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One-loop modular invariant heterotic and type II closed string theories are proved to be 
anomaly free, apart from terms proportional to Tr F 2 -  Tr R 2. It is shown why this conclusion 
holds with remarkable generality for any conceivable fermionic string theory, regardless even of 
conformal invariance. A detailed discussion is given of the modular properties of character valued 
partition functions, upon which the proof is based. The fact that Tr F 2 - Tr R 2 terms remain in 
the fermionic contribution to the anomaly is shown to be a consequence of Quillen's holomorphic 
anomaly. 

1. Introduction 

It now seems clear that there is an intimate relationship between global anomalies 
on the string world sheet and local gauge and gravitational anomalies in the 
effective field theory of the string [1-3]. In this paper we will show that one-loop 
modular invariance of any "heterotic" or "type liB" string in any (even) number of 
dimensions implies that the corresponding massless field theory has an anomaly that 
can be cancelled by the Green-Schwarz mechanism [4]. We find that in any 
dimension there are an infinite number of possible anomaly cancellable field 
theories. Moreover, the anomaly cancellation can be accomplished using the sim- 
plest possible Green-Schwarz mechanism, involving only a single, two-index anti- 
symmetric tensor, B~. In other words, the anomaly from the fermion fields has a 
factor of [Tr(F 2) -Tr(R2)]. It will also be shown that the fact that the anomaly 
from the fermion fields does not vanish entirely but factorizes in this manner, is due 
to the non-holomorphic factorization anomaly of Quillen [5]. 

In order to obtain the anomaly of the field-theory limit of a general heterotic 
string we will need to add together the contributions of fields in very different 
representations of the gauge and Lorentz groups. The first step in simplifying this 
problem is not to consider the complete Lorentz anomaly, but to consider the 
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Parity violation (1957)

T.D. Lee and C.N. Yang
C.S. Wu
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Parity violation (1957)

Pauli:

Now after the first shock is over, I begin to collect myself

T.D. Lee and C.N. Yang
C.S. Wu
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Current Conservation
∂µJµ(x) = 0Electromagnetic current

In momentum space
kµ

kµψγµψ = 0Essential for unitarity 
and renormalizability of 
gauge theories
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Anomalies
Classical symmetries that are not symmetries of the quantum  theory

kµ( ) = 0 ?
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Anomalies
S. Adler (1969),    J. Bell and R. Jackiw (1969)
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Anomalies
S. Adler (1969),    J. Bell and R. Jackiw (1969)
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Anomalies

• Breaking of global symmetries:
implications for

                                   (“U(1)-problem”) 

• Breaking of local symmetries:
Must be avoided. 

π0 → γγ
η� mass
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T a T a

T b T b T cT c

STr T aT bT c =
1
2
Tr {T a, T b}T c = 0

Tr T a = 0 (U(1) x (Graviton)2 anomaly)
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Anomaly Cancellation in the 
Standard Model

(3, 2,
1
6
) 1

36

(3̄, 1,−2
3
) −8

9

(3̄, 1,
1
3
) 1

9

(1, 2,−1
2
) −1

4

(1, 1, 1)

SU(3) SU(2) SU(2)×U(1) SU(3)×U(1) U(1)3 Grav.

Q 2 0 ½ ⅓ 1
Uc -1 0 0 −⅔ -2
Dc -1 0 0 ⅓ 1
L 0 0 -½ 0 -1
Ec 0 0 0 0 1 1

✓ ✓ ✓ ✓ ✓ ✓
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Generalizations

• Adler-Bardeen theorem: Only one loop diagrams are relevant.

• In four dimensions also box and pentagon diagrams may contribute.
Complicates structure of anomalies.

• In 2N dimensions the leading contribution is an (N+1)-gon.

• Diagrams with external gravitons can be anomalous.
Purely gravitational anomalies in 4N+2 dimensions. 
Mixed gauge-gravitational in all dimensions

• Anomalies arise not only from fermion loops, but also from loops of (anti)-
selfdual anti-symmetric tensors (in 4N+2 dimensions)

• All of this is summarized beautifully by relating anomalies to the Atiyah-Singer 
index theorem.

(many authors, 1970 - 1984)
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Anomalies from the index theorem

Index(γaDa) =
�

M

�
Â(R)Ch(F )

�

Vol

Â(R) Dirac Genus

Ch(F ) Chern Character

F ≡ 1
2
Fµνdxµ ∧ dxν

Rα
β ≡

1
2
Rα

βδγdxδ ∧ dxγ

Field strength two-form 

Curvature two-form 
(SO(N)-valued) 

F ≡ F aT a
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Ch(F) = Tr eiF/2π

Â(R) =
�

a

xa/2
sinh(xa/2)

Â(R) = 1 +
1

(4π)2
1
12

TrR2

+
1

(4π)4

�
1

288
(TrR2)2 +

1
360

TrR4

�

+
1

(4π)6

�
1

10368
(TrR2)3 +

1
4320

TrR2TrR4 +
1

5670
TrR6

�

. . .

xa : Skew eigenvalues of R
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Anomalies from the index theorem

To get the contribution to the anomaly of a Weyl fermion 
in 2N dimensions, take the 2N+2 volume-form in the 
expansion of                . (Order N+1 in F and R)Â(R)Ch(F )

The apply the “method of descent” to the resulting 
polynomial in F and R. This gives the precise expression
for the right-hand side of            .DµJµ

To check anomaly cancellation the precise form of the 
anomaly is not needed. It is sufficient to check that the 
polynomial vanishes.
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Anomalies due to other fields

Index(D3/2) =
�

M

�
Â(R)Ch(F ){Ch(R)− 1}

�

Vol

Index(DA) =
1
4

�

M
[L(R)]Vol

L(R) = 2N
�

a

xa/2
tanh(xa/2)

• Spin 3/2

• Anti-symmetric tensor (rank N-1, N odd)

(Hirzebruch signature)
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Anomalies due to other fields

Index(D3/2) =
�
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�
Â(R)Ch(F ){Ch(R)− 1}

�
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[L(R)]Vol

L(R) = 2N
�

a

xa/2
tanh(xa/2)

• Spin 3/2

• Anti-symmetric tensor (rank N-1, N odd)

(Hirzebruch signature)

Monday, 27 June, 2011



Cancellation of Gravitational Anomalies

L. Alvarez-Gaum6 E. Witten / Gravitational anomalies 327 

For Kaluza-Klein theory our interest is in six or more dimensions, k/> 1. In six 
dimensions power series expansion of eq. (114) yields 

^ 1 2 11/2 = 5~-~(7p1 - 4p2), 

I3/2 = 5-~6o(275p 2 - 980p2), 

Ia  = 57-~(16p 2 - 112p2). (118) 

It may be seen that any two of these expressions are linearly independent, so that 
anomaly cancellation is possible only if all three spins are present. However, since 
there are three fields and only two independent anomalies (pZ and Pz), there 
inevitably is a linear combination of these expressions that vanishes. The simplest 
non-trivial solution is 2 1 1 1 / z - I 3 / z +  8IA = 0. Thus a six-dimensional theory with 21 
positive chirality spin -1 fields, one negative chirality gravitino, and eight self-dual 
antisymmetric tensor fields is free of anomalies. Although these numbers might 
seem clumsy, six-dimensional supergravity theories with this field content (modulo 
anomaly-free fields) do exist and might be of interest. It is a very favorable fact 
that the minimal solution only requires one gravitino; while there can be any number 
of spin-! or antisymmetric tensor fields in six-dimensional supergravity, the number 
of gravitinos is necessarily <~4. 

Turning now to ten dimensions, we find by power series expansion of (114) 

A 1 3 11/2 = ~ ( - 3  lp l  + 44pl P2 - 16p3), 

^ 1 3 I3/2 = ~ ( 2 2 5 p l  -- 1620pl P2 + 7920p3), 

Ia = ~ ( - 2 5 6 p  3 + 1664pa P2-  7936p3). (119) 

Since there are three fields and three linearly independent anomalies, one would 
not a priori expect non-trivial calculation of gravitational anomalies to be possible 
in ten dimensions. But now we meet a real surprise, which is by far the most striking 
result of this paper. The expressions for [1/2, f3/2, and Ia in (119) are linearly 

A A A 

dependent. In addition, the minimal solution is remarkably simple: - I1 / z  + 13/2 + Ia = 
0. Thus, a ten-dimensional theory with one (complex) negative chirality spin-~ field, 
one (complex) positive chirality spin -3 field, and one (real) self-dual antisymmetric 
tensor is free of anomalies. What is more, modulo fields that do not contribute 
anomalies, this is precisely the field content of the chiral n = 2 supergravity theory 
in ten dimensions [11], which is the naive low-energy limit of one of the ten- 
dimensional supersymmetric string theories [12]. Since this theory cannot be coupled 
to supersymmetric matter multiplets, and cannot be extended to a theory with n > 2 
supersymmetry (Nahm, ref. [11]), it appears to be the unique theory in ten 
dimensions with non-trivial cancellation of gravitational anomalies. 

Alvarez-Gaumé and Witten (1983)

Î1/2 − Î3/2 − ÎA = 0

Ten-dimensional field theory with Majorana-Weyl spinors, 
gravitino’s and (anti)self-dual anti-symmetric tensors 
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Green-Schwarz anomaly 
cancellation (1984)

Chiral gravitino, anti-chiral Weyl spinor plus a chiral gaugino.

Anomaly = I3/2(R)− I1/2(R) + I1/2(R,F )

I3/2(R) = − 11
8064

TrR6 + . . .

I1/2(R,F ) = dim(G)
1

362880
TrR6 + . . .

I1/2(R) =
1

362880
TrR6 + . . .

If there are precisely 496 gauge bosons, the leading trace cancels.
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Green-Schwarz anomaly 
cancellation (1984)

Chiral gravitino, anti-chiral Weyl spinor plus a chiral gaugino.

Anomaly = I3/2(R)− I1/2(R) + I1/2(R,F )

∝ − 1
15

TrF 6 +
1
24

TrR2TrF 4 +
1
8
TrR2TrR4

+
1
32

(TrR2)3 − 1
240

TrF 2TrR4 − 1
192

TrF 2(TrR2)2
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Green-Schwarz anomaly 
cancellation (1984)

Anomaly = I3/2(R)− I1/2(R) + I1/2(R,F )

∝ − 1
15

TrF 6 +
1
24

TrR2TrF 4 +
1
8
TrR2TrR4

+
1
32

(TrR2)3 − 1
240

TrF 2TrR4 − 1
192

TrF 2(TrR2)2

TrF 6 =
1
48

TrF 2TrF 4 − 1
14400

(TrF 2)3

If a group can be found that satisfies:

Anomaly ∝
�

TrR2 − 1
30

TrR2

�
×X8(R,F )

Then:
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There are two (non-abelian) solutions two these conditions:

      SO(32)      (Green and Schwarz, 1984)
      E8 × E8    (Thierry-Mieg, 1984)

With fermions in the adjoint representation

The anomalies still don’t cancel, but now they can be 
cancelled by adding extra terms to the action.  
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There are two (non-abelian) solutions two these conditions:

      SO(32)      (Green and Schwarz, 1984)
      E8 × E8    (Thierry-Mieg, 1984)

With fermions in the adjoint representation

The anomalies still don’t cancel, but now they can be 
cancelled by adding extra terms to the action.  

Additional
particle
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There are two (non-abelian) solutions two these conditions:

      SO(32)      (Green and Schwarz, 1984)
      E8 × E8    (Thierry-Mieg, 1984)

With fermions in the adjoint representation

The anomalies still don’t cancel, but now they can be 
cancelled by adding extra terms to the action.  

Additional
interactions

Additional
particle
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Why do these miracles occur?
All these field theories originated from string theories.
All can be described as field theory limits of closed string theories(*).

Loop graphs of closed string theories have a remarkable property: 
Modular Invariance.
This singles out the gauge groups SO(32) and E8 × E8 in 10 dimensions.

(*) Heterotic Strings. Gross, Harvey, Martinec, Rohm (1984)
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Modular Invariance
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C

0 1

τ

�

�
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C

0 1

τ

�

�
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C

0 1

τ

�

�
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Imτ

Reτ
-½ ½
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Imτ

Reτ
-½ ½
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Imτ

Reτ
-½ ½

Monday, 27 June, 2011



Imτ

Reτ
-½ ½
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Modular Invariance

Integrand must be invariant under SL2(Z)/Z2

τ → τ + 1

τ → −1
τ
}

�
d2τ

(Imτ)2
Tr e−ImτH

τ → aτ + b

cτ + d
ad− bc = 1; a, b, c, d ∈ Z
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Strings vs. Particles
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Σ

Strings vs. Particles
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Σ

Strings vs. Particles

Monday, 27 June, 2011



Heterotic Strings

•HL:  Bosonic 2D-CFT giving rise to gauge groups and gauge
       representations.

•HR:  Fermionic 2D-CFT giving rise to Lorentz reps.

Partition function: P (τ, τ̄) = Tr e2πiτHL−2πiτ̄HR
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Level Matching

HL HR
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Level Matching

HL HR

Massless 
particles
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Level Matching

HL HR

Massive 
excited states
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Level Matching

HL HR

Massive 
excited states
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Level Matching

HL HR

Unphysical
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Level Matching

HL HR

Unphysical
Tachyon
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Fermion Boundary Conditions

A

A

A

P

P

A P

P
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A

A

A

P

P

A P

P

τ → −1
τ
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A

A

A

P

P

A P

P

τ → τ + 1
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A

A

A

P

P

A P

P

Partition functions
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A

P

P

A P

P

Partition functions

Tr e−2πiτ̄HA =
�
θ3(0|τ̄)
η(τ̄)

�(D−2)/2
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P

A P

P

Partition functions

Tr e−2πiτ̄HA =
�
θ3(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HA =
�
θ4(0|τ̄)
η(τ̄)

�(D−2)/2
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P

P

Partition functions

Tr e−2πiτ̄HA =
�
θ3(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HA =
�
θ4(0|τ̄)
η(τ̄)

�(D−2)/2

Tr e−2πiτ̄HP =
�
θ2(0|τ̄)
η(τ̄)

�(D−2)/2

Monday, 27 June, 2011



Partition functions

Tr e−2πiτ̄HA =
�
θ3(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HA =
�
θ4(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HP =
�
θ1(0|τ̄)
η(τ̄)

�(D−2)/2

Tr e−2πiτ̄HP =
�
θ2(0|τ̄)
η(τ̄)

�(D−2)/2
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Partition functions

θi(0|τ) Jacobi θ functions

η(τ) Dedekind η function

Tr e−2πiτ̄HA =
�
θ3(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HA =
�
θ4(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HP =
�
θ1(0|τ̄)
η(τ̄)

�(D−2)/2

Tr e−2πiτ̄HP =
�
θ2(0|τ̄)
η(τ̄)

�(D−2)/2
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Partition functions}
Bosons

Non-chiral
Fermions

Chiral
Fermions

Tr e−2πiτ̄HA =
�
θ3(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HA =
�
θ4(0|τ̄)
η(τ̄)

�(D−2)/2

Tr (−1)F e−2πiτ̄HP =
�
θ1(0|τ̄)
η(τ̄)

�(D−2)/2

Tr e−2πiτ̄HP =
�
θ2(0|τ̄)
η(τ̄)

�(D−2)/2
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Chiral Sector

HL HR (P,P)

Chiral Massless 
particles
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One-loop integral

Chiral fermion contributions

P1(τ, τ̄) = P1(τ) =
∞�

k=−1

dkqk

q = e2iπτ

�
d2τ

(Imτ)2
(Imτ)(D−2)/2

4�

i=1

�
θi(0|τ̄)
η(τ̄)

�(D−2)/2

Pi(τ, τ̄)
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Ch(F ) = Tr eiF/2π

Ch(0)k = dk

Note:

Now we can write down the anomaly 
generating function for the entire chiral sector

A(q, F,R) = Â(R)
�

k

qkCh(F )kCh(R)k
Spin contributions 
from bosonic sector

The anomaly generating function
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Modular transformation
The anomaly generating function must be modular invariant for F=R=0.

On the other hand, it can be written in terms of characters of affine Lie algebras. 
It is known how such characters transform for F≠0 or R≠0.
Consider, for example, the θ-functions (related to SO(N) characters)

Phase Modular
Weight

The phases Sij cancel in the final assembly, because the result is modular invariant.
The overall weight is also determined by modular invariance. 

θi(
F

cτ + d
|aτ + b

cτ + d
) =

�

j

Sij

√
cτ + d eiπF 2c/(cτ+d) θj(F |τ)
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Modular transformation

A(
aτ + b

cτ + d
,

F

cτ + d
,

R

cτ + d
)

= exp
�

ic

32π3(cτ + d)
(TrF 2 − TrR2)

�
(cτ + d)−(D−2)/2A(τ, F, R)

Note: F normalized as in SO(N) vector (not adjoint)
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The anomaly
1. Expand A(q, F, R) to order (D+2)/2 in F and R
2. Take only the coefficients of q0

The result of 1. is a coefficient function          for each
combination of traces of F and R.
From the transformation of A(q, F, R) we infer, 
if we ignore the phases involving Tr F2 - Tr R2

f(
aτ + b

cτ + d
) = (cτ + d)2f(τ)

This is a meromorphic modular function of weight 2
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Theorem: 
Any meromorphic function of weight 2 can be written as

Therefore there is no term q0.
Hence there is no anomaly if Tr F2 = Tr R2.
Therefore the anomaly is proportional to Tr F2 - Tr R2
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The type-II miracle
Type-II may be viewed as heterotic with the left-moving light-
cone Lorentz group interpreted as an SO(8) gauge group.

Hirzebruch signature: 

Â(R)Ch(R)SO(8),spinor

The anomaly factorizes as 

�
TrF 2 − TrR2

�
×X8(F,R) =

�
TrR2 − TrR2

�
×X8(R,R) = 0
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Path integral derivation
With K. Pilch, N. Warner (october 1986)

A derivation of A(q,F,R) from the string path 
integral in gauge and gravitational backgrounds.
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E. Witten, december 1986
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Meromorphic CFT’s

2D conformal field theories that have only 
left-moving modes and are modular invariant.
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Partition function: P (τ, τ̄) = Tr e2πiτHL−2πiτ̄HR

Examples exist with free bosons with left-moving momenta 
on even self-dual Euclidean lattices.

These only exist if the dimension is a multiple of 8
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Partition function: P (τ, τ̄) = Tr e2πiτHL−2πiτ̄HR×
Examples exist with free bosons with left-moving momenta 
on even self-dual Euclidean lattices.

These only exist if the dimension is a multiple of 8
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Free Boson Theories 

N=8                    E8 (root lattice)

N=16                  E8 × E8

                           D16 (0+S)

N=24                  24 “Niemeier lattices”

N=32                   > 107
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W. Lerche ci a!., Lattices and strings 115

Table 10
The 23 Niemeier lattices that are Lie algebra lattices. squarebrackets indicate cyclic

permutation

Lie algebra conjugacy class generators

(s)
D16E4 (s, 0)
E~ (0,0,0)
A24 (5)
D~2 (s, v), (u,s)
A,7E, (3, 1)
D10E~ (s,1,0), (c, 0, 1)
A,,D, (2, s)
D~ ([s, v, v])
A~, (1,5)

A,1D,E6 (is, 1)
(1,[0, 1,2])

A~D6 (2,4,0),(5,0,s),(0,5,c)

even permutations of (0, s, u, c)
A~ ([1,1,41)
A~D~ (1,1,s,v),(1,7,v,s)

A (1,[2,1,6])

A~D4 (2,[0,2,4],0),(3,3,0,0,s),(3,0,3,0,v),(3,0,0,3,c)
(s,s,s,s,s,s),(0,[0, u,c,c,uI)
(1, [0, 1, 4, 4, 1])

A~ (3,[2,0,0,1,0,1,1])
A~’ (2,[1,1,2,1,1,1,2,2,2,1,2])

A~
4 (1,lO,0,0,0,0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,1,1,1,ll)

itself. It consists of at least two elements, the identity and the reflection through the origin. Denote the
total number of elements qf this group for a lattice A as g(A). Then the following identity can be proved
[100, 109].

B 4n—1‘V ‘ — ~ fT 2]
~g(A) 8n I 4j

where B
21 are the Bernoulli numbers. This formula is called the Minkowski—Siegel mass formula. The

sum is over all lattices in 8n dimensions, and adds up to a number that is less than half the total number
of lattices in this dimension. Thus the right-hand side, multiplied by 2, is a lower limit of the number of
lattices. Calculating it for the lowest dimensions, one finds

dimension lower limit actual number
8 2.8x i0~ 1
16 4.9 x 1018 2
24 15.8xi0

15 24
32 8.0x107
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... but these are just free bosons.

One may also consider conformally invariant 
interacting theories (CFTs). 

They must have a Virasoro central charge that is 
a multiple of 8.

Can these also be classified?

For c=8 and c=16:  nothing new.
First (and last) challenge: c=24
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The partition function of such a CFT is a 
meromorphic function of q with a single pole at q=0. 

This function must be fully modular invariant.

Then it is determined up to a constant.
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The absolute modular invariant

P (q) = j(q) + constant

j(q) =
1
q

+ 744 + 196884 q + 21493760 q2 + . . .

Its higher coefficients are equal to sums of dimensions of the monster group.  
This is a the largest “sporadic” group, a discrete group with

elements.

808017424794512875886459904961710757005754368000000000
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P (q) =
1
q

+ N + 196884 q + . . .

“String” interpretation (in two dimensions)

1/q Vacuum
N Massless spin 1 excitations

196884 q Massive excitations
. . . Massive excitations

The N spin-1 excitations must form an “affine Lie algebra” or Kac-Moody algebra:

�
Ja

m, Jb
n

�
= ifabcJc

m+n + kmδabδm+n,0
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If N > 0 there are “gauge symmetries”, and P(q) can be 
generalized to P(q,F),  a character-valued partition function.

We know how it transforms under modular transformations

P (
aτ + b

cτ + d
,

F

cτ + d
) = exp

�
−ic

8π(cτ + d)
k

g
TrAdj F 2

�
P (τ, F )

g:  Dual coxeter number (depends on algebra)

This function can be expressed in terms of a few basic modular functions
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Eisenstein functions

E2(q) = 1− 24
∞�

n=1

nqn

1− qn

E4(q) = 1 + 240
∞�

n=1

n3qn

1− qn

E6(q) = 1− 504
∞�

n=1

n5qn

1− qn
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En

�
aτ + b

cτ + d

�
= (cτ + d)nEn(τ)− 6i

π
c(cτ + d)δ2,n

Modular transformation

Weight n Modular anomaly
(n=2 only)

Any holomorphic (no poles) weight N modular function can be written 
as a polynomial in E4 and E6 of total weight N
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P (q, F1, . . . , FL) = e
1
48 E2(q)F2

(η(q))−24
∞�

m=0

�

i

E12+m(i)T m
i

T m
i : Some trace of a combination of Fj of total order m

E12+m(q) : A combination of the Eisenstein functions E4 and E6

In general, the function must have the form

η(q) : The Dedekind η-function

F2 =
L�

�=1

k�

g�
TrAdjF

2
�
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This leaves just a few parameters

E12 = α(E4)2 + β(E6)2

E14 = α(E4)2E6

E16 = α(E4)4 + β(E6)2E4

E18 = α(E4)3E6 + β(E6)3

E20 = α(E4)5 + β(E2)3(E4)2

E22 = α(E4)4E6 + β(E6)3E4

E24 = α(E4)6 + β(E6)4 + γ(E3)2(E6)2

E26 = α(E4)5E6 + β(E6)3(E4)2

. . .

2

1

2

2

2

2

3

2

3
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One parameter is fixed by the vacuum (singlet).
Then the quadratic traces are fully fixed at all levels.

At the first excited level we encounter only adjoints, whose 
traces are now known.

This determines the possible combinations of groups.

Given the vacuum and first excited level, all traces of order 
4, 6, 8, 10 and 14 are known at all levels.

This is sufficient information to determine all solutions.

Strategy

Monday, 27 June, 2011



The Lie groups
From the quadratic traces:

g�

k�
=

1
24

N − 1

This determines the total  Virasoro central charge 
of the “gauge” part:   c=24.

Hence either there are no gauge symmetries at all, or the 
saturate the full central charge.

In the latter case, there 222 solutions.
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Higher excitations

Now find representations that satisfy the trace identities.
(up to order six if necessary).
This is possible in only 69 of the 222 cases.

Finally, check modular invariance for those 69 candidates.
This guarantees that the trace identities are satisfied to any order. 
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The list
• One CFT without any Lie-algebra.

(“The Monster Module”)

• One U(1)24 lattice (“the Leech Lattice”)

• 23 Niemeier lattices

• 14 Z2 Orbifolds of Niemeier lattices.
(Goddard, Olive, Montague, 1990)

• 2 already known cases.
(Schellekens and Yankielowicz, 1989)

• 30 new cases
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− 31 −

No. N Spin-1 algebra Glue Orbits Ref.

0 0 — [10]

1 24 U(1)24 (0) [41]

2 36 (A1,4)12 1[1; (0; )10] see text [12]

3 36 D4,12A2,6 (0, 1) + (s, 0) + (v, 0) (0000 + 0006 + 0060 + 0066 + 0400 + 3033, 00)

+(0204 + 0240 + 0300 + 0244 + 1411 + 2122, 03)

+(0044 + 0600 + 1213 + 1231 + 1233 + 2022, 11)

+(0004 + 0040 + 0048 + 0320 + 0302 + 0324

+1033 + 1035 + 1053 + 3 × 2222, 22)

4 36 C4,10 1 0000 + 0024 + 0040 + 0044 + 00,10,0 + 0260 + 0321

+0323 + 0500 + 0800 + 1051 + 1430 + 1431 + 2 × 2222

+2242 + 3031 + 4140

5 48 (A1,2)16 11[11; (00; )6] see text [12]

+1010[1010; (0000; )2]

+(1000)4

6 48 (A2,3)6 1[1; (0; )4] (00)6 + {(11; )4(00; )2} + (01)5(12) + (10)5(21) + 6 × (1, 1)6

7 48 (A3,4)3A1,2 [1; 0; 0]1 ((000)3 + (012)3, 0) + ({002; 010; 111}, 1)+ 4 × ((111)3, 1)

+([000; 020; 020], 2)+ ([012; 020; 020], 2)

8 48 A5,6C2,3A1,2 (1, 0, 1) + (0, 1, 1) (00000 + 02020, 00, 0) + (00003 + 00211, 30, 1)

+(00200 + 02020, 20, 2)+ (00130 + 03100, 11, 1)

+(00022, 01, 0)+ (00030, 00, 2) + (01102, 10, 1)

+(01121, 20, 0) + (01210, 01, 2) + 2 × (11111, 11, 1)

9 48 (A4,5)2 (1, 0) + (0, 1) (0000, 0000) + (0102, 0102) + 4 × (1111, 1111)

+[0021; 0110] + [1111; 0013]

10 48 D5,8A1,2 (s, 0) (00000 + 00222 + 03011 + 10111, 0)+

(00113 + 00131 + 2 × 11111, 1)+

(00044 + 00200 + 01022 + 01211, 2)

11 48 A6,7 1 000000 + 001301 + 103100 + 002030

+010122 + 3 × 111111

12 60 (C2,2)6 1[1; (0; )5] (00)6 + [00; (20; )5] + [00; (01; )5] + [11; (10; )5] [12]

+{(01; )3(20; )3} + [(00; )2[(01; )2; (20; )2]]

13 60 D4,4(A2,2)4 (0, 1, 1, 1, 0) (0000, (00)4) + (0100, (11)4)

+(0, 2, 1, 0, 1) +(0200, [11; (00; )3]) + (1011, [00; (11; )3])

+(v, 0, 0, 0, 0) +(0002, 00, 11, 11, 00)+ (0002, 11, 00, 00, 11)

+(s, 0, 0, 0, 0) +(0020, 00, 00, 11, 11)+ (0020, 11, 11, 00, 00)

+(0022, 00, 11, 00, 11)+ (0022, 11, 00, 11, 00)
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The number 71

In total there are 71 (candidate) CFT’s.

246 . 320 . 59 . 76 . 112 . 133 . 17 . 19 . 23 . 29 . 31 . 41 . 47 . 59 . 71

808017424794512875886459904961710757005754368000000000

=

71 is the largest prime factor in the order of the monster group...
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