

THE RCFT ORIENTIFOLD "LANDSCHAP"

EXPLORING THE LANDSCAPE

1986 (with Lerche, Lüst): many "vacua"

A few people: string theory must be wrong, or "just a framework". Most people: wait and see... Some people: probably true, but who cares? My conclusion: "anthropic landscape"

Present motivation

Landscape remains to a large extent unexplored. Very few "standard model spectra" known. Are there any generic features? How many fit current data?

EXPLORING THE LANDSCAPE

1986 (with Lerche, Lüst): many "vacua"

A few people: string theory must be wrong, or "just a framework". Most people: wait and see... Some people: probably true, but who cares? My conclusion: "anthropic landscape"

Present motivation

Landscape remains to a large extent unexplored. Very few "standard model spectra" known. Are there any generic features? How many fit current data?

"Is the standard model a plausible solution to the landscape and anthropic constraints?"

ORIENTIFOLD PARTITION FUNCTIONS

Sunday, 2 May 2010

ORIENTIFOLD PARTITION FUNCTIONS

$$\bigcirc \text{Closed} \qquad \frac{1}{2} \left[\sum_{ij} \chi_i(\tau) Z_{ij} \chi_i(\bar{\tau}) + \sum_i K_i \chi_i(2\tau) \right]$$

$$\bigcirc \text{Open} \qquad \frac{1}{2} \left[\sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

- i: Primary field label (finite range)
- a: Boundary label (finite range)
- χ_i : Character
- N_a : Chan-Paton (CP) Multiplicity

COEFFICIENTS

Se Klein bottle

$$K^{i} = \sum_{m,J,J'} \frac{S^{i}{}_{m}U_{(m,J)}g^{\Omega,m}_{J,J'}U_{(m,J')}}{S_{0m}}$$

Annulus

$$A^{i}_{[a,\psi_{a}][b,\psi_{b}]} = \sum_{m,J,J'} \frac{S^{i}_{\ m} R_{[a,\psi_{a}](m,J)} g^{\Omega,m}_{J,J'} R_{[b,\psi_{b}](m,J')}}{S_{0m}}$$

Moebius

$$M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$$

 $g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c}$

BOUNDARIES AND CROSSCAPS

Soundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Generation Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

Cardy (1989) Sagnotti, Pradisi, Stanev (~1995) Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

ÅLGEBRAIC CHOICES

- Basic CFT (N=2 tensor, free fermions...)
 (Type IIB closed string theory)
- Chiral algebra extension(*)
 May imply space-time symmetry (e.g. Susy: GSO projection).
 Reduces number of characters.
- Modular Invariant Partition Function (MIPF)(*) May imply bulk symmetry (e.g Susy), not respected by all boundaries. Defines the set of boundary states (Sagnotti-Pradisi-Stanev completeness condition)

(*) all these choices are simple current related

TADPOLES & ANOMALIES

Tadpole cancellation condition:
 $\sum_{b} N_b R_{b(m,J)} = 4\eta_m U_{(m,J)}$ Cubic anomalies cancel

- Remaining anomalies by Green-Schwarz mechanism
- In rare cases, additional conditions for global anomaly cancellation*

*Gato-Rivera, Schellekens (2005)

Vector-like: mass allowed by $SU(3) \times SU(2) \times U(1)$ (Higgs, right-handed neutrino, gauginos, sparticles....)

MODELS

 $G_{CP} \supset SU(3) \times SU(2) \times U(1)$

Chiral fermions \rightarrow 3 families

Criteria for distinguishing spectra

- 1. Chiral GCP spectrum ("chiral type"), e.g SU(5), Pati-Salam,
- 2. Massless GCP spectrum
- 3. Massless G_{CP} spectrum +

FREE FERMION MODELS*

The following real and complex free fermion models are accessible

(NSR) $(D_1)^9$ (NSR) $(D_1)^7$ (Ising)⁴ (NSR) $(D_1)^5$ (Ising)⁸ (NSR) $(D_1)^3$ (Ising)¹²

685 MIPFs 3858 MIPFs 111604 MIPFs > 2²⁸ MIPFs

One SM config, no tadpole solutions
Nothing!
> 40000 MIPFs done, > 30 days, Nothing yet!

(*) with E. Kiritsis

Sunday, 2 May 2010

GEPNER MODELS*

9 168 tensor combinations(Susy extension)
9 5403 MIPFs (880 Hodge number pairs)
9 49322 Orientifolds

Two scans:

with Dijkstra, Huiszoon (2004/2005)

- *19 Chiral types ("Madrid models")
- *18 with tadpole cancellation
- *211000 non-chirally distinct spectra (criterium 2)

with Anastasopulos, Dijkstra, Kiritsis (2005/2006)

*19345 Chiral types
*1900 with tadpole cancellation
*1900 non-chirally distinct spectra (criterium 1)

(*)Also: Angelantonj et. al, Blumenbagen et. al., Aldazabal et. al, Brunner et al.....

THE MADRID MODEL*

(*) Ibanez, Marchesano, Rabadan

Sunday, 2 May 2010

ABELIAN MASSES

Green-Schwarz mechanism

Axion-Vector boson vertex

·----

Generates mass vector bosons of anomalous symmetries (e.g. B + L) But may also generate mass for non-anomalous ones (Y, B-L)

Sunday, 2 May 2010

A "MADRID" MODEL

Gauge group: Exactly $SU(3) \times SU(2) \times U(1)!$ [U(3)×Sp(2)×U(1)×U(1), Massive B-L, No hidden sector]

3 x (V	V	0	(1) chirality 3	0
	,•	,0	(0) chirality (2)	
3 X (V	,0	,V	,0) chirality -3	\bigcup
3 x (V	,0	,V*	,0) chirality -3	D*
3 x (0	,V	,0	,V) chirality 3	L
5 x (0	,0	,V	,V) chirality -3	$E^{*}+(E+E^{*})$
3 x (0	,0	,V	,V*) chirality 3	N*
18 x (0	,V	,V	,0)	Higgs
2 x (V	,0	,0	,V)	00
2 x (Ad	,0	,0	,0)	
2 x (A	,0	,0	,0)	
6 x (S	,0	,0	,0)	
14 x (0	,A	,0	,0)	
6 x (0	,S	,0	,0)	
9 x (0	,0	,Ad	,0)	
6 x (0	,0	,А	,0)	
14 x (0	,0	,S	,0)	
3 x (0	,0	,0	,Ad)	
4 x (0	,0	,0	,A)	

6 x (0 ,0 ,0 ,S)

A "MADRID" MODEL

Gauge group: Exactly $SU(3) \times SU(2) \times U(1)!$ [U(3)×Sp(2)×U(1)×U(1), Massive B-L, No hidden sector]

3 x (V	,V	,0	,0) c	hirality 3	Q
3 x (V	,0	,V	,0) c	hirality -3	U*
3 x (V	,0	,V*	,0) c	hirality -3	D*
3 x (0	,V	,0	,V) c	hirality 3	L
5 x (0	,0	,V	,V) c	hirality -3	$E^{*}+(E+E^{*})$
3 x (0	,0	,V	,V*) c	hirality 3	N*
18 x (0	,V	,V	,0)		Higgs
2 x (V	,0	,0	,V)		
2 x (A	d ,0	,0	,0)		
2 x (A	,0	,0	,0)		
6 x (S	,0	,0	,0)	Vector-	like matter
14 x (0	,A	,0	,0)	V=vecto	or
6 x (0	,S	,0	,0)	A=Anti-	symm. tensor
9 x (0	,0	,Ad	,0)	S=Symr	netric tensor
6 x (0	,0	,А	,0)	Ad=Adj	oint
14 x (0	,0	,S	,0)		
- / -	-	-			

 $\begin{array}{c} 14 \times (0 & ,0 & ,S & ,0) \\ 3 \times (0 & ,0 & ,0 & ,Ad) \\ 4 \times (0 & ,0 & ,0 & ,A) \\ 6 \times (0 & ,0 & ,0 & ,S) \end{array}$

RANK-2 TENSORS

Total number of Symmetric tensors in SM gauge groups type 4 type 2 type 0 type 5 type 3 type 1 Nr of solutions Nr of reps

NO MIRRORS, NO RANK-2 TENSORS

(Left-right symmetric model)

U3 S2 S2 U1 S6 S4 S2

3 x (V	,V	,0	,0	,0	,0	,0) cł	nirality	3
3 x (V	,0	,V	,0	,0	,0	,0) cł	nirality	-3
3 x (0	,V	,0	,V	,0	,0	,0) cł	nirality	3
3 x (0	,0	,V	,V	,0	,0	,0) cł	nirality	-3
2 x (V	,0	,0	,V	,0	,0	,0)		
2 x (0	,V	,V	,0	,0	,0	,0)		
2 x (V	,0	,0	,0	,V	,0	,0)		
2 x (V	,0	,0	,0	,0	,V	,0)		
2 x (V	,0	,0	,0	,0	,0	,V)		
1 x (0	,V	,0	,0	,V	,0	,0)		
1 x (0	,0	,V	,0	,V	,0	,0)		
2 x (0	,0	,0	,V	,0	,V	,0)		
1 x (0	,0	,0	,0	,V	,0	,V)		
2 x (0	,0	,0	,0	,0	,V	,V)		
2 x (0	,0	,0	,0	,A	,0	,0)		
1 x (0	,0	,0	,0	,S	,0	,0)		
5 x (0	,0	,0	,0	,0	,A	,0)		
5 x (0	,0	,0	,0	,0	,S	,0)		
1 x (0	,0	,0	,0	,0	,0	,S)		

L E*,N* <mark>Leptoquark pair</mark> 2 Higgs pairs

Q U*,D*

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	,V	,0	,0	,0) chirality 3	Q
3 x (0	,0	,V	,V	,0) chirality -3	E*
1 x (V	,0	,0	,V*	,0) chirality -1	U*
2 x (V	,0	,V	,0	,0) chirality -2	D*
2 x (0	,V	,0	,V	,0) chirality 2	L
3 x (V	,0	,0	,V	,0) chirality -1	$D^*+(D+D^*)$
3 x (0	,V	,V	,0	,0) chirality 1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0) chirality -2	U*
1 x (0	,0	,V	,V*	,0) chirality 1	N*
4 x (A	,0	,0	,0	,0)	U+U*
2 x (0	,0	,0	,S	,0)	E+E*

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	V	0	0	0)	chirality	3	0
$3 \times (0$,•	,0 ,V	,0 ,V	,0 ∩)	chirolity	2	\mathbf{i}
5 X (U	,0	, v	,۷	,0)	chirality	-2	E*
1 x (V	,0	,0	,V*	,0)	chirality	-1	U*
2 x (V	,0	,V	,0	,0)	chirality	-2	D*
2 x (0	,V	,0	,V	,0)	chirality	2	L
3 x (V	,0	,0	,V	,0)	chirality	-1	$D^* + (D + D^*)$
3 x (0	,V	,V	,0	,0)	chirality	1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0)	chirality	-2	U*
1 x (0	,0	,V	,V*	,0)	chirality	1	N*
4 x (A	,0	,0	,0	,0)			U+U*
2 x (0	,0	,0	,S	,0)			E+E*

Truly hidden hidden sector

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	,V	,0	,0	,0)	chirality	3	Q
3 x (0	,0	,V	,V	,0)	chirality	-3	E*
1 x (V	,0	,0	,V*	,0)	chirality	-1	U*
2 x (V	,0	,V	,0	,0)	chirality	-2	D*
2 x (0	,V	,0	,V	,0)	chirality	2	L
3 x (V	,0	,0	,V	,0)	chirality	-1	$D^*+(D+D^*)$
3 x (0	,V	,V	,0	,0)	chirality	1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0)	chirality	-2	U*
1 x (0	,0	,V	,V*	,0)	chirality	1	N*
4 x (A	,0	,0	,0	,0)			U+U*
2 x (0	,0	,0	,S	,0)			E+E*

Free-field realization with (2)⁶ Gepner model

AN SU(5) MODEL

Gauge group is just SU(5)!

Top quark Yukawa's?

ONE IN HOW MANY?

 $\frac{\text{Madrid configurations}}{\text{All 4-brane configurations}} = 10^{-12}$

Dijkstra et. al. (2005)

 $\frac{\text{With tadpole solution}}{\text{All 4-brane configurations}} = 3.8 \times 10^{-14}$

 $\frac{\text{Madrid configurations}}{\text{All SM configurations}} = 1/6$

Anastasopoulos et. al. (2006)

Gmeiner, Blumenbagen, Honecker, Lüst, Weigand (2005) Douglas, Taylor (2006)

 $\frac{\text{Madrid configurations with tadpole solution}}{\text{All tadpole solutions}} \sim 1 \times 10^{-9}$

 T^6/Z_6 orientifolds

 $T^6/Z_2 \times Z_2$ orientifolds

Gmeiner, Lüst, Stein (2007)

 $\frac{\text{Madrid configurations with tadpole solution}}{\text{All tadpole solutions}} \sim 1 \times 10^{-22}$

Sunday, 2 May 2010

Holistic Wellness with Tachyons

A practical guide to the use of tachyons

Martina Bochnik & Tommy Thomsen

MATERIA TACHYON INCOGNITA

NON-SUPERSYMMETRIC MODELS

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF (non-susy extension)
Klein Bottle

(*) with Beatriz Gato-Rivera

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF (non-susy extension)
Klein Bottle

(44054 MIPFs)
(40261 MIPFs)
(186951 Orientifolds)

(*) with Beatriz Gato-Rivera

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF (non-susy extension)
Klein Bottle

(44054 MIPFs)
(40261 MIPFs)
(186951 Orientifolds)

Huge number of possibilities!

(*) with Beatriz Gato-Rivera

NEUTRINO MASSES

Sunday, 2 May 2010

NEUTRINO MASSES*

 In field theory: easy; several solutions.
 Most popular: add three right-handed neutrinos add "natural" Dirac & Majorana masses (see-saw)

 $m_{\nu} = \frac{(M_D)^2}{M_M}; \quad M_D \approx 100 \text{ MeV}, \qquad M_M \approx 10^{11} \dots 10^{13} \text{ GeV}$

In string theory: non-trivial.(String theory is much more falsifiable!).

Potentially anthropic.

(*) Ibañez, Schellekens, Uranga, arXiv:0704.1079, JHEP (to appear) Blumenhagen, Cvetic, Weigand, hep-th/0609191 Ibañez, Uranga, hep-th/0609213

Other ideas: see e.g. Conlon, Cremades; Giedt, Kane, Langacker, Nelson; Buchmuller, Hamaguchi, Lebedev, Ratz,

NEUTRINO MASSES IN MADRID MODELS

All these models have three right-handed neutrinos (required for cubic anomaly cancellation)

In most of these models: B-L survives as an exact gauge symmetry

Neutrino's can get Dirac masses, but not Majorana masses (both needed for see-saw mechanism).

In a very small* subset, B-L acquires a mass due to axion couplings.

(*) 391 out of 10000 models with SU(3)× Sp(2)× U(1)× U(1) (out of 211000 in total)

B-L VIOLATION BY INSTANTONS

B-L still survives as a perturbative symmetry. It may be broken to a discrete subgroup by instantons.

RCFT instanton boundary state M: "Matter" boundary state m, change space-time boundary conditions from Neumann to Dirichlet.

Condition for B-L violation:

```
I_{M\mathbf{a}} - I_{M\mathbf{a}'} - I_{M\mathbf{d}} + I_{M\mathbf{d}'} \neq 0
```

Non-gauge (stringy, exotic) instanton: CP multiplicity of the assocated matter brane = 0

Does not introduce new anomalies/tadpoles
 Suppression factor not related to gauge coupling strengths

$$M_M \propto M_s e^{-\frac{1}{g_M^2}}$$

ZERO-MODES

Majorana mass term $v^c v^c$ violates c and d brane charge by two units. To compensate this, we must have

$$I_{Mc} = 2; \quad I_{Md} = -2$$

or
 $I_{Md'} = 2; \quad I_{Mc'} = -2$

Furthermore there must be precisely two susy zeromodes to generate an F-term contribution.

And nothing else!

 I_{Ma} = chiral [# (V,V*) - # (V*,V)] between branes M and a a' = boundary conjugate of a

Sunday, 2 May 2010

ZERO-MODE INTEGRAL

Zero-mode/neutrino coupling

 $L_{\rm disk} \propto d_a^{ij}(\alpha_i \nu^a \gamma_j)$

$$a = 1, 2, 3; \quad i, j = 1, 2$$

$$\int d^2 \alpha \, d^2 \gamma \, e^{-d_a^{ij} \, (\alpha_i \nu^a \gamma_j)} = \nu_a \nu_b \left(\epsilon_{ij} \epsilon_{kl} d_a^{ik} d_b^{jl} \right)$$

INSTANTON TYPES

Matter brane m	Instanton brane M
U(N)	U(k)
O(N)	Sp(2k)
Sp(2N)	O(k)

Matter/Instanton zero modes: 0, ±2 Instanton-Instanton susy zero modes: 2

Possible for:

- ♀ Sp, k=1
- ♀ O, k=1,2

U(k): 4 Adj
Sp(2k): 2 A + 2 S
O(k): 2 S + 2 A

Only solution: O(1)

INSTANTON SCAN

Can we find such branes M in the 391 models with massive B-L?

(1 may give R-parity violation, 4 means no Majorana mass)

Some models have no RCFT instantons

- 9 1315 instantons with correct *chiral* intersections
- Some of these models has R-parity violating instantons.
- Most instantons are symplectic in this sample.
- Solution of the spurious extra susy zero-modes (Sp(2) instantons).

...almost

AN SP(2) INSTANTON MODEL

U3 S2 U1 U1 O

3	Х	(V	,V	,0	,0	,0)	chirality	3
3	х	(V	,0	,V	,0	,0)	chirality	-3
3	х	(V	,0	,V*	,0	,0)	chirality	-3
3	х	(0	,V	,0	,V	,0)	chirality	3
5	х	(0	,0	,V	,V	,0)	chirality	-3
3	х	(0	,0	,V	,V*	,0)	chirality	3
1	х	(0	,0	,V	,0	,V)	chirality	-1
1	х	(0	,0	,0	,V	,V)	chirality	1
18	Х	(0	,V	,V	,0	,0)		
2	х	(V	,0	,0	,V	,0)		
2	Х	(Ad,	, 0	,0	,0	,0)		
2	х	(А	,0	,0	,0	,0)		
6	х	(S	,0	,0	,0	,0)		
14	Х	(0	,А	,0	,0	,0)		
6	х	(0	,S	,0	,0	,0)		
9	х	(0	,0	,Ad,	0	,0)		
6	Х	(0	,0	,А	,0	,0)		
14	Х	(0	,0	,S	,0	,0)		
3	Х	(0	,0	,0	,Ad,	0)		
4	Х	(0	,0	,0	,А	,0)		
6	х	(0	,0	,0	,S	,0)		

AN SP(2) INSTANTON MODEL

U3 S2 U1 U1 O

	3	х	(۷	,V	,0	,0	,0)	chirality	3
	3	Х	(V	,0	,V	,0	,0)	chirality	-3
	3	Х	(۷	,0	,V*	,0	,0)	chirality	-3
	3	Х	(0	,V	,0	,V	,0)	chirality	3
	5	Х	(0	,0	,V	,V	,0)	chirality	-3
	3	Х	(0	,0	,V	,V*	,0)	chirality	3
	1	Х	(0	,0	,V	,0	,V)	chirality	-1
	1	Х	(0	,0	,0	,V	,V)	chirality	1
1	8	Х	(0	,V	,V	,0	,0)		
	2	Х	(V	,0	,0	,V	,0)		
	2	Х	(Ad,	, 0	,0	,0	,0)		
	2	Х	(А	,0	,0	,0	,0)		
	6	Х	(S	,0	,0	,0	,0)		
1	14	Х	(0	,А	,0	,0	,0)		
	6	Х	(0	,S	,0	,0	,0)		
	9	Х	(0	,0	,Ad,	0	,0)		
	6	Х	(0	,0	,А	,0	,0)		
1	4	Х	(0	,0	,S	,0	,0)		
	3	Х	(0	,0	,0	,Ad,	0)		
	4	Х	(0	,0	,0	,А	,0)		
	6	Х	(0	,0	,0	,S	,0)		

THE O1 INSTANTON

Type:

Гуре	:			U	S	U	U	U	0	0	U	0	0	0	U	S	S	0	S	Ľ.	
Dime	nsid	on	8	3	2	1	1	1	2	2	3	1	2	3	1	2	2	2		ł.	
	5	х	(V	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -3
	5	х	(0	,0	,v	,V*	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3
	3	x	(V	,0	,V*	*,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -3
	3	х	(0	,0	,v	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -3
	3	х	(v	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3
	3	x	(0	,v	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3
	2	х	(0	,0	,0	,V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v)	chirality 2
	12	х	(0	,0	,V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,V)	chirality -2
	1	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	, V	,0	,0	,0	,0	,0	,V)	
	2	х	(0	,0	,0	,0	, V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,V)	
	1	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,V)	
	2	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,V)	
	1	х	(0	,0	,0	,0	,0	, V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,V)	
	3	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,s)	
	4	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,V)	
	2	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	, A)	
	2	х	(V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,V)	
	3	х	(0	,0	,0	,0	,s	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -1
	3	х	(0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0)	chirality 1
	1	x	(0	,0	,0	,0	,A	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -1
	2	x	(0	,0	,0	,0	,V	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 2
	1	х	(0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,v	,0)	chirality -1
	1	x	(0	,0	,0	,0	, V	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0)	chirality -1
	1	х	(0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,v	,0	,0	,0	,0)	chirality 1
	1	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,v	,0	,0	,0	,0)	chirality -1
	1	х	(0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,v	,0	,0	,0	,0)	chirality -1
	1	х	(0	,0	,0	,0	,V	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -1
	1	х	(0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0)	chirality 1
	1	х	(0	,0	,0	,0	,V	,0	,0	,0	,0	,0	,0	,V*	*,0	,0	,0	,0)	chirality -1
	3	х	(0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0)	chirality 1
	1	х	(0	,0	,0	,0	,0	,0	,0	,v	,0	,v	,0	,0	,0	,0	,0	,0)	chirality 1
	2	х	(0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0)	
	1	х	(Ac	1,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	
	2	x	(0	,s	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	
	1	х	(0	,0	,0	,Ad	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	
	6	х	(0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,V	,0	,0)	
	1	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	, A	,0)	
	1	x	(0	.0	.0	.0	. Ac	0.1	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0)	

CONCLUSIONS

Many desirable SM features can be realized in the RCFT orientifold landscape...

♀ Chiral SM spectrum

♀ No mirrors

- No adjoints, rank-2 tensors
- No hidden sector
- No hidden-observable massless matter
- Matter free hidden sector
- \bigcirc Exact SU(3)× SU(2) ×U(1)
- ♀ O1 instantons

....but not all at the same time. Seems just a matter of statistics.

Neutrino masses from instantons: probably possible, but very rare in RCFT.