

MODEL BUILDING WITH RCFT ORIENTIFOLDS

BASED ON WORK WITH:

- Huiszoon, Fuchs, Schweigert and Walcher [Formalism] Phys.Lett.B495:427-434,2000
- Huiszoon, Dijkstra 《》 Phys.Lett.B609:408-417,2005, Nucl.Phys.B710:3-57,2005
- Anastasopoulos, Dijkstra, Kiritsis 貒 Nucl.Phys.B759:83-146,2006

[SM Search]

[SM Search]

- [Majorana masses from instantons] Ibañez, Uranga 影 (hep-th/07yyzzz)
- Gato-Rivera (hep-th/07yyzzz)

- [Tachyon-free non-susy strings]
- Gato-Rivera, Gmeiner, Kiritsis [Free CFT models] (hep-th/xxyyzzz)

OBJECTIVES

Set Explore unknown regions of the landscape.

- Stablish realization of standard model features (gauge group, three families, neutrino masses ...). [not necessarily all in the same model]
- Convince ourselves that the standard model is indeed a "ground state".
- Discover relations between parameters.
- Find A Standard Model ?
- Find THE Standard Model ????

ORIENTIFOLDS

CLOSED STRING PARTITION FUNCTION

 $P(\tau, \bar{\tau}) = \sum_{ij} \chi_i(\tau) Z_{ij} \chi_j(\bar{\tau})$

ORIENTIFOLD PARTITION FUNCTIONS

ORIENTIFOLD PARTITION FUNCTIONS

ORIENTIFOLD PARTITION FUNCTIONS

TRANSVERSE CHANNEL

TORUS CFT: TYPE-IIB GEPNER MODELS

Building Blocks: Minimal N=2 CFT

$$c = \frac{3k}{k+2}, \quad k = 1, \dots, \infty$$

168 ways of solving

$$\sum_{i} c_{k_i} = 9$$

Spectrum:

$$h_{l,m} = \frac{l(l+2) - m^2}{4(k+2)} + \frac{s^2}{8}$$

 $(l = 0, \dots k; \quad q = -k, \dots k + 2; \quad s = -1, 0, 1, 2)$ (plus field identification)

4(k+2) simple currents

GEPNER ORIENTIFOLDS

C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B **387** (1996) 743 [arXiv:hep-th/9607229].

R. Blumenhagen and A. Wisskirchen, Phys. Lett. B **438**, 52 (1998) [arXiv:hep-th/9806131].

G. Aldazabal, E. C. Andres, M. Leston and C. Nunez, JHEP **0309**, 067 (2003) [arXiv:hep-th/0307183].

I. Brunner, K. Hori, K. Hosomichi and J. Walcher, arXiv:hep-th/0401137.

R. Blumenhagen and T. Weigand, JHEP 0402 (2004) 041 [arXiv:hep-th/0401148].

G. Aldazabal, E. C. Andres and J. E. Juknevich, JHEP **0405**, 054 (2004) [arXiv:hep-th/0403262].

SIMPLE CURRENTS

TENSORING

- Preserve world-sheet susy
- Preserve space-time susy (GSO)
- Use surviving simple currents to build MIPFs
- This yields one point in the moduli space of a Calabi-Yau manifold

g	D	5	1										
g	mi	n	2	3									
g	mi	n	2	3									
g	mi	n	2	3									
g	mi	n	2	3									
g	mi	n	2	3									
Cl	ırr	ren	nt	2	10	0	0		0		0		0
Cl	ırr	ren	nt	2	0	1	0		0		0		0
Cl	ırr	ren	nt	2	0	0		1	0		0		0
Cl	ırr	ren	nt	2	0	0		0		1	0		0
Cl	ırr	rer	nt	2	0	0		0		0		1	0
Cl	ırr	rer	nt	1	1	1		1		1		1	
CC	omr	out	e	sr	be	ct	r	u	m				

NSR

g D 5 1	
g min 2	3
current	2 10 0 0 0 0
current	2 0 10 0 0 0
current	2 0 0 10 0 0
current	2 0 0 0 10 0
current	2 0 0 0 0 10
current	1 1 1 1 1 1
compute	spectrum

g D 5 1		NSR
g min 2	3	
g min 2	3	
g min 2	3	Minimal Models
g min 2	3	
g min 2	3	
current	2	10 0 0 0 0
current	2	0 10 0 0 0
current	2	0 0 10 0 0
current	2	0 0 0 10 0
current	2	0 0 0 0 10
current	1	1 1 1 1 1

compute spectrum

MIPFs*

* CFT has a discrete "simple current" group GChoose a subgroup H of G

* Choose a rational matrix $X_{\alpha\beta}$ obeying $2X_{\alpha\beta} = Q_{J_{\alpha}}(J_{\beta}) \mod 1, \alpha \neq \beta$ $X_{\alpha\alpha} = -h_{J_{\alpha}}$ $N_{\alpha}X_{\alpha\beta} \in \mathbb{Z} \text{ for all } \alpha, \beta$ $Q_{J}(a) = h(a) + h(J) - h(Ja)$ * This defines the torus partition function as

 Z_{ij} is the number of currents $L \in \mathcal{H}$ such that

j = Li $Q_M(i) + X(M,L) = 0 \mod 1$ for all $M \in \mathcal{H}$.

*Gato-Rivera, Kreuzer, Schellekens (1991-1993)

ORIENTIFOLD CHOICES*

[∞] "Klein bottle current" K (element of H)
[∞] "Crosscap signs" (signs defined on a subgroup of H), satisfying

 $\beta_K(J)\beta_K(J') = \beta_K(JJ')e^{2\pi i X(J,J')} \quad , J, J' \in \mathcal{H}$

*Huiszoon, Sousa, Schellekens (1999-2000)

A MIPF

 $\begin{array}{l} (0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) \\ + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6) \\ + (16+18)^{*}(25+27) + (17+19)^{*}(24+26) + (20+22)^{2} + (21+23)^{2} \\ + (24+26)^{*}(17+19) + (25+27)^{*}(16+18) + (28+30)^{2} + (29+31)^{2} \\ + (32+34)^{2} + (33+35)^{2} + (36+38)^{*}(45+47) + (37+39)^{*}(44+46) \\ + (40+42)^{2} + (41+43)^{2} + (44+46)^{*}(37+39) + (45+47)^{*}(36+38) \\ + (48+50)^{*}(57+59) + (49+51)^{*}(56+58) + (52+54)^{2} + (53+55)^{2} \\ + (56+58)^{*}(49+51) + (57+59)^{*}(48+50) + (60+62)^{2} + (61+63)^{2} \end{array}$

 $+ 2^{*}(2913)^{*}(2915) + 2^{*}(2914)^{*}(2912) + 2^{*}(2915)^{*}(2913)$ $+ 2^{*}(2916)^{2} + 2^{*}(2917)^{2} + 2^{*}(2918)^{2} + 2^{*}(2919)^{2}$ $+ 2^{*}(2920)^{2} + 2^{*}(2921)^{2} + 2^{*}(2922)^{2} + 2^{*}(2923)^{2}$ $+ 2^{*}(2924)^{*}(2926) + 2^{*}(2925)^{*}(2927) + 2^{*}(2926)^{*}(2924)$ $+ 2^{*}(2927)^{*}(2925) + 2^{*}(2928)^{2} + 2^{*}(2929)^{2} + 2^{*}(2930)^{2}$ $+ 2^{*}(2931)^{2} + 2^{*}(2932)^{*}(2934) + 2^{*}(2933)^{*}(2935)$ $+ 2^{*}(2934)^{*}(2932) + 2^{*}(2935)^{*}(2933) + 2^{*}(2936)^{*}(2938)$ $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a]}(m,J) = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

 $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

$$+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) + 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$$

 $(m, J): J \in S_m$ with $Q_L(m) + X(L, J) = 0 \mod 1$ for all $L \in \mathcal{H}$ $S_m: J \in \mathcal{H}$ with $J \cdot m = m$ (Stabilizer of m)

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a]}(m,J) = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

BOUNDARY STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

 $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

BOUNDARY STATES

 $(0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

BOUNDARY STATES

 $(0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

 $[a, \psi_a], \quad \psi_a \text{ is a character of the group } \mathcal{C}_a$ $\mathcal{C}_a \text{ is the Central Stabilizer of } a$ $\mathcal{C}_i := \{J \in \mathcal{S}_i \mid F_i^X(K, J) = 1 \text{ for all } K \in \mathcal{S}_i\}$ $F_i^X(K, J) := e^{2\pi i X(K, J)} F_i(K, J)^*$ $S_{Ki,j}^J = F_i(K, J) e^{2\pi i Q_K(j)} S_{i,j}^J.$

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

THE FIXED POINT RESOLUTION MATRICES

S_{am}^J (of a WZW model W)

Modular transformation matrices of the WZW model W^J defined by folding the extended Dynkin diagram of W by the symmetry defined by J

> Schellekens, Yankielowicz (1989) Fuchs, Schellekens, Schweigert (1995)

ORBIT LIE ALGEBRAS

ORBIT LIE ALGEBRAS

ORBIT LIE ALGEBRAS NEEDED FOR GEPNER MODELS

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) \frac{P_{LK,m}}{\delta_{J,0}} \delta_{J,0}$$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

THE P-MATRIX*

$P = \sqrt{T}ST^2S\sqrt{T}$

$T : \tau \to \tau + 1$ $S : \tau \to -\frac{1}{\tau}$

*Sagnotti, Pradisi, Stanev

PARTITION FUNCTIONS

$\overset{\text{\emplitskip}}{=} \frac{1}{2} \left[\sum_{ij} \chi_i(\tau) Z_{ij} \chi_i(\bar{\tau}) + \sum_i K_i \chi_i(2\tau) \right]$

$$\frac{1}{2} \left[\sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

Na: Chan-Paton multiplicity

COEFFICIENTS

% Klein bottle

$$K^{i} = \sum_{m,J,J'} \frac{S^{i}_{\ m} U_{(m,J)} g^{\Omega,m}_{J,J'} U_{(m,J')}}{S_{0m}}$$

Annulus

$$\frac{1}{2} \sum_{a,\psi_a][b,\psi_b]} = \sum_{m,J,J'} \frac{S^i{}_m R_{[a,\psi_a](m,J)} g^{\Omega,m}_{J,J'} R_{[b,\psi_b](m,J')}}{S_{0m}}$$

 A_{I}^{a}

$$M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$$

$$g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c}$$

Tadpole cancellation condition:

Remaining anomalies by Green-Schwarz mechanism

In rare cases, additional conditions for global anomaly cancellation* *Gato-Rivera,

Sunday, 2 May 2010

*Gato-Rivera, Schellekens (2005)

ABELIAN MASSES

Green-Schwarz mechanism

Axion-Vector boson vertex

·----

Generates mass vector bosons of anomalous symmetries (e.g. B + L) But may also generate mass for non-anomalous ones (Y, B-L)

168 Gepner models

168 Gepner models

** 5403 MIPFs

168 Gepner models
5403 MIPFs
49322 Orientifolds

168 Gepner models

49322 Orientifolds

45761187347637742772 combinations of four boundary labels (brane stacks)

STRATEGY

SM branes (a,b,c,d)

STRATEGY

SM branes (a,b,c,d)

> Hidden Sector

STRATEGY

SM branes (a,b,c,d)

Hidden Sector

SEARCH CRITERIA

Require only:

- W U(3) from a single brane
- # U(2) from a single brane
- Quarks and leptons, Y from at most four branes
- $\# G_{CP} \supset SU(3) \times SU(2) \times U(1)$
- Chiral G_{CP} fermions reduce to quarks, leptons (plus non-chiral particles)
- * No fractionally charged mirror pairs
- Massless Y

ALLOWED SPECTRA

w.r.t. $SU(3) \times SU(2) \times U(1)$

3 families + vector-like matter

w.r.t. $G_{CP} \supset SU(3) \times SU(2) \times U(1)$

Anything

ALLOWED FEATURES

- (Anti)-quarks from anti-symmetric tensors
- leptons from anti-symmetric tensors
- # family symmetries
- * non-standard Y-charge assignments
- Unification (Pati-Salam, (flipped) SU(5), trinification)*
- Baryon and/or lepton number violation

*a,b,c,d may be identical

*

Chan-Paton gauge group $G_{CP} = U(3)_a \times \left\{ \begin{array}{l} U(2)_b \\ Sp(2)_b \end{array} \right\} \times G_c \quad (\times G_d)$

Embedding of Y:

 $Y = \alpha Q_a + \beta Q_b + \gamma Q_c + \delta Q_d + W_c + W_d$

Q: Brane charges (for unitary branes)

W: Traceless generators

CLASSIFICATION

 $Y = (x - \frac{1}{3})Q_a + (x - \frac{1}{2})Q_b + xQ_C + (x - 1)Q_D$

Distributed over c and d

Allowed values for x

1/2Madrid model, Pati-Salam, Flipped SU(5)0(broken) SU(5)1Antoniadis, Kiritsis, Tomaras model-1/2, 3/2Trinification (x = 1/3) (orientable)

THE MADRID MODEL

Chiral SU(3) x SU(2) x U(1) spectrum: $3(u, d)_L + 3u_L^c + 3d_L^c + 3(e^-, \nu)_L + 3e_L^+$ Y massless $Y = \frac{1}{6}Q_a - \frac{1}{2}Q_c - \frac{1}{2}Qd$

RESULTS

- Searched all MIPFs with < 1750 boundaries (4557 of 5403 MIPFs)
- # 19345 *chirally* distinct SM embeddings found (out of infinitely many possible ones)
- Tadpole conditions solved in 1900 chirally distinct cases
- About 213000 non-chirally distinct models in database

STATISTICS

Value of x	Total
0	24483441
1/2	138837612*
1	30580
-1/2, 3/2	0
any	1250080

*Previous search: 45051902

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	X	Solved
1	9801844	648	$U(3) \times Sp(2) \times Sp(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times Sp(2) \times Sp(2) \times U(1)$	VVVV	1/2	Y!
3	5775296	821	$U(4) \times Sp(2) \times Sp(6)$	VVV	1/2	Y!
4	4810698	868	$U(4) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
5	4751603	554	$U(3) \times Sp(2) \times O(6) \times U(1)$	VVVV	1/2	Y!
6	4584392	751	$U(4) \times Sp(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times Sp(2) \times O(2) \times U(1)$	VVVV	1/2	Y!
8	3744864	690	$U(4) \times Sp(2) \times O(2)$	VVV	1/2	Y!
9	3606292	467	$U(3) \times Sp(2) \times Sp(6) \times U(3)$	VVVV	1/2	Y
10	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
11	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
12	3093933	623	$U(6) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
13	2717632	461	$U(3) \times Sp(2) \times Sp(2) \times U(3)$	VVVV	1/2	Y!
14	2384626	560	$U(6) \times Sp(2) \times O(6)$	VVV	1/2	Y
15	2253928	669	$U(6) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
16	1803909	519	$U(6) \times Sp(2) \times O(2)$	VVV	1/2	Y!
17	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y
18	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y
19	1676493	517	$U(8) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
20	1674416	384	$U(3) \times Sp(2) \times O(6) \times U(3)$	VVVV	1/2	Y
21	1642669	360	$U(3) \times Sp(2) \times Sp(6) \times U(5)$	VVVV	1/2	Y
22	1486664	346	$U(3) \times Sp(2) \times O(2) \times U(3)$	VVVV	1/2	Y!
23	1323363	476	$U(8) \times Sp(2) \times O(6)$	VVV	1/2	Y
24	1135702	350	$U(3) \times Sp(2) \times Sp(2) \times U(5)$	VVVV	1/2	Y!
25	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y
26	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y
27	1050764	532	$U(8) \times Sp(2) \times Sp(2)$	VVV	1/2	Y
28	956980	421	$U(8) \times Sp(2) \times O(2)$	VVV	1/2	Y
29	950003	449	$U(10) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
30	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y
31	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y

MOST FREQUENT MODELS

	nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	X	Solved	
	1	9801844	648	$U(3) \times Sp(2) \times Sp(6) \times U(1)$	VVVV	1/2	Y!	
	2	8479808(16227372)	675	$U(3) \times Sp(2) \times Sp(2) \times U(1)$	VVVV	1/2	Y!	
-	3	5775296	821	$U(4) \times Sp(2) \times Sp(6)$	VVV	1/2	Y!	
	4	4810698	868	$U(4) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!	
	5	4751603	554	$U(3) \times Sp(2) \times O(6) \times U(1)$	VVVV	1/2	Y!	
-	6	4584392	751	$U(4) \times Sp(2) \times O(6)$	VVV	1/2	Y	
L	7	4509752(9474494)	513	$U(3) \times Sp(2) \times O(2) \times U(1)$	VVVV	1/2	Y!	
	8	3744864	690	$U(4) \times Sp(2) \times O(2)$	VVV	1/2	Y!	
	9	3606292	467	$U(3) \times Sp(2) \times Sp(6) \times U(3)$	VVVV	1/2	Y	
	10	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y	
	11	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y	
	12	3093933	623	$U(6) \times Sp(2) \times Sp(6)$	VVV	1/2	Y	
	13	2717632	461	$U(3) \times Sp(2) \times Sp(2) \times U(3)$	VVVV	1/2	Y!	
	14	2384626	560	$U(6) \times Sp(2) \times O(6)$	VVV	1/2	Y	
	15	2253928	669	$U(6) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!	
	16	1803909	519	$U(6) \times Sp(2) \times O(2)$	VVV	1/2	Y!	
	17	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y	
	18	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y	
	19	1676493	517	$U(8) \times Sp(2) \times Sp(6)$	VVV	1/2	Y	
	20	1674416	384	$U(3) \times Sp(2) \times O(6) \times U(3)$	VVVV	1/2	Y	
	21	1642669	360	$U(3) \times Sp(2) \times Sp(6) \times U(5)$	VVVV	1/2	Y	
	22	1486664	346	$U(3) \times Sp(2) \times O(2) \times U(3)$	VVVV	1/2	Y!	
	23	1323363	476	$U(8) \times Sp(2) \times O(6)$	VVV	1/2	Y	
	24	1135702	350	$U(3) \times Sp(2) \times Sp(2) \times U(5)$	VVVV	1/2	Y!	
	25	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y	
	26	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y	
	27	1050764	532	$U(8) \times Sp(2) \times Sp(2)$	VVV	1/2	Y	
	28	956980	421	$U(8) \times Sp(2) \times O(2)$	VVV	1/2	Y	
	29	950003	449	$U(10) \times Sp(2) \times Sp(6)$	VVV	1/2	Y	
	30	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y	
	31	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y	

PATI-SALAM

4	4801518	867		U(2	$(4) \times$	Sp(2	$) \times$	$\propto Sp(2)$		VVV	1/2	Y!
	Туре	:		U	S	S						
	Dime	nsior	l	4	2	2						
		5 2	x (V	,0	,v)	chirality	-3			
		3 2	x (V	,v	,0)	chirality	3			
		2 2	K (Ac	1,0	,0)	chirality	0			
		2 2	K (0	, A	,0)	chirality	0			
		7 2	K (0	,0	, A)	chirality	0			
		4 2	K (A	,0	,0)	chirality	0			
		2 2	K (0	,S	,0)	chirality	0			
		5 2	K (0	,0	,S)	chirality	0			
		7 2	x (0	,V	,V)	chirality	0			

SU(5)

708	16845	296	$ U(5)\rangle$	< O(1))		AV	0	Y
	Туре	:	U	0	0				
	Dime	nsion	5	1	1				
		3 >	k (A	,0	,0)	chirality	3	
		11 >	K (V	, V	,0)	chirality	-3	
		8 3	K (S	,0	,0)	chirality	0	
		3 >	k (Ad	d,0	,0)	chirality	0	
		1 >	k (0	, A	,0)	chirality	0	
		3 >	c (0	, V	, V)	chirality	0	
		8 2	< (V	,0	, V)	chirality	0	
		2 3	x (0	,S	,0)	chirality	0	
		4 2	x (0	,0	,S)	chirality	0	
		4 >	x (0	.0	,A)	chirality	0	

Note: gauge group is just SU(5)!

A FREE FIELD THEORY MODEL

Туре:		U	S	U	U	0			
Dimension	n	3	2	1	1	2			
3 2	x	(V	,v	,0	,0	,0)	chirality	3
3 2	x	(0	,0	,v	,v	,0)	chirality	-3
2 2	x	(V	,0	,v	,0	,0)	chirality	-2
2 2	x	(V	,0	,V*	,0	,0)	chirality	-2
2 2	x	(0	,v	,0	,v	,0)	chirality	2
3 2	x	(V	,0	,0	,v	,0)	chirality	-1
1 2	x	(V	,0	,0	,V*	,0)	chirality	-1
3 2	x	(0	,v	,v	,0	,0)	chirality	1
1 2	x	(0	,0	,v	,V*	,0)	chirality	1
4 2	x	(0	,0	,v	,0	,v)	chirality	0
2 2	x	(A	,0	,0	,0	,0)	chirality	0
2 2	x	(S	,0	,0	,0	,0)	chirality	0
2 2	x	(0	,0	,0	, A	,0)	chirality	0
1 2	X	(0	,0	,0	,0	, A)	chirality	0
2 2	X	(0	,0	,0	,0	,s)	chirality	0

Gepner model (2,2,2,2,2,2) (2)=(Ising)×(Free boson)

This model was not discovered before because it as "masked" by this one from (2,2,2,6,6)

Type:			U	S	U	U	U				
Dimension	n		3	2	1	1	2				
3 2	x	(V	,v	,0	,0	,0)	chirality	3	Q
3 2	x	(0	,0	,v	,v	,0)	chirality	-3	E*
1 2	x	(V	,0	,0	,V*	,0)	chirality	-1	U*
2 2	x	(V	,0	,V	,0	,0)	chirality	-2	D*
2 2	x	(0	,v	,0	,v	,0)	chirality	2	L
3 2	x	(V	,0	,0	,v	,0)	chirality	-1	$D^*+(D+D^*)$
3 2	x	(0	,V	,V	,0	,0)	chirality	1	$L+H_1+H_2$
2 2	x	(V	,0	,V*	,0	,0)	chirality	-2	U*
1 2	x	(0	,0	,V	,V*	,0)	chirality	1	N*
4 2	x	(Α	,0	,0	,0	,0)	chirality	0	U+U*
2 2	x	(0	,0	,0	,s	,0)	chirality	0	E+E*
							1				
					Tru	ly	hic	ld	en		
					hid	der	1 Se	ect	or		

FREE FERMION MODELS

The following real and complex free fermion models are accessible

(NSR) (D₁)⁹ (NSR) (D₁)⁷ (Ising)⁴ (NSR) (D₁)⁵ (Ising)⁸ (NSR) (D₁)³ (Ising)¹²

685 MIPFs* 3858 MIPFs* 111604 MIPFs ??? MIPFs

Plus combinations with Gepner models

(*) analyzed, yield essentially nothing of interest
Holistic Wellness with Tachyons

A practical guide to the use of tachyons

Martina Bochnik & Tommy Thomsen

MATERIA TACHYON INCOGNITA

Galaxy N* 1 The First European Tachyon Products!

TACHYON-FREE NON-SUSY MODELS

Sunday, 2 May 2010

compute spectrum

Result:

- •Far more possibilities
- •Tachyons!

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF
Klein Bottle

Result:

- •Far more possibilities
- •Tachyons!

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF
Klein Bottle

X

1

1

Result:

- •Far more possibilities
- •Tachyons!

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF
Klein Bottle

X

1

1

Huge number of possibilities

NEUTRINO MASSES

Sunday, 2 May 2010

Madrid model (with hidden sector)

NEUTRINOS

All these models have three right-handed neutrinos (required for cubic anomaly cancellation)

In most of these models: B-L survives as an exact gauge symmetry

Neutrino's can get Dirac masses, but not Majorana masses (both needed for see-saw mechanism).

In a very small* subset, B-L acquires a mass due to axion couplings.

(*) 391 out of 213000, all with SU(3)× Sp(2)× U(1)× U(1)

B-L VIOLATION

But even then, B-L still survives as a perturbative symmetry. It may be broken to a discrete subgroup by instantons.

This possibility can be explored if the instanton is described by a RCFT brane M. B-L violation manifests itself as:

$$I_{M\mathbf{a}} - I_{M\mathbf{a}'} - I_{M\mathbf{d}} + I_{M\mathbf{d}'} \neq 0$$

 I_{Ma} = chiral [# (V,V*) - # (V*,V)] between branes M and a

a' = boundary conjugate of a

B-L ANOMALIES

$$I_{M\mathbf{a}} - I_{M\mathbf{a}'} - I_{M\mathbf{d}} + I_{M\mathbf{d}'} \neq 0$$

Implies a cubic B-L anomaly if M is a "matter" brane (Chan-Paton multiplicity $\neq 0$).

⇒ M cannot be a matter brane: non-gauge-theory instanton

Implies a $(B-L)(G_M)^2$ anomaly even if we cancel the cubic anomaly

 \Rightarrow B-L must be massive

(The converse is not true: there are massive B-L models without such instanton branes)

REQUIRED ZERO-MODES

Neutrino mass generation by non-gauge theory instantons*

The desired neutrino mass term v^cv^c violates c and d brane charge by two units. To compensate this, we must have

$$I_{M\mathbf{c}} = 2 ; I_{M\mathbf{d}} = -2 \text{ or } I_{M\mathbf{d}'} = 2 ; I_{M\mathbf{c}'} = -2$$

and all other intersections 0. (d' is the boundary conjugate of d)

(*)Blumenhagen, Cvetic, Weigand, hep-th/0609191 Ibañez, Uranga, hep-th/0609213

NEUTRINO-ZERO MODE COUPLING

The following world-sheet disk is allowed by all symmetries

 $L_{cubic} \propto d_a^{ij} (\alpha_i \nu^a \gamma_j) , a = 1, 2, 3$

ZERO-MODE INTEGRALS

$$\int d^2 \alpha \, d^2 \gamma \, e^{-d_a^{ij} \, (\alpha_i \nu^a \gamma_j)} = \nu_a \nu_b \left(\epsilon_{ij} \epsilon_{kl} d_a^{ik} d_b^{jl} \right)$$

Additional zero modes yield additional fermionic integrals and hence no contribution

Therefore $I_{Ma}=I_{Mb}=I_{Mx}=0$ (x = Hidden sector), and there should be no vector-like zero modes.

There should also be no instanton-instanton zero-modes except 2 required by susy.

INSTANTON TYPES

In orientifold models we can have complex and real branes

Matter brane M	Instanton brane M
U(N)	U(k)
O(N)	Sp(2k)
Sp(2N)	O(k)

 $I_{M\mathbf{c}} = 2$; $I_{M\mathbf{d}} = -2$ or $I_{M\mathbf{d}'} = 2$; $I_{M\mathbf{c}'} = -2$

Possible for:

UNIVERSAL INSTANTON-INSTANTON ZERO-MODES

 $\bigcirc U(k): 4 Adj$ $\bigcirc Sp(2k): 2 A + 2 S$ $\bigcirc O(k): 2 A + 2 S$

Only O(1) has the required 2 zero modes

Sunday, 2 May 2010

INSTANTON SCAN

Can we find such branes M in the 391 models with massive B-L?

Tensor	MIPF	Orientifold	Instanton	Solution		
(2,4,18,28)	17	0				
(2,4,22,22)	13	3	$S2^+!, S2^-!$	Yes!		
(2,4,22,22)	13	2	$S2^+!, S2^-!$	Yes		
(2,4,22,22)	13	1	$S2^+, S2^-$	No		
(2,4,22,22)	13	0	$S2^+, S2^-$	Yes		
(2,4,22,22)	31	1	$U1^+, U1^-$	No		
(2,4,22,22)	20	0				
(2,4,22,22)	46	0				
(2,4,22,22)	49	1	$O2^+, O2^-, O1^+, O1^-$	Yes		
(2,6,14,14)	1	1	$U1^+$	No		
(2,6,14,14)	22	2				
(2,6,14,14)	60	2				
(2,6,14,14)	64	0				
(2,6,14,14)	65	0				
(2,6,10,22)	22	2				
(2,6,8,38)	16	0				
(2,8,8,18)	14	2	$S2^+!, S2^-!$	Yes		
(2,8,8,18)	14	0	$S2^+!, S2^-!$	No		
(2,10,10,10)	52	0	$U1^+, U1^-$	No		
(4, 6, 6, 10)	41	0				
(4,4,6,22)	43	0				
(6, 6, 6, 6)	18	0				

A MODEL WITH S2 INSTANTONS

```
5 x (V,V,0,0) chirality 3
3 x (V,0,V,0) chirality -3
3 x (V,0,V*,0) chirality -3
3 x (0 ,V ,0 ,V ) chirality 3
5 x (0 ,0 ,V ,V ) chirality -3
3 x (0 ,0 ,V ,V*) chirality 3
6 x (V, 0, 0, V)
18 x (0, V, V, 0)
2 x (Ad, 0, 0, 0)
2 x (A,0,0,0)
2 x (S , 0 , 0 , 0 )
14 x (0 , A , 0 , 0 )
6 x (0, S, 0, 0)
9 x (0,0,Ad,0)
6 x (0,0,A,0)
14 x (0,0,S,0)
3 x (0,0,0,Ad)
4 x (0,0,0,A)
6 x (0,0,0,S)
```

Gauge group: SU(3) × SU(2) × U(1) × Nothing. Exactly the correct number of instanton zero modes (except for 2 universal symmetric tensors)

A MODEL WITH S2 INSTANTONS

```
5 x (V,V,0,0) chirality 3
3 x (V,0,V,0) chirality -3
3 x (V,0,V*,0) chirality -3
3 x (0 ,V ,0 ,V ) chirality 3
5 x (0 ,0 ,V ,V ) chirality -3
3 x (0 ,0 ,V ,V*) chirality 3
6 x (V, 0, 0, V)
18 x (0, V, V, 0)
2 x (Ad, 0, 0, 0)
2 x (A,0,0,0)
2 x (S , 0 , 0 , 0 )
14 x (0 , A , 0 , 0 )
6 x (0, S, 0, 0)
9 x (0,0,Ad,0)
6 x (0,0,A,0)
14 x (0,0,S,0)
3 x (0,0,0,Ad)
4 x (0,0,0,A)
6 x (0,0,0,S)
```

Gauge group: SU(3) × SU(2) × U(1) × Nothing. Exactly the correct number of instanton zero modes (except for 2 universal symmetric tensors)

$$\sin^2(\theta_w) = .5271853$$
$$\frac{\alpha_3}{\alpha_2} = 3.2320501$$

Sunday, 2 May 2010

THE O1 INSTANTON

Туре	

l'ype:	U	S	U	U	U	0	0	U	0	0	0	U	S	S	0	S			
Dimension	3	2	1	1	1	2	2	3	1	2	3	1	2	2	2				
2 x (0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,V)	chirality	2
5 x (V	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	-3
5 x (0	,0	,v	,V*	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	3
12 x (0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v)	chirality	-2
3 x (V	,0	,V*	•,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	-3
3 x (0	,0	,v	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	-3
3 x (V	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	3
3 x (0	,v	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	3
25 x (0	,0	,Ac	1,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (Α	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
4 x (V	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (0	,0	,0	, A	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
34 x (0	,0	, A	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
14 x (0	,0	,s	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v)	chirality	0
2 x (0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0)	chirality	0
1 x (Ac	1,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (0	,s	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
1 x (0	,0	,0	, Ad	1,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
6х(0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0)	chirality	0
2 x (S	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (0	,0	,0	,s	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0)	chirality	0
1 x (0	,v	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0)	chirality	0
1 x (0	,v	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0)	chirality	0
1 x (0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0)	chirality	0
2 x (V	,0	,0	,V*	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (V	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (0	,0	,0	,v	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0)	chirality	0
6 x (0	,v	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
6 x (0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,0)	chirality	0
2 x (V	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
2 x (0	,0	,0	,v	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	0
3 x (0	,0	,0	,0	,s	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	-1
3 x (0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,v	,0	,0	,0	,0)	chirality	1
1 x (0	,0	,0	,0	,A	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	-1
2 x (0	,0	,0	,0	,v	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality	2

CONCLUSIONS

 A huge number of tadpole and tachyon free models can be built with RCFT orientifolds.
 Many desirable SM features can be realized

- Chiral SM spectrum
- ♀ No mirrors
- No adjoints, rank-2 tensors
- No hidden sector
- No hidden-observable massless matter
- Matter free hidden sector
- Θ Exact SU(3)× SU(2)×U(1)
- ♀ O1 instantons
- ♀ S2 instantons with correct zero-modes
- 9

but not all at the same time