

#### INSTANTON INDUCED NEUTRINO MASSES IN RCFT ORIENTIFOLDS

### **"OPEN DESCENDANT" PARTITION FUNCTIONS**

$$\text{\% Open} \qquad \frac{1}{2} \left[ \sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

- i: Primary field label (finite range)
- a: Boundary label (finite range)
- $\chi_i$ : Character
- $N_a$ : Chan-Paton (CP) Multiplicity

#### **ORIENTIFOLD PARTITION FUNCTIONS**



#### **BOUNDARIES AND CROSSCAPS\***

#### Boundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

### Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

\*Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

## COEFFICIENTS

#### % Klein bottle

$$K^{i} = \sum_{m,J,J'} \frac{S^{i}_{\ m} U_{(m,J)} g^{\Omega,m}_{J,J'} U_{(m,J')}}{S_{0m}}$$

Annulus

$$A^{i}_{[a,\psi_{a}][b,\psi_{b}]} = \sum_{m,J,J'} \frac{S^{i}_{\ m}R_{[a,\psi_{a}](m,J)}g^{\Omega,m}_{J,J'}R_{[b,\psi_{b}](m,J')}}{S_{0m}}$$

Moebius

$$M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$$

 $g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c}$ 

### **TADPOLES & ANOMALIES**

Tadpole cancellation condition: 

Remaining anomalies by Green-Schwarz mechanism

In rare cases, additional conditions for global anomaly cancellation\* \*Gato-Rivera,

Sunday, 2 May 2010

\*Gato-Rivera, Schellekens (2005)

#### FORMALISM CAN BE APPLIED TO:

- \* "Gepner Models" (minimal N=2 tensor products)
- Free fermions (4n real + (9-2n) complex)
- \* Kazama-Suzuki models (requires exact spectrum computation)
- Permutation orbifolds



## GEPNER ORIENTIFOLDS

C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, Phys. Lett. B **387** (1996) 743 [arXiv:hep-th/9607229].

R. Blumenhagen and A. Wisskirchen, Phys. Lett. B **438**, 52 (1998) [arXiv:hep-th/9806131].

G. Aldazabal, E. C. Andres, M. Leston and C. Nunez, JHEP **0309**, 067 (2003) [arXiv:hep-th/0307183].

I. Brunner, K. Hori, K. Hosomichi and J. Walcher, arXiv:hep-th/0401137.

R. Blumenhagen and T. Weigand, JHEP 0402 (2004) 041 [arXiv:hep-th/0401148].

G. Aldazabal, E. C. Andres and J. E. Juknevich, JHEP **0405**, 054 (2004) [arXiv:hep-th/0403262].

# THE SM SPECTRUM

Current experimental information:

3 chiral families + vector-like states

Possible vector-like states:

Higgs? right-handed neutrinos? squarks, sleptons? gluinos? who knows what else?

(Some constraints from unification, if you believe it)





(not always present)

Anything that cancels the tadpoles (not always needed)

# **DE-CONFUSION**

- Space-time susy imposed (not necessary).
- No moduli stabilization.
- Boundary state ≈ brane
- Complete set of CFT boundary states (in the sense of Sagnotti, Pradisi, Stanev)
- But: not the complete set of geometric branes.

# DATA

|                        | 2004-2005*    | 2005-2006†            |
|------------------------|---------------|-----------------------|
| Trigger                | "Madrid"      | All 3 family models   |
| Chiral types           | 19            | 19345                 |
| Tadpole-free(per type) | 18            | 1900                  |
| Total configs          | $45 \ge 10^6$ | 145 x 10 <sup>6</sup> |
| Tadpole free, distinct | 210.000       | 1900                  |
| Max. primaries         | $\infty$      | 1750                  |

(\*) Huiszoon, Dijkstra, Schellekens Phys.Lett.B609:408-417,2005, Nucl.Phys.B710:3-57,2005

(†) Anastasopoulos, Dijkstra, Kiritsis, Schellekens Nucl.Phys.B759:83-146,2006

**SU(5)** 

| Type:    |   | U   | 0   | 0   |   |           |    |
|----------|---|-----|-----|-----|---|-----------|----|
| Dimensio | n | 5   | 1   | 1   |   |           |    |
| 3        | x | (A  | ,0  | ,0  | ) | chirality | 3  |
| 11       | x | ( V | ,v  | ,0  | ) | chirality | -3 |
| 8        | x | ( S | ,0  | ,0  | ) | chirality | 0  |
| 3        | x | (Ac | 1,0 | ,0  | ) | chirality | 0  |
| 1        | x | (0  | , A | ,0  | ) | chirality | 0  |
| 3        | x | (0  | ,v  | ,V  | ) | chirality | 0  |
| 8        | x | ( V | ,0  | ,V  | ) | chirality | 0  |
| 2        | x | (0  | ,s  | ,0  | ) | chirality | 0  |
| 4        | x | (0  | ,0  | ,s  | ) | chirality | 0  |
| 4        | x | (0  | ,0  | , A | ) | chirality | 0  |

Note: gauge group is just SU(5)!

## A curiosity





Finding the standard model? Only a small part of the orientifold landscape (880 out of 30000 hodge numbers....) Only rational points in moduli space.

No chance unless SM is extremely abundant.

# **CENTRAL QUESTION**

"Is the standard model a plausible solution to landscape and anthropic constraints?"

Too hard, even for string theorists... but some simpler sub-questions may be within reach

- Does it exist in the landscape?
- Which BSM versions can be realized?
- Generic features?
- Correlations?
- Are some SM features extremely rare without a potential anthropic explanation?

# **NEUTRINO MASSES\***

In field theory: easy; several solutions.

In string theory: non-trivial. (String theory is much more falsifiable!).

#### Potentially anthropic.

(\*) Ibañez, Schellekens, Uranga, arXiv:0704.1079, JHEP (to appear)

The following ingredients cannot be taken for granted in String Theory:

Existence of a Weinberg operator.

$$\mathcal{L}_W = \frac{\lambda}{M} (L\overline{H}L\overline{H})$$

Existence of right-handed neutrinos.

Existence of non-zero Dirac masses.

Absence of massless B-L vector bosons.

## **RIGHT-HANDED NEUTRINOS**



|   | Total number<br>in 2005/2006 database |
|---|---------------------------------------|
| 0 | 16766656                              |
| 1 | 475928                                |
| 2 | 502820                                |
| 3 | 62149717                              |
| 4 | 686961                                |

### THE MADRID MODEL



Chiral SU(3) x SU(2) x U(1) spectrum:  $3(u, d)_L + 3u_L^c + 3d_L^c + 3(e^-, \nu)_L + 3e_L^+$ Y massless  $Y = \frac{1}{6}Q_a - \frac{1}{2}Q_c - \frac{1}{2}Qd$ 

### MADRID MODELS

All these models have three right-handed neutrinos (required for cubic anomaly cancellation)

In most of these models: B-L survives as an exact gauge symmetry

Neutrino's can get Dirac masses, but not Majorana masses (both needed for see-saw mechanism).

In a very small\* subset, B-L acquires a mass due to axion couplings.

(\*) 391 out of 10000 models with  $SU(3) \times Sp(2) \times U(1) \times U(1)$ (out of 211000 in total)

# **ABELIAN MASSES**

#### Green-Schwarz mechanism



Axion-Vector boson vertex

·----

Generates mass vector bosons of anomalous symmetries (e.g. B + L) But may also generate mass for non-anomalous ones (Y, B-L)

# **B-L VIOLATION**

But even then, B-L still survives as a perturbative symmetry. It may be broken to a discrete subgroup by instantons.

This possibility can be explored if the instanton is described by a RCFT brane M. B-L violation manifests itself as:

$$I_{M\mathbf{a}} - I_{M\mathbf{a}'} - I_{M\mathbf{d}} + I_{M\mathbf{d}'} \neq 0$$

 $I_{Ma}$  = chiral [# (V,V\*) - # (V\*,V)] between branes M and a

a' = boundary conjugate of a

# **B-L ANOMALIES**

$$I_{M\mathbf{a}} - I_{M\mathbf{a}'} - I_{M\mathbf{d}} + I_{M\mathbf{d}'} \neq 0$$

Implies a cubic B-L anomaly if M is a "matter" brane (Chan-Paton multiplicity  $\neq 0$ ).

⇒ M cannot be a matter brane: non-gauge-theory instanton (stringy instanton, exotic instanton)

Implies a  $(B-L)(G_M)^2$  anomaly even if we cancel the cubic anomaly

 $\Rightarrow$  B-L must be massive

(The converse is not true: there are massive B-L models without such instanton branes)

### Instantons:

See talks by Lüst, Plauschinn, Lerda, Morales, Blumenhagen, Cvetic, Kiritsis

### **REQUIRED ZERO-MODES**

Neutrino mass generation by non-gauge theory instantons\*

The desired neutrino mass term v<sup>c</sup>v<sup>c</sup> violates c and d brane charge by two units. To compensate this, we must have

$$I_{M\mathbf{c}} = 2 ; I_{M\mathbf{d}} = -2 \text{ or } I_{M\mathbf{d}'} = 2 ; I_{M\mathbf{c}'} = -2$$

and all other intersections 0. (d' is the boundary conjugate of d)

(\*)Blumenhagen, Cvetic, Weigand, hep-th/0609191 Ibañez, Uranga, hep-th/0609213

#### **NEUTRINO-ZERO MODE COUPLING**

The following world-sheet disk is allowed by all symmetries



 $L_{cubic} \propto d_a^{ij} (\alpha_i \nu^a \gamma_j) , a = 1, 2, 3$ 

## ZERO-MODE INTEGRALS

$$\int d^2 \alpha \, d^2 \gamma \, e^{-d_a^{ij} \, (\alpha_i \nu^a \gamma_j)} = \nu_a \nu_b \left( \epsilon_{ij} \epsilon_{kl} d_a^{ik} d_b^{jl} \right)$$

Additional zero modes yield additional fermionic integrals and hence no contribution

Therefore  $I_{Ma}=I_{Mb}=I_{Mx}=0$  (x = Hidden sector), and there should be no vector-like zero modes.

There should also be no instanton-instanton zero-modes except 2 required by susy.

## **INSTANTON TYPES**

In orientifold models we can have complex and real branes

| Matter brane M | Instanton brane M |
|----------------|-------------------|
| U(N)           | U(k)              |
| O(N)           | Sp(2k)            |
| Sp(2N)         | O(k)              |

 $I_{M\mathbf{c}} = 2$ ;  $I_{M\mathbf{d}} = -2$  or  $I_{M\mathbf{d}'} = 2$ ;  $I_{M\mathbf{c}'} = -2$ 

Possible for:

### UNIVERSAL INSTANTON-INSTANTON ZERO-MODES

 $\bigcirc U(k): 4 Adj$  $\bigcirc Sp(2k): 2 A + 2 S$  $\bigcirc O(k): 2 S + 2 A$ 

#### Only O(1) has the required 2 zero modes

(See also: Argurio, Bertolini, Ferretti, Lerda, Peterson, arXiv:0704.0262)

# **INSTANTON SCAN**

Can we find such branes M in the 391 models with massive B-L?

- - (violations of the sum rule, i.e.  $I_{Ma} I_{Ma'} I_{Md} + I_{Md'} \neq 0$ )
- ♀ Violations between -8 and +8
- Quantized in units of 1,2 or 4
  - (1 may give R-parity violation, 4 means no Majorana mass)
- Some models have no RCFT instantons
- ♀ 1315 instantons have the right number of zero modes, counted chirally.
- Some of these models has R-parity violating instantons.

| Tensor        | MIPF | Orientifold | Instanton                | Solution |
|---------------|------|-------------|--------------------------|----------|
| (2,4,18,28)   | 17   | 0           |                          |          |
| (2,4,22,22)   | 13   | 3           | $S2^+!, S2^-!$           | Yes!     |
| (2,4,22,22)   | 13   | 2           | $S2^+!, S2^-!$           | Yes      |
| (2,4,22,22)   | 13   | 1           | $S2^+, S2^-$             | No       |
| (2,4,22,22)   | 13   | 0           | $S2^+, S2^-$             | Yes      |
| (2,4,22,22)   | 31   | 1           | $U1^+, U1^-$             | No       |
| (2,4,22,22)   | 20   | 0           |                          |          |
| (2,4,22,22)   | 46   | 0           |                          |          |
| (2,4,22,22)   | 49   | 1           | $O2^+, O2^-, O1^+, O1^-$ | Yes      |
| (2,6,14,14)   | 1    | 1           | $U1^+$                   | No       |
| (2,6,14,14)   | 22   | 2           |                          |          |
| (2,6,14,14)   | 60   | 2           |                          |          |
| (2,6,14,14)   | 64   | 0           |                          |          |
| (2,6,14,14)   | 65   | 0           |                          |          |
| (2,6,10,22)   | 22   | 2           |                          |          |
| (2,6,8,38)    | 16   | 0           |                          |          |
| (2,8,8,18)    | 14   | 2           | $S2^+!, S2^-!$           | Yes      |
| (2,8,8,18)    | 14   | 0           | $S2^+!, S2^-!$           | No       |
| (2,10,10,10)  | 52   | 0           | $U1^+, U1^-$             | No       |
| (4, 6, 6, 10) | 41   | 0           |                          |          |
| (4,4,6,22)    | 43   | 0           |                          |          |
| (6, 6, 6, 6)  | 18   | 0           |                          |          |

#### A MODEL WITH S2 INSTANTONS

```
5 x (V,V,0,0) chirality 3
3 x (V,0,V,0) chirality -3
3 x (V,0,V*,0) chirality -3
3 x (0 ,V ,0 ,V ) chirality 3
5 x (0 ,0 ,V ,V ) chirality -3
3 x (0 ,0 ,V ,V*) chirality 3
6 x (V, 0, 0, V)
18 x (0, V, V, 0)
2 x (Ad, 0, 0, 0)
2 x (A,0,0,0)
2 x (S , 0 , 0 , 0 )
14 x (0 , A , 0 , 0 )
6 x (0, S, 0, 0)
9 x (0,0,Ad,0)
6 x (0,0,A,0)
14 x (0,0,S,0)
3 x (0,0,0,Ad)
4 x (0,0,0,A)
6 x (0,0,0,S)
```

Gauge group: SU(3) × SU(2) × U(1) × Nothing. Exactly the correct number of instanton zero modes (except for 2 universal symmetric tensors)

#### A MODEL WITH S2 INSTANTONS

```
5 x (V,V,0,0) chirality 3
3 x (V,0,V,0) chirality -3
3 x (V,0,V*,0) chirality -3
3 x (0 ,V ,0 ,V ) chirality 3
5 x (0 ,0 ,V ,V ) chirality -3
3 x (0 ,0 ,V ,V*) chirality 3
6 x (V, 0, 0, V)
18 x (0, V, V, 0)
2 x (Ad, 0, 0, 0)
2 x (A,0,0,0)
2 x (S , 0 , 0 , 0 )
14 x (0 , A , 0 , 0 )
6 x (0, S, 0, 0)
9 x (0,0,Ad,0)
6 x (0,0,A,0)
14 x (0,0,S,0)
3 x (0,0,0,Ad)
4 x (0,0,0,A)
6 x (0,0,0,S)
```

Gauge group: SU(3) × SU(2) × U(1) × Nothing. Exactly the correct number of instanton zero modes (except for 2 universal symmetric tensors)

$$\sin^2(\theta_w) = .5271853$$
$$\frac{\alpha_3}{\alpha_2} = 3.2320501$$

#### THE O1 INSTANTON

| Туре |  |
|------|--|
|      |  |

| l'ype:    | U  | S   | U   | U    | U   | 0  | 0  | U  | 0  | 0  | 0  | U  | S  | S  | 0  | S  |   |           |    |
|-----------|----|-----|-----|------|-----|----|----|----|----|----|----|----|----|----|----|----|---|-----------|----|
| Dimension | 3  | 2   | 1   | 1    | 1   | 2  | 2  | 3  | 1  | 2  | 3  | 1  | 2  | 2  | 2  |    |   |           |    |
| 2 x (     | 0  | ,0  | ,0  | ,v   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,V | ) | chirality | 2  |
| 5 x (     | V  | ,0  | ,v  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | -3 |
| 5 x (     | 0  | ,0  | ,v  | ,V*  | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 3  |
| 12 x (    | 0  | ,0  | ,v  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ) | chirality | -2 |
| 3 x (     | V  | ,0  | ,V* | •,0  | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | -3 |
| 3 x (     | 0  | ,0  | ,v  | ,v   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | -3 |
| 3 x (     | V  | ,v  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 3  |
| 3 x (     | 0  | ,v  | ,0  | ,v   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 3  |
| 25 x (    | 0  | ,0  | ,Ac | 1,0  | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | Α  | ,0  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 4 x (     | V  | ,0  | ,0  | ,v   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | 0  | ,0  | ,0  | , A  | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 34 x (    | 0  | ,0  | , A | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 14 x (    | 0  | ,0  | ,s  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | V  | ,0  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ) | chirality | 0  |
| 2 x (     | 0  | ,0  | ,0  | ,v   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ) | chirality | 0  |
| 1 x (     | Ac | 1,0 | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | 0  | ,s  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 1 x (     | 0  | ,0  | ,0  | , Ad | 1,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 6х(       | 0  | ,0  | ,v  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | S  | ,0  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | 0  | ,0  | ,0  | ,s   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | 0  | ,v  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 1 x (     | 0  | ,v  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 1 x (     | 0  | ,v  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 1 x (     | 0  | ,v  | ,0  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | V  | ,0  | ,0  | ,V*  | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | V  | ,0  | ,0  | ,0   | ,0  | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | 0  | ,0  | ,0  | ,v   | ,0  | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | 0  | ,0  | ,v  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ) | chirality | 0  |
| 6 x (     | 0  | ,v  | ,v  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 6 x (     | 0  | ,0  | ,v  | ,0   | ,0  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | V  | ,0  | ,0  | ,0   | ,v  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 2 x (     | 0  | ,0  | ,0  | ,v   | ,v  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 0  |
| 3 x (     | 0  | ,0  | ,0  | ,0   | ,s  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | -1 |
| 3 x (     | 0  | ,0  | ,0  | ,0   | ,0  | ,v | ,0 | ,0 | ,0 | ,0 | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ) | chirality | 1  |
| 1 x (     | 0  | ,0  | ,0  | ,0   | ,A  | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | -1 |
| 2 x (     | 0  | ,0  | ,0  | ,0   | ,v  | ,0 | ,v | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ,0 | ) | chirality | 2  |

# CONCLUSIONS

- Many desirable SM features can be realized in the RCFT orientifold landscape...
  - **Q** Chiral SM spectrum
  - ♀ No mirrors
  - ♀ No adjoints, rank-2 tensors
  - No hidden sector
  - So hidden-observable massless matter
  - Matter free hidden sector
  - $\subseteq$  Exact SU(3)× SU(2)×U(1)
  - ♀ O1 instantons

but not all at the same time.

- Neutrino masses:
  - "an incomplete success."
  - With sufficient statistics, O1 instantons
  - without superfluous zero-modes will be found.
- Boundary state statistics:
  - 12 million Unitary
  - 3 million Orthogonal
  - 2 million Symplectic ➡ 270000 O1
- But what is the real reason why neutrino masses are small?