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Some recent events



Search for minimal dS solution without all the bells 
and whistles of KKLT. It is hard.

Construction of meta-stable solutions in string 
theory. Do they survive backreaction in IIB? It is 
subtle.

Landscape/multiverse skeptics may take some 
hope from these results, but it seems too early to 
know for sure.

J. Harvey, summary talk Strings 2011
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Bitten the dust
Disappointed
Down the drain

LHC results put supersymmetry theory 'on the spot'



comments

The Standard Model is perfectly OK without low energy 
supersymmetry.

String theory does not predict low energy supersymmetry.

Perhaps the “landscape” even predicts the opposite.

The one Standard Model feature of String Theory that is 
most likely to survive (if anything survives) is the 
landscape.

But we should be able to learn a little bit more about the 
Standard Model than that it is merely an anthropically 
restricted but otherwise “random” point in a huge ensemble.
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Chirality, D=4

String Theory
} SO(10)-like spectra

SU(3) × SU(2) × U(1)

String Theory
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SU(3) × SU(2) × U(1)
Chiral Families
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SU(3) × SU(2) × U(1)
Chiral Families

String Theory
} 3 families

SU(3) × SU(2) × U(1)
Chiral Families

String Theory
} No light fractional 

charges



RCFT models: closed sector



Xµ c=D=4

Internal CFT.
Must have c=9
and N=2 susy.

Type-II strings

ψµ ( + ghosts) c=13



Orientifolds

Heterotic 
(Gepner,....)

(Sagnotti et. al, ......)



building block data

• The exact Virasoro spectrum

• The ground state dimensions. 

• The modular matrix Sij

• The fixed point resolution matrices SJ

SJ0 = S00 : J is a simple current

hi, i = 1, . . . , Nprimary

Fusion: [J ].[i] = [Ji]

Act on fixed points of J : [J ].[f ] = [f ]

Required data

Used to build non-trivial MIPFs



The MIPFs
(Modular invariant Partition functions)

P (τ, τ̄) =
�

ij

χi(τ)Mijξj(τ̄)

Each building block contributes factors to a discrete simple current group G

Z3
2 × Z3 × Z30 × Z6

20
Example:

(*) Restrictions apply. 

(Nucl.Phys. B411 (1994) 97-121, with Max Kreuzer)

Now choose any(*) subgroup H, and a rational(*) matrix X satisfying X+XT=R,
where R is a given rational matrix (the “monodromy matrix”).
Then for each(*) such matrix X we get a matrix                             defining a MIPF.Mij = M(H,X)

This has a huge number of solutions;  for 

NMIPF =
K−1�

l=0

(1 + pl)

ZK
p , p prime :

For p=5, K=7:                  NMIPF = 1.202.088.011.709.312

(with B. Gato-Rivera, 1992) 



The quantity Fi is called the simple current twist, and the untwisted stabilizer Ui is the subgroup
of Si of currents that have twist 1 with respect to all currents in Si. To combine the results for
automorphisms and extensions, we introduce a modified twist F X

i by

F X
i (K, J) := e2πiX(K,J) Fi(K, J)∗ , (8)

and we define the central stabilizer Ci as

Ci := {J ∈Si |F X
i (K, J) = 1 for all K ∈Si} . (9)

(The prescription (8) is motivated as follows. The modified twist is an alternating bihomomor-
phism i.e. obeys F X

i (J, J) = 1 for all J ∈G. Such bihomomorphisms F X
i of an abelian group G

are in one-to-one correspondence to cohomology classes FX
i in H2(G, U(1)), thus leading to a

cohomological interpretation [27]. In particular, the central stabilizer provides a basis of the
centre of the twisted group algebra CFX

i
Si, which also motivates its name.)

The action (by the fusion product) of the simple currents in G organizes the labels i of
the Ā-theory into orbits. Moreover, in all known cases the boundary degeneracy is correctly
described by the order of the central stabilizer, and hence this is our ansatz for the general
case as well. We then choose the characters of Ci as the degeneracy labels. The boundaries are
therefore given by

a = [i, ψ] , (10)

where i is the label of a representative of a G-orbit, and ψ a character of Ci.

4. The boundary formula

Ishibashi states are nothing but conformal blocks for one-point correlation functions on the disk,
i.e. specific two-point blocks on the sphere. But we can think of the Ishibashi state labelled
by (i, J) also more as a three-point block on the sphere, with insertions i, ic and J . (This
is actually the natural interpretation when one wants to express such Ishibashi states in the
three-dimensional topological picture that was established in [28].) Moreover, already from [1]
it is known that the relation between Ishibashi and boundary states essentially expresses the
effect of a modular S-transformation. Together with the previous observation, it is then natural
to expect that the fixed point resolution matrices SJ appear in the boundary coefficients.

We are therefore ready to write down the following ansatz for the boundary coefficients:

B(i,J),[j,ψ] =

√

|G|
|Sj| |Cj|

α(J) SJ
i,j

√

S0,i

ψ(J)∗ , (11)

where α(J) is a phase to be discussed later, but which must satisfy α(0) = 1. All previously
studied cases are correctly reproduced by the remarkably simple formula (11). We have also
verified that the matrix (11) has a left- and right-inverse, given by (B−1)[j,ψ],(i,J) =S0,i B∗

(i,J),[j,ψ].
This establishes in particular the result that the number of boundaries equals the number of
Ishibashi labels, i.e. “completeness”. This implies rather non-trivial relations involving the
number of orbits of various kinds and the orders of stabilizers.

One can also check that the annuli obtained from (11) possess non-negative integral ex-
pansion coefficients Ai

ab with respect to the Ā-characters χi. (We assume, as usual, that the

6

− 30 −

5.2. The main formula

We work here with the group characters of the untwisted stabilizer, which have the
usual properties, see section 4.1.

The primary fields of the extended theory can be described as follows. Each fixed
point a of the unextended theory is resolved into |Ua| distinct fields, which are labelled
by the group characters of the untwisted stabilizer Ua. Then the following is the formula
for the modular matrix S̃:

S̃(a,i),(b,j) =
|G|

√

|Ua| |Sa| |Ub| |Sb|

∑

J∈G

Ψa
i (J) SJ

a,b Ψb
j(J)∗ . (5.1)

Here the summation is formally over all G, but in fact the only contributing terms are
those with J ∈ Ua ∩ Ub. In particular, if a primary field a is not a fixed point of any
current, then Ua = {1}, and only S1 (the modular matrix S of the unextended theory)
contributes.

The formula (5.1) follows directly from the Fourier decomposition (4.4) with Ma =
Ua and the diagonality assumption (4.20), which in its turn is strongly suggested by the
arguments in sections 4.8 and 4.9.

5.3. Phase rotations

As mentioned in the previous section, all conditions on SJ are respected by the
‘gauge’ transformation

SJ $→ DJSJ (DJ)† , (5.2)

where DJ is a diagonal unitary matrix which, in order to preserve {6}, satisfies

DJ = (DJ−1

)∗ . (5.3)

A sufficient condition for preserving the group properties of η and F , {5b} and {4a} is

DJ1DJ2 = DJ1J2 . (5.4)

However, F and η change only by ratios of the matrix elements of DJ , and therefore
these latter conditions are necessary only for those ratios. These ratios are between
conjugate fields or fields on the same simple current orbits. There are thus many phase
rotations that are not restricted by (5.4).

Matrix S for chiral algebra extensions
(Fuchs, Schellekens, Schweigert (1996))

Boundary coefficients for non-trivial MIPFs
(Fuchs, Huiszoon, Schellekens, Schweigert, Walcher (2000))



Building blocks we can use at present

N=2 minimal models: Gepner models (168 combinations)
Gepner (1987)
Lutken, Ross (1988)
Fuchs, Klemm, Scheich, Schmidt (1989)
Schellekens, Yankielowicz (1989)
Gato-Rivera, Schellekens (2010)

Free fermion triplets
    Antoniadis, Bachas, Kounnas, Windey (1985)
    Kawai, Lewellyn, Tye (1986); Antoniadis, Bachas, Kounnas (1986)
    Faraggi et. al. (1990 - ....)
    Kiritsis, Lennek, Schellekens (2008)
    Gato-Rivera, Schellekens (2010)

Permutation orbifolds
    Fuchs, Klemm, Schmidt (1991)
    Maio, Schellekens (2010,2011)

Other methods
Tensoring building blocks
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Free Fermions Gepner

Landau-Ginzburg CY (reflexive polyhedra)

Donagi-Wendland
Kiritsis, Lennek, Schellekens

Schellekens, Yankielowicz
Fuchs, Klemm, Scheich, Schmidt
Gato-Rivera, Schellekens

Kreuzer Kreuzer, Skarke

Plotted: nr. of distinct Hodge pairs for each number of families



Permutation Orbifolds

Characters:

If c is the central charge of A, then the central charge of Aperm is 2c. The typical1 weights
of the fields are:

• h(i,ξ) = 2hi

• h�i,j� = hi + hj

• h�(i, ξ) = hi
2 + c

16 + ξ
2

for diagonal, off-diagonal and twisted representations. Sometimes it can happen that
the naive ground state has dimension zero: then one must go to its first non-vanishing
descendant whose weight is incremented by integers.

The permutation orbifold characters X are related to the characters χ of the mother
theory A in the following way [18]:

X�i,j�(τ) = χi(τ) · χj(τ) (2.2a)

X(i,ξ)(τ) =
1

2
χ2

i (τ) + eiπξ 1

2
χi(2τ) (2.2b)

X�(i,ξ)(τ) =
1

2
χi(

τ

2
) + e−iπξ T

− 1
2

i

1

2
χi(

τ + 1

2
) (2.2c)

where T
− 1

2
i = e−iπ(hi− c

24 ). The character expansion:

χ(τ) = qhχ− c
24

∞�

n=0

dnq
n (with q = e2iπτ ) (2.3)

(the dn’s are non-negative integers) implies a similar expansion for the X:

X(τ) = qhX− c
12

∞�

n=0

Dnq
n (2.4)

where the Dn’s are expressed in terms of the dn’s as follows:

D�i,j�
k =

k�

n=0

d(i)
n d(j)

k−n (2.5a)

D(i,ξ)
k =

1

2

k�

n=0

d(i)
n d(i)

k−n +

�
0 if k = odd
1
2 eiπξ d(i)

k
2

if k = even (2.5b)

D
�(i,ξ)
k = d(i)

2k+ξ (2.5c)

1See [22] for exceptions.
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Obtained by modding out the permutation symmetry of 
two identical factors in a CFT 

world-sheet-supersymmetry current of the original minimal model. When the symmet-
ric representation is used, instead, one ends up with a conformal field theory, which is
isomorphic to the supersymmetric orbifold, but it is not supersymmetric itself.

In the extended permuted orbifolds so-called exceptional simple currents appear, which
originate from off-diagonal representations. Generically, there are many of them, depend-
ing on the particular model under consideration, and they do not have fixed points.
However, when and only when the “level” is equal to k = 2 mod 4, four of all these excep-
tional currents do admit fixed points. As a consequence, in those cases the knowledge of
the modular S matrix is plagued by the existence of non-trivial and unknown SJ matrices
(one SJ matrix for each exceptional current J). The full set of SJ matrices is available for
standard Z2 orbifolds (see [19, 20, 21]), but not for their (non)supersymmetric extensions,
due to these four exceptional currents with fixed points. This is known as the fixed point
resolution problem [28, 29, 30, 31, 32, 33]. The knowledge of the full set of the SJ matrices
is more important in orientifold models [34, 35, 36] than in heterotic strings, because in
the former case one cannot even compute spectra if these matrices are not known.

In this paper we consider permutations in Gepner models. One starts with Gepner’s
standard construction where the internal CFT is a product of N = 2 minimal models.
Sometimes there are (at least) two N = 2 identical factors in the tensor product. When
it is the case, we can replace these two factors with their permutation orbifold. Moreover,
one also has to impose space-time and world-sheet supersymmetry, which is achieved by
suitable simple-current extensions.

The plan of the paper is as follows. In section 2 we start reviewing the permutation
orbifold, which is the main idea used in this paper. In section 3 we review the standard
constructions of Heterotic Gepner models. In section 4 we review the main ingredients
and the most relevant results of Z2 permutation orbifolds when applied to N = 2 minimal
models. In section 5 we describe the heterotic weight lifting and the B-L lifting procedures,
which allow us to replace the trivial E8 factor plus either one N = 2 minimal model
or the U(1)B−L with a different CFT, which has identical modular properties, in the
bosonic (left) sector. In section 6 we compare our results on (2,2) spectra with the
known literature. In section 7 we present our phenomenological results concerning the
family number distributions, gauge groups, fractional charges and other relevant data. In
appendix A we derive a few facts about simple current invariants. Appendix A.2 contains
tables summarizing the main results for the four cases (standard Gepner models and the
three kinds of lifts).

2 Permutation orbifold

In this section let us recall a few properties of the generic permutation orbifold [18],
restricted to the Z2 case:

Aperm ≡ A×A/Z2 . (2.1)

5
Off-diagonal

Diagonal

Twisted

(ξ = 0, 1)

(ξ = 0, 1)



The S matrix of Aperm is known from [11]. We will call it SBHS and it is
given by

S(mn)(pq) = Smp Snq + Smq Snp (2.5a)

S
(mn)(̂p,χ)

= 0 (2.5b)

S
(̂p,φ)(̂q,χ)

=
1

2
e2πi(φ+χ)/2 Pip (2.5c)

S(i,φ)(j,χ) =
1

2
Sij Sij (2.5d)

S(i,φ)(mn) = Sim Sin (2.5e)

S
(i,φ)(̂p,χ)

=
1

2
e2πiφ/2 Sip , (2.5f)

where the P matrix (introduced in [17]) is defined by P =
√

TST 2S
√

T .
If there is any integer or half-integer spin simple current in A, it gives rise to

an integer spin simple current in Aperm, which can be used to extend the orbifold
CFT itself. We can denote the extended permutation orbifold by Ãperm. In the
extension, some fields are projected out while the remaining organize themselves
into orbits of the current. Typically untwisted and twisted fields do not mix
among themselves. As far as the new spectrum is concerned, we do know that
these orbits become the new fields of Ãperm, but we do not normally know the
new S matrix, S̃.

As already mentioned, the problem of finding S̃ is equivalent to the problem
of finding the set of matrices SJ , one for each simple current J . As a starting
point, it will be useful to know what are the simple currents arising in the
extended permutation orbifold. From the sufficient and necessary condition
SBHS

J0 = SBHS
00 [18], it is straightforward to discover that they correspond to the

symmetric (ψ = 0) and anti-symmetric (ψ = 1) representations (hence diagonal
fields) of the simple currents in the mother theory A [1]. It will then make sense
to denote simple currents of the permutation orbifolds as (J, ψ), being J the
corresponding simple current in the mother theory. There are no other possible
combinations of A−fields that become simple currents in the orbifold. Hence,
one simple current in A generates two simple currents in Aperm.

Another useful piece of information is the fixed point structure arising in
Aperm. By studying the fusion coefficients one can show that [1]:

• diagonal fields: (i, φ) is a fixed point of (J, ψ) if ψ = 0 and if i is a fixed
point of J , i.e. Ji = i;

• off-diagonal fields: (mn) is a fixed point of (J, ψ)

– either if m and n are both fixed points of J , i.e. Jm = m and Jn = n,

– or if m and n are in the same J−orbit, i.e. Jm = n;

• twisted fields: (̂p, φ) is a fixed point of (J, ψ) if QJ(p) = ψ
2 + 2 hJ mod Z,

independently of φ.

For the twisted fixed points, see the proof1 in the appendix, formula (A.2).
Observe that for (half-)integer spin simple currents we can drop the additional

1In [1] we considered only (half-)integer hJ . In this paper we will have to look at currents
with hJ ∈ 1

4 Zodd as well, since they give rise to half-integer spin currents in the orbifold and
those can have fixed points.

6

Formula for S 
(Borisov, Halpern, Schweigert)

P =
√

TST 2S
√

T
(Sagnotti-Pradisi-Stanev P-matrix;
Betrays orientifold analogy)



Formula for SJ 
(work with Michele Maio)

Hence:
(

S(J,ψ)T (J,ψ)S(J,ψ)
)

(̂p,φ)(̂q,χ)
= · · · =

=
1

2
A2

∑

a

Spa T 2
a e2iπ(hJ−Q̂J (a)) Saq =

=
1

2
A2 e2iπhJ

∑

a

e2iπQJ (a) Spa T 2
a Saq =

=
1

2
A2 eiπhJ eiπQ̂J (p)

√
T

−1

p PJp,q

√
T

−1

q (3.13)

We have also used the freedom to replace −Q̂J(a) with QJ(a) in the phase ex-
ponent appearing in the sum over a, which is allowed since both these quantities
are either integer of half-integer and differ only by integer numbers. In the last
line we have used (C.7) to rewrite the sum over a in terms of the P matrix.
Then, by comparison we get:

(

S(J,ψ)T (J,ψ)S(J,ψ)
)

(̂p,φ)(̂q,χ)
=

(

T (J,ψ)−1
S(J,ψ)T (J,ψ)−1

)

(̂p,φ)(̂q,χ)
, (3.14)

provided
B = A2 eiπhJ =⇒ A2 = (−1)ψ e2iπhJ . (3.15)

Together, i), ii) and iii) say that S(J,ψ) is modular invariant. In addition,
this calculation fully fixes the phase B, while A is fixed up to a sign. For future
convenience, we recall their values here:

A2 = (−1)ψ e2iπhJ & B = (−1)ψ e3iπhJ . (3.16)

4 The general ansatz

Here we extend our ansatz to the most general case, including when the simple
currents of the mother theory admit fixed points, giving rise to the diagonal
sector in the permutation orbifold. The most general ansatz is:

S(J,ψ)
(mn)(pq) = SJ

mp SJ
nq + (−1)ψSJ

mq SJ
np (4.1a)

S(J,ψ)

(mn)(̂p,χ)
=

{

0 if J · m = m
ASmp if J · m = n

(4.1b)

S(J,ψ)

(̂p,φ)(̂q,χ)
= B

1

2
eiπQ̂J (p) PJp,q eiπ(φ+χ) (4.1c)

S(J,ψ)
(i,φ)(j,χ) =

1

2
SJ

ij SJ
ij (4.1d)

S(J,ψ)
(i,φ)(mn) = SJ

im SJ
in (4.1e)

S(J,ψ)

(i,φ)(̂p,χ)
= C

1

2
eiπφ Sip . (4.1f)

Using modular invariance, we show in the appendix that these phases satisfy
the following relations:

B = (−1)ψ e3iπhJ , A2 = C2 = (−1)ψ e2iπhJ , (4.2)

13

B, C = ±1

ψ = ±1
(“gauge” choices)



We will show soon that for k = 2 mod 4 some of the exceptional currents have
fixed points. Let us say a few words about them. It turns out that these fixed
points are either of the off-diagonal or twisted type: there are none of diagonal
kind. To be slightly more concrete, they are specific (TF , 1)-orbits of off-diagonal
fields plus all the twisted (TF , 1)-fixed points (necessarily corresponding to the
Ramond fields of the original minimal model). We will not say more now, but
will come back later, since for the moment we are not able to resolve them,
or in other words we do not know what their SJ matrices are, J denoting the
particular exceptional currents.

One important exceptional currents of the permutation orbifold is the world-
sheet supersymmetry current, which is the only current of order two and spin
h = 3

2 : it is the off-diagonal field coming from the tensor product of the identity
with TF (z). It does not have fixed points, because TF does not. Let us denote
it by Jw.s.

orb
≡ (1, TF ). By the argument given above, Jw.s.

orb
is guaranteed to be

fixed by (TF , 1).
Now consider the tensor product of two minimal models. We can either

extend by TF (z)⊗TF (z) to make the product supersymmetric or we can mod out
the Z2 symmetry and end up with the permutation orbifold. Let us start with
the latter option. It is known [25] that one can go back to the tensor product
by extending the orbifold by the anti-symmetric representation of the identity,
normally denoted by (0, 1). What we do instead is extending the orbifold by
(TF , 1). The resulting theory is the N = 2 supersymmetric permutation orbifold
which has the worldsheet spin- 32 current in its spectrum.

Alternatively, we can change the order and perform the extension before orb-
ifolding. Note that each N = 2 factor is supersymmetric, but the product is not.
In order to make it supersymmetric, we have to extend it by the tensor-product
current TF (z)⊗TF (z). As a result, in the tensor product only those fields survive
whose two factors are either both in the NS or both in the R sector. In this way,
the fields in the product have factors that are aligned to be in the same sector.
Now we still have to take the Z2 orbifold. Starting from the supersymmetric
product, by definition, we look for Z2-invariant states/combinations and add
the proper twisted sector. We will refer to this mechanism which transform the
supersymmetric tensor product into the supersymmetric orbifold as super-BHS,
in analogy with the standard BHS from the tensor product to the orbifold. The
following scheme summarizes this structure:

(N = 2)2

BHS

��

TF⊗TF �� (N = 2)2
Susy

super−BHS

��

(N = 2)2
orb

(0,1)

��

(TF ,1)�� (N = 2)2
Susy−orb

(0,1)

��

As a check, let us consider the following example. Take the case of level
k = 1. The (N = 2)1 minimal model has central charge equal to one and twelve
primary fields (all simple currents). Its tensor product has central charge equal
to two, as well as its TF ⊗ TF -extension and Z2-orbifold.
By extending the tensor product by the current TF ⊗TF , one obtains the super-
symmetric tensor product, with 36 fields. Instead, by going to the orbifold and
extending by the current (TF , 1), one obtains the supersymmetric orbifold with
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Fixed point
resolution required

Results can be compared with work by Fuchs, Klemm, Schmidt (1992)

Applied to N=2 CFTs
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Heterotic Strings

Other approaches:

Free Fermions
(Asymmetric) Orbifolds, “Mini-Landscape”,
Geometric constructions

Several talks in this meeting



Xµ c=D=4

Internal CFT.
Must have c=9
and N=2 susy.

Heterotic strings

ψµ ( + ghosts) c=13

Bosonic
c=22



Modular invariance restricts this severely. 
Solutions exist because of isomorphisms between modular group representations.

D=10

ψµ

SO(16)

E8

SO(16) E8               ,        are affine Lie algebras. 
They appear in the spectrum as gauge symmetries

(+ ghosts)

The Bosonic String Map



The Bosonic String Map

This also works in 4 dimensions:

E8

SO(10)

Lerche, Lüst, Schellekens (1986)

ψµ (+ ghosts)



E8

SO(10)

Start with an especially prepared bosonic string...



E8

SO(10)

... and map it to a heterotic string

D=4

ψµ (+ ghosts)



E8

SO(10)

Families of (16)’s of SO(10)!

... and map it to a heterotic string

D=4

ψµ (+ ghosts)
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E8

SO(10)

Imposing space-time supersymmetry

Space-time Susy
(GSO projection)

Required by 
modular invariance. 
Extends SO(10) to E6



E8

SO(10)

Imposing space-time supersymmetry

Space-time Susy
(GSO projection)

Required by 
modular invariance. 
Extends SO(10) to E6



E8

SO(10)

But there exist other solutions to modular invariance

Space-time Susy
(GSO projection)

Extension by an isomorphic current 
of higher weight. Preserves modular 
invariance without affecting the 
massless spectrum

Schellekens, Yankielowicz (1989)



E8

SO(10)

But there exist other solutions to modular invariance

Space-time Susy
(GSO projection)

Extension by an isomorphic current 
of higher weight. Preserves modular 
invariance without affecting the 
massless spectrum

Schellekens, Yankielowicz (1989)



} ψµ



Gauge group H ⊂ SO(10) 

SO(10) currents replaced by 
operators of higher weight

} ψµ



Consider SU(3) × SU(2) × U(1)30 × U(1)20  ⊂  SO(10)

This gives standard gauge coupling unification. 
Common to all “classic” heterotic string constructions*.

U(1)30 allows Y-charges 

In the massless spectrum only a subset of these can occur: 
   

Breaking SO(10)

Y         B-L

−15

6
, . . . ,+

15

6

(*) Orbifolds, “heterotic mini-landscape”,  Free fermion constructions (Faraggi et. al.), 
most Calabi-Yau compacifications, Gepner models, ....

hSU(3) + hSU(2) +
3
5
Y 2 ≤ 1

This allows precisely all the Standard Models charges, including those of the 
GUT X,Y bosons, but also many fractionally charged representations. 

[U(1)N has N primaries]



 
Half-integer or third-integer charges can be avoided by clever choices of the CFT, but 
not simultaneously.

Absence of ALL fractional charges ⇔ Extension to unbroken SU(5) GUT

Possible ways out: 
Fractional charges could be massive, vector-like (and liftable) or confined by some additional gauge 
group.

(A.N. Schellekens, Phys. Lett. B237, 363, 1990). 
Related results: Wen and Witten, Nucl. Phys. B261, 651 (1985); Athanasiu, Atick, Dine, Fischler, Phys. Lett. B214, 55 (1988)

Possible way out in CFT:
Standard Model particles are associated with internal sector Ramond ground states, which must 
always be present, and whose conformal weight is fixed. 
Fractionally charged particles are related to other primaries, which must be present in order to be 
able to break SO(10), but their weights can vary by integers. 
So finding a suitable N=2 CFT would do the trick for (2,2)-related spectra.

But: this argument is not valid in (0,2) CFT’s.



SO(10) CFT sub-algebras

Nr. Name Current Order Gauge group Grp. CFT

0 SM, Q=1/6 (1, 1, 0, 0) 1 SU(3)× SU(2)× U(1)× U(1)
1
6

1
6

1 SM, Q=1/3 (1, 2, 15, 0) 2 SU(3)× SU(2)× U(1)× U(1)
1
6

1
3

2 SM, Q=1/2 (3, 1, 10, 0) 3 SU(3)× SU(2)× U(1)× U(1)
1
6

1
2

3 LR, Q=1/6 (1, 1, 6, 4) 5 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
6

4 SU(5) GUT (3̄, 2, 5, 0) 6 SU(5)× U(1) 1 1

5 LR, Q=1/3 (1, 2, 3,−8) 10 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
3

6 Pati-Salam (3̄, 0, 2, 8) 15 SU(4)× SU(2)L × SU(2)R
1
2

1
2

7 SO(10) GUT (3, 2, 1, 4) 30 SO(10) 1 1

Table 1: List of all Standard Model extensions within SO(10) and the resulting group theory

and CFT charge quantization (last two columns). We refer to these subgroups either by the

label in column 1 or by the name in column 2, where “LR” stands for left-right symmetric.
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 Fractional charges in Orientifold models

Non-orientable “x=½”

Non-orientable  “x=0”

Orientable

ΔQ=½ ΔQ=½

ΔQ=0 ΔQ=0

ΔQ=x ΔQ=−x

Half-integer charges in hidden sector (if present)

Only integer charges in perturbative spectrum

±x integer charges in hidden sector (if present)

No fractional charges in SM-realizations with few branes.

SM-realizations with at most four branes*

(*) Anastasopoulos, Dijkstra, Kiritsis, Schellekens
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“Madrid Model”
SU(5)

Trinification



Gato-Rivera, Schellekens, 2009

Heterotic Weight Lifting



Gato-Rivera, Schellekens, 2009

Heterotic Weight Lifting



SU(2)k × SO(2)
Uk+2

Minimal N=2 model at level k:

Plus “field identification”

c =
3k

k + 2

Coset description:



Remove the (formal) field identification extension, and consider

SU(2)k+2 × SO(2)× E8

Uk+2

In other words, we embed the U(1) in E8 instead of SU(2) x SO(2).

Next we identify a CFT X7 which can be combined with Uk+2 to E8, so that

SU(2)k+2 × SO(2)×X7

And finally we re-establish the equivalent of the field identification, as a 
standard, higher spin extension

E8 = [Uk+2 ×X7]ext

Then we can write the CFT as



The result is guaranteed, by construction, to have the 
same S and T matrices as the original minimal model.

But the spectrum is different

hG

i
− hH

j

hG

i
+ hH

c

j

hH
c

j
= −hH

j
mod 1

Standard coset field

Replacement

(j ∈ i)

All weight of H and Hc are positive
Therefore standard weights are lifted: 

hG

i
+ hH

c

j
> hG

i
− hH

J

(but equal mod 1)



k Lift Lifted Lowered Unchanged
1 E6 × A1 4 1 4
2 A7 7 1 12
3 [D6 × U10]ext 10 3 22
4 D5 × A2 21 4 23
5 A6 × A1 32 8 29
5 [E6 × U42]ext 24 11 37
6 [A6 × U112]ext 33 15 39
8 A4 × A3 65 29 37
9 [A6 × U154]ext 76 41 39
11 [E6 × U78]ext 104 61 39
11 [D6 × U26]ext 98 60 45
12 A6 × U4 125 66 39
13 A4 × A2 × A1 136 81 37
14 [A4 × A2 × U480]ext 147 105 47
14 [A6 × U224]ext 153 95 41
17 [E6 × U114]ext 202 105 37
17 [A4 × A2 × U570]ext 198 133 41
19 E6 × U14 228 119 42
20 [A6 × U308]ext 243 143 42
23 [D6 × U50]ext 300 161 41
26 A6 × U8 349 199 39
30 [A6 × U448]ext 417 235 46
41 [E6 × U258]ext 610 297 44
41 [A6 × U602]ext 606 325 48
42 [A6 × U616]ext 627 337 46
44 [A6 × U644]ext 673 361 42
44 [A4 × A2 × U1380]ext 659 465 56
47 [E6 × U294]ext 728 367 46
54 A6 × U16 857 455 51
58 A4 × A2 × U8 923 611 56
86 [A6 × U1232]ext 1501 741 52
89 [E6 × U546]ext 1556 705 49
238 A4 × A2 × U32 4959 2729 73
1,1 A2 × A1 × A2 × A1 16 1 14

Table 1: List of all lifts of N=2 minimal models described in this paper.

11



B-L Lifting

B-L



B-L Lifting



B-L Lifting

In this case all solutions can be enumerated.
There are two:

Embedding of the Standard Model in the “wrong” E8.
Embedding of the Standard Model in SO(32).

Chiral spectra are possible because these are stringy embeddings, not 
group theory embeddings. This is also the reason why embedding of the 
Standard Model in SO(10) does not necessarily yield standard families  
(see also E. Witten, 1985).

This replaces B-L by a non-abelian group. 
Examples exist where no SM particles couple to it.
We lose B-L as a potential origin for R-parity.  



usual factors SU(5)B−L, SO(10)B−L and U(1)n, where n is the number of N = 2 minimal
models in the tensor product. Occasionally there may be further extensions.

One of the simplest examples is the following one, obtained for the tensor product
(3, 3, 3, 3, 3). We denote the standard model representations for left-handed quarks and
leptons as Q, U c, Dc, L and Ec, where Q = (3, 2, 1

6), etc. The last two entries are respec-
tively the SU(5)B−L and SO(10)B−L representations. In this example the quarks, leptons,
and mirrors are

3× (Q, 1, 1) + 3× (U c, 1, 1) + 5× (Dc, 1, 1) + 2× (D, 1, 1)

+5× (L, 1, 1) + 2× (Lc, 1, 1) + 3× (Ec, 1, 1)

Note that they do not couple to the non-abelian hidden groups. There are two supersym-
metric Higgs pair candidates L + Lc, and two vector-like D + Dc pairs, but apart from
this the quark and lepton spectrum is exactly that of the standard model. The standard
model singlets N are

24× (N, 1, 1) + 6× (N, 5, 1) + 7× (N, 5̄, 1) + (N, 10, 1) + 5× (N, 1, 10) + (N, 1, 16)

Note that the SU(5)B−L representation is 7× (5̄) + 6× (5) + (10), which is anomaly free,
and corresponds to one net family of SU(5)B−L. The fractionally charged matter was
required to be vector-like with respect to SU(3)× SU(2)×U(1), but not with respect to
the rest of the gauge group. Indeed, in this example we find that it is chiral with respect
to SO(10)B−L. The part that is vector-like with respect to SO(10)B−L is

�
2× (1, 1,−1

2 , 5, 1) + 3× (1, 1, 1
2 , 5, 1) + 15× (1, 1, 1

2 , 1, 1) + 2× (3, 0, 1
6 , 1, 1) + c.c

�
)

+ 4× (1, 2, 0, 1, 1)

In addition, there are the following representations that are chiral with respect to SO(10)B−L

(1, 1,
1

2
, 1, 16) + (1, 1,−1

2
, 1, 16)

We see that in the “hidden” sector there is one net family of SU(5)B−L and three (!) of
SO(10)B−L (namely a total of three (16)’s). This group, SO(10)B−L, is in fact the gauge
group we would use to embed the standard model in standard Gepner constructions.
It may seem strange that we get three families from the “quintic” (the combination
(3,3,3,3,3)), which is known to give only an even number of families in standard Gepner
constructions. The reason is very simple. In this example the E8 factor is broken to a
subgroup. In a subsequent paper, [12], we will investigate this possibility in more detail.
It turns out that just breaking E8 to SU(5)×SU(5) in combination with the quintic gives
rise to a large number of three family models.

It is clear that the chiral SO(10)B−L symmetry forbids a mass for the last two frac-
tionally charged particles. However, if one of the five scalars (N, 1, 10) gets a vacuum
expectation value this will break SO(10) to a harmless SO(9) symmetry. Note that a
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of [22, 23, 24].7 All lines refer to Gepner models, except the one labelled “free fermions”.
The results on free fermions are based on a special class that can be analysed with simple
current in a way analogous to Gepner models, as explained in [22]. It does not represent
the entire class of free fermionic models. For other work on this kind of construction,
including three family models, see [48, 42] and references therein.

Type Chiral Exotics GUT Non-chiral N > 0 fam. No frac.

Standard∗ 37.4% 32.7% 20.5 % 9.3% 0
Standard, perm. 29.7% 33.4 % 27.9 % 8.9% 0
Free fermionic 1.5% 2.9% 94.4% 1.1% 0.072%
Lifted 28.3% 18.7% 51.9% 1.1% 0.00051%
Lifted, perm. 26.8% 8.9% 62.7 % 1.6% 0.00078%
(B-L)∗Type-A 21.3% 28.0% 50.4 % 0.3% 0.00017%

(B-L)Type-A, perm. 22.8% 8.1 % 69.1 % 0.03% 0
(B-L)∗Type-B 38.5% 8.7% 52.1% 0.6% 0

(B-L)Type-B, perm. 27.6% 7.3 % 65.0 % 0.1% 0

Table 2: Relative frequency of various types of spectra. An asterisk indicates that excep-
tional minimal model MIPFs are included.

In table (3) we specify the absolute number of distinct MIPFs (more precisely, distinct
spectra, based on the criteria spelled out in [22, 23, 24]) with non-chirally-exotic spectra.
The column marked “Total” specifies the total number of distinct spectra without chiral
exotics, the third column lists the number of distinct 3-family spectra and the last column
the number of distinct N -family spectra, in both cases regardless of gauge group and
without modding out mirror symmetry.

7.4 Family number

In this subsection we would like to say something about the distributions of the number
of families emerging from the spectra of permuted Gepner models. The common features
of all the different cases is that an even number of families is always more favourable than
an odd one and these distributions decrease exponentially when the number of families
increases.

7We thank the authors for making their raw data available to us.
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Summary (all constructions)

Vector-like
Exotics

No
Exotics

No-exotics models have an even number of families
For three-family examples see

 
Assel, Christodoulides, Faraggi, Kounnas and Rizos (2010)     [Free fermions]
Blaszczyk, Nibbelink, Ratz, Ruehle, Trapletti, Vaudrevange (2010)     [Freely acting symmetries]
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Does 
SU(3) × SU(2) × U(1) 
imply family structure?

Do chiral families 
 imply absence of 
(light) fractional 

charges?
Nfamily?

Field 
Theory

No restrictions apart 
from anomaly 
cancellation

Yes, assuming 
SU(5) or 

S(U(3) × U(2))
No restrictions

Heterotic
Strings
(“Classic”)

Correct restriction to 
small reps, but chiral 

exotics likely.

No.
(but rare cases exist)

Strongly peaked at 
small values. Three not 

strongly suppressed

Orientifolds ?
Yes, 

for three or four 
branes.

Very strongly peaked 
at small values. 

Apparent dip at three.


