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It is shown how our previous work on lattice constructions of ten-dimensional heterotic 
strings can be applied to four dimensions. The construction is based on an extension of Narain's 
lattices by including the bosonized world-sheet fermions and ghosts, and uses conformal field 
theory as its starting point. A natural embedding of all these theories in the bosonic string is 
automatically provided. Large numbers of chiral string theories with and without N = 1 supersym- 
metry can be constructed. Many features of their spectra have a simple interpretation in terms of 
properties of even self-dual lattices. In particular we find an intriguing relation between extended 
supersymmetry and exceptional groups. 

I. Introduction 

In  the early days of string theory it was considered a major  embarrassment  when 
it turned out  that  string theories could only be formulated consistently in 26 or 10 
dimensions.  The revival of interest in the subject was for a small, but  not  unim- 
por tan t  par t  due to a change in attitude towards extra dimensions, namely the 
acceptance of  the idea that they can be compactified. This idea dates back to the 
first half  of  this century, but  received serious attention only during the last ten 
years, after the end of  the first string era. When strings were reconsidered one 
initially a t tempted to compactify their field theory limits, with the help of the 
technology developed during the past decade. More recently the at tention has slowly 
shifted towards  more "s t r ingy" compactifications. 

Actual ly  the concept  of a critical dimension for string theory is a misconception. 
This is clear once one realizes what  this concept  is based upon. All string theories 
which might  be relevant for four-dimensional physics (and this certainly includes 
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very successful in ten dimensions, where only 24-dimensional lattices have to be 
considered [8]. 

In four dimensions things are far more complicated. In the worst possible case we 
have a lattice F22;14 = (F22)L X (D 5 X (DI)9)R,  which can be mapped to (F22 X D 3 X 
(D7)9)L, a euclidean lattice of dimension 88. A lower limit on the total number of 
such lattices is provided by the Siegel mass formula [21] [22] 

4k-1 
E g ( A )  - 1 =  (8k)-lB4k H (4J) - IB2j ,  (5.1) 
A j= l  

where the sum is over all even self-dual lattices of dimension 8k, and g(A)  is the 
order of the automorphism group of A. Because g(A)  >/1 the fight hand side is a 
lower limit of the number of lattices (B2y are the Bernoulli numbers). For k = 11 
this number  is of order 101500! The requirement that A should contain D 3 X (D7) 9 
with a triplet constraint will reduce the number considerably, but clearly this is not 
a viable approach towards classification. It only tells us that the number of chiral 
theories is finite, but most likely extremely large*. 

However, it is easy to construct many examples already from the 24-dimensional 
Niemeier lattices; a list of those may be found in [23]. To do so, one decomposes 
such a lattice in D, factors by using one of the following regular embeddings 

E 8 D D 8 , 

E v D D 6 X A 1 ,  

E 6 D D 5 X U(1) ,  

A . D [ D 3 ] k×u ( 1 )  k - l ,  ( k =¼ ( n + l ) )  

A 2 z A 1 X U(1) .  (5.2) 

After these decompositions one is left with factors A 1 and several Dl's.  An even 
number  of Al ' s  can be combined to D2's because D 2 = m I X A 1. In all cases we have 
considered all m remaining factors can be rotated to a (D~) m lattice, and it is not 
unlikely that this is always possible, even for the Leech lattice. Note that we are not 
doing anything to the lattices; we simply regard them as root-lattices plus weights of 
subalgebras of the original algebras. Some of the weights may have length two and 

*A more reasonable but less rigorous estimate can be made by observing that the 88-dimensional 
lattice has (at most) 32 factors, so that combinatoricaUy their classification should be similar to the 
classification of even self-dual lattices of dimension 32 with D 1 lattices as building blocks. On the 
basis of such an estimate one would still expect a very large number of solutions. 
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This was not a pointless exercise:

It was the only way to demonstrate that the total number of solutions was finite.


This is obvious for free-fermionic constructions.


But we understood that the Narain moduli were fixed by the requirement of 

N < 2 space-time supersymmetry, which fixed the rightmover lattice.


This led to the misconception that there were no moduli at all; in fact they were not

even discussed in the paper. 


But there were other scalars, which do give rise to moduli.

It was not even obvious that the set of solutions was discrete:

Narain compactifications belong to the same class, and had Narain moduli.



— ILL. -
..:: ._ - -

______

schemes in which they apear. In Calabi—Yau compactifications the moduli are
unavoidable, since one can always change the overall scale of the metric. rn con
trast, here any change in the radius of the free bosons in (2.12) would break the
N = 1 sub—algebra, and is thus forbidden by the N = 1 conformal gauge condi
tion. Thus, the compactifications described here are inherently free of the moduli
problem. Unfortunately, there are tachyons in the theory (22), but presumably
these can be eliminated. We believe that further study of these theories will en
able the constructions of models which are free of moduli and have a fully realistic
spectrum.
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Even self-dual lattice of dimension 8k

Growth exceeds free (anti)-periodic fermionic construction of such theories.



Bug or Feature?



Conclusions of a talk in the Uppsala EPS Conference (July 1987) 

Perspectives ~1987

CERN-TH-4807/87  
Talk given in the parallel session on Superstrings and Supergravity. Conference: C87-06-25 (Uppsala EPS HEP 1987:0272)

http://inspirehep.net/record/966098


Perspectives ~1987
 String theory has a huge anthropic landscape 

 Compactification is an outdated concept 

 No need for Grand Unification 

 Hierarchy problem must be reconsidered 

 There is information in landscape distributions 

 We need at least 10130 vacua for the CC
Bousso, Polchinski (2000)

✓
✖
?
?
✓
✓

Agrawal, Barr, Donoghue, Seckel (1998)

Vilenkin (1995), Quantum Cosmology

Douglas (2004), String landscape 

Amaldi, de Boer, Furstenau (1991)

“The number of different compactifications in superstring 
theories is believed to be ≿ 104 ”

Quantum Cosmology and the Constants of Nature 
Alexander Vilenkin (1995)

(non-pc version)

(ensemble)



If the small value of the cosmological constant is determined by “anthropic selection,” 
then it is due to the discrete parameters. Here Λ either is equal to exactly 0 in some 
version or is extremely small. In the latter case we should assume that the number of 
versions of the set of discrete parameter is large enough that the range of values of Λ in 
the vicinity of the point Λ= 0 is quite “dense.” 

This obviously requires a large value of the number of dimensions of the compactified 
space and/or the presence in some topological factors of a complex topological structure 
(such as a large number of “handles”) for some topological cofactors. 

Sakharov, A., 1984, Zh. Eksp. Teor. Fiz. 87, 375 [Sov. Phys. JETP 60, 214 (1984)]  



I told our postdoc, Sean Carroll, that if the CC turned out to be there, he 
could have my office. It would mean that the anthropic principle was 
here, and I would have to give up physics. I make a lot of comments like 
this that I do not remember […] But Sean remembered, and as he 
introduced me at a meeting two years later, he asked when he was 
going to get the office.

As far as I know, this is the first paper written about string theory and the 
anthropic principle, a real illustration of the power of anthropic denial.

Memories of a Theoretical Physicist,  arXiv:1708.09093

Joseph Polchinski



Heterotic Strings



Xµ c=D=4

Internal CFT.
Must have c=9
and N=2 susy.

Heterotic strings in CFT

 µ ( + ghosts) c=13

Bosonic
c=22

E8

SO(10)



Gauge group H ⊂ SO(10);   families are (16)’s

SO(10) currents replaced by 
operators of higher weight

}  µ

Gepner models: 
Use symmetric MIPF
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With S. Yankielowicz  (1989) Nucl.Phys. B330 (1990) 103-123
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With B. Gato Rivera  (2010) Nucl.Phys. B841 (2010) 100-129



Gato-Rivera, Schellekens, 2009

Heterotic Weight Lifting



B-L Lifting

B-L



E8 splitting

SO(10)

E8



Heterotic Weight Lifting



B-L Lifting
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Permutations of Gepner Models

with M. Maio

Nucl.Phys. B848 (2011)
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Orientifolds



~ 10-14

Dijkstra, Huiszoon, Schellekens                                 Nucl.Phys. B710 (2005) 3-57  

More general brane configuration search (but less complete search)
Anastasopoulos Dijkstra, Kiritsis, Schellekens,        Nucl.Phys. B759 (2006) 83-146

From 8 chiral configurations to 19000!









Perspective ~2006
In 2018 we will have

 General agreement on the existence of a huge (> 10150)  

 dS landscape in string theory.


 Convincing arguments that the Standard Model, including its  

 parameter values, exists somewhere in that landscape.


 A map of the most fertile areas


 A positive or negative prediction of low energy supersymmetry.

✖

✖

✖
✖



What keeps us going?
“String theory is an ultraviolet complete theory of quantum gravity that is a strong 
candidate for a unified theory of particle physics and cosmology”
Carifio, Cunningham, Halverson,  Krioukov, Long, Nelson,  arXiv:1711.06685

 String theory “just works” 
 Contains the Standard Model (gauge group and reps) 
 Has a connected landscape of vacua



How will we know it is true?
Principles of 

Quantum Gravity

“String” Theory

Landscape

Black hole physics

Weak Gravity Conjecture

Swampland Conjectures

…..

Type II, Type I               (1971-1977)   

Heterotic                      (1984)

M-theory                      (1995)

F-theory                       (1996)

…..

dS

Quintessence?

…

Standard Model 
(+ Cosmology)

Quantum  
Cosmology

Landscape 
Distributions

Anthropic  
Distributions

Nuclear Physics 
Atomic Physics 

Chemistry 
Biology 

Astrophysics

+ BSM



Is the landscape too small?

10272,000                  (Taylor, Wang)

 


10501                 (Polchinski)


10500                 (Douglas,….)


1050                   (Bena,….)


1                        (Gross,….)


0                        (Vafa,….)     

Polchinksi: I have told Vafa that one of my life goals is to understand one of his papers, but no success yet. 



101500 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 

<<<<<<<<<<<<<<<<<<<<<<<<<<<< 10272000 

The landscape is a humbling place….

101500 < 10272000101500 << 10272000



Is the landscape too large?
In the nice, cosy, Douglas landscape of a mere 10500 vacua we might still 
hope that the standard model stands out as being the simplest one with 
“atomic physics”: electromagnetism, a substantial set of charges, and a 
hierarchy m ≪ mplanck

U(1)      Simplest electromagnetic group


SU(3)    Simplest group to build objects with a large spectrum of charges and with 

             (almost) conserved baryon number (“nuclei”)


SU(2)    Remnant of hierarchy   



Two stack models
Y = qaQa + qbQb

an anti-symmetric tensor breaks SU(N) to Sp(N) (if N is even) or Sp(N�1) (if N is
odd), or to SU(N�2) ⇥ SU(2). The only way these symmetry breakings could yield a
U(1) is if SU(2) is broken by means of a symmetric tensor to SO(2). But SU(2) has
no complex representations, and hence is not a suitable high-energy theory by itself; it
violates assumption 3. An adjoint representation breaks SU(N) to SU(p)⇥SU(q)⇥U(1),
p + q = N . This looks promising, because at least it produces a U(1). But it is easy to
see that this can never break a chiral representation to a non-chiral one. We will discuss
this in more detail for two-stack models in section 4.2.3.

4.2 Two Stack Models

The next possibility is to obtain the U(1) from two brane stacks. In this paper we will
only consider the possibility that both are unitary, and consider a general U(M)⇥U(N)
two-stack model. The gauge group is SU(M)⇥ SU(N)⇥U(1)2, but anomalies (canceled
by a Green-Schwarz mechanism) will leave at most one linear combination of the two
U(1)’s unbroken. We will write it as Y = qaQa + qbQb where Qa and Qb are the brane
charges of the two stacks. The possibilities for chiral matter representations are then
(note that adjoints are not chiral, so we do not have to consider them)

Q (M,N, qa + qb)

U (A, 1, 2qa)

D (M, 1,�qa)

S (S, 1, 2qa)

X (M,N, qa � qb) (10)

L (1, N,�qb)

T (1, S, 2qb)

E (1, A, 2qb)

where A, S denote (anti)symmetric tensors. We have given these multiplets suggestive
names referring to the Standard Model, but of course those names can correspond to
genuine quarks and leptons only for M = 3 and N = 2. We will use variables Q,U,D, . . .,
which can be any integer, to denote the multiplicity of these representations. If a mul-
tiplicity is negative this implies a positive multiplicity for the conjugate representation.
The representations themselves will be denoted asQ,U,D, . . .. We have chosen to use the
anti-vectors for L and D, because then the Standard Model multiplicities will be positive
integers. Note however that for notational convenience we have not added superscripts
to denote anti-particles. So U and D correspond to anti-quarks in the Standard Model,
and L corresponds to anti-leptons.

4.2.1 Anomaly cancellation conditions

The integer multiplicities are subject to anomaly cancellation. We will denote anomalies
by a three-letter code, where ‘S’,‘W’ and ‘Y’ refer to SU(M), SU(N) and U(1), and ‘G’

22

SU(M)⇥ SU(N)⇥ U(1)

qa, qb determined by axion couplings

(assuming unitary branes)



The Standard Model gauge group and family structure (N families) is the unique 
solution to these anthropic constraints, within the set of two-stack models.

Nucl.Phys. B883 (2014) 529-580 with B. Gato Rivera

This generalizes to multi-stack D-brane models, but with stronger simplicity 
assumptions.

But in F-theory?

4

FIG. 2. The entries of p for the hypersurface network. The
largest entry is 0.328. The spike in the distribution near 10−2
consists almost entirely of nodes that are linked to the node
with the highest eigenvector centrality. The spike near zero
consists of polytopes that are isolated by cuto↵ at 10 vertices.

results of [3], the red dots correspond to four-manifolds
that are highly likely to carry E8 seven-branes, in which
case the geometric gauge group on the divisors interior to
the face is G2 × SU(2)3, labeled by green and blue dots,
respectively. The structure of NE is simple, due to the
small size of the network. The highest eigenvector cen-
trality is 0.017, with multiplicity 2. While the ratio of the
largest eigenvector centrality to the smallest is 4 × 103,
there is no large hierarchy in this distribution between
the largest entry and most of the bulk; vacuum selection
is less strong in NE . However, there is still a largest
entry, which we will take to be the selected geometry.

Having analyzed NE and NF individually, consider the
Cartesian product Ntree. The eigenvector centrality vG

of a Cartesian product G = A �B, with eigenvector cen-
tralities vA and vB is the tensor product vG = vA ⊗ vB .
Therefore, the preferred node of Ntree is a product of the
preferred nodes of NF and NE . Recall that the tree en-
semble is dominated by building trees over �○1 and �○2.
The full gauge group on these geometries is determined
by the structure of these polytopes and the preferred
trees built over them, which is E37

8 ×F 85
4 ×G220

2 ×SU(2)320.
Since both polytopes have 72 edges and 108 faces when
triangulated, for Ntree, the ratio of the largest eigenvec-
tor centrality to the smallest is (7×1014)72×(4×103)108 =
7×101457. This is a measure of the maximal selection, not
the typical selection, in the network. It would be inter-
esting to understand whether such large selection e↵ects
are typical in the full landscape.

The Hypersurface Network.

We next consider the network of CY hypersurfaces.
The eigenvector centrality is shown in Fig. 2. The largest
eigenvector centrality is 0.328. The ratio of the largest
eigenvector centrality to the smallest non-zero value is
1.05 × 1024, while the ratio of the largest and second-
largest values is 19.33. The polytope with the highest

eigenvector centrality value has vertices

{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (−4,−3,−2,−2)} .
This polytope contains seven points, and corresponds
to the weighted projective space P4

1,2,2,3,4. It gives rise
to a single CY hypersurface which has Hodge numbers
h
1,1 = 2 and h

2,1 = 74, and Euler characteristic � = −144.
This polytope, which is part of the ToricCY database [24]
with POLYID=8, also has the largest degree in the net-
work, with links to 6462 other polytopes. Since no
4D reflexive polytope has fewer than five vertices, all
of the links arise from polytopes whose vertex sets, up
to a GL(4,Z) rotation, contain these vertices. Addi-
tionally, the hypersurface arising from this polytope ad-
mits a Swiss cheese solution in which the moduli are
stabilized [25]. The hypersurface has six toric divisors,{D1, . . . ,D6}, and we can write the volume form as

V = 4

3
√
3
⌧3�2
1 − 1

6
⌧3�2
2 ,

where the ⌧i are the 4-cycle volumes ⌧1 = vol(−3D1) and
⌧2 = vol(−3D1−D6). It is interesting that the Calabi-Yau
selected by this cosmology is amenable to moduli stabi-
lization in the LARGE volume scenario [26], which has
demonstrated interesting possibilities for semi-realistic
particle physics and inflationary cosmology [27–30].

5. Discussion.
This work is the first step in systematically under-

standing vacuum selection from cosmology on networks
of string vacua. Even in the absence of detailed knowl-
edge of the microphysics governing actual bubble nucle-
ation rates or quantum tunneling rates, it is possible to
construct a semi-realistic model which permits interpola-
tion between di↵erent cosmological paradigms. We found
that if the network structure indicates preferred transi-
tions, as opposed to universal quantum tunneling, then
the eigenvector centrality of the network determines the
preferred vacuum (or vacua). This vacuum selection was
explicitly realized on two separate networks of compacti-
fication geometries connected by topological transitions.
In the future it is of critical importance to add additional
data, such as fluxes, to the networks to allow for the iden-
tification of gauge and cosmological sectors that contain
the Standard Model and account for CMB data. This is
plausible given current knowledge of fluxes and branes,
but is beyond current computational feasibility.
More broadly, the application of concepts and tech-

niques commonly employed in network science promises
to be fruitful in the study of the string theory landscape.
Variations on the simple cosmological model presented
here can easily be incorporated by modifying the cen-
trality measures used to study the network properties,
by weighting the edges in appropriate ways, or changing
the governing equations to account for bubble collisions
and decays. We anticipate such a network-centered ap-
proach will prove to be vital to making concrete, quan-
titative statements about vacuum selection in the string
landscape.

Carifio, Cunningham, Halverson,  Krioukov, Long, Nelson,  arXiv:1711.06685



Wrong landscape?
Is there a consistent, UV complete quintessence landscape that agrees

with all current data?  (Sethi; Brennan, Carta, Vafa)


If so, how large is it?


Non-susy strings?



 Constraining Neutrino Masses, the Cosmological Constant and BSM Physics from the Weak Gravity Conjecture 
  
 Constraining the EW Hierarchy from the Weak Gravity Conjecture 

Ibanez, Martin-Lozano,Valenzuela

AdS-phobia, the WGC, the Standard Model and Supersymmetry

Gonzalo, Alvaro Herráez, Ibanez

Weak Gravity Conjecture, Multiple Point Principle and the Standard Model Landscape 

Hamada, Shiu

Swampland constraints on SM phenomenology



Perspective 2018

Machine learning will eventually solve this problem…


But will humans still be involved?



“Humans are so cute 
when they try 
to comprehend  
the landscape”


