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EXTENDED CHIRAL ALGEBRAS AND MODULAR INVARIANT
PARTITION FUNCTIONS

AN. SCHELLEKENS and S. YANKIELOWICZ*- **
CERN, CH-1211 Geneva 23, Switzerland

Received 12 April 1989

We show how the fusion rules can be used to associate with every rational conformal field
theory a discrete group, the center. The center is generated by primary fields having unique fusion
rules with any other field. The existence of a non-trivial center implies the existence of non-diago-
nal modular invariants, which are related to extended integer or fractional spin algebras. Applied
to Kac—Moody algebras this method yields all known as well as many new infinite series of
modular invariants. Some results on exceptional invariants are also presented, including an
example of an exceptional integer spin invariant that does not correspond to a conformal
cmbedding,.



ON THE CONNECTION BETWEEN WZW AND FREE FIELD THEORIES

Jiirgen FUCHS' and Doron GEPNER?

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Received 22 October 1986

A large class of primary fields which appear at any level of the WZW theories (of types Ay,
By, Cn, Dy, Eg4, and E,) are shown to possess simple power-like four-point functions. As a
consequence, these fields, which are in 1-1 correspondence with the center of the covering group,
may be written as symmetrized products of level one fields. The latter are known to be related to
free fermions (A v, By, Dy ) or free bosons (A y, Dy, E¢, E5). Our results indicate that a relation to
free field theory exists also for the case of Cj.



BONUS SYMMETRY IN CONFORMAL FIELD THEORY

Kenneth INTRILIGATOR

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Received 9 June 1989

Conformal field theories typically have an enlarged symmetry over that of the chiral algebra.
These enlarged symmetries simplify the analysis of a theory by linking representations that would
appear independent based on considerations of the smaller symmetry of the chiral algebra. It will
be shown that this bonus symmetry occurs whenever a primary field g has a fusion rule with only
the identity on the r.h.s. It will be seen that the additional symmetry generated by such a field g
will be reflected in the fusion rules and in the modular transformation properties of the chiral
characters. The way in which this enlarged symmetry may be exploited is illustrated in some
simple examples. When the field g is of integer conformal dimension, g can be incorporated into
an extended chiral algebra; the resulting extended, modular invariant partition function will be
constructed. It will also be seen that especially strong simplifications arise when the field g with
the mentioned fusion rule 1s of neither integer nor half-integer conformal dimension.



Simple Currents and Field ldentification

» “Simple Currents” allowed the construction of large sets of
chiral algebra extensions and automorphism MIPFs for

many CFT’s (mainly WZW-based).

* They also offered an elegant solution to a problem in coset
CFT’s first pointed out by Gepner: Field Identification

* But this solution leads to another problem: field
identification fixed points (self-identified fields)

X0 + x1|? + [x2 + x3|* + 2|xal?



Fixed point resolution

With S. Yankil
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Figure la: Relation between symmetric weights (‘fixed points’) of B,,(Llll and weights of the orbit
Lie algebra B®,




A formula for S

g 2%
e $(J) Syp U3(J)"
(a:8),(b:7) = V|Ua| |Sal [Us| | S| % ’

Fuchs, Schellekens, Schweigert (1996)



Boundaries and Crosscaps

H
R[a,wa](m,J) — \/Casawa(‘])sc{m

Fuchs, Huiszoon, Schellekens, Schweigert, Walcher (2000)



(m,J): J €S

with Qr(m) + X (L,J) =0 mod 1 for all L € 'H
S, :JeHwith J-m=m
(Stabilizer of m)

a, .|, 1, is a character of the group C,
C, 1s the Central Stabilizer of a
Ci:={JeS;|F*(K,J)=1for all K €S;}

FX(K, J) =D F(K )

S}J(i,j —F ( K, J) 02mMQk (4) ngl

S7 : matrix element of the modular transformation
matrix of the fixed point CF'T
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Discrete string constructions

MIPFs of Heterotic Gepner models

Jurgen Fuchs, Albrecht Klemm, Christoph Scheich, Michael G. Schmidt (1989)
A.N. Schellekens, S. Yankielowicz (1989)

Based on a complete classification of N=2 minimal model tensor product MIPFs
B. Gato-Rivera, A.N. Schellekens (1991); M. Kreuzer, A.N. Schellekens (1993)

Gepner Orientifolds

Dijkstra, Huiszoon, Schellekens (2004)

Based on the aforementioned MIPFs plus a classification of all boundaries and crosscaps

(Cardy, Ishibashi, Sagnotti, Pradisi, Stanev, Bianchi, Behrend, Pearce, Petkova, Zuber, Fuchs,
Schweigert, Birke, Walcher, Huiszoon, Sousa, Schellekens, ..... 1989-2000)



Discrete Orientifolds

Start with a c=9, N=2 rational conformal field theory, used as an “internal” sector
of a type-II compactification.

Define the corresponding boundary CFT on surfaces with boundaries and
crosscaps, by adding boundary and crosscap states consistent with the RCFT
symmetries.

This allows the explicit construction of Annulus amplitudes, yielding exact open
string partition functions, and Mobius and Klein bottle amplitudes defining the
orientifold projections.

This gives rise to exact perturbative string spectra, with all massless and massive
states explicitly known.



Discrete Orientifolds

In principle, one expects a huge number of such RCFTs to exist.
In practice, we are limited to tensor products of N=2 minimal models.

We have at our disposal:
* 168 c=9 combinations
* 5403 MIPFs

* 32990 orientifolds

* About 1020 4-boundary combinations

We found 200.000 chirally exact MSSM spectra in this set.

Dijkstra, Huiszoon, Schellekens (2004)
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Discrete Orientifolds

The resulting spectra are presumably best though of as discrete
points in an open and closed string moduli space, hence the term
“discrete orientifold”.

Most features of geometric orientifolds can be analysed in this
context: tadpole cancellation, hidden sectors, axion-vector boson
mixing, absence of global anomalies, stringy instantons. We would
like to extend that to discrete symmetries.

The two concepts of discreteness are unrelated.



Discrete symmetries

& May prevent fast proton decay and/or lepton number violation due to dimension 4
operators in the MSSM (and it may forbid other undesirable operators)

& So far, however, nature does not seem to use them (except CPT).
& How generic are discrete symmetries in the string landscape?

& Quantum gravity: folk theorems against existence of ungauged symmetries
(continuous or discrete).

 Gauged discrete symmetries are allowed. (Kraus, Wilczek, ..., 1989)

& In string theory, specific “gauged, anomaly free” discrete symmetries are possible.
(Ibanez, Ross, 1991).



Discrete symmetries in string theory

& An obvious way to get an anomaly free discrete symmetry is to break a
L(1) to Zn.

& Orientifolds have lots of U(1)’s, one for every complex brane stack.
A good place to look for discrete symmetries!

These U(1)’s are often broken due to axion mixing. This happens always
if the U(1) is anomalous, and sometimes if it is not.



Axion couplings
E Ng Vamgm AW

Em: axions, typically ~ 10 ... 100
F.:  U(1) gauge field strength.
N,: Chan-Paton multiplicity of stack a

in CFT vam = Ram o Racm

R,.,, Coupling strength of bulk mode m (“Ishibashi state”) to boundary a

[a,1a](m,J) \/ ‘ C|H‘ Complex numbers!



Consider a linear combination of U(1)’s

S ey

Y,: U(1) generator of brane a

This remains massless if and only if

Z T N B, R ) —UOforallm

If Y, acquires a mass, the U(1) is not always completely broken.
A discrete subgroup may remain.
How can we detect this?



Geometric constructions

Condition for continuous U(1)

Z o N B R .. = Oforall m

Condition for ZN

Z v N B B — (moed N forall m

In a geometric setting (type-IIA on CY) one can define these
numbers in terms of a basis of 3-cycles on the manifold. Then one
can write the condition for discrete symmetries entirely in terms of
integers, and one can use this to construct explicit examples.

Berasaluce Gonzdlez, Ibdiiez, Soler, Uranga, 2011



Instantons

& Brane stack U(1)’s broken by axion mixing are respected by all
perturbative amplitudes.

& Instanton amplitudes may break these symmetries. These can be

gauge instantons or “exotic”, “stringy” instantons from stacks
without a gauge group.

Blumenhagen, Cvetic, Weigand
Ibdiiez,Uranga
Florea, Kachru, McGreevy, Saulina

¢ If there is a Zy discrete symmetry, any instanton amplitude can
violate the corresponding charge only by multiples of N.



Instantons in discrete CET

The instanton charge violation for a U(1) associated with brane a due
to an instanton on brane b is given by the chiral zero mode count

Ib(a) e Nazwi(Aiba e Aibac)

Here w; is the Witten index of representation i, and Ay are Annulus
coefficients.The latter can be expressed in terms of boundary coefficients as

Qm |

_SimRb(m,J’)g /
Iy(a) = NaE W E : S | B = Bty
1 o L




Is there an integral basis?

Axion couplings

Vam = Ram e Racm a=1,... Nbound7 m— Nichibashi

Remove vanishing and identical columns
Vo, o =L N e L s N
Naxion = O0(10,...,100) (maximally 480)
Nbound = O(100, . ..,100000) (maximally 108612)
Try to find a subset ¢ of Nauxion “basic” boundaries so that

Naxion
VCLI/ s Z Qa,uvc(,u)l/ 9 Qa,u =
=1



_SimRb m,J’ gﬂf’m
Lia) =Ny w; Y SRR R )
') m,J',J

If we have an integral basis, we can express this in terms of that basis

I(a) = Y NuQuuTy(e(p))

Fora U(l) Y = Z z.Y, (choose x, integer)

) =) weltlo) — 5 A5 w0 )



hiz = 5 2 hin = 5 [y 5 N0 50
a p O i p—

Manifestly integer in the new basis
(if it exists...)

Instanton intersection number: Integer

If all basis coeftficients Z T, Ve, are a

multiple of N, we have a Zy discrete symmetry



Finding an integral basis

Choose a suitable normalization for the columns of the matrix
Vaw: Vau — Z(p,) Vau

Xp= N Voo b, =1 3

L

For a suitable choice, all X, are rational numbers, in all 33290 cases.

Now choose a set of independent vectors V()



Finding an integral basis

The “charges” with respect to this basis are defined as
= Z Qa,u‘/c(,u)l/
L4

and can be computed by contracting both sides with the basis vectors
a,c(l/) Z Qa,u c(p)e(v)

Here X;p are the numbers which we just found to be rational.
We can compute Q. by inverting the rational matrix Xc(u)cn)



NS AV VS S VUV LUV L LV LV L L Ve VTV e T T/ AT LS [ U A A ml mn T IV L LU e J L LU AL TV ALVUVUIISU S S SIS

-2356527325219910903428901754662427149894 / 4206361037817712426172307166805027949946515
2784948741071505418128346476378730597441 / 2804240691878474950781538111203351966631010
-25854997362159483572806567865246572322 /221387423043037496114331956147633049997185
6898072845027098208081359744435277277501 / 8412722075635424852344614333610055899893030
108976715681408986890964337671823077977 | 2804240691878474950781538111203351966631010
-1407366818272278715495258035537737402701 / 2804240691878474950781538111203351966631010
-730274370305189614187212583238604721979 / 280424069187847495078153811120335196663101
-14703146264089789695021850876752032362043 / 8412722075635424852344614333610055899893030
-966409001634779323603278299112884580763 / 600908719688244632310329595257861135706645
-983094598776348113430087003140068085383 / 8412722075635424852344614333610055899893030
61131869065677337879021843505880263189 /73795807681012498704777318715877683332395
-3745320497786158555270850835304275943121 / 8412722075635424852344614333610055899893030
1693796173771342973378581388458204267177 / 2804240691878474950781538111203351966631010
1205444211082390872412284617701674410251 / 2804240691878474950781538111203351966631010
2221438778472648889039857348099343644511 / 4206361037817712426172307166805027949946515
2778141893267937173717166855104761029721 /1201817439376489264620659190515722271413290
-328790319741952612198224637596271270733 / 57229401875070917362888532881701060543490
-10696945894841597435006188896341594656409 / 1682544415127084970468922866722011179978606
-374380487381205651662553956908976153343 / 73795807681012498704777318715877683332395
13388558609255142019160683601848443422339 / 16825444151270849704689228667220111799786060
-130053795740416119037210695464378190133 / 1121696276751389980312615244481340786652404
-187502171731804948980940781489189370283 /120181743937648926462065919051572227141329
-619867031959993792564626230220965209683 / 2804240691878474950781538111203351966631010
-1925028850509606135456711776999153695741 / 1402120345939237475390769055601675983315505
-553339345722660901165259922735534862799 / 841272207563542485234461433361005589989303
3622588600596306878973447873960345776869 / 8412722075635424852344614333610055899893030



Finding an integral basis

...but this gives us only rational charges. This is not good enough.
Now consider a boundary that has a rational charge

W, = Z QuVe(uyw = Z @VC(M)V
u w du

Suppose for one value of p (denoted p = fi),p;y = 1.

Then we replace the corresponding basis vectors by W,. In terms of the new basis,
the old basis vector in terms of the new basis has an expansion

Pud
Veaw = ) Ve + W,

: q
1 WA 2

This is “more integral” than the previous basis, and the volume spanned by the
basis decreases by g,.



Finding an integral basis

This process converges in a maximum of 19 steps.
In 3 out of the 32990 cases it did not converge to pure integers.

These cases could be dealt with by choosing a different starting point.
In the end we did indeed find an integer basis for all 32990 Orientifolds.

This gives a “charge lattice” for axion charges.

(But: there must be a better way of doing this...)



Discrete physics 1s fun
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Many more years
of discreteness,
Jurgen!



