ORIENTIFOLD GUTs

BERT SCHELLEKENS
(WITH E. KIRITSIS AND M. LENNEK)

"GUTS IN STRINGS"
DESY, 5 FEBRUARI 2009

ALTERNATIVE TITLE:

GUTS IN STRINGS

GUTS VS. STRINGS

GUTS: SELLING POINTS

- Beautiful!
- Unifies 3 of the 4 known interactions
- Explains family structure
- Explains charge quantization
- Predicts $\sin ^{2} \theta_{w}$
- Baryogenesis?

AROUND 1983:

Experimental confirmation seemed imminent:

First Results from a Superconductive Detector for Moving Magnetic Monopoles
Blas Cabrera
Physics Department, Stanford University, Stanford, California 94305
(Received 5 April 1982)

Proton decay experiments were starting...

The expectations were reminiscent of those regarding SUSY at the LHC

H. Georgi,
Fourth workshop on Grand Unification Philadelphia, 1983

GUTs IN STRINGS?

GUTS IN STRINGS?

- Beauty: implausible selection criterion in the landscape.
- Unification of interactions: string theory not only unifies the three gauge interactions, but also gravity, without any need for GUTs.

GUTS IN STRINGS? COUPLING CONSTANT UNIFICATION

Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005

We are using orientifolds or heterotic strings to get some idea about generic features of the landscape.

So what looks more generic:

Heterotic Strings

Orientifolds

Evidence for GUTs (without strings) But not predicted by strings (but can be "accomodated")

Better options:

GUTS IN STRINGS? FAMILY STRUCTURE

GUTs emerge "naturally" in compactified $\mathrm{E}_{8} \times \mathrm{E}_{8}$ Heterotic strings:

- Embedding of the spin-connection in the gauge group (CHSW, 1984)
- "Bosonic string map" (LLS, 1986)

BOSONIC STRING MAP*

One-to-one map of the characters of the 4-dimensional covariant NSR model to the characters of $\mathrm{SO}(10) \times \mathrm{E}_{8} \quad($ affine level 1)

This fact can be used to build heterotic string partition functions starting from a diagonal bosonic or type-II partition function:

$$
\sum_{i} \bar{\chi}_{i}^{\mathrm{NSR}}(\bar{\tau}) \chi_{i}^{S O(10) \times E_{8}}(\tau) \times \ldots
$$

Automatically yields chiral spectra with a number of (16)'s of $\mathrm{SO}(10)$.
This fact was exploited by Gepner in 1987.
(*) Lerche, Lüst, Schellekens (1986)

BOSONIC STRING MAP

Using a simple current extension one can get $\mathrm{E} 6 \supset \mathrm{SO}(10)$

By orbifoldings one can get subgroups of $\mathrm{SO}(10)$

There is a large network* of related string theories for which the structure of one family can be traced back to the characters of the 4-D NSR models:

$$
D=4 \rightarrow S O(10) \text { - like family structure }
$$

The existence of a GUT group $\mathrm{SO}(10)$ at any scale is not really required.
(*) Includes the "mini-landscape"? (Talks by Ratz, Nilles, Schmidt, Schmidt-Hoberg, Ramos)

$$
D=4 \rightarrow S O(10) \text { - like family structure }
$$

A triumph for (heterotic) string theory!
Conceptually this is far superior to field theory GUTs:

- Dictates the choice of $\mathrm{SO}(10)$ (or $\mathrm{SU}(5)$, E6) over most other Lie algebras.
- Dictates the choice of (16)'s of $\mathrm{SO}(10)$ over any other anomaly free representation.
- Anomaly cancellation is not an ad-hoc constraint as it is in QFT

Even if this does not work, one may appeal to the slightly less powerful statement that the (16) of $\mathrm{SO}(10)$ (and its branchings) is among the few chiral representations allowed at affine level 1.

Even better:
$\mathrm{SU}(3)_{1} \times \mathrm{SU}(2)_{1} \times \mathrm{U}(1)_{30}$
(the standard $\mathrm{U}(1)$ normalization for coupling constant convergence) has a simple current extension to $\mathrm{SU}(5)$.

This means that any such SM realization is an orbifold of an $\operatorname{SU}(5)$.

But what about other parts of the landscape?

The best studied alternative are orientifold/intersecting brane models.
(F-theory GUTs (Vafa, Heckman) assume GUTs ab initio, so there is nothing to discuss.)

Orientifolds can produce the right family structure without any apparent relation to $\mathrm{SO}(10)$:

THE MADRID MODEL*

$$
Y=\frac{1}{6} Q_{a}-\frac{1}{2} Q_{c}-\frac{1}{2} Q d
$$

(*) Ibanez, Marchesano, Rabadan (2001)
Lots of further work, reviewed in: Blumenbagen, Cvetic, Langacker, Sbiu (2005)

THE MADRID MODEL*

$$
Y=\frac{1}{6} Q_{a}-\frac{1}{2} Q_{c}-\frac{1}{2} Q d
$$

(*) Ibanez, Marchesano, Rabadan (2001)
Lots of further work, reviewed in: Blumenbagen, Cvetic, Langacker, Sbiu (2005)

Pati-Salam model $\subset \mathrm{SO}(10)$

Pati-Salam model $\subset \mathrm{SO}(10)$

OTHER ORIENTIFOLD
 REALIZATIONS OF THE STANDARD MODEL

WITH ANASTASOPOULOS, DIJKSTRA, KIRITSIS

SEARCH CRITERIA

Require only:

Q U(3) from a single brane
Q U(2) from a single brane
Q Quarks and leptons, Y from at most four branes
$9 \mathrm{G}_{\mathrm{CP}} \supset \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
9 Chiral $G_{C P}$ fermions reduce to quarks, leptons (plus non-chiral particles)

Q Massless Y

CHAN-PATON GROUP

$G_{C P}=U(3)_{a} \times\left\{\begin{array}{c}U(2)_{b} \\ S p(2)_{b}\end{array}\right\} \times G_{c} \quad\left(\times G_{d}\right)$
Embedding of Y:

$$
Y=\alpha Q_{a}+\beta Q_{b}+\gamma Q_{c}+\delta Q_{d}+W_{c}+W_{d}
$$

Q: Brane charges (for unitary branes)
W: Traceless generators

CLASSIFICATION

$$
Y=\left(x-\frac{1}{3}\right) Q_{a}+\left(x-\frac{1}{2}\right) Q_{b}+x \underbrace{Q_{C}+(x-1)} Q_{D}
$$

Distributed over c and d

Allowed values for x

$1 / 2$	Madrid model, Pati-Salam, Flipped SU(5)
0	(broken) SU(5)
1	Antoniadis, Kiritsis, Tomaras model
$-1 / 2,3 / 2$	
any	Trinification $(x=1 / 3) \quad$ (orientable)

We looked for these configurations in the context of orientifolds of Gepner models.

The "branes" are realized as boundary states of the CFT.
We found a total of more than 19000* chirally distinct standard model realizations.
(*) No chiral exotics, modulo non-chiral exotics

StATISTICS

(Before tadpole cancellation)

Value of x	Total
0	24483441
$1 / 2$	138837612
1	30580
$-1 / 2,3 / 2$	0
any	1250080

Q The dominant classes $x=0,1 / 2$ contain Pati-Salam and $\operatorname{SU}(5)$ models
In this sense one could argue that the family structure is GUTrelated, without having a GUT.

Q SU(5) GUT models are about $.01 \%$ of the total, and about . 6% of the $\mathrm{x}=0$ models.

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times S p(2) \times S p(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times S p(2) \times S p(2) \times U(1)$	VVVV	1/2	Y!
3	5775296	821	$U(4) \times S p(2) \times S p(6)$	VVV	1/2	Y!
4	4810698	868	$U(4) \times S p(2) \times S p(2)$	VVV	1/2	Y !
5	4751603	554	$U(3) \times S p(2) \times O(6) \times U(1)$	VVVV	1/2	Y!
6	4584392	751	$U(4) \times S p(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times S p(2) \times O(2) \times U(1)$	VVVV	1/2	Y !
8	3744864	690	$U(4) \times S p(2) \times O(2)$	VVV	1/2	Y !
9	3606292	467	$U(3) \times S p(2) \times S p(6) \times U(3)$	VVVV	1/2	Y
10	3093933	623	$U(6) \times S p(2) \times S p(6)$	VVV	1/2	Y
11	2717632	461	$U(3) \times S p(2) \times S p(2) \times U(3)$	VVVV	1/2	Y!
12	2384626	560	$U(6) \times S p(2) \times O(6)$	VVV	1/2	Y
13	2253928	669	$U(6) \times S p(2) \times S p(2)$	VVV	1/2	Y!
14	1803909	519	$U(6) \times S p(2) \times O(2)$	VVV	1/2	Y!
15	1676493	517	$U(8) \times S p(2) \times S p(6)$	VVV	1/2	Y
16	1674416	384	$U(3) \times S p(2) \times O(6) \times U(3)$	VVVV	1/2	Y
17	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	1/2	Y
18	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	1/2	Y
19	1642669	360	$U(3) \times S p(2) \times S p(6) \times U(5)$	VVVV	1/2	Y
20	1486664	346	$U(3) \times S p(2) \times O(2) \times U(3)$	VVVV	1/2	Y!
21	1323363	476	$U(8) \times S p(2) \times O(6)$	VVV	1/2	Y
22	1135702	350	$U(3) \times S p(2) \times S p(2) \times U(5)$	VVVV	1/2	Y !
23	1050764	532	$U(8) \times S p(2) \times S p(2)$	VVV	1/2	Y
24	956980	421	$U(8) \times S p(2) \times O(2)$	VVV	1/2	Y
25	950003	449	$U(10) \times S p(2) \times S p(6)$	VVV	1/2	Y
26	910132	51	$U(3) \times U(2) \times S p(2) \times O(1)$	AAVV	0	Y

CURIOSITIES

nr	Total occ.	MIPFs	Chan-Paton Group	Spectrum	x	Solved
617	16845	296	$U(5) \times O(1)$	AV	0	Y
671	$14744\left(^{*}\right)$	29	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	
761	12067	26	$U(3) \times U(2) \times U(1)$	AAS	$1 / 2$	Y!
762	12067	26	$U(3) \times U(2) \times U(1)$	AAS	0	$\mathrm{Y}!$
1024	7466	7	$U(3) \times U(2) \times U(2) \times U(1)$	VAAV	1	
1125	6432	87	$U(3) \times U(3) \times U(3)$	VVV	$*$	Y
1201	$\left.5764^{*}\right)$	20	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	
1356	$5856\left(^{*}\right)$	10	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	Y
1725	2864	14	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	Y
1886	2381	115	$U(6) \times S p(2)$	AV	$1 / 2$	$\mathrm{Y}!$
1887	2381	115	$U(6) \times S p(2)$	AV	0	$\mathrm{Y}!$
1888	2381	115	$U(6) \times S p(2)$	AV	$1 / 2$	$\mathrm{Y}!$
2624	1248	3	$U(3) \times U(2) \times U(2) \times U(3)$	VAAV	1	
2753	1136	74	$U(5) \times U(1)$	AS	0	Y
2880	1049	34	$U(5) \times U(1)$	AS	$1 / 2$	$\mathrm{Y}!$
2881	1049	34	$U(5) \times U(1)$	AS	0	$\mathrm{Y}!$
6580	146	18	$U(5) \times U(1)$	AS	0	
14861	12	2	$U(5) \times U(1)$	AS	0	

MODEL NR. 617

Gauge group is just $\operatorname{SU}(5)$!

$\left.\begin{array}{rlll} & \mathrm{U} 5 \mathrm{O} 1 & \mathrm{O} \\ 3 \times & (\mathrm{A} & , 0 & , 0\end{array}\right)$ chirality 3

MODEL NR. 2880

Gauge group is $S U(5) \times U(I)$

(10)

U5 U1

$11 \times(0, S)$ chirality 3
$3 \times(\mathrm{A}, 0)$ chirality 3
$5 \times(\mathrm{V}, \mathrm{V})$ chirality -3
$8 \times(S, 0)$ chirality 0
$9 \times(\mathrm{Ad}, 0)$ chirality 0
$5 \times(0$,Ad) chirality 0
$4 \times(0, A)$ chirality 0
$12 \times\left(\mathrm{V}, \mathrm{V}^{*}\right)$ chirality 0

MODEL NR. 2753

U5 U1 O2 U2 O2 U5 S4 U1 U1

Hidden sector

GUTS IN STRINGS? CHARGE QUANTIZATION

Standard model:

$$
\frac{t}{3}+\frac{s}{2}+Y=0 \bmod 1
$$

Explained by SU(5) GUTs!

Heterotic with standard $\mathrm{U}(1)$ normalization:
spectrum always contains particles violating this relation*
(may be heavy or confined by other interactions).

Orientifolds with $x=1 / 2$: half-integer charges in the OH -sector (if there is a hidden sector)

Orientifolds with $x=0$: SM charge quantization satisfied perturbatively.

True unification (higher level affine, $\mathrm{x}=0$ orientifolds, SU(5) F-theory ...)

Heterotic strings, most $x=1 / 2$ orientifolds

Vacuum Selection

Could true GUTs with $\mathrm{M}_{\text {GUT }}<\mathrm{M}_{\text {planck }}$ be prefered over generic string vacua?

Q Aesthetics: makes no sense.
Q Statistics / Vacuum counting: seems unlikely.
Q Cosmologically?
9 Anthropically?

- Low energy gauge couplings don't care about unification.
- Baryogenesis might be a candidate, but does not seem to work

GUTS IN STRINGS?

- Beautiful!
- Unifies 3 of the 4 known interactions
- Explains family structure
- Explains charge quantization
- Predicts $\sin ^{2} \theta_{w}$

Nothing

IS
 BETTER THAN GUTS!

from:

THEORY OF MORE THAN EVERYTHING*

V. Gates, Empty Kangaroo, M. Roachcock, and W.C. Gall**

There is, in fact, a simple proof that superpea theory is superior to superstring theory in describing physics:
(1) Nothing is better than superstrings.
(2) Superpeas are better than nothing.
(3) Therefore, superpeas are better than superstrings.

