

RCFT ORIENTIFOLDS AND STANDARD MODEL REALIZATIONS

The Anthropic Landscape of Quantum Gravity:

The Anthropic Landscape of Quantum Gravity:

Unthinkable 25 years ago

The Anthropic Landscape of Quantum Gravity:

- Unthinkable 25 years ago
- Will be generally accepted 25 years from now

Section 2018 Explore unknown regions of the landscape

- Set Explore unknown regions of the landscape
- Stablish the likelyhood of standard model features (gauge group, three families,)

- Set Explore unknown regions of the landscape
- Stablish the likelyhood of standard model features (gauge group, three families,)
- Convince ourselves that the standard model is a plausible vacuum

- Explore unknown regions of the landscape
- Establish the likelyhood of standard model features (gauge group, three families,)
- Convince ourselves that the standard model is a plausible vacuum
- Determine if we are the "Chinese" or the "Andorrans" of the landscape

- Explore unknown regions of the landscape
- Establish the likelyhood of standard model features (gauge group, three families,)
- Convince ourselves that the standard model is a plausible vacuum
- Determine if we are the "Chinese" or the "Andorrans" of the landscape
- … and maybe we get lucky

EARLIER FOOTPRINTS

C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B **387** (1996) 743 [arXiv:hep-th/9607229].

R. Blumenhagen and A. Wisskirchen, Phys. Lett. B **438**, 52 (1998) [arXiv:hep-th/9806131].

G. Aldazabal, E. C. Andres, M. Leston and C. Nunez, JHEP **0309**, 067 (2003) [arXiv:hep-th/0307183].

I. Brunner, K. Hori, K. Hosomichi and J. Walcher, arXiv:hep-th/0401137.

R. Blumenhagen and T. Weigand, JHEP 0402 (2004) 041 [arXiv:hep-th/0401148].

G. Aldazabal, E. C. Andres and J. E. Juknevich, JHEP **0405**, 054 (2004) [arXiv:hep-th/0403262].

GEPNER MODELS

Building Blocks: Minimal N=2 CFT

$$c = \frac{3k}{k+2}, \quad k = 1, \dots, \infty$$

168 ways of solving

$$\sum_{i} c_{k_i} = 9$$

Spectrum:

$$h_{l,m} = \frac{l(l+2) - m^2}{4(k+2)} + \frac{s^2}{8}$$

 $(l = 0, \dots k; \quad q = -k, \dots k + 2; \quad s = -1, 0, 1, 2)$ (plus field identification)

4(k+2) simple currents

TENSORING

- Preserve world-sheet susy
- Preserve space-time susy (GSO)
- Use surviving simple currents to build MIPFs
- This yields one point in the moduli space of a Calabi-Yau manifold

SELECTING MIPFS AND ORIENTIFOLDS

Each tensor product has a discrete group G of simple currents: $J \cdot a = b$

Choose:

 $\begin{cases} & \text{ A subgroup } \mathcal{H} \text{ of } \mathcal{G} \\ & \text{ A rational matrix } X_{\alpha\beta} \text{ defined on } \mathcal{H} \\ & \text{ A n element } K \text{ of } \mathcal{G} \\ & \text{ A set of signs } \beta_K(J) \text{ defined on } \mathcal{H} \end{cases}$

CONDITIONS

[definition: $Q_J(a) \equiv h(a) + h(J) - h(Ja)$]

 $egin{aligned} \mathcal{H} & N_J h_J \in \mathbf{Z}, ext{ for all } J \in \mathcal{H} \ & X_{lphaeta} & 2X_{lphaeta} &= Q_{J_lpha}(J_eta) ext{ mod } 1, lpha
eq eta \ & X_{lphalpha} &= -h_{J_lpha} \ & N_lpha X_{lphaeta} &\in \mathbb{Z} ext{ for all } lpha, eta \ & K \ & Q_I(K) = 0 ext{ mod } 1 ext{ for all } I \in \mathcal{H}, I^2 = 0. \end{aligned}$

 $\beta_K(J) \qquad \beta_K(J)\beta_K(J') = \beta_K(JJ')e^{2\pi i X(J,J')} \quad , J, J' \in \mathcal{H}$

A MIPF

 $\begin{array}{l} (0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) \\ + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6) \\ + (16+18)^{*}(25+27) + (17+19)^{*}(24+26) + (20+22)^{2} + (21+23)^{2} \\ + (24+26)^{*}(17+19) + (25+27)^{*}(16+18) + (28+30)^{2} + (29+31)^{2} \\ + (32+34)^{2} + (33+35)^{2} + (36+38)^{*}(45+47) + (37+39)^{*}(44+46) \\ + (40+42)^{2} + (41+43)^{2} + (44+46)^{*}(37+39) + (45+47)^{*}(36+38) \\ + (48+50)^{*}(57+59) + (49+51)^{*}(56+58) + (52+54)^{2} + (53+55)^{2} \\ + (56+58)^{*}(49+51) + (57+59)^{*}(48+50) + (60+62)^{2} + (61+63)^{2} \end{array}$

 $+ 2^{*}(2913)^{*}(2915) + 2^{*}(2914)^{*}(2912) + 2^{*}(2915)^{*}(2913)$ $+ 2^{*}(2916)^{2} + 2^{*}(2917)^{2} + 2^{*}(2918)^{2} + 2^{*}(2919)^{2}$ $+ 2^{*}(2920)^{2} + 2^{*}(2921)^{2} + 2^{*}(2922)^{2} + 2^{*}(2923)^{2}$ $+ 2^{*}(2924)^{*}(2926) + 2^{*}(2925)^{*}(2927) + 2^{*}(2926)^{*}(2924)$ $+ 2^{*}(2927)^{*}(2925) + 2^{*}(2928)^{2} + 2^{*}(2929)^{2} + 2^{*}(2930)^{2}$ $+ 2^{*}(2931)^{2} + 2^{*}(2932)^{*}(2934) + 2^{*}(2933)^{*}(2935)$ $+ 2^{*}(2934)^{*}(2932) + 2^{*}(2935)^{*}(2933) + 2^{*}(2936)^{*}(2938)$ $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

COEFFICIENTS

% Klein bottle

$$K^{i} = \sum_{m,J,J'} \frac{S^{i}_{\ m} U_{(m,J)} g^{\Omega,m}_{J,J'} U_{(m,J')}}{S_{0m}}$$

Annulus

$$A^{i}_{[a,\psi_{a}][b,\psi_{b}]} = \sum_{m,J,J'} \frac{S^{i}_{\ m}R_{[a,\psi_{a}](m,J)}g^{\Omega,m}_{J,J'}R_{[b,\psi_{b}](m,J')}}{S_{0m}}$$

$$M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$$

$$g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c}$$

PARTITION FUNCTIONS

$\overset{\text{\emplitskip}}{=} \frac{1}{2} \left[\sum_{ij} \chi_i(\tau) Z_{ij} \chi_i(\bar{\tau}) + \sum_i K_i \chi_i(2\tau) \right]$

$$\frac{1}{2} \left[\sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

Na: Chan-Paton multiplicity

168 Gepner models

168 Gepner models

** 5403 MIPFs

168 Gepner models
5403 MIPFs
49322 Orientifolds

168 Gepner models

49322 Orientifolds

45761187347637742772 combinations of four boundary labels (brane stacks)

168 Gepner models

49322 Orientifolds

45761187347637742772 combinations of four boundary labels (brane stacks)

Essential to decide what to search for!

STANDARD MODEL REALIZATION

STANDARD MODEL REALIZATION

STANDARD MODEL REALIZATION

BASIC ASSUMPTIONS

- \ll CP group contains SU(3) x SU(2) x U(1)
- # Massless Y
- Spectrum: 3 families + SM-non-chiral
- Supersymmetry
- Complete tadpole cancellation
- Global anomaly cancellation (using Uranga's probe brane method)

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

 \bigcirc U(3) from a single brane

2005-2006 results:

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

- \bigcirc U(3) from a single brane
- \bigcirc U(2) from a single brane

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

- \bigcirc U(3) from a single brane
- \bigcirc U(2) from a single brane
- At most four branes

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

About 20 chirally distinct SM configurations(*)

2005-2006 results:

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

About 20 chirally distinct SM configurations(*)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

About 19000 chirally distinct SM configurations(*)

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

About 20 chirally distinct SM configurations(*)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

About 19000 chirally distinct SM configurations(*)

(*) before attempting tadpole cancellation

Sunday, 2 May 2010

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

Modulo Hidden Sector

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

Modulo Hidden Sector

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

Modulo CP-Non-chiral states

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

211634 distinct String Vacua

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

211634 distinct String Vacua

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

1900 distinct String Vacua (MIPFs with < 1750 boundaries)

BRANE CONFIGURATIONS (2004-2005)

Туре	CP Group	B-L
0	U(3) x Sp(2) x U(1) x U(1)	massless
1	U(3) x U(2) x U(1) x U(1)	massless
2	U(3) x Sp(2) x O(2) x U(1)	massless
3	U(3) x U(2) x O(2) x U(1)	massless
4	$U(3) \propto Sp(2) \propto Sp(2) \propto U(1)$	massless
5	U(3) x U(2) x Sp(2) x U(1)	massless
6	U(3) x Sp(2) x U(1) x U(1)	massive
7	U(3) x U(2) x U(1) x U(1)	massive

U(2)_{weak} allows additional chiral sub-types

STATISTICS

Total number of 4-stack configurations	45761187347637742772 (45.7 x 10 ¹⁸)
Total number scanned	4.37522E+19
Total number of SM configurations	45051902 fraction: 1.0 x 10 ⁻¹²
Total number of tadpole solutions	1649642 fraction: 3.8 x 10 ⁻¹⁴ (*)
Total number of distinct solutions	211634

(*) cf. Gmeiner, Blumenhagen, Honecker, Lüst, Weigand: "One in a Billion"

3 x (V,V,0,0,0,0,0,0,0,0,0) chirality 3 3 x (V,0,V,0,0,0,0,0,0,0,0) chirality -3 3 x (0 ,V ,0 ,V ,0 ,0 ,0 ,0 ,0 ,0) chirality 3 3 x (0 ,0 ,V ,V ,0 ,0 ,0 ,0 ,0 ,0) chirality -3 3 x (0 , V , V , 0 , 0 , 0 , 0 , 0 , 0 , 0) 2 x (V, 0, 0, V, 0, 0, 0, 0, 0, 0) 4 x (V ,0 ,0 ,V*,0 ,0 ,0 ,0 ,0 ,0) 2 x (V ,0 ,0 ,0 ,V ,0 ,0 ,0 ,0 ,0) 2 x (V,0,0,0,V*,0,0,0,0,0) 2 x (V ,0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0) 2 x (V, 0, 0, 0, 0, 0, 0, 0, V, 0, 0) 2 x (V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,V) 1 x (0, V, 0, 0, 0, 0, V, 0, 0, 0) 1 x (0 , V , 0 , 0 , 0 , 0 , V , 0 , 0) 2 x (0 , V , 0 , 0 , 0 , 0 , 0 , V , 0) 1 x (0 , V , 0 , 0 , 0 , 0 , 0 , 0 , V) 1 x (0 ,0 ,V ,0 ,0 ,0 ,V ,0 ,0 ,0) 2 x (0 ,0 ,0 ,V ,0 ,0 ,V ,0 ,0 ,0) 1 x (0,0,0,0,0,V,0,V,0,0) 2 x (0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V ,0) 1 x (0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V) 1 x (0,0,0,0,Ad,0,0,0,0,0) 2 x (0,0,0,0,S,0,0,0,0,0) 1 x (0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ,0 ,0) 1 x (0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ,0) 1 x (0,0,0,0,0,0,0,0,0, S,0)

Summary:

Higgs: $(2,1/2) + (2*,1/2)$:	3			
Non-chiral SM matter (Q,U,D,L,E,N):	0	0	0	0	0	0	
Adjoints:		0	0	0	0		
Symmetric Tensors:		0	0	0	0		
Anti-Symmetric Tensors:		0	0	0	0		
Lepto-quarks: $(3, -1/3), (3, 2/3)$			1	2			
Non-SM (a,b,c,d)		12	12	4	4		
Hidden (Total dimension)	58	(c	hira	alit	ty	0)	
alpha $3/alpha 2 = 1$. 2	07	107	1			

 $sin^{2}(theta w) = 0.3918058$

	3 х	(V	v,	,0	,0	,0	,0	,0	,0	,0	,0)	ch	ira	lity	3
	3 x	(V	,0	v,	,0	,0	,0	,0	,0	,0	,0)	ch	ira	lity	-3
	3 х	(0	v,	,0	v,	,0	,0	,0	,0	,0	,0)	ch	ira	lity	3
	3 x	(0	,0	, V	v,	,0	,0	,0	,0	,0	,0)	ch	ira	lity	-3
	3 x	(0	v,		,0	,0	,0	,0	,0	,0	,0)				
	2 x	(V			-	-	,0	,0	,0	,0	,0					
	4 x	(V		,0	-				,0	,0	,0)				
	2 x						,0		,0	,0)				
	2 x						,0		,0	,0	1 -)				
	2 x	•				-		v,	-	,0	,0					
	2 x						,0		, V	,0	,0	-				
	2 x					-	,0		,0		,v)				
	1 x	•	,v					, V	-	,0	1 -)				
	1 x		,v			,0	-		,v	,0	')				
	2 x		,v				,0			,v)				
	1 x				-		-	,0			,v)				
	1 x					-		, V		,0)				
	2 x	(0						,V		,0	1-)				
	1 x				-	-	-	,0		,0)				
	2 x							, V		,v)				
	1 x	(0						,0			, V					
	1 x	•						,0		,0)				
	2 x						,0		,0	,0)				
	1 x	(0						,S		,0	,0					
	1 x	-	-					,0		,0	,0					
	1 x	(0	,0	,0	,0	,0	,0	,0	,0	,s	,0)				
				g	11100	nar										
H	lggs:	12	1/2			-	_					3				
Non-chira								N) .) () (0	0	
Adjoin		Inc. C	····	12	/ • /	2/1	.,_,									
Symmet		Tens	ors													
Anti-S					rs:											
	to-q					3)	(3	21:	3)				2			
Non-SM				,	-/	- / /	,			12	2 12			4		
Hidden (ion)				5					y 0)	
al	pha	3/a	alph	ha	2	=			1.	20	710)7:	1			
si	.n^2	(th	eta	w) =	-			0.	391	.80	58	3			
	225			- '												

3 2	(V	, V	,0,0	,0,0	,0	,0	,0	,0) c	hiral	ity	3
3 2	(V	,0	,v ,0	,0 ,0	,0	,0	,0	,0) c	hiral	ity	-3
3 3	c (0	, V	,0,v	,0 ,0	,0	,0	,0	,0) c	hiral	ity	3
3 2	c (O	,0	,v,v	,0,0	,0	,0	,0	,0) c	hiral	ity	-3
3 2	c (O	, V	,v ,0	,0,0	,0	,0	,0	,0)			
2 3				,0 ,0				,0)			
4 2	•			*,0,0			,0	')			
2 2				, V , O			,0					
2 2				,v*,0			,0	,0				
2 1			,0,0	,0 ,0			,0	, -)			
2 1		,0,					,0	,0				
2 1		,0				,0						
1 1		, V			,V		,0)			
1 2 2		,v ,v	,0 ,0 ,0 ,0				,0	,0 ,0				
1 2			,0,0		-		,0	, v	-			
1 2		,0					,0	,0				
2 2				,0,0				,0	-			
1 2			,0,0		,0		,0		;			
2 2			,0,0				,v	,0				
1 :			,0 ,0				-					
1 2			,0 ,0		-		,0)			
2 2	c (0			,S ,0			,0	,0)			
1 2	c (0		,0 ,0	,0 ,0	,s	,0	,0	,0)			
1 3	(0)	,0	,0,0	,0,0	,0	,s	,0	,0)			
1 2	c (0	,0	,0,0	,0 ,0	,0	,0	,s	,0)			
				mary:								
Higgs	1 m 1								3	1.15.2		
Non-chiral SM	í ma	tter	(Q,U	,D,L,E	,N):	: 0				0	0	
Adjoints:								0				
Symmetric								0 0				
Anti-Symme					~ / ~		C) 0				
Lepto-o	-		(3, -1)	(3), (3)	,2/3	5)	10	1.000	2			
Non-SM (a)						E		2 12				
Hidden (Tota	r ai	mens	ion)			58	6 (CUII	call	Lty 0)		
alpha	3/	alph	na 2	=		1.	20	710	71			
sin^2	_	_	-					.80				

 $sin^{2}(theta_w) = 0.3918058$

				1.	200 200 200			01							11.1		
	3	x	(V	v,	,0	,0	,0	,0	,0	,0	,0	,0)	ch:	ira	lity	3
	3	x	(V	,0	,v	,0	,0	,0	,0	,0	,0	,0)	ch:	ira	_ lity	-3
	3	x	(0	v,	,0	,v	,0	,0	,0	,0	,0	,0)	ch:	ira	lity	3
	3	x	(0	,0	v,	,v	,0	,0	,0	,0	,0	,0)	ch	ira	lity	-3
	3	x	(0	v,	v,	,0	,0	,0	,0	,0	,0	,0)				
	2	x	(V	,0	,0	v,	,0	,0	,0	,0	,0	,0)				
	4	x	(V	,0	,0	۲V,	۰,0	,0	,0	,0	,0	,0)				
	2	x	(V	,0	,0	,0	v,	,0	,0	,0	,0	,0)				
	2	x	(V	,0	,0	,0	,V'	*,0	,0	,0	,0	,0)				
	2	x	(V	,0	,0	,0	,0	,0	v,	,0	,0	,0)				
	2	x	(V	,0	,0	,0	,0	,0	,0	v,	,0	,0)				
	2	x	(V	,0	,0	,0	,0	,0	,0	,0	,0	v,)				
	1	x	(0	v,	,0	,0	,0	,0	v,	,0	,0	,0)				
	1	x	(0	v,	,0	,0	,0	,0	,0	v,	,0	,0)				
	2	x	(0	v,	,0	,0	,0	,0	,0	,0	v,	,0)				
	1	x	(0	v,	,0	,0	,0	,0	,0	,0	,0	v,)				
	1	x	(0	,0	v,	,0	,0	,0	v,	,0	,0	,0)				
	2	x	(0	,0	,0	v,	,0	,0	v,	,0	,0	,0)				
	1	x	(0	,0	,0	,0	,0	v,	,0	v,	,0	,0)				
	2	x	(0	,0	,0	,0	,0	,0	v,	,0	v,	,0)				
	1	x	(0	,0	,0	,0	,0	,0	,0	v,	,0	v,)				
	1	x	(0	,0	,0	,0	,Ac	1,0	,0	,0	,0	,0)				
	2	x	(0	,0	,0	,0	,s	,0	,0	,0	,0	,0)				
	1	x	(0	,0	,0	,0	,0	,0	,s	,0	,0	,0)				
	1	x	(0	,0	,0	,0	,0	,0	,0	,s	,0	,0)				
	1	x	(0	,0	,0	,0	,0	,0	,0	,0	,s	,0)				
						Sum	mar	y:									
	Higgs	s :	(2	,1/	2)+	(2*	,1/	2)					3				
Non-ch	iral S	м	mat	ter	- (5	2, U,	D,I	.,E	,N)	: () () ()	0	0	0	
Adj	oints:										C) ()	0	0		
Sym	metric	T	ens	ors	s :						C) ()	0	0		
Ant	i-Symm	et	ric	: Te	enso	ors					C) ()	0	0		
	Lepto-	qu	ark	s:	(3,	-1/	(3)	(3	,2/:	3)		1	L	2			
Non	-SM (a	,b	, c,	d)							12	2 12	2	4	4		
Hidden	n (Tota	al	di	men	sio	n)				5	8 (chi	ra	lit	y C))	

alpha 3/alpha 2 =	1.2071071
$sin^2(theta w) =$	0.3918058

												_		_
3	x	(V	v,	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3	
3	x	(V	,0	v,	,0	,0	,0	,0	,0	,0	,0)	chirality -3	3
3	x	(0	v,	,0	v,	,0	,0	,0	,0	,0	,0)	chirality 3	
3	x	(0	,0	v,	v,	,0	,0	,0	,0	,0	,0)	chirality -3	3
3	х	(0	v,	v,	,0	,0	,0	,0	,0	,0	,0)		
2	х	(V	,0	,0	v,	,0	,0	,0	,0	,0	,0)		
4	x	(V	,0	,0	۲V,	۰,٥	,0	,0	,0	,0	,0)		
2	х	(V	,0	,0	,0	v,	,0	,0	,0	,0	,0)		
2	х	(V	,0	,0	,0	۲V,	۰,0	,0	,0	,0	,0)		
	x	•	•	•	•	•		v,		•	,0)		
	x	-	•		•	•		,0			,0	•		
	x	(V	•					,0			•)		
	x	-						, v			,0)		
	x	(0	•	•	•	•		,0		•	,0	•		
		-						,0			,0	•		
	x	(0		•			•	,0	•	•	, V	•		
	x	(0	-	-	-	-	-	, V	-	-	,0	•		
	x		1				1	, V			1			
	x	(0						,0						
		(0)						,v						
	x	(0) (0	,0					,0						
	x	(0	,0 ,0	,0				,0 ,0			,0			
	x	(0	,0	,0				,0 ,S	-	,0	,0 ,0)		
	x	(0						,0			,0			
	x		-				-	,0			,0			
	~	10	,0	,0	,0	,0	,0	,0	,0	,0	,0	'		

Summary:

Higgs: $(2,1/2) + (2*,1/2)$				3		
Non-chiral SM matter (Q,U,D,L,E,N):	0	0	0	0	0	0
Adjoints:		0	0	0	0	
Symmetric Tensors:		0	0	0	0	
Anti-Symmetric Tensors:		0	0	0	0	
Lepto-quarks: $(3, -1/3), (3, 2/3)$			1	2		
Non-SM (a,b,c,d)		12	12	4	4	
Hidden (Total dimension)	58	(c	hira	alit	ty	0)
alpha 3/alpha 2 =	1.2	207	107	1		

 $sin^{2}(theta_{w}) = 0.3918058$

		_							_		_		_	
ŝ	3	x	(V	v,	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3
	3	x	(V	,0	v,	,0	,0	,0	,0	,0	,0	,0)	chirality -3
	3	x	(0	v,	,0	v,	,0	,0	,0	,0	,0	,0)	chirality 3
	3	х	(0	,0	v,	v,	,0	,0	,0	,0	,0	,0)	chirality -3
	3	x	(0	v,	v,	,0	,0	,0	,0	,0	,0	,0)	
	2	х	(V	,0	,0	v,	,0	,0	,0	,0	,0	,0)	
	4	x	(V	,0	,0	۲V,	۰,0	,0	,0	,0		,)	
2			-	,0					,0			,0)	
		x	(V		,0	•	,v			,0	,0	,0)	
		x	•	,	,0	,0		,0		,0	,0	· .)	
		x	(V	'	,0	,0			•	v,	•	/ -)	
E.			(V	,	,0				-	-	,0	-)	
			(0		,0				, V		,0	/ -)	
		x	•	,v		,0	,0	,0	,0		•	')	
		x	(0	, V		,0	,0	,0		•	,v	/ -)	
		x	(0	, V		,0	,0	,0	-	,0	•	, V		
			(0	-	-	-	-	-	, V	-	-	')	
			(0								,0		•	
		х 	(0	,0	,0	,0	-	,V	, 0 		•	· .)	
		х 	(0	,0	,0	,0	•		, V		,V)	
		x x	(0 (0	,0	,0	,0	•			,v		,V		
		x x	(0	,0 ,0	,0 ,0	,0 ,0	-	1,0 ,0	-	,0 ,0	,0 ,0	<u>`</u> م)	
		x	(0	,0	,0	,0	•		,0 ,S		•)	
		x x	(0	,0 ,0	,0 ,0	,0 ,0	•		, s , 0	,0 ج	,0 ,0	<i>′</i> ~)	
		x X	(0		,0 ,0		,0		,0 ,0		,0 ,S)	
		~	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	

Summary:

Higgs: $(2,1/2) + (2*,1/2)$:	3		
Non-chiral SM matter (Q,U,D,L,E,N):	0	0	0	0	0	0
Adjoints:		0	0	0	0	
Symmetric Tensors:		0	0	0	0	
Anti-Symmetric Tensors:		0	0	0	0	
Lepto-quarks: $(3, -1/3), (3, 2/3)$			1	2		
Non-SM (a,b,c,d)		12	12	4	4	
Hidden (Total dimension)	58	(c)	hira	alit	ty	0)
alpha 3/alpha 2 = 1	L.2	07	107	1		

 $sin^{2}(theta_{w}) = 0.3918058$

COMPLETE HIDDEN SECTOR

(ASSUMING CP-NON-CHIRAL OBSERVABLE-HIDDEN STATES)

```
U(3) [fixed]
Sp(2) [fixed]
SO(2) [fixed]
U(1) [fixed]
Sp(2N 128+4N 130+2N 131+2N 132+2N 133+2N 135+2N 136+2N 137+2N 139)
SO(6-N 12-2N 134-2N 135-2N 136-4N 137-6N 138-2N 139)
Sp(2N 134+2N 135+2N 136+2N 137+2N 138+2N 139)
SO(2-N 128-2N 130-2N 133-2N 135-2N 136-N 137-N 139)
Sp(2N 133)
Sp(2N 132)
SO(2N 135)
SO(N 128)
SO(N 12)
SO(1-N 134-N 137-N 138-N 139)
SO(2+2N 131-2N 133-2N 135-2N 136-N 137-2N 138-N 139)
SO(5-N 128-2N 130-2N 131-2N 132-2N 133-N 134-2N 135-2N 136-2N 137-N 138-2N 139)
SO(2N 134+N 137+N 139)
Sp(2N 131)
SO(1-N 134-N 138)
U(-N 12+N 139)
U(N 137+2N 138)
Sp(2N 136)
Sp(2N 130+2N 133+2N 135+2N 136+2N 137+2N 138+2N 139)
U(1-N 134-N 137-N 138-N 139)
Sp(2N 138)
```

if we also allow CP-chiral (but SM non-chiral) exotics...

```
U(3) [fixed]
Sp(2) [fixed]
SO(2) [fixed]
U(1) [fixed]
Sp (2N 272+4N 281+2N 282+2N 289+2N 290+2N 291+2N 292+2N 293+2N 295+2N 296)
SO(6-N 24-N 279-2N 280-N 281-2N 283-2N 284+N 285-4N 293-2N 294-N 296-2N 297)
Sp(2N 297)
SO(1-N 80-N 272+N 279+N 280-N 281+N 282+N 283+N 284+N 285+N 286-N 287-N 288-N 289-N 290-N 291-N 292-N 293-N 296+N 297)
Sp(2N 296)
Sp(2N 295)
U(-N 13+N 287+N 288+2N 289+2N 290+2N 291+2N 292+2N 293+2N 294)
SO (1-N 279-N 280-N 281-N 282-N 283-N 284-N 285-N 286+N 287-N 288-N 289-N 290-N 291-N 292-N 293-N 294-N 296-N 297)
SO(N 272)
SO(N 24)
SO(-N 80+N 286)
U(2-N 282-N 283-N 284-2N 286-2N 289-2N 290-2N 291-2N 292-2N 293-2N 294-2N 297)
SO(2+N 279+2N 280+N 281+2N 282+2N 283+2N 284+N 285-N 287-N 288-2N 291+2N 292-2N 293-N 294-N 296)
SO (5-N 272-N 280-2N 281-N 282-N 283-N 284-N 289-N 290-N 291-N 292-N 293-2N 295-2N 296-N 297)
SO(1-N 279-N 280-N 281-N 282-N 283-N 284-N 285-N 286-N 289-N 290-N 291-N 292-N 293-N 294-N 296-N 297)
SO(2N 289+N 294+2N 297)
SO(-N 28+N 279+N 281+N 285+N 296)
SO(N 286+N 294)
SO(N 28)
U(-N 13+2N 282)
U(-N 24+N 285)
U(N 284)
U(N 282+N 283)
U(N 279+N 280+N 281+N 282+N 283+N 284+2N 293+N 294+N 296)
U(N 80)
U(N 13)
Sp(2N 288)
Sp(2N 281+2N 293+2N 296)
Sp(2N 290+2N 292)
Sp(2N 292)
Sp(2N 291)
Sp(2N 290+2N 291)
U(N 280+2N 283)
U(N 280+2N 284)
U(1-N 28-N 289-N 290-N 291-N 292-N 293-N 294-N 297)
Sp(2N 293)
```

17 equations, 397 variables (obvious splittings $U(n+m) \rightarrow U(m) \times U(n)$ not counted)

JUST THE SM GAUGE GROUP

Standard model type: 6 Number of factors in hidden gauge group: 0 Gauge group: U(3) x Sp(2) x U(1) x U(1)

Number of representations: 19

 $\sin^2(\theta_w) = .5271853$ $\frac{\alpha_3}{\alpha_2} = 3.2320501$

Examples exist:

- Se Without mirrors
- **Without** adjoints
- Without (anti)-symmetric tensors
- Without Observable-Hidden matter
- Without hidden sector

Examples exist:

- Without mirrors
- Search Without adjoints
- Without (anti)-symmetric tensors
- Without Observable-Hidden matter
- Without hidden sector

....but to get all this simultaneously requires more statistics

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Generically non-chiral states are absent and our current set of examples is too special.

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Generically non-chiral states are absent and our current set of examples is too special.

Generically non-chiral states are present and will be seen at LHC (or beyond).

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Generically non-chiral states are absent and our current set of examples is too special.

Generically non-chiral states are present and will be seen at LHC (or beyond).

Generically non-chiral states are present, but they remain light and are ruled out anthropically.

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Generically non-chiral states are absent and our current set of examples is too special.

Generically non-chiral states are present and will be seen at LHC (or beyond).

Generically non-chiral states are present, but they remain light and are ruled out anthropically.

We are Andorrans.

Gmeiner et. al. hep-th/0510170

Sunday, 2 May 2010

SM-REALIZATIONS (2005-2006)

Chan-Paton gauge group

$$G_{CP} = U(3)_a \times \left\{ \frac{U(2)_b}{Sp(2)_b} \right\} \times G_c \quad (\times G_d)$$

Embedding of Y:

 $Y = \alpha Q_a + \beta Q_b + \gamma Q_c + \delta Q_d + W_c + W_d$

Q: Brane charges (for unitary branes)W: Traceless generators

ALLOWED FEATURES

- (Anti)-quarks from anti-symmetric tensors
- leptons from anti-symmetric tensors
- # family symmetries
- * non-standard Y-charge assignments
- Unification (Pati-Salam, (flipped) SU(5), trinification)*
- Baryon and/or lepton number violation

*a,b,c,d may be identical

*

CLASSIFICATION

 $Y = (x - \frac{1}{3})Q_a + (x - \frac{1}{2})Q_b + xQ_C + (x - 1)Q_D$

Distributed over c and d

Allowed values for x

1/2Madrid model, Pati-Salam, Flipped SU(5)0(broken) SU(5)1Antoniadis, Kiritsis, Tomaras-1/2, 3/2Trinification (x = 1/3) (orientable)

STATISTICS

Value of x	Total
0	21303612
1/2	124006839*
1	12912
-1/2, 3/2	0
any	1250080

*Previous search: 45051902

TERMINOLOGY

Bottom-Up configuration:

Any hypothetical brane configuration that yields 3 chiral standard model families

• Top-Down configuration:

Any such configuration realized with boundary states of Gepner models

String Vacuum:

Top-down configuration with tadpole cancellation (with or without hidden sector)

BOTTOM-UP vs **TOP-DOWN** (1)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved		
1/2	UUUU	C,D	C,D	27	9	5194	1		
1/2	UUUU	C	C,D	103441	434	1056708	31		
1/2	UUUU	C	C	10717308	156	428799	24		
1/2	UUUU	C	F	351	0	0	0		
1/2	UUU	C,D	-	4	1	24	0		
1/2	UUU	C	-	215	5	13310	2		
1/2	UUUR	C,D	C,D	34	5	3888	1		
1/2	UUUR	C	C,D	185520	221	2560681	31		
1/2	USUU	C,D	C,D	72	7	7 6473			
1/2	USUU	C	C,D	153436	283	3420508	33		
1/2	USUU	C	С	10441784	125	4464095	27		
1/2	USUU	C	F	184	0	0	0		
Continued on next page									

- \leq 3 CP-chiral mirror pairs
- ≤ 3 CP-chiral Susy Higgs pairs
- ≤ 6 CP-chiral singlets (right-handed neutrinos)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved
1/2	USU	С	-	104	2	222	0
1/2	USU	C,D	-	8	1	4881	1
1/2	USUR	C	C,D	54274	31	49859327	19
1/2	USUR	C,D	C,D	36	2	858330	2
0	UUUU	C,D	C,D	5	5	4530	2
0	UUUU	C	C,D	8355	44	54102	2
0	UUUU	D	C,D	14	2	4368	0
0	UUUU	C	С	2890537	127	666631	9
0	UUUU	C	D	36304	16	6687	0
0	UUU	C	-	222	2	15440	1
0	UUUR	C,D	С	3702	39	171485	4
0	UUUR	C	С	5161452	289	4467147	32
0	UUUR	D	С	8564	22	50748	0
0	UUR	C	-	58 2 233071		2	
0	UURR	C	С	24091	17	8452983	17
1	UUUU	C,D	C,D	4	1	1144	1
1	UUUU	C	C,D	16	5	10714	0
1	UUUU	D	C,D	42	3	3328	0
1	UUUU	C	D	870	0	0	0
1	UUUR	C,D	D	34	1	1024	0
1	UUUR	C	D	609	1	640	0
3/2	UUUU	C	D	9	0	0	0
3/2	UUUU	C,D	D	1	0	0	0
3/2	UUUU	C, D	С	10	0	0	0
3/2	UUUU	C,D	C,D	2	0	0	0
*	UUUU	C,D	C,D	2	2	5146	1
*	UUUU	C	C,D	10	7	521372	3
*	UUUU	D	C,D	1	1	116	0
*	UUUU	C	D	3	1	4	0

MOST FREQUENT MODELS

n	r Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved	
1	9801844	648	$U(3) \times Sp(2) \times Sp(6) \times U(1)$	VVVV	1/2	Y!	
2	8479808(16227372)	675	$U(3) \times Sp(2) \times Sp(2) \times U(1)$	VVVV	1/2	Y!	
3	5775296	821	$U(4) \times Sp(2) \times Sp(6)$	VVV	1/2	Y!	
4	4810698	868	$U(4) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!	
5	4751603	554	$U(3) \times Sp(2) \times O(6) \times U(1)$	VVVV	1/2	Y!	
6	4584392	751	$U(4) \times Sp(2) \times O(6)$	VVV	1/2	Y	
7	4509752(9474494)	513	$U(3) \times Sp(2) \times O(2) \times U(1)$	VVVV	1/2	Y!	
8	3744864	690	$U(4) \times Sp(2) \times O(2)$	VVV	1/2	Y!	
9	3606292	467	$U(3) \times Sp(2) \times Sp(6) \times U(3)$	VVVV	1/2	Y	
10	3093933	623	$U(6) \times Sp(2) \times Sp(6)$	VVV	1/2	Y	
11	2717632	461	$U(3) \times Sp(2) \times Sp(2) \times U(3)$	VVVV	1/2	Y!	
12	2384626	560	$U(6) \times Sp(2) \times O(6)$	VVV	1/2	Y	
13	2253928	669	$U(6) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!	
14	1803909	519	$U(6) \times Sp(2) \times O(2)$	VVV	1/2	Y!	
15	1676493	517	$U(8) \times Sp(2) \times Sp(6)$	VVV	1/2	Y	
16	1674416	384	$U(3) \times Sp(2) \times O(6) \times U(3)$	VVVV	1/2	Y	
17	1654086	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y	
18	1654086	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y	
19	1642669	360	$U(3) \times Sp(2) \times Sp(6) \times U(5)$	VVVV	1/2	Y	
20	1486664	346	$U(3) \times Sp(2) \times O(2) \times U(3)$	VVVV	1/2	Y!	
21	1323363	476	$U(8) \times Sp(2) \times O(6)$	VVV	1/2	Y	
22	1135702	350	$U(3) \times Sp(2) \times Sp(2) \times U(5)$	VVVV	1/2	Y!	
23	1050764	532	$U(8) \times Sp(2) \times Sp(2)$	VVV	1/2	Y	
24	956980	421	$U(8) \times Sp(2) \times O(2)$	VVV	1/2	Y	
25	950003	449	$U(10) \times Sp(2) \times Sp(6)$	VVV	1/2	Y	
26	910132	51	$U(3) \times U(2) \times Sp(2) \times O(1)$	AAVV	0	Y	
34	869428(1096682)	246	$U(3) \times Sp(2) \times U(1) \times U(1)$	VVVV	1/2	Y!	
153	115466	335	$U(4) \times U(2) \times U(2)$	VVV	1/2	Y	
225	71328	167	$U(3) \times U(3) \times U(3)$	VVV	1/3		

Sunday, 2 May 2010

MOST FREQUENT MODELS

nr	Total occ. MIPI		Chan-Paton Group	spectrum	X	Solved
1	9801844	648	$U(3) \times Sp(2) \times Sp(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times Sp(2) \times Sp(2) \times U(1)$	VVVV	1/2	Y!
3	5775296	821	$U(4) \times Sp(2) \times Sp(6)$	VVV	1/2	Y!
4	4810698	868	$U(4) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
5	4751603	554	$U(3) \times Sp(2) \times O(6) \times U(1)$	VVVV	1/2	Y!
6	4584392 751		$U(4) \times Sp(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times Sp(2) \times O(2) \times U(1)$	VVVV	1/2	Y!
8	3744864	690	$U(4) \times Sp(2) \times O(2)$	VVV	1/2	Y!
9	3606292	467	$U(3) \times Sp(2) \times Sp(6) \times U(3)$	VVVV	1/2	Y
10	3093933	623	$U(6) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
11	2717632	461	$U(3) \times Sp(2) \times Sp(2) \times U(3)$	VVVV	1/2	Y!
12	2384626	560	$U(6) \times Sp(2) \times O(6)$	VVV	1/2	Y
13	2253928	669	$U(6) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
14	1803909	519	$U(6) \times Sp(2) \times O(2)$	VVV	1/2	Y!
15	1676493	517	$U(8) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
16	1674416	384	$U(3) \times Sp(2) \times O(6) \times U(3)$	VVVV	1/2	Y
17	1654086	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
18	1654086	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
19	1642669	360	$U(3) \times Sp(2) \times Sp(6) \times U(5)$	VVVV	1/2	Y
20	1486664	346	$U(3) \times Sp(2) \times O(2) \times U(3)$	VVVV	1/2	Y!
21	1323363	476	$U(8) \times Sp(2) \times O(6)$	VVV	1/2	Y
22	1135702	350	$U(3) \times Sp(2) \times Sp(2) \times U(5)$	VVVV	1/2	Y!
23	1050764	532	$U(8) \times Sp(2) \times Sp(2)$	VVV	1/2	Y
24	956980	421	$U(8) \times Sp(2) \times O(2)$	VVV	1/2	Y
25	950003	449	$U(10) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
26	910132	51	$U(3) \times U(2) \times Sp(2) \times O(1)$	AAVV	0	Y
34	869428(1096682)	246	$U(3) \times Sp(2) \times U(1) \times U(1)$	VVVV	1/2	Y!
153	115466	335	$U(4) \times U(2) \times U(2)$	VVV	1/2	Y
225	71328	167	$U(3) \times U(3) \times U(3)$	VVV	1/3	1337 C. 43 F

Sunday, 2 May 2010

SU(5)

Type:	U	0	0			
Dimension	5	1	1			
3 x	(A	,0	,0)	chirality	3
11 x	(V	,v	,0)	chirality	-3
8 x	(S	,0	,0)	chirality	0
3 x	(Ac	1,0	,0)	chirality	0
1 x	(0	, A	,0)	chirality	0
3 x	(0	,v	,V)	chirality	0
8 x	(V	,0	,V)	chirality	0
2 x	(0	,s	,0)	chirality	0
4 x	(0	,0	,S)	chirality	0
4 x	(0	,0	, A)	chirality	0

Note: gauge group is just SU(5)!

Classification and construction of bottom-up models

- Classification and construction of bottom-up models
- # Huge number of bottom-up possibilities

- Classification and construction of bottom-up models
- # Huge number of bottom-up possibilities
- # Huge number of top-down models

- Classification and construction of bottom-up models
- # Huge number of bottom-up possibilities
- # Huge number of top-down models
- Still, only small fraction of bottom-up options realized

- Classification and construction of bottom-up models
- # Huge number of bottom-up possibilities
- # Huge number of top-down models
- Still, only small fraction of bottom-up options realized
- Results dominated by x=1/2

- Classification and construction of bottom-up models
- # Huge number of bottom-up possibilities
- # Huge number of top-down models
- Still, only small fraction of bottom-up options realized
- Results dominated by x=1/2
- Wery clean SU(5)'s....

- Classification and construction of bottom-up models
- # Huge number of bottom-up possibilities
- # Huge number of top-down models
- Still, only small fraction of bottom-up options realized
- Results dominated by x=1/2
- % Very clean SU(5)'s....
- #But are they good for anything?