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Model is perfectly OK without low energy

supersymmetry.
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Perhaps the “

String theory does not predict low energy supersymmetry.

andscape” even predicts the opposite.

The one Stand
most likely to
landscape.

€

But we should b
Standard Model

ard Model feature of String Theory that is
survive (if anything survives) is the

e able to learn a little bit more about the
than that it is merely an anthropically

restricted but otherwise “random” point in a huge ensemble.
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RCFT models: closed sector



Type-II strings
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Internal CFT.
Must have c=9
and N=2 susy.

3
3
| P (+ ghosts)

C= L3



Heterotic
(Gepner,....)

Orientifolds
(Sagnottiet al i)



BUILDING BLOCK DATA

Required data

e The exact Virasoro spectrum
hi7 (S 17 By Np?“imary

e The ground state dimensions.

e The modular matrix S;;
S50 = Soo : J is a simple current
Fusion: |J].[1] = [Ji]
Used to build non-trivial MIPFs

e The fixed point resolution matrices S’

Act on fixed points of J : [J].[f] = [f]




THE MIPFsS

(MODULAR INVARIANT PARTITION FUNCTIONS)

ZX@ Z]€] )

Each building block contributes factors to a discrete simple current group G
Example: Zg X Zig X Lo X ZSO

Now choose any(*) subgroup H, and a rational(*) matrix X satisfying X+XT=R,
where R is a given rational matrix (the “monodromy matrix”).

Then for each(*) such matrix X we get a matrix M;; = M (H, X) defining a MIPF.
(Nucl.Phys. B411 (1994) 97-121, with Max Kreuzer)

This has a huge number of solutions; for fo ,p prime :  (with B. Gato-Rivera, 1992)
K—-1

NMIPF = H s
=3

For p=5, K=7: Nwmrrer = 1.202.088.011.709.312

(*) Restrictions apply.



Matrix S for chiral algebra extensions
(Fuchs, Schellekens, Schweigert (1996))

S(a), ) = .
B SIS 2

UH(JT) Sy, UH(JT)*

Boundary coetficients for non-trivial MIPFs
(Fuchs, Huiszoon, Schellekens, Schweigert, Walcher (2000))

E G| a(J)S;;
(i,1),[5:9] Sl Gl [Shy

)

p(J)"
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Building blocks we can use at present

@ N=2 minimal models: Gepner models (168 combinations)
Gepner (1987)
Lutken, Ross (1988)
Fuchs, Klemm, Scheich, Schmidt (1989)
Schellekens, Yankielowicz (1989)
Gato-Rivera, Schellekens (2010)

Q@ Free fermion triplets

Antoniadis, Bachas, Kounnas, Windey (1985)

Kawai, Lewellyn, Tye (1986); Antoniadis, Bachas, Kounnas (1986)
Faraggiet. al. (1990 - ....)

Kiritsis, Lennek, Schellekens (2008)

Gato-Rivera, Schellekens (2010)

@ Permutation orbifolds

Fuchs, Klemm, Schmidt (1991)

Maio, Schellekens (2010,2011) ® Tensoring building blocks
® Other methods
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PERMUTATION ORBIFOLDS

Obtained by modding out the permutation symmetry of
two identical factors in a CFT

Aperm — -’4 X A/ZQ

Characters:
Off-diagonal ) =l g ()
1 e
Diagonal (£ =0,1) Xag(T) = §X?(7)+€ §§Xi(27)
I e e il S
Twisted (£=0,1) Ml §Xv:(§)+€ o §Xz( 5 )



FORMULA FOR S
(Borisov, Halpern, Schweigert)

S(m’n)(pq) s Smpan+5mq Snp
B )

_ L oonierne p
B 5 Pip

1

Sao) = 5555
S(i,qb)(mn) = Sim Sin

o 1 2mip /2
e el

P T ST2 g /T (Sagnotti-Pradisi-Stanev P-matrix;

Betrays orientifold analogy)



FORMULA FOR $’/

(work with Michele Maio)

(mn)(pq)

(mn)(p,x)

S
(p,9)(a,x)

()
S

(%)
o

S(va)/\
(2,9)(P>x)

) = +1

B @ L

GEL L Y o

mp —ngq LA e

0
AS

i |
B = oimQ 5 (P) Pry et (P+x)

it J-m=m
it JJ - m=n

S
537;3'57;3'

J J

jie
C 5 €Z7r¢ Sz'p 3

(“gauge” choices)



APPLIED TO N=2 CFTs

Tl
(N = 2)°|—5|(N = 2)},,,
A A
(0,1) )/BHS (0,1) \)lsuper—BHS
' (Tr,1) '
(N v 2)(2)rb ot (N = 2)%’usy—0rb

Fixed point
resolution required

Results can be compared with work by Fuchs, Klemm, Schmidt (1992)
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GEOMETRIC CONSTRUCTIONS

SEVERAL TALKS IN THIS MEETING




Heterotic strings

Bosonic
G
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Internal CFT.
Must have c=9
and N=2 susy.

P (+ ghosts)

C= L3



THE BOSONIC STRING MAP

Modular invariance restricts this severely.
Solutions exist because of isomorphisms between modular group representations.

SO(16)
Y’ (+ ghosts) T
D=10
Fig

S 0(16), FEg are affine Lie algebras.
They appear in the spectrum as gauge symmetries




THE BOSONIC STRING MAP

This also works in 4 dimensions:

SO(10)
Y  (+ ghosts) €y
F

Lerche, Liist, Schellekens (1986)

—




Start with an especially prepared bosonic string...

SO(10)




... and map it to a heterotic string

w,u (+ ghosts)
D=4

SO(10)

—F--_




... and map it to a heterotic string

w,u (+ ghosts)
D=4

SO(10)

Ebig

—F--_

Families of (16)’s of SO(10)!
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Imposing space-time supersymmetry

Required by
modular invariance.
Extends SO(10) to Es

SO(10)

E

—F--_
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Space-time Susy

(GSO projection)
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But there exist other solutions to modular invariance

Extension by an isomorphic current
of higher weight. Preserves modular
invariance without affecting the

massless spectrum |—|
Space-time Susy
(GSO projection)
SO(10)
Eg

—F--
I B I

Schellekens, Yankielowicz (1989)
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SO(10) currents replaced by
operators of higher weight

N N S —"|— —

Gauge group H C SO(10)

wﬁb



BREAKING SO(10)

Consider SU(3) x SU(2) x U(1)30 x U(1)20 C SO(10) [U(1)~n has N primaries]
Y B-L

This gives standard gauge coupling unification.
Common to all “classic” heterotic string constructions®.

15 15
U(1)30 allows Y-charges R _|_F
In the massless spectrum only a subset of these can occur: hsu) + hsu() + gY2 1

This allows precisely all the Standard Models charges, including those of the
GUT X,Y bosons, but also many fractionally charged representations.

(*) Orbifolds, “heterotic mini-landscape”, Free fermion constructions (Faraggi et. al.),
most Calabi-Yau compacifications, Gepner models, ....



Half-integer or third-integer charges can be avoided by clever choices of the CFT, but
not simultaneously.

Absence of ALL fractional charges < Extension to unbroken SU(5) GUT

(A.N. Schellekens, Phys. Lett. B237, 363, 1990).
Related results: Wen and Witten, Nucl. Phys. B261, 651 (1985); Athanasiu, Atick, Dine, Fischler, Phys. Lett. B214, 55 (1988)

Possible ways out:
Fractional charges could be massive, vector-like (and liftable) or confined by some additional gauge

group.

Possible way out in CFT:

Standard Model particles are associated with internal sector Ramond ground states, which must
always be present, and whose conformal weight is fixed.

Fractionally charged particles are related to other primaries, which must be present in order to be
able to break SO(10), but their weights can vary by integers.

So finding a suitable N=2 CFT would do the trick for (2,2)-related spectra.

But: this argument is not valid in (0,2) CFT’s.



SO(10) CFT sub-algebras

Name Current || Order Gauge group Grp. | CFT
SM, Q=1/6 | (1,1,0,0) 1 SU(3) x SU(2) x U(1) x U(1) : :
SM, Q=1/3 | (1,2,15,0) 2 SU(3) x SU(2) x U(1) x U(1) : :
SM, Q=1/2 | (3,1,10,0) 3 SU(3) x SU(2) x U(1) x U(1) : )
LR, Q=1/6 | (1,1,6,4) 5 SU(3) x SU2)r x SUQ2)r xU(1) | = .
SU(5) GUT | (3,2,5,0) 6 SU(5) x U(1) 1 1
LR, Q=1/3 | (1,2,3,-8) | 10 | SU@B)xSUQ)L xSUR)rxU1) | = !
Pati-Salam (3,0,2,8) 15 SU(4) x SU(2)L x SU(2)r % %
SO(10) GUT | (3,2,1,4) 30 S0(10) 1 1




FRACTIONAL CHARGES IN ORIENTIFOLD MODELS

SM-realizations with at most four branes*

/\/\_ Non-orientable “x=15"

1 ]
AQ=7> AQ=+ Half-integer charges in hidden sector (if present)
AQ_O/\/\. AQ=0 Non-orientable “x=0
B Only integer charges in perturbative spectrum
/\/\_ Orientable
AQ=x AQ=—x +x integer charges in hidden sector (if present)

No fractional charges in SM-realizations with few branes.

(*) Anastasopoulos, Dijkstra, Kiritsis, Schellekens



SU(5)

“Madrid Model”
\K b
w.d) i (10)
u’ eJcr
w . = f
. C
d
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Heterotic Weight Lifting

Gato-Rivera, Schellekens, 2009



Heterotic Weight Lifting

e e e

Gato-Rivera, Schellekens, 2009



Minimal N=2 model at level k:
Coset description:

SU(Q)k; X SO(Q)
Uk+2

Plus “field identification”

57

%=



Remove the (formal) field identification extension, and consider

Lbig

SU(2)k+2 X SO(Q) X
Uk+2

In other words, we embed the U(1) in Eg instead of SU(2) x SO(2).

Next we identify a CFT X7 which can be combined with Ux» to Eg so that
Eg = [Uk12 X X7]ext

Then we can write the CFT as

SU(Z)k+2 X SO(Q) X X7

And finally we re-establish the equivalent of the field identification, as a
standard, higher spin extension



The result is guaranteed, by construction, to have the
same S and T matrices as the original minimal model.

But the spectrum is different

Standard coset field ~ hy — b (j € i)

Replacement he + hHC

hHC —hf! mod 1

All weight of H and H¢ are positive
Therefore standard weights are lifted:

he ahs e
(but equal mod 1)



k Lift Lifted | Lowered | Unchanged
1 Eg x A 4 1 4
2 A i il 12
3 [Dg X Uspext 10 3 )7
4 Ds x Ag 2 4 23
5 Ag X A 32 8 29
5) [E6 X U42]ext 24 11 357
6 [Ag X Utia]ext 33 15 39
8 Ay X As 65 29 37
9 [Ag X Utsa]ext 70 41 39
11 [Eg X Urglext 104 61 39
11 [Dg X Usgext 98 60 45
12 Ag x Uy 125 66 39
13 Ay x Ay X Ay 136 81 37
14 [Ay X Ag X Usgoext 147 105 47
14 [Ag X Usoaext 153 95 41
170 [Eg X Ur14]ext 202 105 o
17 [A4 X A2 X U570]ext 198 133 41
19 FEe x Uya 228 119 42
20 [Ag X Usosext 243 143 42
23 [Dg X Uspext 300 161 41
26 Ag x Ug 349 199 39
30 [Ag X Usgsext A 7 235 46
41 [Eg X Ussgext 610 297 44
41 [AG X UGOQ]eXt 606 325 48
42 [Ag X Usg16]ext 627 337 46
44 [Ag X Usaa]ext 673 361 42
44 || [Ag X Ag X Ussgolext | 659 465 56
47 [Eg X Usgaext 728 367 46
54 Ag X Uyg 857 455 51
58 Ay x Ay x Uy 923 611 56
86 [Ag X Up23o]ext 1501 741 52
89 [Eg X Usagext 1556 705 49
238 Ay X A X Usy 4959 2729 73
1.1 || As x A; X Ay X Ay 16 1 14




B-L Lifting
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B-L Lifting

In this case all solutions can be enumerated.
There are two:

@ Embedding of the Standard Model in the “wrong” Es.
@ Embedding of the Standard Model in SO(32).

Chiral spectra are possible because these are stringy embeddings, not
group theory embeddings. This is also the reason why embedding of the
Standard Model in SO(10) does not necessarily yield standard families
(see also E. Witten, 1985).

This replaces B-L by a non-abelian group.
Examples exist where no SM particles couple to it.
We lose B-L as a potential origin for R-parity.



SM Q= % < SU(5) x SO(10)

Matter
3x(Q,1,1)+3x(U1,1)+5x (D1,1)+2x(D,1,1)
5% (L, 1,1) +2 x (L5,1,1) + 3 x (E°,1,1)
Singlets
24 x (N,1,1) +6 x (N,5,1) +7 x (N,5,1) + (N,10,1) + 5 x (N, 1,10) + (N, 1, 16)

Exotics

2x(1,1,-1,5,1) +3x(1,1,5,5,1) + 15 x (1,1,1,1,1) + 2 x (3,0, 4,1,1) + c.c |)

) ) 929 I )07 Y

+4x(1,2,0,1,1)

1 1
(1.1,5.1,16) + (1,1, 5. 1,T6)



SU(5)
Pati-Salam
SO(10)
SM,Q=1/2
LR,Q=1/3
SM,Q=1/3
SM,Q=1/6
LR,Q=1/6

RESULTS



Summary (all constructions)

Type Chiral Exotics | GUT | Non-chiral | N > 0 fam. | No frac.
Standard* 37.4% 32.7% 20.5 % 9.3% 0
Standard, perm. 29.7% 334% | 279 % 8.9% 0
Free fermionic =5 2.9% 94.4% L7 0.072%
Lifted 28.3% 18.7% 51.9% 1.1% 0.00051%
Lifted, perm. 26.8% 8.9% b 1.6% 0.00078%
(BRI 21.3% 28.0% | 50.4 % 0.3% | 0.00017%
(B-L)Type-a, perm 20 5 8.1 % 69.1 % 0.03% 0
(BRI 38.5% Se e 0.6% 0
(B-L)Type-B, PETM 27.6% sl 65.0 % 0.1% 0
Vector-like No
Exotics Exotics
No-exotics models have an even number of families
For three-family examples see
Assel, Christodoulides, Faragqgi, Kounnas and Rizos (2010)  [Free fermions]

Blaszczyk, Nibbelink, Ratz, Ruehle, Trapletti, Vaudrevange (2010)

[Freely acting symmetries]
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B-L Lifted Gepner (lift A)
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Does
SU(3) x SU(2) x U(1)
imply family structure?

Do chiral families
imply absence of
(light) fractional

charges?

Ntamily?

Field
Theory

No restrictions apart
from anomaly
cancellation

Yes, assuming
SU(5) or
S(U(3) x U(2))

No restrictions

H@terOth Correct restriction to No Strongly peaked at
: small reps, but chiral ' : small values. Three not
S’[fln g8s i Ml (but rare cases exist) strongly suppressed
(“Classic”)
Yes, Very strongly peaked
Orientifolds ‘7 for three or four at small values.
° branes. Apparent dip at three.




