

RCFT ORIENTIFOLDS
AND
STANDARD MODEL REALIZATIONS

The Anthropic Landscape of Quantum Gravity:

The Anthropic Landscape of Quantum Gravity:

- Unthinkable 25 years ago

The Anthropic Landscape of Quantum Gravity:

- Unthinkable 25 years ago
- Will be generally accepted 25 years from now

REASONABLE GOALS

REASONABLE GOALS

糕 Explore unknown regions of the landscape

REASONABLE GOALS

㨋 Explore unknown regions of the landscape
暽 Establish the likelyhood of standard model features (gauge group, three families,)

REASONABLE GOALS

铔 Explore unknown regions of the landscape

暽 Establish the likelyhood of standard model features （gauge group，three families，．．．．）

纇 Convince ourselves that the standard model is a plausible vacuum

REASONABLE GOALS

铔 Explore unknown regions of the landscape

暽 Establish the likelyhood of standard model features （gauge group，three families，．．．．）

粈 Convince ourselves that the standard model is a plausible vacuum

粼 Determine if we are the＂Chinese＂or the＂Andorrans＂ of the landscape

REASONABLE GOALS

数 Explore unknown regions of the landscape
螪 Establish the likelyhood of standard model features （gauge group，three families，．．．．）

粈 Convince ourselves that the standard model is a plausible vacuum

粼 Determine if we are the＂Chinese＂or the＂Andorrans＂ of the landscape

䗱 ．．．and maybe we get lucky

EARLIER FOOTPRINTS

C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B 387 (1996) 743 [arXiv:hep-th/9607229].
R. Blumenhagen and A. Wisskirchen, Phys. Lett. B 438, 52 (1998)
[arXiv:hep-th/9806131].
G. Aldazabal, E. C. Andres, M. Leston and C. Nunez, JHEP 0309, 067 (2003) [arXiv:hep-th/0307183].
I. Brunner, K. Hori, K. Hosomichi and J. Walcher, arXiv:hep-th/0401137.
R. Blumenhagen and T. Weigand, JHEP 0402 (2004) 041 [arXiv:hep-th/0401148].
G. Aldazabal, E. C. Andres and J. E. Juknevich, JHEP 0405, 054 (2004) [arXiv:hep-th/0403262].

GEPNER MODELS

Building Blocks:
Minimal $\mathrm{N}=2 \mathrm{CFT}$

$$
c=\frac{3 k}{k+2}, \quad k=1, \ldots, \infty
$$

168 ways of solving

$$
\sum_{i} c_{k_{i}}=9
$$

Spectrum:

$$
\begin{gathered}
h_{l, m}=\frac{l(l+2)-m^{2}}{4(k+2)}+\frac{s^{2}}{8} \\
(l=0, \ldots k ; \quad q=-k, \ldots k+2 ; \quad s=-1,0,1,2) \\
\quad \text { (plus field identification) }
\end{gathered}
$$

$4(k+2)$ simple currents

TENSORING

賕 Preserve world－sheet susy
榉 Preserve space－time susy（GSO）
箓 Use surviving simple currents to build MIPFs

蝶 This yields one point in the moduli space of a Calabi－Yau manifold

Selecting MIPFs And Orientifolds

Each tensor product has a discrete group \mathcal{G} of simple currents：$J \cdot a=b$

Choose：
\int 並 A subgroup \mathcal{H} of \mathcal{G}
諩 A rational matrix $X_{\alpha \beta}$ defined on \mathcal{H}
\int 絜 An element K of \mathcal{G}
曗 A set of signs $\beta_{K}(J)$ defined on \mathcal{H}

CONDITIONS

$$
\left[\text { definition: } Q_{J}(a) \equiv h(a)+h(J)-h(J a)\right]
$$

$\begin{array}{lrl}\mathcal{H} & N_{J} h_{J} & \in \mathbb{Z}, \text { for all } J \in \mathcal{H} \\ X_{\alpha \beta} & 2 X_{\alpha \beta} & =Q_{J_{\alpha}}\left(J_{\beta}\right) \bmod 1, \alpha \neq \beta \\ & X_{\alpha \alpha} & =-h_{J_{\alpha}} \\ & N_{\alpha} X_{\alpha \beta} & \in \mathbb{Z} \text { for all } \alpha, \beta \\ K & Q_{I}(K) & =0 \bmod 1 \text { for all } I \in \mathcal{H}, I^{2}=0 .\end{array}$
$\beta_{K}(J) \quad \beta_{K}(J) \beta_{K}\left(J^{\prime}\right)=\beta_{K}\left(J J^{\prime}\right) e^{2 \pi i X\left(J, J^{\prime}\right)} \quad, J, J^{\prime} \in \mathcal{H}$

A MIPF

$$
\begin{gathered}
\quad(0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6)^{*}(13+15)+(5+7)^{*}(12+14) \\
+(8+10)^{\wedge} 2+(9+11)^{\wedge} 2+(12+14)^{*}(5+7)+(13+15)^{*}(4+6) \\
+(16+18)^{*}(25+27)+(17+19)^{*}(24+26)+(20+22)^{\wedge} 2+(21+23)^{\wedge} 2 \\
+(24+26)^{*}(17+19)+(25+27) *(16+18)+(28+30)^{\wedge} 2+(29+31)^{\wedge} 2 \\
+(32+34)^{\wedge} 2+(33+35)^{\wedge} 2+(36+38)^{*}(45+47)+(37+39)^{*}(44+46) \\
+(40+42)^{\wedge} 2+(41+43)^{\wedge} 2+(44+46)^{*}(37+39)+(45+47)^{*}(36+38) \\
+(48+50) *(57+59)+(49+51)^{*}(56+58)+(52+54)^{\wedge} 2+(53+55)^{\wedge} 2 \\
+(56+58) *(49+51)+(57+59) *(48+50)+(60+62)^{\wedge} 2+(61+63)^{\wedge} 2
\end{gathered}
$$

$$
\begin{aligned}
& +2 \text { * } 2913 \text {) }{ }^{*}(2915)+2^{*}(2914) *(2912)+2^{*}(2915) *(2913) \\
& +2^{*}(2916)^{\wedge} 2+2^{*}(2917)^{\wedge} 2+2^{*}(2918)^{\wedge} 2+2^{*}(2919)^{\wedge} 2 \\
& +2^{*}(2920)^{\wedge} 2+2^{*}(2921)^{\wedge} 2+2^{*}(2922)^{\wedge} 2+2^{*}(2923)^{\wedge} 2 \\
& +2^{*}(2924) *(2926)+2 *(2925) *(2927)+2 *(2926) *(2924) \\
& +2 \text { * } 2927 \text {)*(2925) }+2^{* *}(2928)^{\wedge} 2+2 *(2929)^{\wedge} 2+2 *(2930)^{\wedge} 2 \\
& +2 *(2931)^{\wedge} 2+2 *(2932) *(2934)+2^{*}(2933) *(2935) \\
& +2 *(2934) *(2932)+2 *(2935) *(2933)+2 *(2936) *(2938) \\
& +2 \text { * } 2937 \text {) }{ }^{*}(2939)+2^{*}(2938) *(2936)+2 *(2939) *(2937) \\
& +2{ }^{*}(2940)^{\wedge} 2+2 *(2941)^{\wedge} 2+2^{*}(2942)^{\wedge} 2+2 *(2943)^{\wedge} 2
\end{aligned}
$$

BOUNDARIES AND CROSSCAPS*

諩 Boundary coefficients

$$
R_{\left[a, \psi_{a}\right](m, J)}=\sqrt{\frac{|\mathcal{H}|}{\left|\mathcal{C}_{a}\right|\left|\mathcal{S}_{a}\right|}} \psi_{a}^{*}(J) S_{a m}^{J}
$$

粼 Crosscap coefficients

$$
U_{(m, J)}=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i\left(h_{K}-h_{K L}\right)} \beta_{K}(L) P_{L K, m} \delta_{J, 0}
$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

COEFFICIENTS

籟 Klein bottle

$$
K^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} U_{(m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

䋛 Annulus

$$
A_{\left[a, \psi_{a}\right]\left[b, \psi_{b}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} R_{\left[b, \psi_{b}\right]\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

䗱 Moebius

$$
M_{\left[a, \psi_{a}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{P^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

$g_{J, J^{\prime}}^{\Omega, m}=\frac{S_{m 0}}{S_{m K}} \beta_{K}(J) \delta_{J^{\prime}, J^{c}}$

PARTITION FUNCTIONS

蟔 Closed

$$
\frac{1}{2}\left[\sum_{i j} \chi_{i}(\tau) Z_{i j} \chi_{i}(\bar{\tau})+\sum_{i} K_{i} \chi_{i}(2 \tau)\right]
$$

諩 Open

$$
\frac{1}{2}\left[\sum_{i, a, n} N_{a} N_{b} A_{a b}^{i} \chi_{i}\left(\frac{\tau}{2}\right)+\sum_{i, a} N_{a} M_{a}^{i} \hat{\chi}_{i}\left(\frac{\tau}{2}+\frac{1}{2}\right)\right]
$$

N_{a} : Chan-Paton multiplicity

ACCESSIBLE CONFIGURATIONS

ACCESSIBLE CONFIGURATIONS

絴 168 Gepner models

ACCESSIBLE CONFIGURATIONS

颣 168 Gepner models
数 5403 MIPFs

ACCESSIBLE CONFIGURATIONS

彞 168 Gepner models
数 5403 MIPFs

赘 49322 Orientifolds

ACCESSIBLE CONFIGURATIONS

彞 168 Gepner models
韅 5403 MIPFs

粼 49322 Orientifolds
解 45761187347637742772 combinations of four boundary labels（brane stacks）

ACCESSIBLE CONFIGURATIONS

铔 168 Gepner models
袮 5403 MIPFs

踰 49322 Orientifolds
触 45761187347637742772 combinations of four boundary labels（brane stacks）

Essential to decide what to search for！

STANDARD MODEL REALIZATION

Standard Model realization

Standard Model realization

BASIC ASSUMPTIONS

諩 CP group contains $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
粼 Massless Y

業 Spectrum： 3 families＋SM－non－chiral
瞵 Supersymmetry
彞 Complete tadpole cancellation
糕 Global anomaly cancellation （using Uranga＇s probe brane method）

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

AdDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

Q $\mathrm{U}(3)$ from a single brane

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

Q $U(3)$ from a single brane

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

Q U(3) from a single brane

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

- $\mathrm{U}(2)$ from a single brane

Q At most four branes

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL Assumption

2004-2005 results:
(with T. Dijkstra and L. Huiszoon)

About 20
chirally distinct
SM configurations(*)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:
(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

About 20
chirally distinct
SM configurations(*)

About 19000
chirally distinct SM configurations(*)

ADDITIONAL ASSUMPTION

2004-2005 results:
(with T. Dijkstra and L. Huiszoon)

About 20
chirally distinct
SM configurations(*)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

About 19000 chirally distinct SM configurations(*)

(*) before attempting tadpole cancellation

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

Modulo
Hidden Sector

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:
(with T. Dijkstra and L. Huiszoon)

Modulo
Hidden Sector

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

Modulo
CP-Non-chiral states

ADDITIONAL ASSUMPTION

2004-2005 results:

(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:
(with T. Dijkstra and L. Huiszoon)

211634 distinct
String Vacua

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

ADDITIONAL ASSUMPTION

2004-2005 results:
(with T. Dijkstra and L. Huiszoon)

2005-2006 results:

(with P. Anastasopoulos, T. Dijkstra and E. Kiritsis)

211634 distinct
String Vacua

1900 distinct
String Vacua
(MIPFs with < 1750 boundaries)

BRANE CONFIGURATIONS (2004-2005)

Type	CP Group	B-L
0	$U(3) \times \operatorname{Sp}(2) \times U(1) \times U(1)$	massless
1	$U(3) \times U(2) \times U(1) \times U(1)$	massless
2	$U(3) \times \operatorname{Sp}(2) \times \mathrm{O}(2) \times \mathrm{U}(1)$	massless
3	$\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{O}(2) \times \mathrm{U}(1)$	massless
4	$\mathrm{U}(3) \times \mathrm{Sp}(2) \times \mathrm{Sp}(2) \times \mathrm{U}(1)$	massless
5	$\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{Sp}(2) \times \mathrm{U}(1)$	massless
6	$\mathrm{U}(3) \times \mathrm{Sp}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	massive
7	$\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	massive

$\mathrm{U}(2)_{\text {weak }}$ allows additional chiral sub-types

STATISTICS

Total number of 4-stack configurations	45761187347637742772 $\left(45.7 \times 10^{18}\right)$
Total number scanned	$4.37522 \mathrm{E}+19$
Total number of SM configurations	45051902 fraction: 1.0×10^{-12}
Total number of tadpole solutions	1649642 fraction: $3.8 \times 10^{-14}\left(^{*}\right)$
Total number of distinct solutions	211634

(*) cf. Gmeiner, Blumenhagen,Honecker,Lüst,Weigand: "One in a Billion"


```
Non-chiral SM matter (Q,U,D,L,E,N): 0}00000
    Adjoints
    Symmetric Tensors:
    Anti-Symmetric Tensors:
        Lepto-quarks: (3,-1/3),(3,2/3)
    Non-SM (a,b,c,d)
Hidden (Total dimension)
alpha_3/alpha_2 =
1.2071071
sin^2(theta_w)=
0.3918058
```


Summary

Summary

Summary:

Higgs: $(2,1 / 2)+(2 *, 1 / 2)$
Non-chiral $S M$ matter (Q, U, D, L, E, N) : $0 \quad 0 \quad 0 \quad 0 \quad 0$ Adjoints
Symmetric Tensors: $0 \quad 0 \quad 0 \quad 0$

Synueric Tensors. $0 \quad 0 \quad 0 \quad 0$
Anti-Symmetric Tensors: 0000
Lepto-quarks: $(3,-1 / 3),(3,2 / 3)$

Non-SM (a, b, c, d)
Hidden (Total dimension)

alpha 3/alpha $2=$
 $\sin ^{\wedge} \mathbf{2}^{\left(t h e t a _w\right)}=$

1. 2071071
0.3918058

Summary
Higgs: $(2,1 / 2)+(2 *, 1 / 2)$
Non-chiral SM matter (Q, U, D, L, E, N) : $0 \quad 0 \quad 0 \quad 0 \quad 0$
Adjoints
Symmetric Tensors:
Anti-Symmetric Tensors: $0 \quad 0 \quad 0 \quad 0$

Lepto-quarks: $(3,-1 / 3),(3,2 / 3)$
Non-SM (a, b, c, d)
Hidden (Total dimension)
58 (chirality 0)

$$
\begin{array}{cl}
\text { alpha_3/alpha_2 }= & 1.2071071 \\
\text { sin^2 }^{2}(\text { theta_w })= & 0.3918058
\end{array}
$$

Summary
Higgs: $(2,1 / 2)+(2 *, 1 / 2)$
Non-chiral SM matter $(Q, U, D, L, E, N): \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ Adjoints

Symmetric Tensors:

Anti-Symmetric Tensors:
Lepto-quarks: $(3,-1 / 3),(3,2 / 3)$
Non-SM (a, b, c, d)
Hidden (Total dimension)

$$
\begin{array}{cl}
\text { alpha_3/alpha_2 }= & 1.2071071 \\
\text { sin^2 }^{2}(\text { theta_w }) & 0.3918058
\end{array}
$$

Complete Hidden Sector
 (ASSUMING CP-NON-CHIRAL OBSERVABLE-HIDDEN STATES)

```
U(3) [fixed]
Sp(2) [fixed]
SO(2) [fixed]
U(1) [fixed]
Sp(2N_128+4N_130+2N_131+2N_132+2N_133+2N_135+2N_136+2N_137+2N_139)
SO(6-N_12-2N_134-2N_135-2N_136-4N_137-6N_138-2N_139)
Sp (2N_134+2N_135+2N_136+2N_137+2N_138+2N_139)
SO (2-\overline{N}_128-2\overline{N}_130-2\overline{N}_133-2\overline{N}_135-2NN_136-N_137-N_139)
Sp(2N_133)
Sp (2N-132)
SO (2N-135)
SO (N_128)
SO (N_12)
SO(1-N_134-N_137-N_138-N_139)
SO(2+2\overline{N}_131-2N_133-2N_135-2N_136-N_137-2N_138-N_139)
SO(5-N_128-2N_130-2N_131-2N_132-2N_133-N_134-2N_135-2N_136-2N_137-N_138-2N_139)
SO(2N_134+N_137+N_139)
Sp (2N 131)
SO(1-\overline{N}_134-N_138)
U(-N 12
U(N_137+2\overline{N}_138)
Sp(2N_136)
Sp(2N_130+2N_133+2N_135+2N_136+2N_137+2N_138+2N_139)
U(1-N_134-N_137-N_138-N_139)
Sp(2N_138)
```


if we also allow CP-chiral
 (but SM non-chiral) exotics...

```
U(3) [fixed]
Sp(2) [fixed]
SO(2) [fixed]
U(1) [fixed]
Sp(2N_272+4N_281+2N_282+2N_289+2N_290+2N_291+2N_292+2N_293+2N_295+2N_296)
SO(6-N
Sp(2N_297)
SO(1-N_80-N_272+N_279+N_280-N_281+N_282+N_283+N_284+N_285+N_286-N_287-N_288-N_289-N_290-N_291-N_292-N_293-N_296+N_297)
Sp(2N 296)
Sp(2N-295)
U(-N_13+N_287+N_288+2N_289+2N_290+2N_291+2N_292+2N_293+2N_294)
```



```
SO (N 2\overline{72)}
SO(N_24)
SO(-\overline{N}80+N 286)
U(2-N_282-N_
```



```
SO(5-N 272-N 280-2N 281-N 282-N 283-N 284-N 289-N 290-N 291-N 292-N 293-2N 295-2N 296-N 297)
SO(1-N_279-N_280-N_ 281-N_\overline{2}82-N_\overline{2}83-N_\
SO(2N 289+N 294+2N 297)
SO(-N_28+N_279+N_2\overline{81+N_285+N_296)}
SO(N 286+N-294)
SO (N_28)
U(-N-13+2N 282)
U(-N-24+N 285)
U(N 284)
U(N 282+N 283)
U(N_279+N_280+N_281+N_282+N_283+N_284+2N_293+N_294+N_296)
U(N-80)
U(N_13)
Sp(2N 288)
Sp(2N_281+2N_293+2N_296)
Sp(2N_290+2N_292)
Sp(2N 292)
Sp (2N_291)
Sp(2N 290+2N 291)
U(N_2\overline{80}0+2N_2\overline{8}3)
U(N 280+2N 284)
U(1-N_28-N_289-N_290-N_291-N_292-N_293-N_294-N_297)
Sp(2N-293)
```

17 equations, 397 variables
(obvious splittings $\mathrm{U}(\mathrm{n}+\mathrm{m}) \longrightarrow \mathrm{U}(\mathrm{m}) \times \mathrm{U}(\mathrm{n})$ not counted)

JUST THE SM GAUGE GROUP

6
Number of factors in hidden gauge group: 0
Gauge group: $U(3) \times \operatorname{Sp}(2) \times U(1) \times U(1)$
Number of representations: 19

$$
\begin{aligned}
& 5 \times(V, V, 0,0) \text { chirality } 3 \\
& 3 \times(V, 0, V, 0) \text { chirality }-3 \\
& 3 \times(V, 0, V *, 0) \text { chirality }-3 \\
& 3 \times(0, V, 0, V) \text { chirality } 3 \\
& 5 \times(0,0, V, V) \text { chirality }-3 \\
& 3 \times(0,0, V, V *) \text { chirality } 3 \\
& \begin{array}{r}
18 \times(0, V, V, 0) \\
6 \times(V, 0,0, V)
\end{array} \\
& 2 \times(\mathrm{Ad}, 0,0,0) \\
& 2 \times(A, 0,0,0) \\
& 2 \times(S, 0,0,0) \\
& 14 \times(0, A, 0,0) \\
& 6 \times(0, S, 0,0) \\
& 9 \times(0,0, A d, 0) \\
& 6 \times(0,0, A, 0) \\
& 14 \times(0,0, S, 0) \\
& 3 \times(0,0,0, A d) \\
& 4 \times(0,0,0, A) \\
& 6 \times(0,0,0, S) \\
& \sin ^{2}\left(\theta_{w}\right)=.5271853 \\
& \frac{\alpha_{3}}{\alpha_{2}}=3.2320501
\end{aligned}
$$

SUMMARY

Examples exist:

Q Without mirrors
Q Without adjoints
Q Without (anti)-symmetric tensors
Q Without Observable-Hidden matter
Q Without hidden sector

SUMMARY

Examples exist:

Without mirrorsWithout adjointsQ Without (anti)-symmetric tensors
Q Without Observable-Hidden matterWithout hidden sector
....but to get all this simultaneously requires more statistics

But why do we require "clean" spectra?

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

But why do we require "clean" spectra?

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Q Generically non-chiral states are absent and our current set of examples is too special.

But why do we require "clean" spectra?

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Q Generically non-chiral states are absent and our current set of examples is too special.
Q Generically non-chiral states are present and will be seen at LHC (or beyond).

But why do we require "clean" spectra?

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Q Generically non-chiral states are absent and our current set of examples is too special.
Q Generically non-chiral states are present and will be seen at LHC (or beyond).
Q Generically non-chiral states are present, but they remain light and are ruled out anthropically.

But why do we require "clean" spectra?

Presently known standard model string spectra: 3 chiral families + non-chiral mess

We seem to have the following options:

Q Generically non-chiral states are absent and our current set of examples is too special.
Q Generically non-chiral states are present and will be seen at LHC (or beyond).
Q Generically non-chiral states are present, but they remain light and are ruled out anthropically.
Q We are Andorrans.

SM-REALIZATIONS (2005-2006)

Chan-Paton gauge group

$$
G_{C P}=U(3)_{a} \times\left\{\begin{array}{c}
U(2)_{b} \\
S p(2)_{b}
\end{array}\right\} \times G_{c} \quad\left(\times G_{d}\right)
$$

Embedding of Y:
$Y=\alpha Q_{a}+\beta Q_{b}+\gamma Q_{c}+\delta Q_{d}+W_{c}+W_{d}$
Q: Brane charges (for unitary branes)
W: Traceless generators

AlLowed Features

䗲（Anti）－quarks from anti－symmetric tensors

楼 leptons from anti－symmetric tensors

紸 family symmetries

塐 non－standard Y－charge assignments

䩚 Unification（Pati－Salam，（flipped）SU（5），trinification）＊

䅉 Baryon and／or lepton number violation

瞵 ．．．．
＊a，b，c，d may be identical

CLASSIFICATION

$$
Y=\left(x-\frac{1}{3}\right) Q_{a}+\left(x-\frac{1}{2}\right) Q_{b}+x \underbrace{Q_{C}+(x-1)} Q_{D}
$$

Distributed over c and d

Allowed values for x
1/2 Madrid model, Pati-Salam, Flipped SU(5)
0 (broken) SU(5)
1 Antoniadis, Kiritsis, Tomaras
$-1 / 2,3 / 2$
any Trinification $(x=1 / 3) \quad$ (orientable)

StATISTICS

Value of x	Total
0	21303612
$1 / 2$	124006839^{*}
1	12912
$-1 / 2,3 / 2$	0
any	1250080

*Previous search: 45051902

TERMINOLOGY

- Bottom-Up configuration:

Any hypothetical brane configuration that yields 3 chiral standard model families

- Top-Down configuration: Any such configuration realized with boundary states of Gepner models
- String Vacuum: Top-down configuration with tadpole cancellation (with or without hidden sector)

BOTTOM-UP vs TOP-DOWN (1)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved
$1 / 2$	UUUU	C,D	C,D	27	9	5194	1
$1 / 2$	UUUU	C	C,D	103441	434	1056708	31
$1 / 2$	UUUU	C	C	10717308	156	428799	24
$1 / 2$	UUUU	C	F	351	0	0	0
$1 / 2$	UUU	C,D	-	4	1	24	0
$1 / 2$	UUU	C	-	215	5	13310	2
$1 / 2$	UUUR	C,D	C,D	34	5	3888	1
$1 / 2$	UUUR	C	C,D	185520	221	2560681	31
$1 / 2$	USUU	C,D	C,D	72	7	6473	2
$1 / 2$	USUU	C	C,D	153436	283	3420508	33
$1 / 2$	USUU	C	C	10441784	125	4464095	27
$1 / 2$	USUU	C	F	184	0	0	0

≤ 3 CP-chiral mirror pairs
≤ 3 CP-chiral Susy Higgs pairs
≤ 6 CP-chiral singlets (right-handed neutrinos)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved
$1 / 2$	USU	C	-	104	2	222	0
$1 / 2$	USU	C,D	-	8	1	4881	1
$1 / 2$	USUR	C	C,D	54274	31	49859327	19
$1 / 2$	USUR	C,D	C,D	36	2	858330	2
0	UUUU	C,D	C,D	5	5	4530	2
0	UUUU	C	C,D	8355	44	54102	2
0	UUUU	D	C,D	14	2	4368	0
0	UUUU	C	C	2890537	127	666631	9
0	UUUU	C	D	36304	16	6687	0
0	UUU	C	-	222	2	15440	1
0	UUUR	C,D	C	3702	39	171485	4
0	UUUR	C	C	5161452	289	4467147	32
0	UUUR	D	C	8564	22	50748	0
0	UUR	C	-	58	2	233071	2
0	UURR	C	C	24091	17	8452983	17
1	UUUU	C,D	C,D	4	1	1144	1
1	UUUU	C	C,D	16	5	10714	0
1	UUUU	D	C,D	42	3	3328	0
1	UUUU	C	D	870	0	0	0
1	UUUR	C,D	D	34	1	1024	0
1	UUUR	C	D	609	1	640	0
$3 / 2$	UUUU	C	D	9	0	0	0
$3 / 2$	UUUU	C,D	D	1	0	0	0
$3 / 2$	UUUU	C, D	C	10	0	0	0
$3 / 2$	UUUU	C,D	C,D	2	0	0	0
$*$	UUUU	C,D	C,D	2	2	5146	1
$*$	UUUU	C	C,D	10	7	521372	3
$*$	UUUU	D	C,D	1	1	116	0
$*$	UUUU	C	D	3	1	4	0

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times S p(2) \times S p(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times S p(2) \times S p(2) \times U(1)$	VVVV	1/2	Y !
3	5775296	821	$U(4) \times S p(2) \times S p(6)$	VVV	1/2	Y !
4	4810698	868	$U(4) \times S p(2) \times S p(2)$	VVV	1/2	Y !
5	4751603	554	$U(3) \times S p(2) \times O(6) \times U(1)$	VVVV	1/2	Y !
6	4584392	751	$U(4) \times S p(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times S p(2) \times O(2) \times U(1)$	VVVV	$1 / 2$	Y!
8	3744864	690	$U(4) \times S p(2) \times O(2)$	VVV	$1 / 2$	Y !
9	3606292	467	$U(3) \times S p(2) \times S p(6) \times U(3)$	VVVV	1/2	Y
10	3093933	623	$U(6) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
11	2717632	461	$U(3) \times S p(2) \times S p(2) \times U(3)$	VVVV	1/2	Y !
12	2384626	560	$U(6) \times S p(2) \times O(6)$	VVV	1/2	Y
13	2253928	669	$U(6) \times S p(2) \times S p(2)$	VVV	$1 / 2$	Y !
14	1803909	519	$U(6) \times S p(2) \times O(2)$	VVV	$1 / 2$	Y !
15	1676493	517	$U(8) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
16	1674416	384	$U(3) \times S p(2) \times O(6) \times U(3)$	VVVV	1/2	Y
17	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	$1 / 2$	Y
18	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	$1 / 2$	Y
19	1642669	360	$U(3) \times S p(2) \times S p(6) \times U(5)$	VVVV	$1 / 2$	Y
20	1486664	346	$U(3) \times S p(2) \times O(2) \times U(3)$	VVVV	$1 / 2$	Y !
21	1323363	476	$U(8) \times S p(2) \times O(6)$	VVV	$1 / 2$	Y
22	1135702	350	$U(3) \times S p(2) \times S p(2) \times U(5)$	VVVV	$1 / 2$	Y !
23	1050764	532	$U(8) \times S p(2) \times S p(2)$	VVV	$1 / 2$	Y
24	956980	421	$U(8) \times S p(2) \times O(2)$	VVV	$1 / 2$	Y
25	950003	449	$U(10) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
26	910132	51	$U(3) \times U(2) \times S p(2) \times O(1)$	AAVV	0	Y
34	869428(1096682)	246	$U(3) \times S p(2) \times U(1) \times U(1)$	VVVV	1/2	Y!
153	115466	335	$U(4) \times U(2) \times U(2)$	VVV	$1 / 2$	Y
22.5	71328	167	$U(3) \times U(3) \times U(3)$	VVV	$1 / 3$	

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times S p(2) \times S p(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times S p(2) \times S p(2) \times U(1)$	VVVV	1/2	Y!
3	5775296	821	$U(4) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y!
4	4810698	868	$U(4) \times S p(2) \times S p(2)$	VVV	$1 / 2$	Y !
5	4751603	554	$U(3) \times S p(2) \times O(6) \times U(1)$	VVVV	1/2	Y !
6	4584392	751	$U(4) \times S p(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times S p(2) \times O(2) \times U(1)$	VVVV	1/2	Y!
8	3744864	690	$U(4) \times S p(2) \times O(2)$	VVV	1/2	Y !
9	3606292	467	$U(3) \times S p(2) \times S p(6) \times U(3)$	VVVV	1/2	Y
10	3093933	623	$U(6) \times S p(2) \times S p(6)$	VVV	1/2	Y
11	2717632	461	$U(3) \times S p(2) \times S p(2) \times U(3)$	VVVV	$1 / 2$	Y !
12	2384626	560	$U(6) \times S p(2) \times O(6)$	VVV	1/2	Y
13	2253928	669	$U(6) \times S p(2) \times S p(2)$	VVV	1/2	Y !
14	1803909	519	$U(6) \times S p(2) \times O(2)$	VVV	$1 / 2$	Y !
15	1676493	517	$U(8) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
16	1674416	384	$U(3) \times S p(2) \times O(6) \times U(3)$	VVVV	1/2	Y
17	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	1/2	Y
18	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	1/2	Y
19	1642669	360	$U(3) \times S p(2) \times S p(6) \times U(5)$	VVVV	1/2	Y
20	1486664	346	$U(3) \times S p(2) \times O(2) \times U(3)$	VVVV	1/2	Y !
21	1323363	476	$U(8) \times S p(2) \times O(6)$	VVV	1/2	Y
22	1135702	350	$U(3) \times S p(2) \times S p(2) \times U(5)$	VVVV	1/2	Y !
23	1050764	532	$U(8) \times S p(2) \times S p(2)$	VVV	1/2	Y
24	956980	421	$U(8) \times S p(2) \times O(2)$	VVV	1/2	Y
25	950003	449	$U(10) \times S p(2) \times S p(6)$	VVV	1/2	Y
26	910132	51	$U(3) \times U(2) \times S p(2) \times O(1)$	AAVV	0	Y
34	869428(1096682)	246	$U(3) \times S p(2) \times U(1) \times U(1)$	VVVV	1/2	Y !
153	115466	335	$U(4) \times U(2) \times U(2)$	VVV	$1 / 2$	Y
22.5	71328	167	$U(3) \times U(3) \times U(3)$	VVV	$1 / 3$	

SU(5)

Note: gauge group is just $\operatorname{SU}(5)$!

CONCLUSIONS

CONCLUSIONS

显 Classification and construction of bottom-up models

CONCLUSIONS

彞 Classification and construction of bottom-up models
縢 Huge number of bottom-up possibilities

CONCLUSIONS

糍 Classification and construction of bottom－up models
制 Huge number of bottom－up possibilities
糕 Huge number of top－down models

CONCLUSIONS

糕 Classification and construction of bottom－up models
傫 Huge number of bottom－up possibilities
楼 Huge number of top－down models
瞨 Still，only small fraction of bottom－up options realized

CONCLUSIONS

糍 Classification and construction of bottom－up models
傫 Huge number of bottom－up possibilities
楼 Huge number of top－down models
糍 Still，only small fraction of bottom－up options realized
粈 Results dominated by $x=1 / 2$

CONCLUSIONS

糕 Classification and construction of bottom－up models
傫 Huge number of bottom－up possibilities
楼 Huge number of top－down models
纇 Still，only small fraction of bottom－up options realized
㩧 Results dominated by $x=1 / 2$
缐 Very clean $S U(5)$＇s．．．．

CONCLUSIONS

糕 Classification and construction of bottom－up models
敖 Huge number of bottom－up possibilities
楼 Huge number of top－down models
颣 Still，only small fraction of bottom－up options realized
㩧 Results dominated by $x=1 / 2$
解 Very clean $\operatorname{SU}(5)$＇s．．．．
擈 ．．．．But are they good for anything？

