems (doublet-triplet splitting) 

Only if all couplings converge (requires susy), GUTs offer an advantage. 

The general class is like a GUT with its intestines removed, keeping only the good 
parts: GUTs without guts.




