

SIGHTSEEING IN THE LANDSCAPE

Landscape remarks

RCFT orientifolds (with Huiszoon, Fuchs, Schweigert, Walcher)

2004 results (with Dijkstra, Huiszoon)

2005 results (with Anastasopoulos, Dijkstra, Kiritsis)

Sunday, 2 May 2010

THE LANDSCAPE (1986)

THE LANDSCAPE (1986)

Sunday, 2 May 2010

1984: Hopes for Unification and Uniqueness

- # 1984: Hopes for Unification and Uniqueness
- * 1985: Calabi-Yau manifolds, Narain Lattices, Orbifolds

- # 1984: Hopes for Unification and Uniqueness
- 1985: Calabi-Yau manifolds, Narain Lattices, Orbifolds
- # 1986: Fermionic and Bosonic constructions

M.Dine hep-th/0402101

Faced with this plethora of states, I, for a long time, comforted myself that not a single example of a (meta)stable ground state of this sort had been exhibited in a controlled approximation, and so perhaps there might be some unique or at least limited set of sensible states.

- # 1984: Hopes for Unification and Uniqueness
- 1985: Calabi-Yau manifolds, Narain Lattices, Orbifolds
- # 1986: Fermionic and Bosonic constructions
- # 1987: Gepner models
- *
- 1995: M-theory compactifications, F-theory, Orientifolds

- 2003: Non-uniqueness got a name: The Landscape

M. Kaku

(from Dutch TV, VPRO, "Noorderlicht", 1997)

Large number of vacua is required to explain Standard Model tuning

Large number of vacua is required to explain Standard Model tuning

* Therefore: A Success for String Theory*

Large number of vacua is required to explain Standard Model tuning

* Therefore: A Success for String Theory*

4-D Quantum gravity implies that the SM is part of a huge landscape

- Large number of vacua is required to explain Standard Model tuning
- * Therefore: A Success for String Theory*
- # 4-D Quantum gravity implies that the SM is part of a huge landscape
- Fits nicely with some of the great discoveries in the history of science (heliocentric model, theory of Evolution...)

- Large number of vacua is required to explain Standard Model tuning
- * Therefore: A Success for String Theory*
- # 4-D Quantum gravity implies that the SM is part of a huge landscape
- Fits nicely with some of the great discoveries in the history of science (heliocentric model, theory of Evolution...)

*... if string theory is correct...

Who cares, just find the standard model....

VACUUM COUNTING

1998:

$10^{30} \times 10^{-80} = 10^{-50}$ Number of vacua SM Probability

VACUUM COUNTING

2006:

SO WHAT CAN WE STILL DO?

- Section 2018 Explore unknown regions of the landscape
- Establish the likelyhood of standard model features (gauge group, three families,)
- Convince ourselves that standard model is a plausible vacuum
- # Understand vacuum statistics
- # Understand cosmological likelyhood
- # Understand "anthropicity"

ORIENTIFOLDS OF GEPNER MODELS

Sunday, 2 May 2010

EARLIER FOOTPRINTS

C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B **387** (1996) 743 [arXiv:hep-th/9607229].

R. Blumenhagen and A. Wisskirchen, Phys. Lett. B **438**, 52 (1998) [arXiv:hep-th/9806131].

G. Aldazabal, E. C. Andres, M. Leston and C. Nunez, JHEP **0309**, 067 (2003) [arXiv:hep-th/0307183].

I. Brunner, K. Hori, K. Hosomichi and J. Walcher, arXiv:hep-th/0401137.

R. Blumenhagen and T. Weigand, JHEP 0402 (2004) 041 [arXiv:hep-th/0401148].

G. Aldazabal, E. C. Andres and J. E. Juknevich, JHEP **0405**, 054 (2004) [arXiv:hep-th/0403262].

CLOSED STRING PARTITION FUNCTION

 $P(\tau, \bar{\tau}) = \sum_{ij} \chi_i(\tau) Z_{ij} \chi_j(\bar{\tau})$

Sunday, 2 May 2010

ORIENTIFOLD PARTITION FUNCTIONS

ORIENTIFOLD PARTITION FUNCTIONS

ORIENTIFOLD PARTITION FUNCTIONS

Sunday, 2 May 2010

TRANSVERSE CHANNEL

Sunday, 2 May 2010

THE LONG ROAD TO THE CHIRAL SSM

Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev (1996) Chiral spectra from Orbifold-Orientifolds

- ** Aldazabal, Franco, Ibanez, Rabadan, Uranga (2000) Blumenhagen, Görlich, Körs, Lüst (2000) Ibanez, Marchesano, Rabadan (2001) Non-supersymmetric SM-Spectra with RR tadpole cancellation
- Cvetic, Shiu, Uranga (2001) Supersymmetric SM-Spectra with chiral exotics
- Blumenhagen, Görlich, Ott (2002) Honecker (2003)
 Supersymmetric Pati-Salam Spectra with brane recombination
- Dijkstra, Huiszoon, Schellekens (2004) Supersymmetric Standard Model (Gepner Orientifolds)
- Honecker, Ott (2004) Supersymmetric Standard Model (Z6 orbifold/orientifold)

RCFT ORIENTIFOLDS*

Data needed:

R A rational CFT with N=2 and c = 9The exact spectrum The modular matrix S For simple current MIPFs: The "fixed point resolution matrices" S^J

*Pioneering work by Cardy; Sagnotti, Pradisi, Stanev; ...

FORMALISM CAN BE APPLIED TO:

- * "Gepner Models" (minimal N=2 tensor products)
- * Kazama-Suzuki models (requires exact spectrum computation)
- Permutation orbifolds

**

GEPNER MODELS

Building Blocks: Minimal N=2 CFT

$$c = \frac{3k}{k+2}, \quad k = 1, \dots, \infty$$

168 ways of solving

$$\sum_{i} c_{k_i} = 9$$

Spectrum:

$$h_{l,m} = \frac{l(l+2) - m^2}{4(k+2)} + \frac{s^2}{8}$$

 $(l = 0, \dots k; \quad q = -k, \dots k + 2; \quad s = -1, 0, 1, 2)$ (plus field identification)

4(k+2) simple currents

TENSORING

- Preserve world-sheet susy
- Preserve space-time susy (GSO)
- Use surviving simple currents to build MIPFs
- This yields one point in the moduli space of a Calabi-Yau manifold

MIPFs*

* CFT has a discrete "simple current" group \mathcal{G} Choose a subgroup \mathcal{H} of \mathcal{G}

* Choose a rational matrix $X_{\alpha\beta}$ obeying $2X_{\alpha\beta} = Q_{J_{\alpha}}(J_{\beta}) \mod 1, \alpha \neq \beta$ $X_{\alpha\alpha} = -h_{J_{\alpha}}$ $N_{\alpha}X_{\alpha\beta} \in \mathbb{Z}$ for all α, β $Q_{J}(a) = h(a) + h(J) - h(Ja)$ * This defines the torus partition function as

 Z_{ij} is the number of currents $L \in \mathcal{H}$ such that

j = Li $Q_M(i) + X(M,L) = 0 \mod 1$ for all $M \in \mathcal{H}$.

*Gato-Rivera, Kreuzer, Schellekens (1991-1993)

ORIENTIFOLD CHOICES*

[∞] "Klein bottle current" K (element of H)
[∞] "Crosscap signs" (signs defined on a subgroup of H), satisfying

 $\beta_K(J)\beta_K(J') = \beta_K(JJ')e^{2\pi i X(J,J')} \quad , J, J' \in \mathcal{H}$

*Huiszoon, Sousa, Schellekens (1999-2000)

BOUNDARIES AND CROSSCAPS*

Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} \eta(K,L) P_{LK,m} \delta_{J,0}$$

 S^{J} is the fixed point resolution matrix S_{a} is the Stabilizer of a C_{a} is the Central Stabilizer ($C_{a} \subset S_{a} \subset \mathcal{H}$) ψ_{a} is a discrete group character of cC_{a} $P = \sqrt{T}ST^{2}S\sqrt{T}$

*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

PARTITION FUNCTIONS

$\overset{\text{\emplitskip}}{=} \frac{1}{2} \left[\sum_{ij} \chi_i(\tau) Z_{ij} \chi_i(\bar{\tau}) + \sum_i K_i \chi_i(2\tau) \right]$

$$\frac{1}{2} \left[\sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

Na: Chan-Paton multiplicity

COEFFICIENTS

% Klein bottle

$$K^{i} = \sum_{m,J,J'} \frac{S^{i}_{\ m} U_{(m,J)} g^{\Omega,m}_{J,J'} U_{(m,J')}}{S_{0m}}$$

Annulus

$$A^{i}_{[a,\psi_{a}][b,\psi_{b}]} = \sum_{m,J,J'} \frac{S^{i}_{\ m}R_{[a,\psi_{a}](m,J)}g^{\Omega,m}_{J,J'}R_{[b,\psi_{b}](m,J')}}{S_{0m}}$$

$$M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$$

$$g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c}$$

Sunday, 2 May 2010

Tadpole cancellation condition:

Remaining anomalies by Green-Schwarz mechanism

In rare cases, additional conditions for global anomaly cancellation* *Gato-Rivera,

Sunday, 2 May 2010

*Gato-Rivera, Schellekens (2005)

ABELIAN MASSES

Green-Schwarz mechanism

Axion-Vector boson vertex

·----

Generates mass vector bosons of anomalous symmetries (e.g. B + L) But may also generate mass for non-anomalous ones (Y, B-L)

Sunday, 2 May 2010

168 Gepner models

168 Gepner models

** 5403 MIPFs

168 Gepner models
5403 MIPFs
49322 Orientifolds

168 Gepner models

49322 Orientifolds

45761187347637742772 combinations of four boundary labels (brane stacks)

168 Gepner models

49322 Orientifolds

45761187347637742772 combinations of four boundary labels (brane stacks)

Essential to decide what to search for!

WHAT TO SEARCH FOR

The Madrid model

Chiral SU(3) x SU(2) x U(1) spectrum:

 $3(u, d)_L + 3u_L^c + 3d_L^c + 3(e^-, \nu)_L + 3e_L^+$ Y massless $Y = \frac{1}{6}Q_a - \frac{1}{2}Q_c - \frac{1}{2}Qd$ N=1 Supersymmetry No tadpoles, global anomalies

THE HIDDEN SECTOR

BRANE CONFIGURATIONS

Туре	CP Group	B-L
0	U(3) x Sp(2) x U(1) x U(1)	massless
1	U(3) x U(2) x U(1) x U(1)	massless
2	U(3) x Sp(2) x O(2) x U(1)	massless
3	U(3) x U(2) x O(2) x U(1)	massless
4	$U(3) \propto Sp(2) \propto Sp(2) \propto U(1)$	massless
5	U(3) x U(2) x Sp(2) x U(1)	massless
6	U(3) x Sp(2) x U(1) x U(1)	massive
7	U(3) x U(2) x U(1) x U(1)	massive

RESULTS (2004)*

First chiral SSM

- Solutions to Tadpole conditions for 44/168 Gepner models, 333/5403 MIPFs
- Total number of 4 stacks with SM spectrum: 45 x 10⁶ (out of 45 x10¹⁸)
- * Total number of 4 stacks with tadpole solutions: 1.6×10^6
- Total number of distinct SM spectra: 1.8 x 10⁵
 (counting non-chiral differences, but the not hidden sector)

*T. Dijkstra, L. Huiszoon, A. Schellekens Nucl. Phys. B710:3-57,2005

STATISTICS

Total number of 4-stack configurations	45761187347637742772 (45.7 x 10 ¹⁸)
Total number scanned	4.37522E+19
Total number of SM configurations	45051902 fraction: 1.0 x 10 ⁻¹²
Total number of tadpole solutions	1649642 fraction: 3.8 x 10 ⁻¹⁴ (*)
Total number of distinct solutions	211634

(*) cf. Gmeiner, Blumenhagen, Honecker, Lüst, Weigand: "One in a Billion"

TYPE DISTRIBUTION

Туре	Quark*	Lepton*	Higgs*	Nr.
0	0	0	0	10564
1	-3	3	0	32
1	-9	3	6	1
1	-9	9	0	22
2	0	0	0	49661
3	-3	-1	4	141
3	-3	-3	6	24
3	-3	1	2	240
3	-3	3	0	740
3	-9	-3	12	24
3	-9	3	6	95
3	-9	5	4	1
3	-9	9	0	116
4	0	0	0	116304
5	-3	1	2	2
5	-3	3	0	1507
5	-9	9	0	46

Type 6 (Massive B-L, Type 0): 403 Type 7 (Massive B-L, Type 1): 0 No extra branes: 1270 Massive B-L, No extra branes: 22 (just SU(3)xSU(2)xU(1)!)

Sunday, 2 May 2010

UNBIASED SEARCH*

Require only:

- W U(3) from a single brane
- W U(2) from a single brane
- Quarks and leptons, Y from at most four branes
- $\# G_{CP} \supset SU(3) \times SU(2) \times U(1)$
- Chiral G_{CP} fermions reduce to quarks, leptons (plus non-chiral particles) but
- * No fractionally charged mirror pairs
- # Massless Y

P. Anastasopoulos, T. Dijkstra, E. Kiritsis, A.N.S, in (slow) progress

ALLOWED FEATURES

- (Anti)-quarks from anti-symmetric tensors
- leptons from anti-symmetric tensors
- # family symmetries
- * non-standard Y-charge assignments
- Unification (Pati-Salam, (flipped) SU(5), trinification)*
- Baryon and/or lepton number violation

*a,b,c,d may be identical

*

Chan-Paton gauge group $G_{CP} = U(3)_a \times \left\{ \begin{array}{l} U(2)_b \\ Sp(2)_b \end{array} \right\} \times G_c \quad (\times G_d)$

Embedding of Y:

 $Y = \alpha Q_a + \beta Q_b + \gamma Q_c + \delta Q_d + W_c + W_d$

Q: Brane charges (for unitary branes)

W: Traceless generators

CLASSIFICATION

 $Y = (x - \frac{1}{3})Q_a + (x - \frac{1}{2})Q_b + xQ_C + (x - 1)Q_D$

Distributed over c and d

Allowed values for x

1/2Madrid model, Pati-Salam, Flipped SU(5)0(broken) SU(5)1-1/2, 3/2anyTrinification (x = 1/3) (orientable)

THE BASIC ORIENTABLE MODEL

 $U(3) \times U(2) \times U(1) \times U(1)$

"D-branes at singularities"

RESULTS

Searched all MIPFs with < 1750 boundaries (4557 of 5403 MIPFs)

19345 chirally different SM embeddings found

Tadpole conditions solved in 1900 cases (18 "old" ones)

STATISTICS

Value of x	Total
0	24483441
1/2	138837612*
1	30580
-1/2, 3/2	0
any	1250080

*Previous search: 45051902

BOTTOM-UP vs **TOP-DOWN** (1)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved
1/2	UUUU	C,D	C,D	27	9	5194	1
1/2	UUUU	C	C,D	103441	434	1311628	31
1/2	UUUU	C	С	10717308	156	758098	24
1/2	UUUU	C	F	351	0	0	0
1/2	UUU	C,D	-	4	1	24	0
1/2	UUU	C	-	215	5	26210	2
1/2	UUUR	C,D	C,D	34	5	3888	1
1/2	UUUR	C	C,D	185520	221	3121585	31
1/2	USUU	C,D	C,D	72	7	6473	2
1/2	USUU	C	C,D	153436	283	6268942	33
1/2	USUU	C	С	10441784	125	7310339	27
1/2	USUU	C	F	184	0	0	0
1/2	USU	C	-	104	2	222	0
1/2	USU	C,D	-	8	1	4881	1
1/2	USUR	C	C,D	54274	31	49859327	19
			15.2		С	ontinued on ne	ext page

BOTTOM-UP vs **TOP-DOWN** (2)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved
1/2	USUR	C,D	C,D	36	2	858330	2
0	UUUU	C,D	C,D	5	5	4530	2
0	UUUU	C	C,D	8355	44	69956	2
0	UUUU	D	C,D	14	2	6480	0
0	UUUU	C	C	2890537	127	847924	9
0	UUUU	C	D	36304	16	6809	0
0	UUU	C	-	222	2	28340	1
0	UUUR	C,D	C	3702	39	171485	4
0	UUUR	C	C	5161452	289	5380920	32
0	UUUR	D	C	8564	22	50748	0
0	UUR	C	-	58	2	233071	2
0	UURR	C	C	24091	17	8452983	17
1	UUUU	C,D	C,D	4	1	1144	1
1	UUUU	C	C,D	16	5	25958	0
1	UUUU	D	C,D	42	3	5440	0
1	UUUU	С	D	870	0	0	0
1	UUUR	C,D	D	34	1	1024	0
1	UUUR	C	D	609	1	640	0
3/2	UUUU	С	D	9	0	0	0
3/2	UUUU	C,D	D	1	0	0	0
3/2	UUUU	C, D	C	10	0	0	0
3/2	UUUU	C,D	C,D	2	0	0	0
*	UUUU	C,D	C,D	2	2	5146	1
*	UUUU	C	C,D	10	7	521372	3
*	UUUU	D	C,D	1	1	116	0
*	UUUU	С	D	3	1	4	0

CHIRAL TENSOR SUPPRESSION

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times Sp(2) \times Sp(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times Sp(2) \times Sp(2) \times U(1)$	VVVV	1/2	Y!
3	5775296	821	$U(4) \times Sp(2) \times Sp(6)$	VVV	1/2	Y!
4	4810698	868	$U(4) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
5	4751603	554	$U(3) \times Sp(2) \times O(6) \times U(1)$	VVVV	1/2	Y!
6	4584392	751	$U(4) \times Sp(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times Sp(2) \times O(2) \times U(1)$	VVVV	1/2	Y!
8	3744864	690	$U(4) \times Sp(2) \times O(2)$	VVV	1/2	Y!
9	3606292	467	$U(3) \times Sp(2) \times Sp(6) \times U(3)$	VVVV	1/2	Y
10	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
11	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
12	3093933	623	$U(6) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
13	2717632	461	$U(3) \times Sp(2) \times Sp(2) \times U(3)$	VVVV	1/2	Y!
14	2384626	560	$U(6) \times Sp(2) \times O(6)$	VVV	1/2	Y
15	2253928	669	$U(6) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
16	1803909	519	$U(6) \times Sp(2) \times O(2)$	VVV	1/2	Y!
17	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y
18	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y
19	1676493	517	$U(8) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
20	1674416	384	$U(3) \times Sp(2) \times O(6) \times U(3)$	VVVV	1/2	Y
21	1642669	360	$U(3) \times Sp(2) \times Sp(6) \times U(5)$	VVVV	1/2	Y
22	1486664	346	$U(3) \times Sp(2) \times O(2) \times U(3)$	VVVV	1/2	Y!
23	1323363	476	$U(8) \times Sp(2) \times O(6)$	VVV	1/2	Y
24	1135702	350	$U(3) \times Sp(2) \times Sp(2) \times U(5)$	VVVV	1/2	Y!
25	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y
26	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y
27	1050764	532	$U(8) \times Sp(2) \times Sp(2)$	VVV	1/2	Y
28	956980	421	$U(8) \times Sp(2) \times O(2)$	VVV	1/2	Y
29	950003	449	$U(10) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
30	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y
31	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y

Sunday, 2 May 2010

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times Sp(2) \times Sp(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times Sp(2) \times Sp(2) \times U(1)$	VVVV	1/2	Y!
3	5775296	821	$U(4) \times Sp(2) \times Sp(6)$	VVV	1/2	Y!
4	4810698	868	$U(4) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
5	4751603	554	$U(3) \times Sp(2) \times O(6) \times U(1)$	VVVV	1/2	Y!
6	4584392	751	$U(4) \times Sp(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times Sp(2) \times O(2) \times U(1)$	VVVV	1/2	Y!
8	3744864	690	$U(4) \times Sp(2) \times O(2)$	VVV	1/2	Y!
9	3606292	467	$U(3) \times Sp(2) \times Sp(6) \times U(3)$	VVVV	1/2	Y
10	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
11	3308076	340	$U(3) \times Sp(2) \times U(3) \times U(1)$	VVVV	1/2	Y
12	3093933	623	$U(6) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
13	2717632	461	$U(3) \times Sp(2) \times Sp(2) \times U(3)$	VVVV	1/2	Y!
14	2384626	560	$U(6) \times Sp(2) \times O(6)$	VVV	1/2	Y
15	2253928	669	$U(6) \times Sp(2) \times Sp(2)$	VVV	1/2	Y!
16	1803909	519	$U(6) \times Sp(2) \times O(2)$	VVV	1/2	Y!
17	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y
18	1787210	486	$U(4) \times Sp(2) \times U(3)$	VVV	1/2	Y
19	1676493	517	$U(8) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
20	1674416	384	$U(3) \times Sp(2) \times O(6) \times U(3)$	VVVV	1/2	Y
21	1642669	360	$U(3) \times Sp(2) \times Sp(6) \times U(5)$	VVVV	1/2	Y
22	1486664	346	$U(3) \times Sp(2) \times O(2) \times U(3)$	VVVV	1/2	Y!
23	1323363	476	$U(8) \times Sp(2) \times O(6)$	VVV	1/2	Y
24	1135702	350	$U(3) \times Sp(2) \times Sp(2) \times U(5)$	VVVV	1/2	Y!
25	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y
26	1106616	209	$U(3) \times Sp(2) \times U(3) \times U(3)$	VVVV	1/2	Y
27	1050764	532	$U(8) \times Sp(2) \times Sp(2)$	VVV	1/2	Y
28	956980	421	$U(8) \times Sp(2) \times O(2)$	VVV	1/2	Y
29	950003	449	$U(10) \times Sp(2) \times Sp(6)$	VVV	1/2	Y
30	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y
31	935034	351	$U(6) \times Sp(2) \times U(3)$	VVV	1/2	Y

Sunday, 2 May 2010

CURIOSITIES

nr.	Total occ.	MIPFs	Chan-Paton group	Spectrum	x	Solved
161	115466	335	$U(4) \times U(2) \times U(2)$	VVV	1/2	Y
256	71328	167	$U(3) \times U(3) \times U(3)$	VVV	$\frac{1}{3}$	
561	23954	26	$U(3) \times U(2) \times U(1)$	AAS	1/2	Y!
562	23954	26	$U(3) \times U(2) \times U(1)$	AAS	0	Y!
708	16845	296	$U(5) \times O(1)$	AV	0	Y
1296	6432	87	$U(3) \times U(3) \times U(3)$	VVV	*	Y
1522	4753	115	$U(6) \times Sp(2)$	AV	1/2	Y!
1523	4753	115	$U(6) \times Sp(2)$	AV	0	Y!
2157	2381	115	$U(6) \times Sp(2)$	AV	1/2	Y!
2348	2062	34	$U(5) \times U(1)$	AS	1/2	Y!
2349	2062	34	$U(5) \times U(1)$	AS	0	Y!
8118	114	3	$U(3) \times Sp(2) \times U(1)$	AVS	1/2	
8305	108	1	$U(3) \times Sp(2) \times U(1)$	VVT	1/2	
12973	24	1	$U(3) \times U(3) \times U(3)$	VVV	1/2	
17042	6	1	$U(3) \times U(2) \times U(1)$	AVT	1/2	Y!
19345	1	1	$U(5) \times U(2) \times O(3)$	ATV	0	

NOTATION

 $5 \times (V, 0, 0, V)$ chirality -3

means

$4 \times (N^*, 1, 1, M^*) + (N, 1, 1, M)$

of a Chan-Paton group

 $U(N) \times U(K) \times U(L) \times U(M)$

V=Vector Adj = Adjoint A = Anti-symmetric tensor S = Symmetric tensor

Sunday, 2 May 2010

PATI-SALAM

4	4801518	867		U(4) >	< Sp(2)	$2) \times$	$\propto Sp(2)$		VVV	1/2	Y!
	Туре	:		US	s s						
	Dime	nsion		4 2	2						
		5 x	(v ,0	, v)	chirality	-3			
		3 x	(V,V	,0)	chirality	3			
		2 x	(Ad, C	,0)	chirality	0			
		2 x	(0 , F	.,0)	chirality	0			
		7 x	(0,0	, A)	chirality	0			
		4 x	(Α,Ο	,0)	chirality	0			
		2 x	(0,5	5,0)	chirality	0			
							chirality				
		7 x	(1,0	, v)	chirality	0			

PATI-SALAM (2)

161 115466	335	$ U(4) \times U(2) $	$(2) \times U(2)$	VVV	1/2 Y
Type:	υυυ	U U S U O	U O		
Dimension	4 2 2	6 2 2 2 2	2 2		
4 x	(V,V,0,	0,0,0,0,0	,0 ,0) chi	Irality 2	
1 x	(V , V*, 0 ,	0,0,0,0,0	,0 ,0) chi	Irality 1	
1 x	(V , 0 , V*,	0,0,0,0,0	,0 ,0) chi	Irality -1	
2 x	(V,0,V,	0,0,0,0,0	,0 ,0) chi	Irality -2	
2 x	(0 ,V ,V*,	0,0,0,0,0	,0 ,0) chi	Irality -2	
2 x	(V,0,0,	0 ,V*,0 ,0 ,0	,0 ,0) chi	Irality 0	
4 x	(V,0,0,	0,0,V,0,0	,0 ,0) chi	Irality 0	
2 x	(0,S,0,	0,0,0,0,0	,0 ,0) chi	Irality 0	
2 x	(A,0,0,	0,0,0,0,0	,0 ,0) chi	Irality 0	
1 x	(Ad, 0 , 0 ,	0,0,0,0,0	,0 ,0) chi	Irality 0	
2 x	(V,0,0,	0,V,O,O,O	,0 ,0) chi	Irality 0	
2 x	(0,0,S,	0,0,0,0,0	,0 ,0) chi	Irality 0	
4 x	(0,V,0,	0,0,0,V*,0	,0 ,0) chi	Irality 0	
2 x	(0,V,0,	0,0,0,V,0	,0 ,0) chi	Irality 0	
2 x	(0,0,V,	0,0,0,V*,0	,0 ,0) chi	Irality 0	
1 x	(0 , Ad, 0 ,	0,0,0,0,0	,0 ,0) chi	Irality 0	
2 x	(V,0,0,	0,0,0,V*,0	,0 ,0) chi	Irality 0	
2 x	(V,0,0,	0,0,0,V,0	,0 ,0) chi	Irality 0	
1 x	(0 , 0 , Ad,	0,0,0,0,0	,0 ,0) chi	Irality 0	
2 x	(0,V,0,	0,0,0,0,0	,V*,0) chi	Irality 0	
2 x	(0,0,V	0,0,0,0,0	,V ,0) chi	Irality 0	

PATI-SALAM (2)

161 115466		335		U(4) :	$\times U($	$2) \times$: U	(2))	I	/VV	1/2	Y	
Туре:	Г	UU	υυ	U	S	υc	U	0							
Dimension	n	4 2	2 6	2	2	2 2	2	2							
4 :	x ()	v,v,	0,0	,0	,0	,0,0	,0	,0)	chi	rality	2			
1 :	к (Г	V ,V*,	0,0	,0	,0	,0,0	,0	,0)	chi	rality	1			
1 :	к (^т	v,0,	V*,0	,0	,0	,0,0	,0	,0)	chi	rality	-1			
2 :	x ('	v,0,	v ,0	,0	,0	,0,0	,0	,0)	chi	rality	-2			
2 :	x (0,V,	V*,0	,0	,0	,0,0	,0	,0)	chi	rality	-2			
2 :	к (v,0,	0,0	,V*	,0	,0,0	,0	,0)	chi	rality	0			
4 :	к (v,0,	0,0	,0	,v	,0,0	,0	,0)	chi	rality	0			
2 :	к (0,S,	0,0	,0	,0	,0,0	,0	,0)	chi	rality	0			
2 :	к (.	A,0,	0,0	,0	,0	,0,0	,0	,0)	chi	rality	0			
1 :	х (.	Ad,0,	0,0	,0	,0	,0,0	,0	,0)	chi	rality	0			
2 :	х (V,0,	0,0	, V	,0	,0,0	,0	,0)	chi	rality	0			
											rality				
											rality				
											rality				
											rality				
											rality				
	1000										rality				
											rality				
											rality				
											rality				
2 :	x (0,0,	v ,0	,0	,0	,0,0	, v	,0)	CUI	rality	0			

SU(5)

708	16845	296	$\mid U(5) >$	< O(1))		AV	0	Y
	Туре	:	U	0	0				
	Dime	ension	5	1	1				
		3 2	x (A	,0	,0)	chirality	3	
		11 >	x (V	, V	,0)	chirality	-3	
		8 2	x (S	,0	,0)	chirality	0	
		3 2	x (Ad	d,0	,0)	chirality	0	
		1 3	x (0	, A	,0)	chirality	0	
		3 2	x (0	,v	,v)	chirality	0	
		8 2	x (V	,0	,v)	chirality	0	
		2 >	c (0	,S	,0)	chirality	0	
		4 >	c (0	,0	,S)	chirality	0	
		4 >	x (0	,0	, A)	chirality	0	

Note: gauge group is just SU(5)!

FLIPPED SU(5)

2348	2062	34	$ U(5) \times U(5) $	<i>U</i> (1)		AS	1/2	Y!
	Туре		υυ					
	Dime	ension	5 1					
		11 x	(0,S) chiralit	у З			
		3 x	(A ,0) chiralit	у З			
		5 x	(V,V) chiralit	y -3			
) chiralit				
) chiralit				
) chiralit				
) chiralit				
		12 x	(V ,V*) chiralit	y 0			
		1	1					

$$Y = \frac{1}{6}Q_a + \frac{1}{2}Q_a$$

FLIPPED SU(5)

2348	2062	34	$ U(5) \times U$	(1)	AS	1/2	Y!
	Ту	pe:	υυ				
	Di	mension	5 1				
		11 x	(0,S)	chirality	3		
		3 x	(A,0)	chirality	3		
		5 x	(V,V)	chirality	-3		
				chirality			
				chirality			
				chirality			
				chirality			
		12 x	(V, V^*)	chirality	0		
		1	1				

$$Y = \frac{1}{6}Q_a + \frac{1}{2}Q_c$$

Non-trivial U(1) anomaly cancellation!

SU(5) X U(1)

2349	2062	34	$U(5) \times U$	(1)	AS	0	Y!
	Туре	e:	UU				
	Dime	ension	5 1				
		11 x	(0,S)	chirality	3		
		3 x	(A,0)	chirality	3		
		5 x	(V,V)	chirality	-3		
		8 x	(S,0)	chirality	0		
		9 x	(Ad,0)	chirality	0		
		5 x	(0,Ad)	chirality	0		
		4 x	(0,A)	chirality	0		
		12 x	(V,V*)	chirality	0		

$$Y = -\frac{2}{3}Q_a + \frac{1}{2}Q_b$$

YUKAWA COUPLINGS

Standard SU(5) couplings

 $\mathcal{O}_1 \sim (\bar{\psi}^c)_{\alpha} \psi^{\alpha\beta} H_{\beta} \quad , \quad \mathcal{O}_2 \sim \epsilon_{\alpha\beta\gamma\delta\epsilon} (\bar{\psi}^c)^{\alpha\beta} \psi^{\gamma\delta} H^{\epsilon}$

U(5) brane charges

1 - 2 + 1 = 0

-2-2-1=5

SU(5): no u,c,t couplings flipped SU(5): no d,s,b coupings

Possible ways out:

- * Higher dimension operators
- * Composite condensate with charge 5
- * Instantons

Requires additional and implausible dynamics

THE UNIFICATION DILEMMA

- Data suggest: Coupling unification*, no fractional charges
- Heterotic string: Wrong scale, fractional charges
- * $x = \frac{1}{2}$ brane models: No unification, fractional charges No prediction for scale
- U(5) brane models: Unification, no fractional charges No prediction for scale No (u,c,t) Yukawa's

* assuming gauginos

TRINIFICATION

1296	6432	8	87	U(3)	$\times U(3)$	$\times U(3)$	V	VV	*	Y
			יטט	JOO	υυο	υo				
			3 3	3 4 2	6 12 12	12 4				
		3 x	(V,V,	0,0,0	,0,0,0	,0,0)	chirality	3		
		3 x	(V, 0, V)	V, O, V	,0 ,0 ,0	,0,0)	chirality	-3		
		3 x	(0,V,	v*,0,0	,0 ,0 ,0	,0,0)	chirality	-3		
		1 x	(0,0,	0, V, O	,V ,O ,O	,0,0)	chirality	-1		
		1 x	(0,0,	0,0,0	,S ,0 ,0	,0,0)	chirality	1		
		5 x	(0,0,	0,0,0	,0 ,0 ,V	,V,O)	chirality	1		
		3 x	(0,0,	0,0,0	,0 ,0 ,0	,S,O)	chirality	1		
		1 x	(0,0,	0,0,0	,A ,0 ,0	,0,0)	chirality	-1		
		2 x	(0,0,	0,0,0	,0,0,0	,A,O)	chirality	-2		
		1 x	(0,0,	0, V, O	,0,0,0	,V,O)	chirality	1		
		1 x	(0,0,	0,0,V	,0 ,0 ,0	,V ,O)	chirality	1		
		1 x	(0,0,	0,0,0	,V ,0 ,V	,0,0)	chirality	1		
		1 x	(0,0,	0,0,0	,V ,0 ,0	,V ,O)	chirality	-1		
		1 x	(0,0,	0,0,0	,0 ,V ,V	,0,0)	chirality	1		
		1 x	(0,0,	0,0,0	,0 ,V ,0	,V,O)	chirality	-1		
		1 x					chirality			
		1 x				and the second se	chirality			
		1 x					chirality			
							chirality			
							chirality			
							chirality			
							chirality			
							chirality			
							chirality			
							chirality			
							chirality			
							chirality			
		IX	(0,0,	J, U, V	,0 ,0 ,0		chirality			

TRINIFICATION

1296	6432	8	7	$\mid U(3)$	$\times U(3)$	$\times U(3)$	V	VV	*	Y
			υυ	υοο	υυο	υo				
			3 3	3 4 2	6 12 12	12 4				
		3 x	(V,V,	0,0,0	,0 ,0 ,0	,0,0)	chirality	3		
		3 x	(V,0,	V ,0 ,0	,0 ,0 ,0	,0,0)	chirality	-3		
		3 x	(0,V,	<mark>V*</mark> ,0 ,0	,0 ,0 ,0	,0,0)	chirality	-3		
		1 x	(0,0,	0, V, O	,V ,0 ,0	,0,0)	chirality	-1		
		1 x	(0,0,	0,0,0	,S ,O ,O	,0,0)	chirality	1		
		5 x	(0,0,	0,0,0	,0,0,V	,V,O)	chirality	1		
		3 x	(0,0,	0,0,0	,0 ,0 ,0	,S,O)	chirality	1		
		1 x	(0,0,	0,0,0	,A ,O ,O	,0,0)	chirality	-1		
		2 x	(0,0,	0,0,0	,0 ,0 ,0	,A,O)	chirality	-2		
		1 x	(0,0,	0,V,O	,0 ,0 ,0	,V,O)	chirality	1		
		1 x	(0,0,	0,0,V	,0,0,0	,V,O)	chirality	1		
		1 x	(0,0,	0,0,0	,V ,0 ,V	,0,0)	chirality	1		
		1 x					chirality			
		1 x					chirality			
		1 x					chirality			
							chirality			
		1 x					chirality			
		1 x					chirality			
			and the second				chirality			
							chirality			
							chirality			
							chirality			
							chirality			
							chirality			
						and the second	chirality			
							chirality			
							chirality			
		1 X	(0, 0, 0)	0,0,0	,0 ,0 ,0		chirality			

CALABI-YAU DEPENDENCE (1)

Tensor product	MIPF	h_{11}	h_{12}	Scalars	x = 0	$x = \frac{1}{2}$	x = *	Success rate
(1,1,1,1,7,16)	30	11	35	207	2352	715	0	3.08×10^{-3}
(1,1,1,1,7,16)	31	5	29	207	1341	1212	0	2.56×10^{-3}
(1,4,4,4,4)	53	20	20	150	2953179	347733	0	5.35×10^{-4}
(6,6,6,6)	37*	3	59	223	0	1589504	0	4.68×10^{-3}
(1,1,1,1,10,10)	50	12	24	183	2166	1100	36	4.23×10^{-3}
(1,4,4,4,4)	54	3	51	213	5400	5328	4248	3.92×10^{-3}
(1,1,1,1,10,10)	56	4	40	219	389	182	0	3.53×10^{-3}
(1,1,1,1,8.13)	5	20	20	140	465	47	0	2.78×10^{-3}
(1,1,1,1,7,16)	26	20	20	140	187	26	0	2.14×10^{-3}
(1,1,7,7,7)	9	7	55	276	7973	1254	0	1.83×10^{-3}
(1,1,1,1,7,16)	32*	23	23	217	152	28	0	1.81×10^{-3}
(1,4,4,4,4)	13	3	51	250	395712	315036	0	1.77×10^{-3}
(1,1,1,1,12,10)	21	20	20	142	3	2	0	1.67×10^{-3}
	Contraction of the	Sec. 1				Со	ntinued	on next page

CALABI-YAU DEPENDENCE (2)

Tensor product	MIPF	h_{11}	h_{12}	Scalars	x = 0	$x = \frac{1}{2}$	x = *	Success rate
(1,1,1,2,4,10)	44	12	24	225	952	496	0	1.54×10^{-3}
(1,4,4,4,4)	52	3	51	253	118796	16606	0	1.16×10^{-3}
(1,1,1,1,1,4,4)	124	0	0	78	729	0	0	9.8×10^{-5}
(1,1,1,1,5,40)	5	20	20	140	428	65	0	9.78×10^{-5}
(4,4,10,10)	79*	7	43	215	0	57924	0	9.39×10^{-5}
(4,4,10,10)	77*	5	53	232	0	1147070	0	8.9×10^{-5}
(1,4,4,4,4)	77	3	63	248	0	1024	0	8.12×10^{-5}
(4,4,10,10)	74*	9	57	249	0	1480812	0	8.06×10^{-5}
(1,1,1,1,1,12,10)	24	20	20	142	0	0	6	7.87×10^{-5}
(3,3,3,3,3)	6	21	17	234	0	192	0	6.54×10^{-6}
(3,3,3,3,3)	4	5	49	258	0	24	0	8.17×10^{-7}
(3,3,3,3,3)	2	49	5	258	6	27	6	1.65×10^{-9}

CONCLUSIONS

- Classification and construction of bottom-up models
- # Huge number of bottom-up possibilities
- # Huge number of top-down models
- Still, only small fraction of bottom-up realized
- Results dominated by x=1/2
- Anti-symmetric tensors heavily suppressed
- Wery clean SU(5)'s....
-But are they good for anything?

It's just one small step: 874 Hodge numbers scanned at least 30000 known (M. Kreuzer)