NON-SUPERSYMMETRIC Gepner Orientifolds

A.N. Schellekens

NIKHEF

BASED ON

Q B. Gato-Rivera and A.N. Schellekens,

Phys.Lett.B656:127-131,2007
and to appear.
Q Also:
Dijkstra, Huiszoon, Schellekens,
Phys.Lett.B609:408-417,2005, Nucl.Phys.B710:3-57,2005,
Anastasopoulos, Dijkstra, Kiritsis, Schellekens.
Nucl.Phys.B759:83-146,2006

LHC may provide evidence in favor of this picture:

Finding supersymmetry plus better evidence for GUT unification would be an exciting event in "Beyond the Standard Model" phenomenology.

It would point to a new fundamental theory with more symmetries.

But we are string phenomenologists, so we already have some idea what that new fundamental theory should be.

But might this

 be just a coincidence?

But might this

This is an implicit assumption in orientifold or intersecting Dbrane model building, and many theorists are working on that:

But might this

 be just a coincidence?

This is an implicit assumption in orientifold or intersecting Dbrane model building, and many theorists are working on that:

Ibanez, Marchesano, Rabadan, Cveltic, Shiu, Uranga, Lüst, Blumenhagen, Gorlich, Ott, Honecker, Quevedo, Cremades, Conlon, Verlinde, Wijnholt, Weigand, Gmeiner, Aldazabal, Andres, Font, Juknevich, Li, Liu, Körs, Stieberger, Cascales, Camara, Antoniadis, Kiritsis, Anastasopoulos, Kokorelis, Rizos, Tomaras, Bailin, Love, Nanopoulos,

But might this

 be just a coincidence?

This is an implicit assumption in orientifold or intersecting Dbrane model building, and many theorists are working on that:

Ibanez, Marchesano, Rabadan, Cveltic, Shiu, Uranga, Lüst, Blumenhagen, Gorlich, Ott, Honecker, Quevedo, Cremades, Conlon, Verlinde, Wijnholt, Weigand, Gmeiner, Aldazabal, Andres, Font, Juknevich, Li, Liu, Körs, Stieberger, Cascales, Camara, Antoniadis, Kiritsis, Anastasopoulos, Kokorelis, Rizos, Tomaras, Bailin, Love, Nanopoulos,

So we are in excellent company...

Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005

MOTIVATION

MOTIVATION

If coupling constant convergence is just a coincidence, who needs susy?Q Even if not, this part of the landscape must be explored anyway, in order to know why we don't live there.
Q Can we really eradicate susy from the spectrum?
Q The supersymmetric results suggest that Gepner models are more "generic" that free-field theory based approaches (free fermions, orbifolds)
Q It can be done.

RCFT ORIENTIFOLDS

ORIENTIFOLD PARTITION FUNCTIONS

Q Closed $\frac{1}{2}\left[\sum_{i j} \chi_{i}(\tau) Z_{i j} \chi_{i}(\bar{\tau})+\sum_{i} K_{i} \chi_{i}(2 \tau)\right]$

Q Open $\frac{1}{2}\left[\sum_{i, a, n} N_{a} N_{b} A_{a b}^{i}{ }_{i}\left(\frac{\tau}{2}\right)+\sum_{i, a} N_{a} M_{a}^{i} \hat{\chi}_{i}\left(\frac{\tau}{2}+\frac{1}{2}\right)\right]$
i : Primary field label (finite range)
a : Boundary label (finite range)
χ_{i} : Character
N_{a} : Chan-Paton (CP) Multiplicity

COEFFICIENTS

Q Klein bottle

$$
K^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} U_{(m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

Q Annulus

$$
A_{\left[a, \psi_{a}\right]\left[b, \psi_{b}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} R_{\left[b, \psi_{b}\right]\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

- Moebius

$$
M_{\left[a, \psi_{a}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{P_{m}^{i} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}} \quad g_{J, J^{\prime}}^{\Omega, m}=\frac{S_{m 0}}{S_{m K}} \beta_{K}(J) \delta_{J^{\prime}, J^{c}}
$$

BoUndaries and Crosscaps

Q Boundary coefficients

$$
R_{\left[a, \psi_{a}\right](m, J)}=\sqrt{\frac{|\mathcal{H}|}{\left|\mathcal{C}_{a}\right|\left|\mathcal{S}_{a}\right|}} \psi_{a}^{*}(J) S_{a m}^{J}
$$

9 Crosscap coefficients

$$
U_{(m, J)}=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i\left(h_{K}-h_{K L}\right)} \beta_{K}(L) P_{L K, m} \delta_{J, 0}
$$

Cardy (1989)
Sagnotti, Pradisi, Stanev (~1995)
Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

Algebraic CHOICES

Q Basic CFT ($\mathrm{N}=2$ tensor ${ }^{(1)}$, free fermions ${ }^{(2)}$...)
Q Chiral algebra extension
May imply space-time symmetry (e.g. Susy: GSO projection).
But this is optional!
Reduces number of characters.
Q Modular Invariant Partition Function (MIPF)
May imply bulk symmetry (e.g Susy), not respected by all boundaries. Defines the set of boundary states (Sagnotti-Pradisi-Stanev completeness condition)

Q Orientifold choice
${ }^{(1)}$ Dijkstra et. al.
${ }^{(2)}$ Kiritsis, Lennek, Schellekens, to appear.

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception:
"Absence of tachyons requires supersymmetry."

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception:
"Absence of tachyons requires supersymmetry."
Counter example: $\mathrm{O}(16) \times \mathrm{O}(16)$ Heterotic string.

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception:
"Absence of tachyons requires supersymmetry."
Counter example: $\mathrm{O}(16) \times \mathrm{O}(16)$ Heterotic string.

Many examples in four dimensions, e.g.

Kawai, Tye, Lewellen, Lerche, Lüst, A.N.S, Kachru, Silverstein, Kumar, Shiu, Dienes, Blum, Angelantonj, Sagnotti, Blumenhagen, Font,

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception:
"Absence of tachyons requires supersymmetry."
Counter example: $\mathrm{O}(16) \times \mathrm{O}(16)$ Heterotic string.

Many examples in four dimensions, e.g.

Kawai, Tye, Lewellen, Lerche, Lüst, A.N.S, Kachru, Silverstein, Kumar, Shiu, Dienes, Blum, Angelantonj, Sagnotti, Blumenhagen, Font,

Once again we are in excellent company.

NON-SUPERSYMMETRIC STRINGS

Additional complications:

9 Tachyons: Closed sector, Open sector
Q Tadpoles: Separate equations for NS and R.

NON-SUPERSYMMETRIC STRINGS

Best imaginable outcome:
9 Exactly the standard model (open sector)

But even then, there will be plenty of further problems: tadpoles at genus 1 , how to compute anything of interest without the help of supersymmetry, etc.

CLOSED SECTOR

Four ways of removing closed string tachyons:

9 Chiral algebra extension (non-susy) All characters non-supersymmetric, but tachyon-free.
9 Automorphism MIPF
No tachyons in left-right pairing of characters.
Q Susy MIPF
Non-supersymmetric CFT, but supersymmetric bulk.
Allows boundaries that break supersymmetry.
Q Klein Bottle
This introduces crosscap tadpoles. Requires boundaries with non-zero CP multiplicity.

CLOSED SECTOR

Do these possibilities occur?

9 Chiral algebra extension (non-susy)
Q Automorphism MIPF
Q Susy MIPF
Q Klein Bottle

CLOSED SECTOR

Do these possibilities occur?

9 Chiral algebra extension (non-susy)
Q Automorphism MIPF
Q Susy MIPF
Q Klein Bottle

\checkmark (44054 MIPFs)
\checkmark (40261 MIPFs)

- (186951 Orientifolds)

TACHYON-FREE CLOSED STRINGS

	63	26	816	$0,0,0,0$	$4,0,0,0$
	333	130	33804	72,48,0,0	635,40,0,0
	12	3	14	0,0,0,0	1,0,0,0
	36	10	162	0,12,0,0	0,0,0,0
	123	61	1160	15,16,0,0	0,0,0,0
	36	12	186	0,6,0,0	0,0,0,0
)	78	29	1208	16,24,0,0	1,1,0,0
	108	35	892	0,8,0,0	0,0,0,0
	228	106	8888	16,24,0,0	39,3,0,0
	88	43	3652	0,0,0,0	0,16,0,0
	197	113	8534	430,95,0,0	395,78,0,0
	216	100	16972	408,148,0,0	676,0,0,0
	265	164	49008	160,120,0,0	396,172,0,0
	546	403	388155	2912,1583,0,387	4180,1564,0,0
	754	617	2112682	17680,12560,0,1942	105653,43836,6818,4202
1)	56	31	2984	28,52,0,0	0,0,0,0
	120	80	8668	270,200,26,0	97,86,0,0
	126	82	12832	0,84,32,0	27,50,4,0
	120	91	38228	0,448,0,186	0,416,0,0
4)	60	41	4426	218,190,95,0	9,11,8,0
2)	35	24	2838	0,18,24,0	0,0,0,0
1,1)	289	202	161774	52058,17568,5359,0	41168,10292,3993,478

	63	26	816	$0,0,0,0$	$4,0,0,0$
	333	130	33804	72,48,0,0	635,40,0,0
	12	3	14	0,0,0,0	1,0,0,0
	36	10	162	0,12,0,0	0,0,0,0
	123	61	1160	15,16,0,0	0,0,0,0
	36	12	186	0,6,0,0	0,0,0,0
)	78	29	1208	16,24,0,0	1,1,0,0
	108	35	892	0,8,0,0	0,0,0,0
	228	106	8888	16,24,0,0	39,3,0,0
	88	43	3652	0,0,0,0	0,16,0,0
	197	113	8534	430,95,0,0	395,78,0,0
	216	100	16972	408,148,0,0	676,0,0,0
	265	164	49008	160,120,0,0	396,172,0,0
	546	403	388155	2912,1583,0,387	4180,1564,0,0
	754	617	2112682	17680,12560,0,1942	105653,43836,6818,4202
1)	56	31	2984	28,52,0,0	0,0,0,0
	120	80	8668	270,200,26,0	97,86,0,0
	126	82	12832	0,84,32,0	27,50,4,0
	120	91	38228	0,448,0,186	0,416,0,0
4)	60	41	4426	218,190,95,0	9,11,8,0
2)	35	24	2838	0,18,24,0	0,0,0,0
1,1)	289	202	161774	52058,17568,5359,0	41168,10292,3993,478

EXAMPLES OF TADPOLE AND TACHYON-FREE SPECTRA

I. Orientifolds of tachyon-free closed strings

CFT 11111111, Extension 176, MIPF 35, orientifold 0
Gauge group $\operatorname{Sp}(4)$
Bosons: $2 \times(\mathrm{S}) \quad$ (Symmetric Tensor)
Fermions: None

CFT 11111111, Extension 70, MIPF 56, orientifold 0

Gauge group Sp(4)
Bosons: None (Symmetric Tensor)
Fermions: $2 \times(\mathrm{S})$

CFT 11111111, Extension 176, MIPF 21, orientifold 0
Gauge group $\operatorname{Sp}(4)$ Bosons: None Fermions: None

CFT 11111111, Extension 67, MIPF 508, orientifold 0

Gauge group $\mathrm{Sp}(2) \times \mathrm{U}(1)$

Fermions

$$
\begin{aligned}
& 8 \times(\mathrm{V}, \mathrm{~V}) \\
& 6 \times(\mathrm{S}, 0) \\
& 6 \times(0, \mathrm{Ad}) \\
& 8 \times(0, \mathrm{~S}) \\
& 8 \times(\mathrm{V}, \mathrm{~V}) \\
& 5 \times(\mathrm{S}, 0) \\
& 5 \times(0, \mathrm{Ad}) \\
& 8 \times(0, \mathrm{~S})
\end{aligned}
$$

Bosons

CFT 1112410, Extension 157, MIPF 63, orientifold 0

Gauge group $\mathrm{O}(4) \times \mathrm{U}(1) \times \mathrm{U}(2)$

Fermions

$$
\begin{aligned}
& 2 \times(\mathrm{V}, 0, \mathrm{~V}) \text { chirality }-2 \\
& 2 \times(0, \mathrm{~V}, \mathrm{~V}) \text { chirality } 2 \\
& 2 \times\left(0, \mathrm{~V}, \mathrm{~V}^{*}\right) \text { chirality }-2 \\
& 6 \times(0,0, \mathrm{~A}) \text { chirality }-2 \\
& 4 \times(\mathrm{V}, \mathrm{~V}, 0) \\
& 2 \times(\mathrm{S}, 0,0) \\
& 6 \times(0, \mathrm{Ad}, 0) \\
& 4 \times(0, \mathrm{~S}, 0) \\
& 2 \times(0,0, \mathrm{Ad}) \\
& 2 \times(\mathrm{V}, 0, \mathrm{~V}) \\
& 2 \times(\mathrm{A}, 0,0) \\
& 3 \times(\mathrm{V}, \mathrm{~V}, 0) \\
& 6 \times(0, \mathrm{Ad}, 0) \\
& 3 \times(0, \mathrm{~A}, 0) \\
& 4 \times(0, \mathrm{~S}, 0) \\
& 3 \times(0,0, \mathrm{Ad}) \\
& 4 \times(0,0, \mathrm{~S})
\end{aligned}
$$

EXAMPLES OF TADPOLE AND TACHYON-FREE SPECTRA

II. Orientifolds of tachyonic closed strings, with tachyons projected out by the Klein bottle

CFT 22266, Extension 710, MIPF 635, orientifold 6 Gauge group $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(4) \times \mathrm{U}(2)$

```
3x(V,0,0,V ) chirality 3
3x(V,0,0,V*) chirality -3
3x(0,V,0,V) chirality -3
3x(0,V,0,V*) chirality 3
1x(V,0,V,0) chirality 1
1x(V,0,\mp@subsup{V}{}{*},0) chirality -1
1\times(0,V,V,0 ) chirality -1
1\times(0,V,V*,0) chirality 1
6x(V,V ,0,0)
6x(V,V*,0,0)
2x(0,0,V,V)
1x(0,0,Ad,0)
3x (0,0,0,Ad)
4x(0,0,V,V*)
2 x (Ad,0,0,0 )
4x(A,0,0,0 )
4x ( S,0,0,0 )
2x(0,Ad,0,0)
4x(0,A,0,0)
4x(0,S,0,0)
4x(0,0,0,S )
```

$$
\begin{aligned}
& 3 x(\mathrm{~V}, 0,0, \mathrm{~V}) \\
& 3 x\left(\mathrm{~V}, 0,0, \mathrm{~V}^{*}\right) \\
& 3 x(0, V, 0, V) \\
& 3 x\left(0, V, 0, V^{*}\right) \\
& 1 \times(\mathrm{V}, 0, \mathrm{~V}, 0) \\
& 1 \times\left(\mathrm{V}, 0, \mathrm{~V}^{*}, 0\right) \\
& 1 \times(0, V, V, 0) \\
& 1 \times\left(0, V, V^{*}, 0\right) \\
& 6 x(\mathrm{~V}, \mathrm{~V}, 0,0) \\
& 6 x\left(\mathrm{~V}, \mathrm{~V}^{*}, 0,0\right) \\
& 2 \times(0,0, V, V) \\
& 2 \times(0,0,0, A d) \\
& 3 \times(\text { Ad, } 0,0,0 \text {) } \\
& 2 \times(\mathrm{A}, 0,0,0) \\
& 2 \times(S, 0,0,0) \\
& 3 \times(0, A d, 0,0) \\
& 2 \times(0, A, 0,0) \\
& 2 \times(0, S, 0,0) \\
& 2 \times(0,0, A, 0) \\
& 2 \times(0,0, S, 0) \\
& 6 \times(0,0,0, A) \\
& 2 \times(0,0,0, S)
\end{aligned}
$$

■ chirality

Based on a sample of 72912 tadpole and tachyon-free spectra

FINDING THE SM

MODELS

Vector-like: mass allowed by $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ (Higgs, right-handed neutrino, gauginos, sparticles....)

SEARCH CRITERIA(*)

Require only:

$9 \mathrm{U}(3)$ from a single brane
$9 \mathrm{U}(2)$ from a single brane
9 Quarks and leptons, Y from at most four branes

- $\mathrm{G}_{\mathrm{CP}} \supset \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

9 Chiral $G_{C P}$ fermions reduce to quarks, leptons (plus non-chiral particles)
Q Massless Y
(*) Anastasopoulos et. al. (2006)

SUPERSYMMETRIC GEPNER MODELS

Q 168 tensor combinations(Susy extension)
95403 MIPFs (880 Hodge number pairs)
Q 49322 Orientifolds

Two scans:

with Dijkstra, Huiszoon (2004/2005)

* 19 Chiral types ("Madrid models")
* 18 with tadpole cancellation
*211000 non-chirally distinct spectra
with Anastasopoulos, Dijkstra, Kiritsis (2005/2006)
* 19345 Chiral types
* 1900 with tadpole cancellation

SEARCH FOR NON-SUSY SM CONFIGURATIONS

Total number of tachyon-free boundary state combinations satisfying our criteria:

$$
3456601
$$

Subdivided as follows

Bulk Susy	3389835	98.1%
Tachyon-free automorphism	66378	1.9%
Tachyon-free Klein bottle projection	388	0.01%

An EXAMPLE

CFT 44716, Extension 124, MIPF 27, Orientifold 0 N=1 Susy Bulk symmetry

Spectrum type 20088 (Not on ADKS list) Gauge Group $\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{Sp}(4) \times \mathrm{U}(1)$
(broken by axion couplings to $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{Sp}(4) \times \mathrm{U}(1)$)

$3 \times(\mathrm{A}, 0,0,0)$ chirality 3	$3 \times(\mathrm{S}, 0,0,0)$
$3 \times(0, \mathrm{~A}, 0,0)$ chirality 3	$3 \times(0, \mathrm{~S}, 0,0)$
$4 \times(0,0,0, \mathrm{~A})$ chirality -2	$4 \times(0,0,0, \mathrm{~A})$
$5 \times(0,0,0, \mathrm{~S})$ chirality -3	$5 \times(0,0,0, \mathrm{~S})$
$3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ chirality -1	$3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$
$1 \times(\mathrm{V}, 0,0, \mathrm{~V})$ chirality 1	$2 \times(\mathrm{V}, 0,0, \mathrm{~V})$
$1 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ chirality 1	$2 \times(0, \mathrm{~V}, 0, \mathrm{~V})$
$1 \times(0,0, \mathrm{~V}, \mathrm{~V})$ chirality 1	$3 \times(0,0, \mathrm{~V}, \mathrm{~V})$
$5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ chirality 3	$5 \times(\mathrm{V}, \mathrm{V}, 0,0)$
$1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ chirality -1	$1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$
$3 \times(\mathrm{Ad}, 0,0,0)$	$2 \times(\mathrm{Ad}, 0,0,0)$
$3 \times(0, \mathrm{Ad}, 0,0)$	$2 \times(0, \mathrm{Ad}, 0,0)$
$4 \times(0,0,0, \mathrm{Ad})$	$3 \times(0,0,0, \mathrm{Ad})$
$2 \times(0,0, \mathrm{~A}, 0)$	$1 \times(0,0, \mathrm{~S}, 0)$
$4 \times(\mathrm{S}, 0,0,0)$	$4 \times(\mathrm{A}, 0,0,0)$
$4 \times(0, \mathrm{~S}, 0,0)$	$4 \times(0, \mathrm{~A}, 0,0)$
$2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)$	
$2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)$	$2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$

	$3 \times(\mathrm{A}, 0,0,0)$ chirality 3
$3 \times(0, \mathrm{~A}, 0,0)$ chirality 3	$3 \times(\mathrm{S}, 0,0,0)$
$4 \times(0,0,0, \mathrm{~A})$ chirality -2	$3 \times(0, \mathrm{~S}, 0,0)$
$5 \times(0,0,0, \mathrm{~S})$ chirality -3	$4 \times(0,0,0, \mathrm{~A})$
$3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ chirality -1	$5 \times(0,0,0, \mathrm{~S})$
$1 \times(\mathrm{V}, 0,0, \mathrm{~V})$ chirality 1	$3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$
$1 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ chirality 1	$2 \times(\mathrm{V}, 0,0, \mathrm{~V})$
$1 \times(0,0, \mathrm{~V}, \mathrm{~V})$ chirality 1	$2 \times(0, \mathrm{~V}, 0, \mathrm{~V})$
$5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ chirality 3	$3 \times(0,0, \mathrm{~V}, \mathrm{~V})$
$1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ chirality -1	$5 \times(\mathrm{V}, \mathrm{V}, 0,0)$
$3 \times(\mathrm{Ad}, 0,0,0)$	$1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$
$3 \times(0, \mathrm{Ad}, 0,0)$	$2 \times(\mathrm{Ad}, 0,0,0)$
$4 \times(0,0,0, \mathrm{Ad})$	$2 \times(0, \mathrm{Ad}, 0,0)$
$2 \times(0,0, \mathrm{~A}, 0)$	$3 \times(0,0,0, \mathrm{Ad})$
$4 \times(\mathrm{S}, 0,0,0)$	$1 \times(0,0, \mathrm{~S}, 0)$
$4 \times(0, \mathrm{~S}, 0,0)$	$4 \times(\mathrm{A}, 0,0,0)$
$2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)$	$4 \times(0, \mathrm{~A}, 0,0)$
$2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)$	
$2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$	$2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$

$3 \times(\mathrm{A}, 0,0,0)$ chirality 3	$3 \times(\mathrm{S}, 0,0,0)$
$3 \times(0, \mathrm{~A}, 0,0)$ chirality 3	$3 \times(0, \mathrm{~S}, 0,0)$
$4 \times(0,0,0, \mathrm{~A})$ chirality -2	$4 \times(0,0,0, \mathrm{~A})$
$5 \times(0,0,0, S)$ chirality -3	$5 \times(0,0,0, \mathrm{~S})$
$3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ chirality -1	$3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$
$1 \times(\mathrm{V}, 0,0, \mathrm{~V})$ chirality 1	$2 \times(\mathrm{V}, 0,0, \mathrm{~V})$
$1 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ chirality 1	$2 \times(0, \mathrm{~V}, 0, \mathrm{~V})$
$1 \times(0,0, \mathrm{~V}, \mathrm{~V})$ chirality 1	$3 \times(0,0, \mathrm{~V}, \mathrm{~V})$
$5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ chirality 3	$5 \times(\mathrm{V}, \mathrm{V}, 0,0)$
$1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ chirality -1	$1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$
$3 \times(\mathrm{Ad}, 0,0,0)$	$2 \times(\mathrm{Ad}, 0,0,0)$
$3 \times(0, \mathrm{Ad}, 0,0)$	$2 \times(0, \mathrm{Ad}, 0,0)$
$4 \times(0,0,0, \mathrm{Ad})$	$3 \times(0,0,0, \mathrm{Ad})$
$2 \times(0,0, \mathrm{~A}, 0)$	$1 \times(0,0, \mathrm{~S}, 0)$
$4 \times(\mathrm{S}, 0,0,0)$	$4 \times(\mathrm{A}, 0,0,0)$
$4 \times(0, \mathrm{~S}, 0,0)$	$4 \times(0, \mathrm{~A}, 0,0)$
$2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)$	
$2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)$	$2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$
$2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$	

FINDING HIDDEN SECTORS

A tachyon-free, tadpole-free hidden sector could be found for 896 of the 3456601 SM configurations.

All of these have bulk susy.
"Statistically" 16 would be expected for the tachyon-free automorphism, 0 for tachyon-free Klein bottles.

All 896 appear to have a supersymmetric spectrum (exact boson fermion matching). They are probably supersymmetric models found a few years ago.

A tachyon-free, tadpole-free hidden sector could be found for 896 of the 3456601 SM configurations.

All of these have bulk susy.
"Statistically" 16 would be expected for the tachyon-free automorphism, 0 for tachyon-free Klein bottles.

All 896 appear to have a supersymmetric spectrum (exact boson fermion matching). They are probably supersymmetric models found a few years ago.

CONCLUSIONS

Q Non-supersymmetric, tadpole and tachyon-free standard models must exist, but are still hidden in the noise.
Q Supersymmetry is very persistent.

