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Simple Currents and Field Identification

❖ “Simple Currents” allowed the construction of large sets of 
chiral algebra extensions and automorphism MIPFs for 
many CFT’s (mainly WZW-based).

❖ They also offered an elegant solution to a problem in coset 
CFT’s first pointed out by Gepner: Field Identification

❖ But this solution leads to another problem: field 
identification fixed points (self-identified fields)
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Fixed point resolution

With S. Yankielowicz (1990):

Fixed Point CFT
Character Modification

With J. Fuchs and C. Schweigert (1995):

Orbit Lie Algebra
Twining Characters



A formula for S

Fuchs, Schellekens, Schweigert (1996)



identical data.

On top of this there are choices to define the orientifold quotient [58]. Taking all of

these into account brings the total number of possibilities to about 49000. However,

some of them have zero tension, which implies that no branes can be added without

violating the dilaton tadpole condition. After eliminating these cases we end up with

32990 in principle distinct orientifolds (as with the MIPFs, in practice there are always

a few “accidental” degeneracies that are apparent in the spectrum, but do not have a

very obvious fundamental origin. This is irrelevant in practice).

A simple current MIPF is characterized by a discrete group H of simple currents,

and a matrix of rational numbers X(M,J) defined on H. On Riemann surfaces with

boundaries each MIPF has a definite set of Ishibashi states and a corresponding set

of boundary states. The former are simply in one-to-one correspondence with the

elements Miic of the multiplicity matrix, where ic denotes the two-dimensional charge

conjugate of i. In a simple current MIPF these states are labelled by a label m referring

to a representation of the chiral algebra of the tensor product, and a degeneracy label

J . For each m, this degeneracy label is the simple current in H that fixes it, i.e.

Jm = m, with Mmmc 6= 0. So Ishibashi states will be denoted as (m, J).

The set of boundary states that respects all the symmetries of the original chiral

algebra is known to be equal to the number of Ishibashi states [56]. They are charac-

terized by the orbits of H on the chiral algebra representations. These orbits can be

labelled by an integer a that belongs to the set of representation labels of the full chiral

algebra. An orbit is a set of representation labels related by the action of H. For the

boundary label we choose one representative from this set. Also in this case there may

be degeneracies, which occur if the H-action has fixed points. The degeneracy labels

can be conveniently chosen as the discrete group character  of certain subgroup (called

the “central stabilizer”) Ca of the stabilizer Sa of a (the stabilizer is the subgroup of H

of that fixes a representation a). The boundary labels are then [a, a]. Note that the

set of characters depends on the boundary label. If the central stabilizer is a discrete

group with |Ca| elements, than there exists exactly |Ca| distinct characters (complex

functions on Ca that respect the group property).

Now we have two sets (m, J) and [a, a] of Ishibashi and boundary labels. These

can be shown to be of equal size, although this is not manifest. On this basis we now

define boundary reflection coe�cients [58]

R[a, a](m,J) =

s
|H|

|Ca||Sa|
 ⇤
a(J)S

J
am (2.1)
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Boundaries and Crosscaps



[a,�a], �a is a character of the group Ca

Ca is the Central Stabilizer of a

The quantity Fi is called the simple current twist, and the untwisted stabilizer Ui is the subgroup
of Si of currents that have twist 1 with respect to all currents in Si. To combine the results for
automorphisms and extensions, we introduce a modified twist F X

i by

F X
i (K, J) := e2πiX(K,J) Fi(K, J)∗ , (8)

and we define the central stabilizer Ci as

Ci := {J ∈Si |F X
i (K, J) = 1 for all K ∈Si} . (9)

(The prescription (8) is motivated as follows. The modified twist is an alternating bihomomor-
phism i.e. obeys F X

i (J, J) = 1 for all J ∈G. Such bihomomorphisms F X
i of an abelian group G

are in one-to-one correspondence to cohomology classes FX
i in H2(G, U(1)), thus leading to a

cohomological interpretation [27]. In particular, the central stabilizer provides a basis of the
centre of the twisted group algebra CFX

i
Si, which also motivates its name.)

The action (by the fusion product) of the simple currents in G organizes the labels i of
the Ā-theory into orbits. Moreover, in all known cases the boundary degeneracy is correctly
described by the order of the central stabilizer, and hence this is our ansatz for the general
case as well. We then choose the characters of Ci as the degeneracy labels. The boundaries are
therefore given by

a = [i, ψ] , (10)

where i is the label of a representative of a G-orbit, and ψ a character of Ci.

4. The boundary formula

Ishibashi states are nothing but conformal blocks for one-point correlation functions on the disk,
i.e. specific two-point blocks on the sphere. But we can think of the Ishibashi state labelled
by (i, J) also more as a three-point block on the sphere, with insertions i, ic and J . (This
is actually the natural interpretation when one wants to express such Ishibashi states in the
three-dimensional topological picture that was established in [28].) Moreover, already from [1]
it is known that the relation between Ishibashi and boundary states essentially expresses the
effect of a modular S-transformation. Together with the previous observation, it is then natural
to expect that the fixed point resolution matrices SJ appear in the boundary coefficients.

We are therefore ready to write down the following ansatz for the boundary coefficients:

B(i,J),[j,ψ] =

√

|G|
|Sj| |Cj|

α(J) SJ
i,j

√

S0,i

ψ(J)∗ , (11)

where α(J) is a phase to be discussed later, but which must satisfy α(0) = 1. All previously
studied cases are correctly reproduced by the remarkably simple formula (11). We have also
verified that the matrix (11) has a left- and right-inverse, given by (B−1)[j,ψ],(i,J) =S0,i B∗

(i,J),[j,ψ].
This establishes in particular the result that the number of boundaries equals the number of
Ishibashi labels, i.e. “completeness”. This implies rather non-trivial relations involving the
number of orbits of various kinds and the orders of stabilizers.

One can also check that the annuli obtained from (11) possess non-negative integral ex-
pansion coefficients Ai

ab with respect to the Ā-characters χi. (We assume, as usual, that the
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integers, where Ns is the order of Js. If Ns is odd, RssNs is always even, and hence Xss is
determined. If Ns is even, RssNs may be odd. Then there is no solution for Xss. In that case
the current Js does not belong to the “effective center”, and cannot be used to build modular
invariants. A second case in which 2X = R has no solutions is when Ns is even and NsRst is
odd for some value of t ̸= s. Then there are only non-symmetric invariants. In all other cases
at least one solution exists. If both Ns and Nt are even the off-diagonal element Xst may be
shifted by a half-integer.

3. Ishibashi and boundary labels

The modular invariant Z(G, X) specified by X is to be multiplied with the charge conjugation
matrix. Hence the Ishibashi states correspond to the diagonal elements of Z(G, X), counting
multiplicities. The only currents that can contribute are those that satisfy Ji = i. They form a
group, the stabilizer Si of i. If this group is non-trivial, multiplicities larger than 1 may occur,
possibly leading to Ishibashi label degeneracies. For pure extensions this was analysed in [8,11],
and the conclusion is that the Ishibashi label degeneracy is actually equal to the fixed point
degeneracy. 3 It is natural to extend this result to the general case, and to label the degeneracy
by the currents that cause it. Hence our ansatz for the Ishibashi labels is

m = (i, J); J ∈Si with QK(i) +X(K, J) = 0 mod 1 for all K ∈G . (5)

This ansatz produces also the correct count for pure extension invariants, but the labelling
chosen here is not the same as in [8, 11]. In those papers the dual basis – the characters ψα of
Si – was used for the degeneracy labels. This is not possible for pure automorphisms because
the currents satisfying (5) do not form a group in that case. For pure extensions, the new basis
differs by a Fourier transformation from the old one. This allows us to compute the degeneracy
metric, given the fact that it was diagonal in the old basis. We find

gJ,K
j =

∑

αβ

ψα(J) ψβ(K) δα,β = δJ,Kc

. (6)

Now we turn to the boundary labels. The results for pure extensions and automorphisms
without fixed points is that the boundaries are in one-to-one correspondence with the complete
set of G orbits (of arbitrary monodromy charge). As usual, fixed points lead to degeneracies.
For pure automorphism invariants due to a half-integer spin simple current, the degeneracy
was found to be given by the order of the stabilizer of the orbit, whereas for pure extensions it
is the order of the untwisted stabilizer. The latter is defined as follows [24]. For every simple
current J with fixed points there exists a “fixed point resolution matrix” SJ ; these matrices
can be used to express the unitary modular S-transformation matrix of the extended theory
through quantities of the unextended theory. The matrices SJ are conjectured to be equal to
the modular S-transformation matrices for the J-one-point conformal blocks on the torus, and
are explicitly known for all WZW models [25,24], their simple current extensions [26] and also
for coset conformal field theories. Elements of the matrix SJ whose labels are related by the
action of a simple current K obey

SJ
Ki,j = Fi(K, J) e2πiQK(j) SJ

i,j . (7)
3 This result is non-trivial because the degeneracy in the extended theory is in general not equal to the fixed

point degeneracy, i.e. the order of the stabilizer, but rather to the size of a subgroup, the untwisted stabilizer.
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(m,J) : J � Sm

with QL(m) + X(L, J) = 0 mod 1 for all L � H

Sm : J � H with J ·m = m

(Stabilizer of m)

SJ
am : matrix element of the modular transformation

matrix of the fixed point CFT



Discrete string constructions
❖ MIPFs of Heterotic Gepner models  

Jürgen Fuchs, Albrecht Klemm, Christoph Scheich, Michael G. Schmidt (1989)  
A.N. Schellekens, S. Yankielowicz (1989)  
 
Based on a complete classification of N=2 minimal model tensor product MIPFs  
B. Gato-Rivera, A.N. Schellekens (1991);  M. Kreuzer, A.N. Schellekens (1993)

❖ Gepner Orientifolds 
Dijkstra, Huiszoon, Schellekens (2004)  
 
Based on the aforementioned MIPFs plus a classification of all boundaries and crosscaps  
(Cardy, Ishibashi, Sagnotti, Pradisi, Stanev, Bianchi, Behrend, Pearce, Petkova, Zuber, Fuchs, 
Schweigert, Birke, Walcher, Huiszoon, Sousa, Schellekens, ….. 1989-2000)  

 



Discrete Orientifolds
Start with a c=9, N=2 rational conformal field theory, used as an “internal” sector 
of a type-II compactification.

Define the corresponding boundary CFT on surfaces with boundaries and 
crosscaps, by adding boundary and crosscap states consistent with the RCFT 
symmetries.

This allows the explicit construction of Annulus amplitudes, yielding exact open 
string partition functions, and Möbius and Klein bottle amplitudes defining the 
orientifold projections.

This gives rise to exact perturbative string spectra, with all massless and massive 
states explicitly known.



Discrete Orientifolds
In principle, one expects a huge number of such RCFTs to exist.

In practice, we are limited to tensor products of N=2 minimal models. 
 
We have at our disposal:
• 168 c=9 combinations
• 5403 MIPFs
• 32990 orientifolds
• About 1020 4-boundary combinations

We found 200.000 chirally exact MSSM spectra in this set.

Dijkstra, Huiszoon, Schellekens (2004)
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Discrete Orientifolds
The resulting spectra are presumably best though of as discrete 
points in an open and closed string moduli space, hence the term 
“discrete orientifold”.

Most features of geometric orientifolds can be analysed in this 
context: tadpole cancellation, hidden sectors, axion-vector boson 
mixing, absence of global anomalies, stringy instantons. We would 
like to extend that to discrete symmetries.

The two concepts of discreteness are unrelated.



Discrete symmetries

May prevent fast proton decay and/or lepton number violation due to dimension 4 
operators in the MSSM (and it may forbid other undesirable operators)

So far, however, nature does not seem to use them (except CPT).

How generic are discrete symmetries in the string landscape?

Quantum gravity: folk theorems against existence of ungauged symmetries 
(continuous or discrete).

Gauged discrete symmetries are allowed. (Kraus, Wilczek,...,1989)

In string theory, specific “gauged, anomaly free” discrete symmetries are possible.  
(Ibanez, Ross, 1991).



Discrete symmetries in string theory

An obvious way to get an anomaly free discrete symmetry is to break a 
U(1) to ℤN. 

Orientifolds have lots of U(1)’s, one for every complex brane stack.  
A good place to look for discrete symmetries!

These U(1)’s are often broken due to axion mixing. This happens always 
if the U(1) is anomalous, and sometimes if it is not.



Axion couplings

ξm:   axions, typically ~ 10 ... 100
Fa:    U(1) gauge field strength.
Na:   Chan-Paton multiplicity of stack a 

3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete ZN gauge symmetries from open

string U(1)’s are the coe�cients Ram, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms Bm

X

a,m

Na Vam Bm ^ Fa (3.1)

Here Vam = Ram�Racm, with the relative minus sign arising because the physical U(1)

gauge boson is the di↵erence of those supported on the brane and its orientifold image.

Consider now a linear combination4
P

a xaYa of the U(1) generators Ya of brane a.

Its BF couplings are

X

m

�P
axaNaVam

�
Bm ^ F (3.2)

It thus remains massless if and only if

X

a

xaNa(Ram �Racm) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors xa

of the non-symmetric matrix Mam = Na(Ram �Racm).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�m dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �m ' �m + 1. It is useful to introduce the dual

description of (3.2) in terms of �m. The relevant lagrangian is

X

m

[ @µ�m � (
P

axaNaVam)Aµ]
2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

Aµ ! Aµ + @µ� ; �m ! �m + (
P

axaNaVam)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

axaNaVam)�] (3.6)

4
It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.
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in CFT:

X

a,m

NaVam⇠m ^ Fa
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On top of this there are choices to define the orientifold quotient [58]. Taking all of
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violating the dilaton tadpole condition. After eliminating these cases we end up with
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A simple current MIPF is characterized by a discrete group H of simple currents,

and a matrix of rational numbers X(M,J) defined on H. On Riemann surfaces with

boundaries each MIPF has a definite set of Ishibashi states and a corresponding set

of boundary states. The former are simply in one-to-one correspondence with the

elements Miic of the multiplicity matrix, where ic denotes the two-dimensional charge

conjugate of i. In a simple current MIPF these states are labelled by a label m referring

to a representation of the chiral algebra of the tensor product, and a degeneracy label

J . For each m, this degeneracy label is the simple current in H that fixes it, i.e.

Jm = m, with Mmmc 6= 0. So Ishibashi states will be denoted as (m, J).

The set of boundary states that respects all the symmetries of the original chiral

algebra is known to be equal to the number of Ishibashi states [56]. They are charac-

terized by the orbits of H on the chiral algebra representations. These orbits can be

labelled by an integer a that belongs to the set of representation labels of the full chiral

algebra. An orbit is a set of representation labels related by the action of H. For the

boundary label we choose one representative from this set. Also in this case there may

be degeneracies, which occur if the H-action has fixed points. The degeneracy labels

can be conveniently chosen as the discrete group character  of certain subgroup (called

the “central stabilizer”) Ca of the stabilizer Sa of a (the stabilizer is the subgroup of H

of that fixes a representation a). The boundary labels are then [a, a]. Note that the

set of characters depends on the boundary label. If the central stabilizer is a discrete

group with |Ca| elements, than there exists exactly |Ca| distinct characters (complex

functions on Ca that respect the group property).

Now we have two sets (m, J) and [a, a] of Ishibashi and boundary labels. These
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Complex numbers!



Consider a linear combination of U(1)’s

3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete ZN gauge symmetries from open

string U(1)’s are the coe�cients Ram, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms Bm

X

a,m

Na Vam Bm ^ Fa (3.1)

Here Vam = Ram�Racm, with the relative minus sign arising because the physical U(1)

gauge boson is the di↵erence of those supported on the brane and its orientifold image.

Consider now a linear combination4
P

a xaYa of the U(1) generators Ya of brane a.

Its BF couplings are

X

m

�P
axaNaVam

�
Bm ^ F (3.2)

It thus remains massless if and only if

X

a

xaNa(Ram �Racm) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors xa

of the non-symmetric matrix Mam = Na(Ram �Racm).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�m dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �m ' �m + 1. It is useful to introduce the dual

description of (3.2) in terms of �m. The relevant lagrangian is

X

m

[ @µ�m � (
P

axaNaVam)Aµ]
2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

Aµ ! Aµ + @µ� ; �m ! �m + (
P

axaNaVam)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

axaNaVam)�] (3.6)

4
It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.

8

3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete ZN gauge symmetries from open

string U(1)’s are the coe�cients Ram, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms Bm

X

a,m

Na Vam Bm ^ Fa (3.1)

Here Vam = Ram�Racm, with the relative minus sign arising because the physical U(1)

gauge boson is the di↵erence of those supported on the brane and its orientifold image.

Consider now a linear combination4
P

a xaYa of the U(1) generators Ya of brane a.

Its BF couplings are

X

m

�P
axaNaVam

�
Bm ^ F (3.2)

It thus remains massless if and only if

X

a

xaNa(Ram �Racm) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors xa

of the non-symmetric matrix Mam = Na(Ram �Racm).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�m dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �m ' �m + 1. It is useful to introduce the dual

description of (3.2) in terms of �m. The relevant lagrangian is

X

m

[ @µ�m � (
P

axaNaVam)Aµ]
2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

Aµ ! Aµ + @µ� ; �m ! �m + (
P

axaNaVam)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

axaNaVam)�] (3.6)

4
It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.

8

:      U(1) generator of brane a

This remains massless if and only if

3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete ZN gauge symmetries from open

string U(1)’s are the coe�cients Ram, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms Bm

X

a,m

Na Vam Bm ^ Fa (3.1)

Here Vam = Ram�Racm, with the relative minus sign arising because the physical U(1)

gauge boson is the di↵erence of those supported on the brane and its orientifold image.

Consider now a linear combination4
P

a xaYa of the U(1) generators Ya of brane a.

Its BF couplings are

X

m

�P
axaNaVam

�
Bm ^ F (3.2)

It thus remains massless if and only if

X

a

xaNa(Ram �Racm) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors xa

of the non-symmetric matrix Mam = Na(Ram �Racm).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�m dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �m ' �m + 1. It is useful to introduce the dual

description of (3.2) in terms of �m. The relevant lagrangian is

X

m

[ @µ�m � (
P

axaNaVam)Aµ]
2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

Aµ ! Aµ + @µ� ; �m ! �m + (
P

axaNaVam)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

axaNaVam)�] (3.6)

4
It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.
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If Ya acquires a mass, the U(1) is not always completely broken. 
A discrete subgroup may remain.
How can we detect this?



Geometric constructions

In a geometric setting (type-IIA on CY) one can define these 
numbers in terms of a basis of 3-cycles on the manifold. Then one 
can write the condition for discrete symmetries entirely in terms of 
integers, and one can use this to construct explicit examples.
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In general, the set of massless U(1)’s correspond to the space of zero eigenvectors xa

of the non-symmetric matrix Mam = Na(Ram �Racm).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�m dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �m ' �m + 1. It is useful to introduce the dual

description of (3.2) in terms of �m. The relevant lagrangian is
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where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

Aµ ! Aµ + @µ� ; �m ! �m + (
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It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.
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Condition for continuous U(1)

Condition for ℤN

Berasaluce González, Ibáñez, Soler, Uranga, 2011



Instantons

Brane stack U(1)’s broken by axion mixing are respected by all 
perturbative amplitudes. 

Instanton amplitudes may break these symmetries. These can be 
gauge instantons or “exotic”, “stringy” instantons from stacks 
without a gauge group. 
 

If there is a ℤN discrete symmetry, any instanton amplitude can 
violate the corresponding charge only by multiples of N.

Blumenhagen, Cvetic, Weigand
Ibáñez,Uranga
Florea, Kachru, McGreevy, Saulina



Instantons in discrete CFT

of the original transverse channel labels (m, J): there may be more than one (m, J)

corresponding to any given ⌫. More details will be given in the next section.

If (3.9) can indeed be realized, it defines a basis in the space of all complex bound-

aries such that all other boundaries can be expanded in that basis with integer co-

e�cients. In this way we obtain a lattice of charges, so that each boundary state

corresponds to a point on that lattice. In general we expect that this basis is not

unique, just as the basis of a lattice is not unique. Note however that not every lattice

point is occupied. This is obvious because there is only a finite number of boundary

states and an infinite number of lattice points, but also near the origin there are in

general unoccupied sites. This implies that not every lattice basis can be realized in

terms of boundary states.

The basic boundary states defines a set of ‘smallest instantons’ (at least in the RCFT

realm), whose couplings to the axions define the axion periodicities. The quantities

Qaµ thus correspond to the coe�cients of the BF couplings in the desired normalization

in which the axions have unit periodicity, and can therefore be used to look for the

discrete ZN symmetry. Namely a U(1) integer linear combination Y =
P

a xaYa (with

the conventions in footnote 4) has an unbroken ZN subgroup if it satisfies the condition

X

a

xaNaQaµ = 0 mod N (3.10)

There is an alternative description of the physical relevance of the basis, which

instead of leaning on the axion periodicities, is based on expressing the amount of

instanton U(1) violation in terms of the basic instantons, as follows (both viewpoints

are clearly related since (3.5) links U(1) gauge transformations and axion shifts). As

described in [25, 26], the amount Ib(a) of U(1)a violation by an instanton supported

on a brane b is given by the net number of charged fermion zero modes arising from

massless open strings stretching between both boundaries. In the RCFT setup, and

accounting for orientifold images, we have a combination of the annulus coe�cients

(2.3)

Ib(a) = Na

X

i

wi(A
i
ba � Ai

bac) (3.11)

where wi is the Witten index in the open string sector, which e↵ectively extracts the

net chiral contribution. Using (2.2) we have

Ib(a) = Na

X

i

wi

X

m,J 0,J

"
SimRb(m,J 0)g

⌦,m
J 0J

S0m

#
(Ra(m,J) �Rac(m,J)) (3.12)
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X

a

xaNaQaµ = 0 mod N (3.10)

There is an alternative description of the physical relevance of the basis, which
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are clearly related since (3.5) links U(1) gauge transformations and axion shifts). As

described in [25, 26], the amount Ib(a) of U(1)a violation by an instanton supported

on a brane b is given by the net number of charged fermion zero modes arising from

massless open strings stretching between both boundaries. In the RCFT setup, and

accounting for orientifold images, we have a combination of the annulus coe�cients
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The instanton charge violation for a U(1) associated with brane a due 
to an instanton on brane b is given by the chiral zero mode count

Here wi is the Witten index of representation i, and Aiab are Annulus 
coefficients.The latter can be expressed in terms of boundary coefficients as



Is there an integral basis?

3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete ZN gauge symmetries from open

string U(1)’s are the coe�cients Ram, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms Bm

X

a,m

Na Vam Bm ^ Fa (3.1)

Here Vam = Ram�Racm, with the relative minus sign arising because the physical U(1)

gauge boson is the di↵erence of those supported on the brane and its orientifold image.

Consider now a linear combination4
P

a xaYa of the U(1) generators Ya of brane a.

Its BF couplings are

X

m

�P
axaNaVam

�
Bm ^ F (3.2)

It thus remains massless if and only if

X

a

xaNa(Ram �Racm) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors xa

of the non-symmetric matrix Mam = Na(Ram �Racm).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�m dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �m ' �m + 1. It is useful to introduce the dual

description of (3.2) in terms of �m. The relevant lagrangian is

X

m

[ @µ�m � (
P

axaNaVam)Aµ]
2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

Aµ ! Aµ + @µ� ; �m ! �m + (
P

axaNaVam)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

axaNaVam)�] (3.6)

4
It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.
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Axion couplings

Try to find a subset c of Naxion “basic” boundaries so that

a = 1, . . . Nbound, m = 1, . . . NIshibashi

Remove vanishing and identical columns

Vaµ, a = 1, . . . Nbound, µ = 1, . . . Naxion

Va⌫ =
NaxionX

µ=1

QaµVc(µ)⌫ , Qaµ 2 Z

Naxion = O(10, . . . , 100) (maximally 480)

Nbound = O(100, . . . , 100000) (maximally 108612)



Note that these quantities are integer, and moreover can be defined for any boundary

states a, b, regardless of whether a actually realizes a U(1) symmetry in the model or

not. Decomposing the boundary coe�cients using (3.9), and reconstructing back to

annulus amplitudes, we obtain

Ib(a) =
X

µ

NaQaµIb(c(µ)) (3.13)

Here Ib(c(µ)) are formally defined as in (3.12); in physical terms, they are integers

measuring the violation by the instanton brane b of a putative U(1) carried by brane c(µ)

(which need not support an actual U(1) of the model). For a U(1) linear combination

Y =
P

a xaYa (with the conventions in footnote 4), the charge violation by an instanton

brane b is

Ib(x) =
X

a

xaIb(a) =
X

µ

� X

a

xaNaQaµ

�
Ib(c(µ)) (3.14)

Since Ib(c(µ)) are integer, if the coe�cients
P

a xaNaQaµ have a common factor N ,

all instantons violate U(1) charge in multiples of N , so that a discrete ZN subgroup

remains unbroken. Hence we recover condition (3.10) for the existence of a discrete ZN

symmetry.

Although this derivation exploited the RCFT formulas, eq. (3.13) makes full phys-

ical sense even for non-RCFT instantons. This strongly supports that the result holds

for any instanton b, and therefore that the proposed condition (3.10) is correct in gen-

eral. Still, it is possible that the basic quantities Ib(c(µ)) already have a common factor.

If they do not, we will get a ZN discrete symmetry, as read o↵ from the coe�cients

Qaµ; otherwise, we can only get more discrete symmetries than naively expected. We

believe this possibility to be fairly unlikely. The fact that we were able to find an in-

tegral lattice of charges in all cases strongly suggests that (3.10) identifies the discrete

symmetries correctly.

4 Finding an integral basis

We will now explain a method that turns out to be very e↵ective to find the integral

basis described above.

Our starting point is the matrix Va⌫ , where rows a label boundary states and

columns ⌫ label axion fields. First we will normalize the coe�cients Va⌫ in a convenient

way. In their raw form, these coe�cients are not even relatively real. However, on

12
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states and an infinite number of lattice points, but also near the origin there are in
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instanton U(1) violation in terms of the basic instantons, as follows (both viewpoints

are clearly related since (3.5) links U(1) gauge transformations and axion shifts). As

described in [25, 26], the amount Ib(a) of U(1)a violation by an instanton supported

on a brane b is given by the net number of charged fermion zero modes arising from

massless open strings stretching between both boundaries. In the RCFT setup, and

accounting for orientifold images, we have a combination of the annulus coe�cients

(2.3)
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where wi is the Witten index in the open string sector, which e↵ectively extracts the

net chiral contribution. Using (2.2) we have
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Note that these quantities are integer, and moreover can be defined for any boundary

states a, b, regardless of whether a actually realizes a U(1) symmetry in the model or

not. Decomposing the boundary coe�cients using (3.9), and reconstructing back to

annulus amplitudes, we obtain

Ib(a) =
X

µ

NaQaµIb(c(µ)) (3.13)

Here Ib(c(µ)) are formally defined as in (3.12); in physical terms, they are integers

measuring the violation by the instanton brane b of a putative U(1) carried by brane c(µ)

(which need not support an actual U(1) of the model). For a U(1) linear combination

Y =
P

a xaYa (with the conventions in footnote 4), the charge violation by an instanton

brane b is

Ib(x) =
X

a

xaIb(a) =
X

µ

� X

a

xaNaQaµ

�
Ib(c(µ)) (3.14)

Since Ib(c(µ)) are integer, if the coe�cients
P

a xaNaQaµ have a common factor N ,

all instantons violate U(1) charge in multiples of N , so that a discrete ZN subgroup

remains unbroken. Hence we recover condition (3.10) for the existence of a discrete ZN

symmetry.

Although this derivation exploited the RCFT formulas, eq. (3.13) makes full phys-

ical sense even for non-RCFT instantons. This strongly supports that the result holds

for any instanton b, and therefore that the proposed condition (3.10) is correct in gen-

eral. Still, it is possible that the basic quantities Ib(c(µ)) already have a common factor.

If they do not, we will get a ZN discrete symmetry, as read o↵ from the coe�cients

Qaµ; otherwise, we can only get more discrete symmetries than naively expected. We

believe this possibility to be fairly unlikely. The fact that we were able to find an in-

tegral lattice of charges in all cases strongly suggests that (3.10) identifies the discrete

symmetries correctly.

4 Finding an integral basis

We will now explain a method that turns out to be very e↵ective to find the integral

basis described above.

Our starting point is the matrix Va⌫ , where rows a label boundary states and

columns ⌫ label axion fields. First we will normalize the coe�cients Va⌫ in a convenient

way. In their raw form, these coe�cients are not even relatively real. However, on

12

If we have an integral basis, we can express this in terms of that basis

For a U(1) Y =
X

a

xaYa (choose xa integer)
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Instanton intersection number:  Integer

Manifestly integer in the new basis
(if it exists...)
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If all basis coefficients                         are a 

multiple of N, we have a ℤN discrete symmetry



Finding an integral basis
Choose a suitable normalization for the columns of the matrix 
Vaμ:  Vaμ →  Z(μ) Vaμ

For a suitable choice, all Xab are rational numbers, in all 33290 cases.

Now choose a set of independent vectors Vc(μ)ν

Xab =
X

µ

VaµVbµ ⌘ Va · Vb



Finding an integral basis

multiply by �qµ̂. Then we get

Vc(µ̂)⌫ =
X

µ,µ 6=µ̂

�
pµqµ̂
qµ

Vc(µ)⌫ + qµ̂W⌫ (4.7)

Now we may remove Vc(µ̂) from the basis and replacing it by W , thus defining a new

map, ĉ(⌫). The advantage is that now one of the charges has changed from 1/qµ̂ to

qµ̂. Furthermore, if qµ and qµ̂ have common factors, the remaining denominators are

reduced (in the majority of cases all denominators in (4.6) are in fact equal to qµ̂, so

that all coe�cients become integer).

Now we iterate this process: compute all charges of the boundary vectors with

respect to all basis vectors, and as soon as we encounter one with charge 1/q, we

interchange the corresponding basis vector and boundary vector. Note that in every

step the the determinant of the inner product matrix of the basis vectors (which is the

square of the volume of the unit cell of the lattice) is reduced5 by a factor q2 . This

means that the procedure must end after a finite number of steps.

The only way the procedure can fail is if no charge 1/q can be found. A simple

example demonstrating such a failure is a one-axion case with just two boundary vectors

v1 = (2) and v2 = (3). There are two possible bases, and the only charges we encounter

are either 2
3 or 3

2 . This situation never occurs for any of the 32990 Gepner orientifolds.

However, it may also happen that an integer basis exists, but that the algorithm

converges to an incorrect basis. We did indeed encounter just three cases where we

ended up with a basis with respect to which all charges are either integer, or half-

integer, with values q/2, |q| � 3. Then no further progress is possible. These three

cases could be handled by reordering the initial set of boundaries, so that the algorithm

converges to a di↵erent set. For all 32990 orientifolds a maximum of 19 iterations was

necessary to reach an integer basis.

Note that all charges are defined in terms of boundary vectors, as announced in

(3.9), through

Va⌫ =
X

µ

QaµVc(µ)⌫ (4.8)

so that the original basis in which the boundary vectors are expressed is irrelevant. In

particular, the unusual normalization procedure of the columns drops out between the

5
Proof: Consider the lattice spanned by the NA�1 vectors Vc(µ), with Vc(µ̂) removed. The volume

of the full unit cell is the volume of the unit cell in this NA � 1 dimensional sub-lattice, times the

length of Vc(µ̂) times sin ✓, where ✓ is the angle between Vc(µ̂) and the plane of the sub-lattice. The

new vector W can be decomposed in a component along Vc(µ̂) and a component in the plane of the

sub-lattice. The component of W along Vc(µ̂) has a length 1/q of Vc(µ̂), and the projection on the

sub-lattice is irrelevant for the computation of the volume. Hence the volume decreases by 1/q.
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The “charges” with respect to this basis are defined as

and can be computed by contracting both sides with the basis vectors

Here Xab are the numbers which we just found to be rational.
We can compute Qaμ by inverting the rational matrix Xc(μ)c(ν)

Xac(⌫) =
X

µ

QaµXc(µ)c(⌫)



-3487399664882312548403449298220026691019/841272207563542485234461433361005589989303 
-2356527325219910903428901754662427149894/4206361037817712426172307166805027949946515 
2784948741071505418128346476378730597441/2804240691878474950781538111203351966631010 

-25854997362159483572806567865246572322/221387423043037496114331956147633049997185 
6898072845027098208081359744435277277501/8412722075635424852344614333610055899893030 
108976715681408986890964337671823077977/2804240691878474950781538111203351966631010 

-1407366818272278715495258035537737402701/2804240691878474950781538111203351966631010 
-730274370305189614187212583238604721979/280424069187847495078153811120335196663101 

-14703146264089789695021850876752032362043/8412722075635424852344614333610055899893030 
-966409001634779323603278299112884580763/600908719688244632310329595257861135706645 

-983094598776348113430087003140068085383/8412722075635424852344614333610055899893030 
61131869065677337879021843505880263189/73795807681012498704777318715877683332395 

-3745320497786158555270850835304275943121/8412722075635424852344614333610055899893030 
1693796173771342973378581388458204267177/2804240691878474950781538111203351966631010 
1205444211082390872412284617701674410251/2804240691878474950781538111203351966631010 
2221438778472648889039857348099343644511/4206361037817712426172307166805027949946515 
2778141893267937173717166855104761029721/1201817439376489264620659190515722271413290 

-328790319741952612198224637596271270733/57229401875070917362888532881701060543490 
-10696945894841597435006188896341594656409/1682544415127084970468922866722011179978606 

-374380487381205651662553956908976153343/73795807681012498704777318715877683332395 
13388558609255142019160683601848443422339/16825444151270849704689228667220111799786060 

-130053795740416119037210695464378190133/1121696276751389980312615244481340786652404 
-187502171731804948980940781489189370283/120181743937648926462065919051572227141329 
-619867031959993792564626230220965209683/2804240691878474950781538111203351966631010 

-1925028850509606135456711776999153695741/1402120345939237475390769055601675983315505 
-553339345722660901165259922735534862799/841272207563542485234461433361005589989303 

3622588600596306878973447873960345776869/8412722075635424852344614333610055899893030 
-2917363519755564971360418309577721840489/4206361037817712426172307166805027949946515 



Finding an integral basis
...but this gives us only rational charges. This is not good enough.
Now consider a boundary that has a rational charge 

di↵erent normalization prescription. However, it is an empirical fact that in all 32990

cases of di↵erent MIPFs and orientifolds all these numbers Nab come out rational, and

this will turn out to be a very fortunate outcome.

Based on the intuitions in earlier sections, the hope is to find a basis in the space

of Ishibashi states such that all coe�cients Vaµ are transformed into integers, i.e. find

a real and invertible matrix R such that

Qa⌫ =
X

µ

VaµRµ⌫ 2 Z (4.2)

If such a basis exists, the coe�cients Vaµ can be written as

Va⌫ =
X

µ

QaµR
�1
µ⌫ (4.3)

We may think of the matrix R�1
µ⌫ as a set of basis vectors B(µ)

⌫ labelled by µ, and then

what we are looking for is a set of basis vectors in terms of which all vectors Va⌫ have

integer expansions. In other words, all vectors Va⌫ lie on the lattice spanned by the

basis vectors. If we express the inner products Nab in (4.1) in terms of the basis vectors

we get

Nab =
X

µ

X

⌫

QaµQb⌫

X

⇢

R�1
µ⇢R

�1
⌫⇢ =

X

µ

X

⌫

QaµQb⌫ Bµ
· B⌫ (4.4)

This tells us that if the basis vectors have integer (or rational) inner products, then

integrality (rationality) of all Nab follows automatically.

It is then natural to conjecture that the basis vectors might themselves be chosen

as a subset of the boundary vectors Vaµ. A necessary condition is that we should be

able to find NA independent vectors Vaµ. Here it is important that the NA columns

are linearly independent, as explained above. A basis of this kind is defined by a map

c(µ) from the set of axion labels to the set of boundaries, and we write

R�1
µ⌫ = B(µ)

⌫ = Vc(µ)⌫ (4.5)

After inverting this matrix we can compute the charges using (4.2). The fact that

all Nab are rational guarantees that the charges are rational. But we can do better

than that. Suppose some boundary vector W has the following expansion in terms of

the basis

W⌫ =
X

µ

QµVc(µ)⌫ =
X

µ

pµ
qµ

Vc(µ)⌫ , (4.6)

where pµ and qµ are relative prime. Now suppose there is one µ, denoted µ̂, so that

pµ̂ = 1. We may then bring the corresponding term to the left, W⌫ to the right and
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�
pµqµ̂
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Vc(µ)⌫ + qµ̂W⌫ (4.7)

Now we may remove Vc(µ̂) from the basis and replacing it by W , thus defining a new

map, ĉ(⌫). The advantage is that now one of the charges has changed from 1/qµ̂ to

qµ̂. Furthermore, if qµ and qµ̂ have common factors, the remaining denominators are

reduced (in the majority of cases all denominators in (4.6) are in fact equal to qµ̂, so

that all coe�cients become integer).

Now we iterate this process: compute all charges of the boundary vectors with

respect to all basis vectors, and as soon as we encounter one with charge 1/q, we

interchange the corresponding basis vector and boundary vector. Note that in every

step the the determinant of the inner product matrix of the basis vectors (which is the

square of the volume of the unit cell of the lattice) is reduced5 by a factor q2 . This

means that the procedure must end after a finite number of steps.

The only way the procedure can fail is if no charge 1/q can be found. A simple

example demonstrating such a failure is a one-axion case with just two boundary vectors

v1 = (2) and v2 = (3). There are two possible bases, and the only charges we encounter

are either 2
3 or 3

2 . This situation never occurs for any of the 32990 Gepner orientifolds.

However, it may also happen that an integer basis exists, but that the algorithm

converges to an incorrect basis. We did indeed encounter just three cases where we

ended up with a basis with respect to which all charges are either integer, or half-

integer, with values q/2, |q| � 3. Then no further progress is possible. These three

cases could be handled by reordering the initial set of boundaries, so that the algorithm

converges to a di↵erent set. For all 32990 orientifolds a maximum of 19 iterations was

necessary to reach an integer basis.

Note that all charges are defined in terms of boundary vectors, as announced in

(3.9), through

Va⌫ =
X

µ

QaµVc(µ)⌫ (4.8)

so that the original basis in which the boundary vectors are expressed is irrelevant. In

particular, the unusual normalization procedure of the columns drops out between the

5
Proof: Consider the lattice spanned by the NA�1 vectors Vc(µ), with Vc(µ̂) removed. The volume

of the full unit cell is the volume of the unit cell in this NA � 1 dimensional sub-lattice, times the

length of Vc(µ̂) times sin ✓, where ✓ is the angle between Vc(µ̂) and the plane of the sub-lattice. The

new vector W can be decomposed in a component along Vc(µ̂) and a component in the plane of the

sub-lattice. The component of W along Vc(µ̂) has a length 1/q of Vc(µ̂), and the projection on the

sub-lattice is irrelevant for the computation of the volume. Hence the volume decreases by 1/q.
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Suppose for one value of
            
Then we replace the corresponding basis vectors by Wν. In terms of the new basis, 
the old basis vector in terms of the new basis has an expansion

µ (denoted µ = µ̂), pµ̂ = 1.

This is “more integral” than the previous basis, and the volume spanned by the 
basis decreases by qμ.



Finding an integral basis

This process converges in a maximum of 19 steps.
In 3 out of the 32990 cases it did not converge to pure integers.  

These cases could be dealt with by choosing a different starting point.

In the end we did indeed find an integer basis for all 32990 Orientifolds.

This gives a “charge lattice” for axion charges.

(But: there must be a better way of doing this...)



Discrete physics is fun
Many more years 
of discreteness, 
Jürgen!


