RCFT constructions of Heterotic Strings

Bert Schellekens NIKHEF

Busan, StríngVac11

5 September 2011

Some recent events

J. Harvey, summary talk Strings 2011

Search for minimal dS solution without all the bells and whistles of KKLT. It is hard.

Landscape/multiverse skeptics may take some hope from these results, but it seems too early to know for sure.

Some recent events

J. Harvey, summary talk Strings 2011

Search for minimal dS solution without all the bells and whistles of KKLT. It is hard.

Landscape/multiverse skeptics may take some hope from these results, but it seems too early to know for sure.

BBC

LHC results put supersymmetry theory 'on the spot'

Some recent events

J. Harvey, summary talk Strings 2011

Search for minimal dS solution without all the bells and whistles of KKLT. It is hard.

Landscape/multiverse skeptics may take some hope from these results, but it seems too early to know for sure.

BBC LHC results put supersymmetry theory 'on the spot'

Bitten the dust Disappointed Down the drain

COMMENTS

- The Standard Model is perfectly OK without low energy supersymmetry.
- String theory does not predict low energy supersymmetry.
- Perhaps the "landscape" even predicts the opposite.
- The one Standard Model feature of String Theory that is most likely to survive (if anything survives) is the landscape.

But we should be able to learn a little bit more about the Standard Model than that it is merely an anthropically restricted but otherwise "random" point in a huge ensemble.

 $SU(3) \times SU(2) \times U(1)$ Chiral Families 3 families String Theory

 $SU(3) \times SU(2) \times U(1)$ **Chiral Families** 3 families String Theory $SU(3) \times SU(2) \times U(1)$ **Chiral Families** No light fractional charges String Theory

RCFT models: closed sector

Type-II strings

BUILDING BLOCK DATA

Required data

- The exact Virasoro spectrum $h_i, \ i = 1, \dots, N_{primary}$
- The ground state dimensions.
- The modular matrix *S*_{*ij*}

 $S_{J0} = S_{00} : J$ is a simple current Fusion: [J].[i] = [Ji]

Used to build non-trivial MIPFs

The fixed point resolution matrices S^J
 Act on fixed points of J : [J].[f] = [f]

THE MIPFS

(MODULAR INVARIANT PARTITION FUNCTIONS)

$$P(\tau,\bar{\tau}) = \sum_{ij} \chi_i(\tau) M_{ij} \xi_j(\bar{\tau})$$

Each building block contributes factors to a discrete simple current group G

Example:

$$\mathbb{Z}_2^3 \times \mathbb{Z}_3 \times \mathbb{Z}_{30} \times \mathbb{Z}_{20}^6$$

Now choose any(*) subgroup H, and a rational(*) matrix X satisfying $X+X^T=R$, where R is a given rational matrix (the "monodromy matrix"). Then for each(*) such matrix X we get a matrix $M_{ij} = M(H, X)$ defining a MIPF. (Nucl.Phys. B411 (1994) 97-121, with Max Kreuzer)

This has a huge number of solutions; for \mathbb{Z}_p^K , p prime : (with B. Gato-Rivera, 1992)

$$N_{\rm MIPF} = \prod_{l=0}^{K-1} (1+p^l)$$

For p=5, K=7:

 $N_{\rm MIPF} = 1.202.088.011.709.312$

(*) Restrictions apply.

Matrix S for chiral algebra extensions (Fuchs, Schellekens, Schweigert (1996))

$$\tilde{S}_{(a,i),(b,j)} = \frac{|\mathcal{G}|}{\sqrt{|\mathcal{U}_a| |\mathcal{S}_a| |\mathcal{U}_b| |\mathcal{S}_b|}} \sum_{J \in \mathcal{G}} \Psi_i^a(J) S_{a,b}^J \Psi_j^b(J)^*$$

Boundary coefficients for non-trivial MIPFs (Fuchs, Huiszoon, Schellekens, Schweigert, Walcher (2000))

$$B_{(i,J),[j,\psi]} = \sqrt{\frac{|\mathcal{G}|}{|\mathcal{S}_j| |\mathcal{C}_j|}} \frac{\alpha(J) S_{i,j}^J}{\sqrt{S_{0,i}}} \psi(J)^*$$

Building blocks we can use at present

 N=2 minimal models: Gepner models (168 combinations) Gepner (1987) Lutken, Ross (1988)
 Fuchs, Klemm, Scheich, Schmidt (1989)
 Schellekens, Yankielowicz (1989)
 Gato-Rivera, Schellekens (2010)

Free fermion triplets

Antoniadis, Bachas, Kounnas, Windey (1985) Kawai, Lewellyn, Tye (1986); Antoniadis, Bachas, Kounnas (1986) Faraggi et. al. (1990 -) Kiritsis, Lennek, Schellekens (2008) Gato-Rivera, Schellekens (2010)

Permutation orbifolds

Fuchs, Klemm, Schmidt (1991) *Maio, Schellekens* (2010,2011)

Tensoring building blocksOther methods

Plotted: nr. of distinct Hodge pairs for each number of families

PERMUTATION ORBIFOLDS

Obtained by modding out the permutation symmetry of two identical factors in a CFT

$$\mathcal{A}_{\mathrm{perm}} \equiv \mathcal{A} imes \mathcal{A} / \mathbb{Z}_2$$

Characters:

 Off-diagonal
 $X_{\langle i,j \rangle}(\tau) = \chi_i(\tau) \cdot \chi_j(\tau)$

 Diagonal ($\xi = 0, 1$)
 $X_{(i,\xi)}(\tau) = \frac{1}{2}\chi_i^2(\tau) + e^{i\pi\xi}\frac{1}{2}\chi_i(2\tau)$

 Twisted ($\xi = 0, 1$)
 $X_{\widehat{(i,\xi)}}(\tau) = \frac{1}{2}\chi_i(\frac{\tau}{2}) + e^{-i\pi\xi}T_i^{-\frac{1}{2}}\frac{1}{2}\chi_i(\frac{\tau+1}{2})$

FORMULA FOR S

(Borisov, Halpern, Schweigert)

$$S_{(mn)(pq)} = S_{mp} S_{nq} + S_{mq} S_{np}$$

$$S_{(mn)(p,\chi)} = 0$$

$$S_{(p,\phi)(q,\chi)} = \frac{1}{2} e^{2\pi i (\phi + \chi)/2} P_{ip}$$

$$S_{(i,\phi)(j,\chi)} = \frac{1}{2} S_{ij} S_{ij}$$

$$S_{(i,\phi)(mn)} = S_{im} S_{in}$$

$$S_{(i,\phi)(p,\chi)} = \frac{1}{2} e^{2\pi i \phi/2} S_{ip},$$

$$P = \sqrt{T}ST^2S\sqrt{T}$$

(Sagnotti-Pradisi-Stanev *P*-matrix; Betrays orientifold analogy)

FORMULA FOR S^J

(work with Michele Maio)

$$\begin{split} S_{(mn)(pq)}^{(J,\psi)} &= S_{mp}^{J} S_{nq}^{J} + (-1)^{\psi} S_{mq}^{J} S_{np}^{J} \\ S_{(mn)(p,\chi)}^{(J,\psi)} &= \begin{cases} 0 & \text{if } J \cdot m = m \\ A S_{mp} & \text{if } J \cdot m = n \end{cases} \\ S_{(p,\phi)(q,\chi)}^{(J,\psi)} &= B \frac{1}{2} e^{i\pi \hat{Q}_{J}(p)} P_{Jp,q} e^{i\pi (\phi + \chi)} \\ S_{(i,\phi)(j,\chi)}^{(J,\psi)} &= \frac{1}{2} S_{ij}^{J} S_{ij}^{J} \\ S_{(i,\phi)(mn)}^{(J,\psi)} &= S_{im}^{J} S_{in}^{J} \\ S_{(i,\phi)(mn)}^{(J,\psi)} &= C \frac{1}{2} e^{i\pi \phi} S_{ip} . \end{split}$$

 $\psi = \pm 1$ $B, C = \pm 1$ ("gauge" choices)

APPLIED TO N=2 CFTs

Results can be compared with work by *Fuchs, Klemm, Schmidt* (1992)

HETEROTIC STRINGS

OTHER APPROACHES:

FREE FERMIONS (ASYMMETRIC) ORBIFOLDS, "MINI-LANDSCAPE", GEOMETRIC CONSTRUCTIONS

SEVERAL TALKS IN THIS MEETING

Heterotic strings

THE BOSONIC STRING MAP

Modular invariance restricts this severely.

Solutions exist because of isomorphisms between modular group representations.

SO(16), E_8 are affine Lie algebras. They appear in the spectrum as gauge symmetries

THE BOSONIC STRING MAP

This also works in 4 dimensions:

 ψ^{μ} (+ ghosts) \longleftrightarrow E_8

Lerche, Lüst, Schellekens (1986)

Start with an especially prepared bosonic string...

... and map it to a heterotic string

... and map it to a heterotic string

Families of (16)'s of SO(10)!

Interacting

Non-symmetric (free bosons, fermions, orbifolds)

Non-symmetric (free bosons, fermions, orbifolds) Imposing space-time supersymmetry

Imposing space-time supersymmetry

But there exist other solutions to modular invariance

Extension by an isomorphic current of higher weight. Preserves modular invariance without affecting the massless spectrum

Space-time Susy (GSO projection)

Schellekens, Yankielowicz (1989)

But there exist other solutions to modular invariance

Extension by an isomorphic current of higher weight. Preserves modular invariance without affecting the massless spectrum

Space-time Susy (GSO projection)

Schellekens, Yankielowicz (1989)

SO(10) currents replaced by operators of higher weight

Gauge group $H \subset SO(10)$

BREAKING SO(10)

Consider SU(3) × SU(2) × U(1)₃₀ × U(1)₂₀ \subset SO(10) Y B-L $[U(1)_N has N primaries]$

This gives standard gauge coupling unification. Common to all "classic" heterotic string constructions*.

U(1)₃₀ allows Y-charges $-\frac{15}{6}, ..., +\frac{15}{6}$

In the massless spectrum only a subset of these can occur: $h_{SU(3)} + h_{SU(2)} + \frac{3}{5}Y^2 \le 1$

This allows precisely all the Standard Models charges, including those of the GUT X,Y bosons, but also many fractionally charged representations.

(*) Orbifolds, "heterotic mini-landscape", Free fermion constructions (Faraggi et. al.), most Calabi-Yau compacifications, Gepner models,

Half-integer or third-integer charges can be avoided by clever choices of the CFT, but not simultaneously.

Absence of ALL fractional charges ⇔ Extension to **unbroken** SU(5) GUT

(A.N. Schellekens, Phys. Lett. B237, 363, 1990). Related results: Wen and Witten, Nucl. Phys. B261, 651 (1985); Athanasiu, Atick, Dine, Fischler, Phys. Lett. B214, 55 (1988)

Possible ways out:

Fractional charges could be massive, vector-like (and liftable) or confined by some additional gauge group.

Possible way out in CFT: Standard Model particles are associated with internal sector Ramond ground states, which must always be present, and whose conformal weight is fixed. Fractionally charged particles are related to other primaries, which must be present in order to be able to break SO(10), but their weights can vary by integers.

So finding a suitable N=2 CFT would do the trick for (2,2)-related spectra.

But: this argument is not valid in (0,2) CFT's.

SO(10) CFT sub-algebras

Name	Current	Order	Gauge group	Grp.	CFT
SM, $Q = 1/6$	(1, 1, 0, 0)	1	$SU(3) \times SU(2) \times U(1) \times U(1)$	$\frac{1}{6}$	$\frac{1}{6}$
SM, $Q=1/3$	(1, 2, 15, 0)	2	$SU(3) \times SU(2) \times U(1) \times U(1)$	$\frac{1}{6}$	$\frac{1}{3}$
SM, $Q=1/2$	(3, 1, 10, 0)	3	$SU(3) \times SU(2) \times U(1) \times U(1)$	$\frac{1}{6}$	$\frac{1}{2}$
LR, $Q=1/6$	(1, 1, 6, 4)	5	$SU(3) \times SU(2)_L \times SU(2)_R \times U(1)$	$\frac{1}{6}$	$\frac{1}{6}$
SU(5) GUT	$(ar{3},2,5,0)$	6	SU(5) imes U(1)	1	1
LR, $Q=1/3$	(1, 2, 3, -8)	10	$SU(3) \times SU(2)_L \times SU(2)_R \times U(1)$	$\frac{1}{6}$	$\frac{1}{3}$
Pati-Salam	$(ar{3},0,2,8)$	15	$SU(4) \times SU(2)_L \times SU(2)_R$	$\frac{1}{2}$	$\frac{1}{2}$
SO(10) GUT	(3,2,1,4)	30	SO(10)	1	1

FRACTIONAL CHARGES IN ORIENTIFOLD MODELS

SM-realizations with at most four branes*

Non-orientable " $x=\frac{1}{2}$ " Half-integer charges in hidden sector (if present)

Non-orientable "x=0" Only integer charges in perturbative spectrum

Orientable ±x integer charges in hidden sector (if present)

No fractional charges in SM-realizations with few branes.

(*) Anastasopoulos, Dijkstra, Kiritsis, Schellekens

Heterotic Weight Lifting

Gato-Rivera, Schellekens, 2009

Heterotic Weight Lifting

Gato-Rivera, Schellekens, 2009

Minimal N=2 model at level k:

 $c = \frac{3k}{k+2}$

Coset description:

 $\frac{SU(2)_k \times SO(2)}{U_{k+2}}$

Plus "field identification"

Remove the (formal) field identification extension, and consider

$$SU(2)_{k+2} \times SO(2) \times \frac{E_8}{U_{k+2}}$$

In other words, we embed the U(1) in E_8 instead of SU(2) x SO(2).

Next we identify a CFT X₇ which can be combined with U_{k+2} to $E_{8,}$ so that

$$E_8 = [U_{k+2} \times X_7]_{\text{ext}}$$

Then we can write the CFT as

 $SU(2)_{k+2} \times SO(2) \times X_7$

And finally we re-establish the equivalent of the field identification, as a standard, higher spin extension

The result is guaranteed, by construction, to have the same S and T matrices as the original minimal model.

But the spectrum is different

Standard coset field
$$h_i^G - h_j^H$$
 $(j \in i)$ Replacement $h_i^G + h_j^{H^c}$ $h_j^{H^c} = -h_j^H \mod 1$

All weight of *H* and *H*^c are positive Therefore standard weights are lifted:

$$h_i^G + h_j^{H^c} > h_i^G - h_J^H$$

(but equal mod 1)

k	Lift	Lifted	Lowered	Unchanged
1	$E_6 \times A_1$	4	1	4
2	A_7	7	1	12
3	$[D_6 \times U_{10}]_{\text{ext}}$	10	3	22
4	$D_5 \times A_2$	21	4	23
5	$A_6 \times A_1$	32	8	29
5	$[E_6 \times U_{42}]_{\text{ext}}$	24	11	37
6	$[A_6 \times U_{112}]_{\text{ext}}$	33	15	39
8	$A_4 \times A_3$	65	29	37
9	$[A_6 \times U_{154}]_{\text{ext}}$	76	41	39
11	$[E_6 \times U_{78}]_{\text{ext}}$	104	61	39
11	$[D_6 \times U_{26}]_{\text{ext}}$	98	60	45
12	$A_6 \times U_4$	125	66	39
13	$A_4 \times A_2 \times A_1$	136	81	37
14	$[A_4 \times A_2 \times U_{480}]_{\text{ext}}$	147	105	47
14	$[A_6 \times U_{224}]_{\text{ext}}$	153	95	41
17	$[E_6 \times U_{114}]_{\text{ext}}$	202	105	37
17	$[A_4 \times A_2 \times U_{570}]_{\text{ext}}$	198	133	41
19	$E_6 \times U_{14}$	228	119	42
20	$[A_6 \times U_{308}]_{\text{ext}}$	243	143	42
23	$[D_6 \times U_{50}]_{\text{ext}}$	300	161	41
26	$A_6 \times U_8$	349	199	39
30	$[A_6 \times U_{448}]_{\text{ext}}$	417	235	46
41	$[E_6 \times U_{258}]_{\text{ext}}$	610	297	44
41	$[A_6 \times U_{602}]_{\text{ext}}$	606	325	48
42	$[A_6 \times U_{616}]_{\text{ext}}$	627	337	46
44	$[A_6 \times U_{644}]_{\text{ext}}$	673	361	42
44	$[A_4 \times A_2 \times U_{1380}]_{\text{ext}}$	659	465	56
47	$[E_6 \times U_{294}]_{\text{ext}}$	728	367	46
54	$A_6 \times U_{16}$	857	455	51
58	$A_4 \times A_2 \times U_8$	923	611	56
86	$[A_6 \times U_{1232}]_{\text{ext}}$	1501	741	52
89	$[E_6 \times U_{546}]_{\text{ext}}$	1556	705	49
238	$A_4 \times A_2 \times U_{32}$	4959	2729	73
1,1	$A_2 \times A_1 \times A_2 \times A_1$	16	1	14

B-L Lifting

B-L Lifting

B-L Lifting

In this case all solutions can be enumerated. There are two:

- Θ Embedding of the Standard Model in the "wrong" E_8 .
- Solution Embedding of the Standard Model in *SO*(*32*).

Chiral spectra are possible because these are stringy embeddings, not group theory embeddings. This is also the reason why embedding of the Standard Model in SO(10) does not necessarily yield standard families (see also E. Witten, 1985).

This replaces B-L by a non-abelian group. Examples exist where no SM particles couple to it. We lose B-L as a potential origin for R-parity.

$$\left[\text{SM }, Q = \frac{1}{2}\right] \times SU(5) \times SO(10)$$

Matter

 $\begin{aligned} 3 \times (Q,1,1) + 3 \times (U^c,1,1) + 5 \times (D^c,1,1) + 2 \times (D,1,1) \\ + 5 \times (L,1,1) + 2 \times (L^c,1,1) + 3 \times (E^c,1,1) \end{aligned}$

Singlets

 $24 \times (N, 1, 1) + 6 \times (N, 5, 1) + 7 \times (N, \overline{5}, 1) + (N, 10, 1) + 5 \times (N, 1, 10) + (N, 1, \overline{16})$

Exotics

 $\begin{bmatrix} 2 \times (1, 1, -\frac{1}{2}, 5, 1) + 3 \times (1, 1, \frac{1}{2}, 5, 1) + 15 \times (1, 1, \frac{1}{2}, 1, 1) + 2 \times (3, 0, \frac{1}{6}, 1, 1) + c.c \end{bmatrix})$ $+ 4 \times (1, 2, 0, 1, 1)$

$$(1, 1, \frac{1}{2}, 1, \overline{16}) + (1, 1, -\frac{1}{2}, 1, \overline{16})$$

RESULTS

Summary (all constructions)

Type	Chiral Exotics	GUT	Non-chiral	N > 0 fam.	No frac.
Standard*	37.4%	32.7%	20.5~%	9.3%	0
Standard, perm.	29.7%	33.4~%	27.9~%	8.9%	0
Free fermionic	1.5%	2.9%	94.4%	1.1%	0.072%
Lifted	28.3%	18.7%	51.9%	1.1%	0.00051%
Lifted, perm.	26.8%	8.9%	62.7~%	1.6%	0.00078%
$(B-L)^*_{Type-A}$	21.3%	28.0%	50.4~%	0.3%	0.00017%
$(B-L)_{Type-A}$, perm.	22.8%	8.1 %	69.1~%	0.03%	0
$(B-L)^*_{Type-B}$	38.5%	8.7%	52.1%	0.6%	0
$(B-L)_{Type-B}$, perm.	27.6%	7.3~%	65.0~%	0.1%	0

Vector-like	No
Exotics	Exotics

No-exotics models have an even number of families

For three-family examples see

Assel, Christodoulides, Faraggi, Kounnas and Rizos (2010) [Free fermions]

Blaszczyk, Nibbelink, Ratz, Ruehle, Trapletti, Vaudrevange (2010) [Freely acting symmetries]

B-L Lifted Gepner (lift A)

Permutation orbifolds

(with Michele Maio)

	Does $SU(3) \times SU(2) \times U(1)$ imply family structure?	Do chiral families imply absence of (light) fractional charges?	$N_{ m family}?$
Field Theory	No restrictions apart from anomaly cancellation	Yes, assuming SU(5) or $S(U(3) \times U(2))$	No restrictions
Heterotic Strings ("Classic")	Correct restriction to small reps, but chiral exotics likely.	No. (but rare cases exist)	Strongly peaked at small values. Three not strongly suppressed
Orientifolds	?	Yes, for three or four branes.	Very strongly peaked at small values. Apparent dip at three.