

SIGHTSEEING

 IN THE LANDSCAPE
CONTENTS

傫 Landscape remarks

暽 RCFT orientifolds
（with Huiszoon，Fuchs，Schweigert，Walcher）
镂 2004 results
（with Dijkstra，Huiszoon）
数 2005 results
（with Anastasopoulos，Dijkstra，Kiritsis）

THE LANDSCAPE (1986)

THE LANDSCAPE (1986)

1984-2006: A SLOW REVOLUTION

1984-2006: A SLOW REVOLUTION

- 1984: Hopes for Unification and Uniqueness

1984-2006: A SLOW REVOLUTION

䱈 1984: Hopes for Unification and Uniqueness
驁 1985: Calabi-Yau manifolds, Narain Lattices, Orbifolds

1984－2006： A SLOW REVOLUTION

䱈 1984：Hopes for Unification and Uniqueness
驁 1985：Calabi－Yau manifolds，Narain Lattices，Orbifolds
镂 1986：Fermionic and Bosonic constructions

M.Dine hep-th/0402101

Faced with this plethora of states, I, for a long time, comforted myself that not a single example of a (meta)stable ground state of this sort had been exhibited in a controlled approximation, and so perhaps there might be some unique or at least limited set of sensible states.

1984－2006： A SLOW REVOLUTION

儛 1984：Hopes for Unification and Uniqueness
驁 1985：Calabi－Yau manifolds，Narain Lattices，Orbifolds

缐 1986：Fermionic and Bosonic constructions

粈 1987：Gepner models
\qquad

糍 1995：M－theory compactifications，F－theory，Orientifolds

彞 2003：Non－uniqueness got a name：The Landscape

M. Kaku
 (from Dutch TV,
 VPRO, "Noorderlicht", 1997)

MY POINT OF VIEW: (physics/06041340)

MY POINT OF VIEW: (physics/06041340)

並 Large number of vacua is required to explain Standard Model tuning

MY POINT OF VIEW: (physics/06041340)

業 Large number of vacua is required to explain Standard Model tuning

MY POINT OF VIEW： （physics／06041340）

並 Large number of vacua is required to explain Standard Model tuning

㨋 Therefore：A Success for String Theory＊
暽 4－D Quantum gravity implies that the SM is part of a huge landscape

MY POINT OF VIEW： （physics／06041340）

並 Large number of vacua is required to explain Standard Model tuning

暽 4－D Quantum gravity implies that the SM is part of a huge landscape

铔 Fits nicely with some of the great discoveries in the history of science（heliocentric model，theory of Evolution．．．）

MY POINT OF VIEW： （physics／06041340）

並 Large number of vacua is required to explain Standard Model tuning

暽 4－D Quantum gravity implies that the SM is part of a huge landscape

铔 Fits nicely with some of the great discoveries in the history of science（heliocentric model，theory of Evolution．．．）

Who cares,
just find the standard model....

VACUUM COUNTING

1998:

SM Probability

VACUUM COUNTING

2006:

$$
10^{500} \times 10^{-80} \times 10^{-120}=10^{300}
$$

SO WHAT CAN WE STILL DO？

糕 Explore unknown regions of the landscape
粈 Establish the likelyhood of standard model features （gauge group，three families，．．．．）

显 Convince ourselves that standard model is a plausible vacuum

粼 Understand vacuum statistics

䗒 Understand cosmological likelyhood
教 Understand＂anthropicity＂

ORIENTIFOLDS
 OF
 GEPNER MODELS

EARLIER FOOTPRINTS

C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B 387 (1996) 743 [arXiv:hep-th/9607229].
R. Blumenhagen and A. Wisskirchen, Phys. Lett. B 438, 52 (1998)
[arXiv:hep-th/9806131].
G. Aldazabal, E. C. Andres, M. Leston and C. Nunez, JHEP 0309, 067 (2003) [arXiv:hep-th/0307183].
I. Brunner, K. Hori, K. Hosomichi and J. Walcher, arXiv:hep-th/0401137.
R. Blumenhagen and T. Weigand, JHEP 0402 (2004) 041 [arXiv:hep-th/0401148].
G. Aldazabal, E. C. Andres and J. E. Juknevich, JHEP 0405, 054 (2004) [arXiv:hep-th/0403262].

CLOSED STRING PARTITION FUNCTION

Orientifold Partition Functions

Orientifold Partition Functions

ORIENTIFOLD PARTITION FUNCTIONS

Transverse Channel

boundary state

THE LONG ROAD TO THE CHIRAL SSM

(0. Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev (1996)

Chiral spectra from Orbifold-Orientifoldos

* Aldazabal, Franco, Ibanez, Rabadan, Uranga (2000)

Blumenhagen,Görlich,Körs,Lüst (2000)
Ibanez, Marchesano, Rabadan (2001)
Non-supersymmetric SM-Spectra with RR tadpole cancellation

- Cvetic, Shiu, Uranga (2001)

Supersymmetric SM-Spectra with chiral exotics

* Blumenhagen, Görlich, Ott (2002)

Honecker (2003)
Supersymmetric Pati-Salam Spectra with brane recombination
. Dijkstra, Huiszoon, Schellekens (2004)
Supersymmetric Standard Model (Gepner Orientifolds)

* Honecker, Ott (2004)

Supersymmetric Standard Model (Zoorbifoldorientifold)

RCFT ORIENTIFOLDS＊

Data needed：

黺 A rational CFT with $\mathrm{N}=2$ and $c=9$
䩬 The exact spectrum
㯨 The modular matrix S

For simple current MIPFs：
粼 The＂fixed point resolution matrices＂S^{J}
＊Pioneering work by Cardy；Sagnotti，Pradisi，Stanev；．．．

FORMALISM CAN BE APPLIED TO:

"Gepner Models"
(minimal $N=2$ tensor products)

彞 Kazama-Suzuki models
(requires exact spectrum computation)

粈 Permutation orbifolds

GEPNER MODELS

Building Blocks:
Minimal $\mathrm{N}=2 \mathrm{CFT}$

$$
c=\frac{3 k}{k+2}, \quad k=1, \ldots, \infty
$$

168 ways of solving

$$
\sum_{i} c_{k_{i}}=9
$$

Spectrum:

$$
\begin{gathered}
h_{l, m}=\frac{l(l+2)-m^{2}}{4(k+2)}+\frac{s^{2}}{8} \\
(l=0, \ldots k ; \quad q=-k, \ldots k+2 ; \quad s=-1,0,1,2) \\
\quad \text { (plus field identification) }
\end{gathered}
$$

$4(k+2)$ simple currents

TENSORING

賕 Preserve world－sheet susy
榉 Preserve space－time susy（GSO）
箓 Use surviving simple currents to build MIPFs

蝶 This yields one point in the moduli space of a Calabi－Yau manifold

MIPFs*

* CFT has a discrete "simple current" group \mathcal{G} Choose a subgroup \mathcal{H} of \mathcal{G}
* Choose a rational matrix $X_{\alpha \beta}$ obeying

$$
\begin{aligned}
2 X_{\alpha \beta} & =Q_{J_{\alpha}}\left(J_{\beta}\right) \bmod 1, \alpha \neq \beta \\
X_{\alpha \alpha} & =-h_{J_{\alpha}} \\
N_{\alpha} X_{\alpha \beta} & \in \mathbb{Z} \text { for all } \alpha, \beta \\
Q_{J}(a) & =h(a)+h(J)-h(J a)
\end{aligned}
$$

* This defines the torus partition function as
$Z_{i j}$ is the number of currents $L \in \mathcal{H}$ such that

$$
\begin{aligned}
j & =L i \\
Q_{M}(i)+X(M, L) & =0 \bmod 1 \quad \text { for all } M \in \mathcal{H} .
\end{aligned}
$$

*Gato-Rivera, Kreuzer, Schellekens (1991-1993)

ORIENTIFOLD CHOICES*

"Klein bottle current" K (element of \mathcal{H})
"Crosscap signs" (signs defined on a subgroup of \mathcal{H}), satisfying

$$
\beta_{K}(J) \beta_{K}\left(J^{\prime}\right)=\beta_{K}\left(J J^{\prime}\right) e^{2 \pi i X\left(J, J^{\prime}\right)} \quad, J, J^{\prime} \in \mathcal{H}
$$

BOUNDARIES AND CROSSCAPS*

䋤 Boundary coefficients

$$
R_{\left[a, \psi_{a}\right](m, J)}=\sqrt{\frac{|\mathcal{H}|}{\left|\mathcal{C}_{a}\right|\left|\mathcal{S}_{a}\right|}} \psi_{a}^{*}(J) S_{a m}^{J}
$$

政 Crosscap coefficients

$$
U_{(m, J)}=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} \eta(K, L) P_{L K, m} \delta_{J, 0}
$$

PARTITION FUNCTIONS

蟔 Closed

$$
\frac{1}{2}\left[\sum_{i j} \chi_{i}(\tau) Z_{i j} \chi_{i}(\bar{\tau})+\sum_{i} K_{i} \chi_{i}(2 \tau)\right]
$$

諩 Open

$$
\frac{1}{2}\left[\sum_{i, a, n} N_{a} N_{b} A_{a b}^{i} \chi_{i}\left(\frac{\tau}{2}\right)+\sum_{i, a} N_{a} M_{a}^{i} \hat{\chi}_{i}\left(\frac{\tau}{2}+\frac{1}{2}\right)\right]
$$

N_{a} : Chan-Paton multiplicity

COEFFICIENTS

籟 Klein bottle

$$
K^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} U_{(m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

䋛 Annulus

$$
A_{\left[a, \psi_{a}\right]\left[b, \psi_{b}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} R_{\left[b, \psi_{b}\right]\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

䗱 Moebius

$$
M_{\left[a, \psi_{a}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{P^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

$g_{J, J^{\prime}}^{\Omega, m}=\frac{S_{m 0}}{S_{m K}} \beta_{K}(J) \delta_{J^{\prime}, J^{c}}$

TADPOLES \& ANOMALIES

TADPOLES \& ANOMALIES

TADPOLES \& ANOMALIES

TADPOLES \＆ANOMALIES

絆 Tadpole cancellation condition：

$$
\sum_{b} N_{b} R_{b(m, J)}=4 \eta_{m} U_{(m, J)}
$$

期 Cubic $\operatorname{Tr} F^{3}$ anomalies cancel

暽 Remaining anomalies by Green－Schwarz mechanism

溸 In rare cases，additional conditions for global anomaly cancellation＊

Abelian Masses

Green-Schwarz mechanism

Axion-Vector boson vertex
-------MWW

Generates mass vector bosons of anomalous symmetries

$$
(e . g . B+L)
$$

But may also generate mass for non-anomalous ones

$$
(Y, B-L)
$$

SCOPE OF THE SEARCH

SCOPE OF THE SEARCH

靿 168 Gepner models

SCOPE OF THE SEARCH

故 168 Gepner models
数 5403 MIPFs

SCOPE OF THE SEARCH

箓 168 Gepner models
業 5403 MIPFs
粼 49322 Orientifolds

SCOPE OF THE SEARCH

彞 168 Gepner models
䌜 5403 MIPFs
敖 49322 Orientifolds
㸁 45761187347637742772 combinations of four boundary labels（brane stacks）

SCOPE OF THE SEARCH

颣 168 Gepner models
踏 5403 MIPFs

颣 49322 Orientifolds
㸁 45761187347637742772 combinations of four boundary labels（brane stacks）

Essential to decide what to search for！

WHAT TO SEARCH FOR

The Madrid model

Chiral $\operatorname{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ spectrum:

$$
3(u, d)_{L}+3 u_{L}^{c}+3 d_{L}^{c}+3\left(e^{-}, \nu\right)_{L}+3 e_{L}^{+}
$$

Y massless

$$
Y=\frac{1}{6} Q_{a}-\frac{1}{2} Q_{c}-\frac{1}{2} Q d
$$

$\mathrm{N}=1$ Supersymmetry
No tadpoles, global anomalies

THE HIDDEN SECTOR

BRANE CONFIGURATIONS

Type	CP Group	B-L
0	$\mathrm{U}(3) \times \mathrm{Sp}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	massless
1	$\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	massless
2	$\mathrm{U}(3) \times \mathrm{Sp}(2) \times \mathrm{O}(2) \times \mathrm{U}(1)$	massless
3	$\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{O}(2) \times \mathrm{U}(1)$	massless
4	$\mathrm{U}(3) \times \mathrm{Sp}(2) \times \mathrm{Sp}(2) \times \mathrm{U}(1)$	massless
5	$\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{Sp}(2) \times \mathrm{U}(1)$	massless
6	$\mathrm{U}(3) \times \mathrm{Sp}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	massive
7	$\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{U}(1) \times \mathrm{U}(1)$	massive

RESULTS（2004）＊

镂 First chiral SSM

缐 Solutions to Tadpole conditions for 44／168 Gepner models， 333／5403 MIPFs

靿 Total number of 4 stacks with SM spectrum： 45×10^{6} （out of 45×10^{18} ）

暽 Total number of 4 stacks with tadpole solutions： 1.6×10^{6}

蛙 Total number of distinct SM spectra： 1.8×10^{5} （counting non－chiral differences，but the not hidden sector）

STATISTICS

Total number of 4-stack configurations	45761187347637742772 $\left(45.7 \times 10^{18}\right)$
Total number scanned	$4.37522 \mathrm{E}+19$
Total number of SM configurations	45051902 fraction: 1.0×10^{-12}
Total number of tadpole solutions	1649642 fraction: $3.8 \times 10^{-14}\left(^{*}\right)$
Total number of distinct solutions	211634

(*) cf. Gmeiner, Blumenhagen,Honecker,Lüst,Weigand: "One in a Billion"

TYPE DISTRIBUTION

Type	Quark *	Lepton *	Higgs *	Nr.
0	0	0	0	10564
1	-3	3	0	32
1	-9	3	6	1
1	-9	9	0	22
2	0	0	0	49661
3	-3	-1	4	141
3	-3	-3	6	24
3	-3	1	2	240
3	-3	3	0	740
3	-9	-3	12	24
3	-9	3	6	95
3	-9	5	4	1
3	-9	9	0	116
4	0	0	0	116304
5	-3	1	2	2
5	-3	3	0	1507
5	-9	9	0	46

Type 6 (Massive B-L, Type 0): 403
Type 7 (Massive B-L, Type 1): 0
No extra branes: 1270
Massive B-L, No extra branes: 22 (just $\operatorname{SU}(3) \mathrm{xSU}(2) \mathrm{xU}(1)$!)
(1)

Require only:

* U(3) from a single brane
* $\mathrm{U}(2)$ from a single brane

Quarks and leptons, Y from at most four branes

* $\mathrm{G}_{\mathrm{CP}} \supset \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
- Chiral Gcp fermions reduce to quarks, leptons $^{\text {a }}$ (plus non-chiral particles) but
. No fractionally charged mirror pairs
- Massless Y
P. Anastasopoulos, T. Dijkstra, E. Kiritsis, A.N.S, in (slow) progress

AlLowed Features

䗲（Anti）－quarks from anti－symmetric tensors

楼 leptons from anti－symmetric tensors

紸 family symmetries

塐 non－standard Y－charge assignments

䩚 Unification（Pati－Salam，（flipped）SU（5），trinification）＊

䅉 Baryon and／or lepton number violation

瞵 ．．．．
＊a，b，c，d may be identical

Chan-Paton gauge group

$$
G_{C P}=U(3)_{a} \times\left\{\begin{array}{c}
U(2)_{b} \\
S p(2)_{b}
\end{array}\right\} \times G_{c} \quad\left(\times G_{d}\right)
$$

Embedding of Y:

$$
Y=\alpha Q_{a}+\beta Q_{b}+\gamma Q_{c}+\delta Q_{d}+W_{c}+W_{d}
$$

Q: Brane charges (for unitary branes)
W: Traceless generators

CLASSIFICATION

$$
Y=\left(x-\frac{1}{3}\right) Q_{a}+\left(x-\frac{1}{2}\right) Q_{b}+x \underbrace{Q_{C}+(x-1)} Q_{D}
$$

Distributed over c and d

Allowed values for x
1/2 Madrid model, Pati-Salam, Flipped SU(5)
0 (broken) SU(5)
1
$-1 / 2,3 / 2$
any Trinification $(x=1 / 3) \quad$ (orientable)

THE BASIC ORIENTABLE MODEL

$$
\begin{align*}
& U(3) \times U(2) \times U(1) \times U(1) \\
& 3 \times\left(V, V^{*}, 0,0\right) \\
& 3 \times\left(V^{*}, 0, V, 0\right) \\
& \text { (u,d) } \\
& 3 \times\left(V^{*}, 0,0, V\right) \\
& 6 \times\left(0, V, V^{*}, 0\right) \\
& \left(\mathrm{e}^{-}, \nu\right)+\mathrm{H}_{1} \\
& 3 \times\left(0, V, 0, V^{*}\right) \tag{2}\\
& 3 \times\left(0,0, V, V^{*}\right) \\
& \mathrm{e}^{+}
\end{align*}
$$

"D-branes at singularities"

RESULTS

龉 Searched all MIPFs with＜ 1750 boundaries （4557 of 5403 MIPFs）

稢 19345 chirally different SM embeddings found
諩 Tadpole conditions solved in 1900 cases
（18＂old＂ones）

StATISTICS

Value of x	Total
0	24483441
$1 / 2$	138837612^{*}
1	30580
$-1 / 2,3 / 2$	0
any	1250080

*Previous search: 45051902

BOTTOM-UP vs TOP-DOWN (1)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved
$1 / 2$	UUUU	C,D	C,D	27	9	5194	1
$1 / 2$	UUUU	C	C,D	103441	434	1311628	31
$1 / 2$	UUUU	C	C	10717308	156	758098	24
$1 / 2$	UUUU	C	F	351	0	0	0
$1 / 2$	UUU	C,D	-	4	1	24	0
$1 / 2$	UUU	C	-	215	5	26210	2
$1 / 2$	UUUR	C,D	C,D	34	5	3888	1
$1 / 2$	UUUR	C	C,D	185520	221	3121585	31
$1 / 2$	USUU	C,D	C,D	72	7	6473	2
$1 / 2$	USUU	C	C,D	153436	283	6268942	33
$1 / 2$	USUU	C	C	10441784	125	7310339	27
$1 / 2$	USUU	C	F	184	0	0	0
$1 / 2$	USU	C	-	104	2	222	0
$1 / 2$	USU	C,D	-	8	1	4881	1
$1 / 2$	USUR	C	C,D	54274	31	49859327	19

BOTTOM-UP vs TOP-DOWN (2)

x	Config.	stack c	stack d	Bottom-up	Top-down	Occurrences	Solved
$1 / 2$	USUR	C,D	C,D	36	2	858330	2
0	UUUU	C,D	C,D	5	5	4530	2
0	UUUU	C	C,D	8355	44	69956	2
0	UUUU	D	C,D	14	2	6480	0
0	UUUU	C	C	2890537	127	847924	9
0	UUUU	C	D	36304	16	6809	0
0	UUU	C	-	222	2	28340	1
0	UUUR	C,D	C	3702	39	171485	4
0	UUUR	C	C	5161452	289	5380920	32
0	UUUR	D	C	8564	22	50748	0
0	UUR	C	-	58	2	233071	2
0	UURR	C	C	24091	17	8452983	17
1	UUUU	C,D	C,D	4	1	1144	1
1	UUUU	C	C,D	16	5	25958	0
1	UUUU	D	C,D	42	3	5440	0
1	UUUU	C	D	870	0	0	0
1	UUUR	C,D	D	34	1	1024	0
1	UUUR	C	D	609	1	640	0
$3 / 2$	UUUU	C	D	9	0	0	0
$3 / 2$	UUUU	C,D	D	1	0	0	0
$3 / 2$	UUUU	C, D	C	10	0	0	0
$3 / 2$	UUUU	C,D	C,D	2	0	0	0
$*$	UUUU	C,D	C,D	2	2	5146	1
$*$	UUUU	C	C,D	10	7	521372	3
$*$	UUUU	D	C,D	1	1	116	0
$*$	UUUU	C	D	3	1	4	0

CHIRAL TENSOR SUPPRESSION

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times S p(2) \times S p(6) \times U(1)$	VVVV	1/2	Y !
2	8479808(16227372)	675	$U(3) \times S p(2) \times S p(2) \times U(1)$	VVVV	1/2	Y !
3	5775296	821	$U(4) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y !
4	4810698	868	$U(4) \times S p(2) \times S p(2)$	VVV	$1 / 2$	Y !
5	4751603	554	$U(3) \times S p(2) \times O(6) \times U(1)$	VVVV	$1 / 2$	Y !
6	4584392	751	$U(4) \times S p(2) \times O(6)$	VVV	$1 / 2$	Y
7	4509752(9474494)	513	$U(3) \times \operatorname{Sp}(2) \times O(2) \times U(1)$	VVVV	$1 / 2$	Y !
8	3744864	690	$U(4) \times S p(2) \times O(2)$	VVV	1/2	Y!
9	3606292	467	$U(3) \times S p(2) \times S p(6) \times U(3)$	VVVV	1/2	Y
10	3308076	340	$U(3) \times \operatorname{Sp}(2) \times U(3) \times U(1)$	VVVV	$1 / 2$	Y
11	3308076	340	$U(3) \times \operatorname{Sp}(2) \times U(3) \times U(1)$	VVVV	$1 / 2$	Y
12	3093933	623	$U(6) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
13	2717632	461	$U(3) \times S p(2) \times S p(2) \times U(3)$	VVVV	1/2	Y !
14	2384626	560	$U(6) \times S p(2) \times O(6)$	VVV	1/2	Y
15	2253928	669	$U(6) \times S p(2) \times S p(2)$	VVV	1/2	Y !
16	1803909	519	$U(6) \times S p(2) \times O(2)$	VVV	1/2	Y !
17	1787210	486	$U(4) \times S p(2) \times U(3)$	VVV	$1 / 2$	Y
18	1787210	486	$U(4) \times S p(2) \times U(3)$	VVV	$1 / 2$	Y
19	1676493	517	$U(8) \times S p(2) \times S p(6)$	VVV	1/2	Y
20	1674416	384	$U(3) \times \operatorname{Sp}(2) \times O(6) \times U(3)$	VVVV	$1 / 2$	Y
21	1642669	360	$U(3) \times S p(2) \times S p(6) \times U(5)$	VVVV	$1 / 2$	Y
22	1486664	346	$U(3) \times S p(2) \times O(2) \times U(3)$	VVVV	1/2	Y !
23	1323363	476	$U(8) \times S p(2) \times O(6)$	VVV	1/2	Y
24	1135702	350	$U(3) \times S p(2) \times S p(2) \times U(5)$	VVVV	$1 / 2$	Y !
25	1106616	209	$U(3) \times S p(2) \times U(3) \times U(3)$	VVVV	$1 / 2$	Y
26	1106616	209	$U(3) \times S p(2) \times U(3) \times U(3)$	VVVV	1/2	Y
27	1050764	532	$U(8) \times S p(2) \times S p(2)$	VVV	$1 / 2$	Y
28	956980	421	$U(8) \times S p(2) \times O(2)$	VVV	1/2	Y
29	950003	449	$U(10) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
30	935034	351	$U(6) \times S p(2) \times U(3)$	VVV	$1 / 2$	Y
31	935034	351	$U(6) \times S p(2) \times U(3)$	VVV	1/2	Y

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times S p(2) \times S p(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times S p(2) \times S p(2) \times U(1)$	VVVV	$1 / 2$	Y!
3	5775296	821	$U(4) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y!
4	4810698	868	$U(4) \times S p(2) \times S p(2)$	VVV	$1 / 2$	Y!
5	4751603	554	$U(3) \times S p(2) \times O(6) \times U(1)$	VVVV	$1 / 2$	Y !
6	4584392	751	$U(4) \times S p(2) \times O(6)$	VVV	$1 / 2$	Y
7	4509752(9474494)	513	$U(3) \times S p(2) \times O(2) \times U(1)$	VVVV	$1 / 2$	Y !
8	3744864	690	$U(4) \times S p(2) \times O(2)$	VVV	$1 / 2$	Y!
9	3606292	467	$U(3) \times S p(2) \times S p(6) \times U(3)$	VVVV	1/2	Y
10	3308076	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	$1 / 2$	Y
11	3308076	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	1/2	Y
12	3093933	623	$U(6) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
13	2717632	461	$U(3) \times S p(2) \times S p(2) \times U(3)$	VVVV	$1 / 2$	Y!
14	2384626	560	$U(6) \times S p(2) \times O(6)$	VVV	1/2	Y
15	2253928	669	$U(6) \times S p(2) \times S p(2)$	VVV	$1 / 2$	Y!
16	1803909	519	$U(6) \times S p(2) \times O(2)$	VVV	$1 / 2$	Y!
17	1787210	486	$U(4) \times S p(2) \times U(3)$	VVV	$1 / 2$	Y
18	1787210	486	$U(4) \times S p(2) \times U(3)$	VVV	$1 / 2$	Y
19	1676493	517	$U(8) \times S p(2) \times S p(6)$	VVV	$1 / 2$	Y
20	1674416	384	$U(3) \times S p(2) \times O(6) \times U(3)$	VVVV	1/2	Y
21	1642669	360	$U(3) \times S p(2) \times S p(6) \times U(5)$	VVVV	$1 / 2$	Y
22	1486664	346	$U(3) \times S p(2) \times O(2) \times U(3)$	VVVV	$1 / 2$	Y!
23	1323363	476	$U(8) \times S p(2) \times O(6)$	VVV	$1 / 2$	Y
24	1135702	350	$U(3) \times S p(2) \times S p(2) \times U(5)$	VVVV	$1 / 2$	Y !
25	1106616	209	$U(3) \times S p(2) \times U(3) \times U(3)$	VVVV	$1 / 2$	Y
26	1106616	209	$U(3) \times S p(2) \times U(3) \times U(3)$	VVVV	1/2	Y
27	1050764	532	$U(8) \times S p(2) \times S p(2)$	VVV	1/2	Y
28	956980	421	$U(8) \times S p(2) \times O(2)$	VVV	1/2	Y
29	950003	449	$U(10) \times S p(2) \times S p(6)$	VVV	1/2	Y
30	935034	351	$U(6) \times S p(2) \times U(3)$	VVV	$1 / 2$	Y
31	935034	351	$U(6) \times S p(2) \times U(3)$	VVV	1/2	Y

CURIOSITIES

nr.	Total occ.	MIPFs	Chan-Paton group	Spectrum	x	Solved
161	115466	335	$U(4) \times U(2) \times U(2)$	VVV	$1 / 2$	Y
256	71328	167	$U(3) \times U(3) \times U(3)$	VVV	$\frac{1}{3}$	
561	23954	26	$U(3) \times U(2) \times U(1)$	AAS	$1 / 2$	Y !
562	23954	26	$U(3) \times U(2) \times U(1)$	AAS	0	Y !
708	16845	296	$U(5) \times O(1)$	AV	0	Y
1296	6432	87	$U(3) \times U(3) \times U(3)$	VVV	*	Y
1522	4753	115	$U(6) \times S p(2)$	AV	$1 / 2$	Y !
1523	4753	115	$U(6) \times S p(2)$	AV	0	Y !
2157	2381	115	$U(6) \times S p(2)$	AV	$1 / 2$	Y !
2348	2062	34	$U(5) \times U(1)$	AS	1/2	Y!
2349	2062	34	$U(5) \times U(1)$	AS	0	Y !
8118	114	3	$U(3) \times S p(2) \times U(1)$	AVS	$1 / 2$	
8305	108	1	$U(3) \times S p(2) \times U(1)$	VVT	$1 / 2$	
12973	24	1	$U(3) \times U(3) \times U(3)$	VVV	$1 / 2$	
17042	6	1	$U(3) \times U(2) \times U(1)$	AVT	$1 / 2$	Y !
19345	1	1	$U(5) \times U(2) \times O(3)$	ATV	0	

NOTATION

$5 \times(\mathrm{V}, 0,0, \mathrm{~V})$ chirality -3
means

$$
4 \times\left(\mathrm{N}^{*}, 1,1, \mathrm{M}^{*}\right)+(\mathrm{N}, 1,1, \mathrm{M})
$$

of a Chan-Paton group

$U(N) \times U(K) \times U(L) \times U(M)$

$\mathrm{V}=$ Vector
Adj $=$ Adjoint

A = Anti-symmetric tensor
S = Symmetric tensor

PATI-SALAM

4	4801518	867	$U(4) \times S p(2) \times S p(2)$	VVV	$1 / 2$	$\mathrm{Y}!$

PATI-SALAM (2)

161	115466	335	$U(4) \times U(2) \times U(2)$	VVV	$1 / 2$	Y

Type:	U	U	U	U	U	S	U	0	U	0		
Dimensio	on 4	2	2	6	2	2	2	2	2	2		
4	x (V ,	, V ,	, 0	, 0	, 0 ,	, 0	, 0	, 0	, 0) chirality	2
1	x (V ,	, V*,	, 0 ,	, 0	, 0 ,	, 0	, 0	, 0	, 0	, 0) chirality	1
1	x (V ,	, 0 ,	, V*,	, 0	, 0	, 0	, 0	, 0	, 0) chirality	-1
2	x (V ,	, 0 ,	, V	, 0	, 0	, 0	, 0	, 0	, 0	, 0) chirality	-2
2	$x(0$,	, V ,	, V*,	, 0	, 0 ,	, 0	, 0	, 0	, 0	, 0) chirality	-2
2	$\mathrm{x}(\mathrm{V}$,	, 0 ,	, 0	, 0	, V*,	, 0	, 0	, 0	, 0	, 0) chirality	0
4	x (V ,	, 0 ,	, 0	, 0	, 0	, V	, 0	, 0	, 0	, 0) chirality	0
2	x (0 ,	, S ,	, 0	, 0	, 0	, 0	, 0	, 0	, 0	, 0) chirality	0
2	x (A ,	, 0 ,	, 0	, 0	, 0	, 0	, 0	, 0	, 0	, 0) chirality	0
1	x (Ad,	, 0 ,	, 0	, 0	, 0 ,	, 0	, 0	, 0	, 0	, 0) chirality	0
2	x (V ,	, 0 ,	, 0	, 0	, V	, 0	, 0	, 0	, 0	, 0) chirality	0
2	x (0 ,	, 0 ,	, S	, 0	, 0	, 0	, 0	, 0	, 0	, 0) chirality	0
4	x (0 ,	, V ,	, 0	, 0	, 0 ,	, 0	, V*,	, 0	, 0	, 0) chirality	0
2	$\mathrm{x}(0$,	, V ,	, 0	, 0	, 0	, 0	, V	, 0	, 0	, 0) chirality	0
2	$\mathrm{x}(0$,	, 0 ,	, V	, 0	, 0 ,	, 0	, V*,	, 0	, 0	, 0) chirality	0
1	$x(0$,	, Ad,	, 0	, 0	, 0 ,	, 0	, 0	, 0	, 0	, 0) chirality	0
2	x (V ,	, 0 ,	, 0	, 0	, 0	, 0	, V*,	, 0	, 0	, 0) chirality	0
2	x (V ,	, 0 ,	, 0	, 0	, 0	, 0	, V	, 0	, 0	, 0) chirality	0
1	x (0 ,	, 0 ,	, Ad,		, 0	, 0	, 0	, 0	, 0	, 0) chirality	0
2	$\mathrm{x}(0$,	, V ,	, 0	, 0	, 0	, 0	, 0	, 0	, V*	, 0) chirality	
2	x (0 ,	, 0 ,	, V ,	, 0	, 0 ,	, 0	, 0	, 0	, V) chirality	

PATI-SALAM (2)

161	115466	335	$U(4) \times U(2) \times U(2)$	VVV	$1 / 2$	Y

Type:
Dimension $\begin{array}{lllllllllll}4 & 2 & 2 & 6 & 2 & 2 & 2 & 2 & 2 & 2\end{array}$
$4 \times(\mathrm{V}, \mathrm{V}, 0,0,0,0,0,0,0,0)$ chirality 2
$1 \mathrm{x}(\mathrm{V}, \mathrm{V} *, 0,0,0,0,0,0,0,0)$ chirality 1
$1 \mathrm{x}(\mathrm{V}, 0, \mathrm{~V} *, 0,0,0,0,0,0,0)$ chirality -1
$2 \mathrm{x}(\mathrm{V}, 0, \mathrm{~V}, 0,0,0,0,0,0,0)$ chirality -2
$2 \mathrm{x}(0, \mathrm{~V}, \mathrm{~V} *, 0,0,0,0,0,0,0)$ chirality -2
$2 \mathrm{x}(\mathrm{V}, 0,0,0, \mathrm{~V} *, 0,0,0,0,0)$ chirality 0
$4 \mathrm{x}(\mathrm{V}, 0,0,0,0, V, 0,0,0,0)$ chirality 0
$2 \mathrm{x}(0, S, 0,0,0,0,0,0,0,0)$ chirality 0
$2 \mathrm{x}(\mathrm{A}, 0,0,0,0,0,0,0,0,0)$ chirality 0
$1 \mathrm{x}(\mathrm{Ad}, 0,0,0,0,0,0,0,0,0)$ chirality 0
$2 \mathrm{x}(\mathrm{V}, 0,0,0, \mathrm{~V}, 0,0,0,0,0)$ chirality 0
$2 \mathrm{x}(0,0, S, 0,0,0,0,0,0,0)$ chirality 0
$4 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0, \mathrm{~V}, 0,0,0)$ chirality 0
$2 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0, \mathrm{~V}, 0,0,0)$ chirality 0
$2 \mathrm{x}(0,0, V, 0,0,0, V *, 0,0,0)$ chirality 0
$1 \mathrm{x}(0, A d, 0,0,0,0,0,0,0,0)$ chirality 0
$2 \mathrm{x}(\mathrm{V}, 0,0,0,0,0, \mathrm{~V}, 0,0,0)$ chirality 0
$2 \mathrm{x}(\mathrm{V}, 0,0,0,0,0, V, 0,0,0)$ chirality 0
$1 \mathrm{x}(0,0, A d, 0,0,0,0,0,0,0)$ chirality 0
$2 \mathrm{x}(0, V, 0,0,0,0,0,0, V *, 0)$ chirality 0
$2 \mathrm{x}(0,0, V, 0,0,0,0,0, V, 0)$ chirality 0

SU(5)

708	16845	296	$U(5) \times O(1)$	AV	0	Y

Type:	U O	0	
Dimension	51	1	
3 x	(A , 0	, 0)	chirality 3
11 x	(V , V	, 0)	chirality -3
8 x	($\mathrm{S}, 0$, 0	chirality 0
3 x	(Ad, 0	, 0	chirality 0
1 x	(0 , A	, 0)	chirality 0
3 x	(0 , V	, V	chirality 0
8 x	(V, 0	, V)	chirality 0
2 x	(0, S	, 0	chirality 0
4 x	(0,0	, S)	chirality 0
4 x	(0,0	, A)	chirality 0

Note: gauge group is just $\operatorname{SU}(5)$!

FLIPPED SU(5)

2348	2062	34	$U(5) \times U(1)$	AS	$1 / 2$	$\mathrm{Y}!$

Type:	U U
Dimension	51
11 x	(0 , S) chirality
3 x	($\mathrm{A}, 0$) chirality
5 x	(V , V) chirality
8 x	($\mathrm{S}, 0$) chirality
9 x	(Ad,0) chirality
5 x	(0 ,Ad) chirality
4 x	(0 , A) chirality
12 x	(V , V*) chirality
$Y=\frac{1}{6} Q$	$+\frac{1}{2} Q_{c}$

FLIPPED SU(5)

2348	2062	34	$U(5) \times U(1)$	AS	$1 / 2$	$\mathrm{Y}!$

$S U(5) x U(1)$

2349	2062	34	$U(5) \times U(1)$	AS	0	$\mathrm{Y}!$

YUKAWA COUPLINGS

Standard SU(5) couplings

$$
\mathcal{O}_{1} \sim\left(\bar{\psi}^{c}\right)_{\alpha} \psi^{\alpha \beta} H_{\beta} \quad, \quad \mathcal{O}_{2} \sim \epsilon_{\alpha \beta \gamma \delta \epsilon}\left(\bar{\psi}^{c}\right)^{\alpha \beta} \psi^{\gamma \delta} H^{\epsilon}
$$

$\mathrm{U}(5)$ brane charges

$$
1-2+1=0 \quad-2-2-1=5
$$

SU(5): no u,c,t couplings
flipped $\operatorname{SU}(5)$: no $\mathrm{d}, \mathrm{s}, \mathrm{b}$ coupings
Possible ways out:

* Higher dimension operators
* Composite condensate with charge 5
* Instantons

Requires additional and implausible dynamics

THE UNIFICATION DILEMMA

路 Data suggest：Coupling unification＊，no fractional charges
＊Heterotic string：Wrong scale，fractional charges
㖤 $x=\frac{1}{2}$ brane models：No unification，fractional charges
No prediction for scale

政 $\mathrm{U}(5)$ brane models：Unification，no fractional charges
No prediction for scale No（u，c，t）Yukawa＇s

TRINIFICATION

1296	6432	87	$U(3) \times U(3) \times U(3)$	VVV	$*$	Y

TRINIFICATION

1296	6432	87	$U(3) \times U(3) \times U(3)$	VVV	$*$	Y

		U	U	U	0	0	U	U	0	U	0		
		3	3	3	4	2	61	121	12	12	4		
	x	(V) ,	, V ,	, 0	, 0	, 0	, 0 ,	, 0 ,	, 0			chirality	3
3	x	(V)	, 0 ,	, V	0,	, 0	, 0 ,	, 0	, 0			chirality	-3
3	x	$(0$, V ,	, V*,	0	, 0	, 0 ,	, 0	,	, 0		chirality	3
1	x	(0,	, 0 ,	,	, V ,	, 0 ,	, V ,	, 0	, 0	, 0		chirality	1
1	x	$(0$, 0 ,	, 0	, 0	, 0 ,	, S ,	, 0	, 0	, 0		chirality	1
5	x	$(0$, 0 ,	, 0	, 0	, 0 ,	, 0 ,	, 0	, V	, V		chirality	1
3	x	$(0$, 0 ,	, 0	, 0	, 0	, 0	, 0	, 0	, S		chirality	1
1	x	(0,	, 0	, 0	, 0	, 0 ,	, A ,	, 0	, 0	, 0		hirality	-1
2	x	$(0$, 0	, 0	, 0 ,	, 0	, 0	, 0	, 0	, A		hirality	-2
1	x	$(0$, 0 ,	, 0	, V	, 0	, 0	, 0	, 0	, V		chirality	1
1	x	$(0$, 0	, 0	, 0	, V	, 0	, 0	, 0	, V		chirality	1
1	x	$(0$, 0 ,	, 0	, 0	, 0	, V ,	, 0	, V ,	, 0		chirality	1
1	x	$(0$, 0	, 0	, 0	, 0	, V ,	, 0	, 0	, V	, 0	hirality	-1
1	x	$(0$, 0	, 0	, 0	, 0 ,	, 0 ,	, V	, v	, 0		hirality	1
1	x	(0,	, 0 ,	, 0	, 0	, 0 ,	, 0 ,	, V	, 0	, V		chirality	-1
1	x	$(0$, 0	, 0	, 0	, 0	, V	, 0	, 0	, 0		irality	
1	x	$(0$, 0	, 0	, v	, V ,	, 0 ,	, 0	, 0	, 0		hirality	0
1	x	$(0$, 0	, 0	, 0	, S ,	, 0 ,	, 0	, 0	, 0		hirality	0
1	x	$(0$, 0 ,	, 0	, 0	, 0 ,	,Ad,	, 0	, 0	, 0		chirality	0
1	x	$(0$, 0	, 0	, 0	, 0	, 0			, 0		chirality	0
3	x	$(0$, 0	, 0	, 0	, 0	, 0 ,	, 0 ,	, S			irality	0
3	x	$(0$, 0	, 0	, 0	, 0 ,	, 0 ,	, 0 ,	, 0	, Ad) chirality	0
1	x	$(0$, 0 ,	, 0	, 0	, 0 ,	, 0 ,	, 0	, 0	, 0		chirality	0
2	x	$(0$, 0	, 0	, 0	, V ,	, V ,	, 0	, 0) chirality	
1	x	$(0$, 0 ,	, 0	, 0	, V ,	, 0 ,	, 0 ,	, V			chirality	0
2	x	$(0$, 0	, 0	, 0	, 0 ,	, V ,	, 0 ,	, 0	, V*,) chirality	0
2	x	(0,	, 0 ,	, 0	, 0	, 0 ,	, 0 ,	, V	, 0	, V*,	, 0) chirality	0
	x	(0	, 0	, 0	, 0	, V	, 0 ,	, 0 ,) chirality	

CALABI-YAU DEPENDENCE (1)

Tensor product	MIPF	h_{11}	h_{12}	Scalars	$x=0$	$x=\frac{1}{2}$	$x=*$	Success rate
$(1,1,1,1,7,16)$	30	11	35	207	2352	715	0	3.08×10^{-3}
$(1,1,1,1,7,16)$	31	5	29	207	1341	1212	0	2.56×10^{-3}
$(1,4,4,4,4)$	53	20	20	150	2953179	347733	0	5.35×10^{-4}
$(6,6,6,6)$	37^{*}	3	59	223	0	1589504	0	4.68×10^{-3}
$(1,1,1,1,10,10)$	50	12	24	183	2166	1100	36	4.23×10^{-3}
$(1,4,4,4,4)$	54	3	51	213	5400	5328	4248	3.92×10^{-3}
$(1,1,1,1,10,10)$	56	4	40	219	389	182	0	3.53×10^{-3}
$(1,1,1,1,8.13)$	5	20	20	140	465	47	0	2.78×10^{-3}
$(1,1,1,1,7,16)$	26	20	20	140	187	26	0	2.14×10^{-3}
$(1,1,7,7,7)$	9	7	55	276	7973	1254	0	1.83×10^{-3}
$(1,1,1,1,7,16)$	32^{*}	23	23	217	152	28	0	1.81×10^{-3}
$(1,4,4,4,4)$	13	3	51	250	395712	315036	0	1.77×10^{-3}
$(1,1,1,1,12,10)$	21	20	20	142	3	2	0	1.67×10^{-3}

CALABI-YAU DEPENDENCE (2)

Tensor product	MIPF	h_{11}	h_{12}	Scalars	$x=0$	$x=\frac{1}{2}$	$x=*$	Success rate
(1,1,1,2,4,10)	44	12	24	225	952	496	0	1.54×10^{-3}
(1,4,4,4,4)	52	3	51	253	118796	16606	0	1.16×10^{-3}
(1,1,1,1,1,4,4)	124	0	0	78	729	0	0	9.8×10^{-5}
(1,1,1,1,5,40)	5	20	20	140	428	65	0	9.78×10^{-5}
(4,4,10,10)	79*	7	43	215	0	57924	0	9.39×10^{-5}
(4,4,10,10)	77^{*}	5	53	232	0	1147070	0	8.9×10^{-5}
(1,4,4,4,4)	77	3	63	248	0	1024	0	8.12×10^{-5}
(4,4,10,10)	74^{*}	9	57	249	0	1480812	0	8.06×10^{-5}
(1,1,1,1,12,10)	24	20	20	142	0	0	6	7.87×10^{-5}
(3,3,3,3,3)	6	21	17				0	6.54×10^{-6}
(3,3,3,3,3)	4	5	49	258	0	24	0	8.17×10^{-7}
(3,3,3,3,3)	2	49	5	258	6	27	6	1.65×10^{-9}

CONCLUSIONS

紫 Classification and construction of bottom－up models
缐 Huge number of bottom－up possibilities
並 Huge number of top－down models
解 Still，only small fraction of bottom－up realized
蟮 Results dominated by $x=1 / 2$
䨌 Anti－symmetric tensors heavily suppressed
糕 Very clean $\operatorname{SU}(5)$＇s．．．．
絜 ．．．．But are they good for anything？

IT'S JUST ONE SMALL STEP:
874 HODGE NUMBERS SCANNED
AT LEAST 30000 KNOWN (M. KREUZER)

