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GUTs: selling points

• Beautiful!

• Unifies 3 of the 4 known interactions

• Explains family structure

• Explains charge quantization

• Predicts

• Baryogenesis? 

sin2θw
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Around 1983:

Experimental confirmation seemed imminent:

Proton decay experiments were starting...

The expectations were reminiscent of those regarding 
SUSY at the LHC
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H. Georgi,
Fourth workshop on Grand Unification

Philadelphia,1983
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Guts in strings?
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Guts in Strings?

• Beauty: implausible selection criterion 
in the landscape.

• Unification of interactions: string theory 
not only unifies the three gauge 
interactions, but also gravity, without 
any need for GUTs.
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GUTs in Strings?
 Coupling constant 

unification

Sunday, 2 May 2010



Sunday, 2 May 2010



Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005
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We are using orientifolds or heterotic 
strings to get some idea about generic 

features of the landscape.

So what looks more generic:
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Heterotic Strings
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Orientifolds
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Evidence for GUTs (without strings)
But not predicted by strings
(but can be “accomodated”)
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✖ ✖

Better options:
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GUTs in Strings?
 family structure
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GUTs emerge “naturally” in 
compactified E8 × E8 Heterotic strings:

   Embedding of the spin-connection in the gauge group
       (CHSW, 1984) 

   “Bosonic string map”
        (LLS, 1986)
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Bosonic string map*

One-to-one map of the characters of the 4-dimensional covariant NSR model to 
the characters of SO(10) × E8    (affine level 1)

(*) Lerche, Lüst, Schellekens (1986)
     

This fact can be used to build heterotic string partition functions starting from a 
diagonal bosonic or type-II partition function:

∑

i

χ̄NSR
i (τ̄)χSO(10)×E8

i (τ)× . . .

Automatically yields chiral spectra with a number of (16)’s of SO(10).

This fact was exploited by Gepner in 1987. 
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Bosonic string map

Using a simple current extension one can get E6 ⊃ SO(10)

By orbifoldings one can get subgroups of SO(10)

There is a large network* of related string theories for
which the structure of one family can be traced back to
the characters of the 4-D NSR models:  

D = 4→ SO(10) - like family structure

The existence of a GUT group SO(10) at any scale is not really required.

(*) Includes the “mini-landscape”?  (Talks by Ratz, Nilles, Schmidt, Schmidt-Hoberg, Ramos)
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D = 4→ SO(10) - like family structure

A triumph for (heterotic) string theory!
Conceptually this is far superior to field theory GUTs:

  Dictates the choice of SO(10)  (or SU(5), E6) over most other
     Lie algebras.

  Dictates the choice of (16)’s of  SO(10) over any other
     anomaly free representation.

  Anomaly cancellation is not an ad-hoc constraint as it is in QFT
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Even if this does not work, one may appeal to the slightly less powerful statement 
that the (16) of SO(10) (and its branchings) is among the few chiral representations 
allowed at affine level 1.

Even better:
SU(3)1  × SU(2)1 × U(1)30  
(the standard U(1) normalization for coupling constant convergence) 
has a simple current extension to SU(5).

This means that any such SM realization is an orbifold of an SU(5).
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Orientifolds can produce the right family 
structure without any apparent relation to SO(10):

But what about other parts of the landscape?

The best studied alternative are orientifold/intersecting brane 
models.

(F-theory GUTs (Vafa, Heckman) assume GUTs ab initio, so there is nothing to discuss.)
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U(2), Sp(2)

U(1), O(2), Sp(2)

(*) Ibanez, Marchesano, Rabadan (2001)
       Lots of further work, reviewed in: Blumenhagen, Cvetic, Langacker, Shiu (2005)

Sunday, 2 May 2010



a d

c

b

(u,d)
(e-,!)

u
c e+

!
c

d
c

The Madrid Model*

Y =
1
6
Qa −

1
2
Qc −

1
2
Qd

U(2), Sp(2)

U(1), O(2), Sp(2)

(*) Ibanez, Marchesano, Rabadan (2001)
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← 3× νR!
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Sp(2)

Sp(2)

U(3)

Pati-Salam model   ⊂     SO(10)
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Sp(2)

Sp(2)

U(4)

Pati-Salam model   ⊂     SO(10)
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Other Orientifold 
realizations of the 

Standard Model

with Anastasopoulos, Dijkstra, Kiritsis
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Search Criteria

U(3) from a single brane

U(2) from a single brane

Quarks and leptons, Y from at most four branes

GCP  ⊃   SU(3) × SU(2) × U(1)

Chiral GCP fermions reduce to quarks, leptons                                  
(plus non-chiral particles) 

Massless Y

Require only:
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Chan-Paton group

GCP = U(3)a ×
{ U(2)b

Sp(2)b

}
×Gc (×Gd)

Y = αQa + βQb + γQc + δQd + Wc + Wd

Embedding of Y:

Q:  Brane charges (for unitary branes)

W: Traceless generators
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Classification

Distributed over
c and d

Y = (x− 1
3
)Qa + (x− 1

2
)Qb + xQC + (x− 1)QD

{

Allowed values for x

  1/2             Madrid model, Pati-Salam, Flipped SU(5)
   0               (broken) SU(5)
   1                Antoniadis, Kiritsis, Tomaras model
-1/2, 3/2
  any             Trinification (              )   (orientable)x = 1/3
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We looked for these configurations in the context of 
orientifolds of Gepner models.

The “branes” are realized as boundary states of the CFT.

We found a total of more than 19000* chirally distinct 
standard model realizations.

(*) No chiral exotics, modulo non-chiral exotics
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Statistics

Value of x Total

0 24483441

1/2 138837612

1 30580

-1/2, 3/2 0

any 1250080

(Before tadpole cancellation)
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The dominant classes x=0, 1/2 contain Pati-Salam and SU(5) 
models
In this sense one could argue that the family structure is GUT-
related, without having a GUT.

SU(5) GUT models are about .01% of the total, and about .6% 
of the x=0 models.
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Most frequent models
tensor and “T” that both occur. Column 6 gives the value of x, and the last column

indicates if a solution to the tadpole conditions was found (“Y”), and if a solution

was found without additional branes (“Y!”).

Table 6: The list of 19345 models sorted according to frequency

nr Total occ. MIPFs Chan-Paton Group spectrum x Solved

1 9801844 648 U(3)× Sp(2)× Sp(6)× U(1) VVVV 1/2 Y!

2 8479808(16227372) 675 U(3)× Sp(2)× Sp(2)× U(1) VVVV 1/2 Y!

3 5775296 821 U(4)× Sp(2)× Sp(6) VVV 1/2 Y!

4 4810698 868 U(4)× Sp(2)× Sp(2) VVV 1/2 Y!

5 4751603 554 U(3)× Sp(2)×O(6)× U(1) VVVV 1/2 Y!

6 4584392 751 U(4)× Sp(2)×O(6) VVV 1/2 Y

7 4509752(9474494) 513 U(3)× Sp(2)×O(2)× U(1) VVVV 1/2 Y!

8 3744864 690 U(4)× Sp(2)×O(2) VVV 1/2 Y!

9 3606292 467 U(3)× Sp(2)× Sp(6)× U(3) VVVV 1/2 Y

10 3093933 623 U(6)× Sp(2)× Sp(6) VVV 1/2 Y

11 2717632 461 U(3)× Sp(2)× Sp(2)× U(3) VVVV 1/2 Y!

12 2384626 560 U(6)× Sp(2)×O(6) VVV 1/2 Y

13 2253928 669 U(6)× Sp(2)× Sp(2) VVV 1/2 Y!

14 1803909 519 U(6)× Sp(2)×O(2) VVV 1/2 Y!

15 1676493 517 U(8)× Sp(2)× Sp(6) VVV 1/2 Y

16 1674416 384 U(3)× Sp(2)×O(6)× U(3) VVVV 1/2 Y

17 1654086 340 U(3)× Sp(2)× U(3)× U(1) VVVV 1/2 Y

18 1654086 340 U(3)× Sp(2)× U(3)× U(1) VVVV 1/2 Y

19 1642669 360 U(3)× Sp(2)× Sp(6)× U(5) VVVV 1/2 Y

20 1486664 346 U(3)× Sp(2)×O(2)× U(3) VVVV 1/2 Y!

21 1323363 476 U(8)× Sp(2)×O(6) VVV 1/2 Y

22 1135702 350 U(3)× Sp(2)× Sp(2)× U(5) VVVV 1/2 Y!

23 1050764 532 U(8)× Sp(2)× Sp(2) VVV 1/2 Y

24 956980 421 U(8)× Sp(2)×O(2) VVV 1/2 Y

25 950003 449 U(10)× Sp(2)× Sp(6) VVV 1/2 Y

26 910132 51 U(3)× U(2)× Sp(2)×O(1) AAVV 0 Y

. . .

30 869428(1096682) 246 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y!

153 115466 335 U(4)× U(2)× U(2) VVV 1/2 Y

225 71328 167 U(3)× U(3)× U(3) VVV 1/3

303 47664 18 U(3)× U(2)× U(1)× U(1) AAVA 1/2 Y

304 47664 18 U(3)× U(2)× U(1)× U(1) AAVA 0 Y

343 40922(49794) 63 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y!

Continued on next page
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Curiosities

Table 6 – continued from previous page

nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

411 31000 17 U(3)× U(2)× U(1)× U(1) AAVA 0 Y

417 30396 26 U(3)× U(2)× U(1)× U(1) AAVS 0 Y

495 23544 14 U(3)× U(2)× U(1)× U(1) AAVS 0

509 22156 17 U(3)× U(2)× U(1)× U(1) AAVS 0 Y

519 21468 13 U(3)× U(2)× U(1)× U(1) AAVA 0 Y

543 20176(*) 38 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y

617 16845 296 U(5)×O(1) AV 0 Y

671 14744(*) 29 U(3)× U(2)× U(1)× U(1) VVVV 1/2

761 12067 26 U(3)× U(2)× U(1) AAS 1/2 Y!

762 12067 26 U(3)× U(2)× U(1) AAS 0 Y!

1024 7466 7 U(3)× U(2)× U(2)× U(1) VAAV 1

1125 6432 87 U(3)× U(3)× U(3) VVV * Y

1201 5764(*) 20 U(3)× U(2)× U(1)× U(1) VVVV 1/2

1356 5856(*) 10 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y

1725 2864 14 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y

1886 2381 115 U(6)× Sp(2) AV 1/2 Y!

1887 2381 115 U(6)× Sp(2) AV 0 Y!

1888 2381 115 U(6)× Sp(2) AV 1/2 Y!

2624 1248 3 U(3)× U(2)× U(2)× U(3) VAAV 1

2753 1136 74 U(5)× U(1) AS 0 Y

2880 1049 34 U(5)× U(1) AS 1/2 Y!

2881 1049 34 U(5)× U(1) AS 0 Y!

2807 1096(*) 8 U(3)× U(2)× U(1)× U(1) VVVV 1/2

2919 1024 2 U(3)× U(2)× U(2)×O(3) VAAV 1

4485 400(*) 2 U(3)× U(2)× U(1)× U(1) VVVV 1/2

4727 352 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2

4825 332 20 U(4)× U(2)× U(2) VAS 1/2 Y!

4902 320(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2 Y

4996 304 30 U(3)× Sp(2)× U(1)× U(1) VVVV 1/2 Y

6993 128(**) 1 U(3)× U(2)× U(2)× U(1) VVVV 1/2

7053 124 4 U(3)× U(2)× U(2)× U(1) VASV 1/2 Y!

7242 116(**) 4 U(3)× U(2)× U(2)× U(1) VVVV 1/2

7280 114 3 U(3)× Sp(2)× U(1) AVS 1/2

7464 108 1 U(3)× Sp(2)× U(1) VVT 1/2

7905 96(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

8747 68(**) 3 U(3)× U(2)× U(1)× U(1) VVVV 1/2

8773 68 4 U(3)× U(2)× U(1)× U(1) VVVV 1/2

Continued on next page
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nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved
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nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved
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6580 146 18 U(5)× U(1) AS 0

6993 128(**) 1 U(3)× U(2)× U(2)× U(1) VVVV 1/2

7053 124 4 U(3)× U(2)× U(2)× U(1) VASV 1/2 Y!

7242 116(**) 4 U(3)× U(2)× U(2)× U(1) VVVV 1/2

7280 114 3 U(3)× Sp(2)× U(1) AVS 1/2

7464 108 1 U(3)× Sp(2)× U(1) VVT 1/2
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Table 6 – continued from previous page

nr Total occ. MIPFs Chan-Paton Group Spectrum x Solved

8773 68 4 U(3)× U(2)× U(1)× U(1) VVVV 1/2

11347 32(**) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

11462 32(*) 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

12327 24 1 U(3)× U(3)× U(3) VVV 1/2

14861 12 2 U(5)× U(1) AS 0

15824 8 1 U(3)× U(2)× U(1)× U(1) VVVV 0

15846 8 1 U(3)× U(2)× U(1)× U(1) VVVV 1/2

16674 6 1 U(3)× U(2)× U(1) AVT 1/2 Y!

17055 4 1 U(3)× U(2)× U(1)× U(1) VVVV *

19345 1 1 U(5)× U(2)×O(3) ATV 0

The first 25 models are all relatives of the U(3)×Sp(2)×U(1)×U(1) models that

dominated the search results of [12]. The variations include replacing the third factor

by O(2) or Sp(2), absorbing the family multiplicity of some of the quarks or leptons in

the Chan-Paton multiplicities of the c and d branes, unifying the baryon and lepton

brane to get a Pati-Salam-like structure, and other brane unifications. Models 17

and 18 occur with the same frequency because they are closely related. They only

differ by a traceless generator diag(1
3 ,

1
3 ,−

2
3) from the U(3) factor contributing to Y ,

changing the distribution of some quarks and leptons. There are several other cases of

closely related models with identical frequencies, and one such set, nrs. 1886 . . . 1888

will be discussed in more detail in section 6.5. In the bottom part of the table we

display several lines of special interest, which will be discussed in more detail below.

Entry nr. 26 in the table is the first one that cannot be viewed as a relative of

the “Madrid model”. It has x = 0 and three anti-symmetric tensors on the QCD

and the weak brane. It can be viewed as a broken SU(5) model.

There exist several infinite series of models. In the top of the list one can observe

the beginning of the series U(2n) × Sp(2) × G, n > 2, where G can be O(2), O(6),

Sp(2) or Sp(6), with a chiral spectrum consisting of 6
Nc

(V, 0, V ) + 3(V, V, 0).

In column 2 we indicate between parentheses if a certain type of model was

searched for in [12], and how often it was found. It is interesting to compare this

with table (1). Observe that the number of four-stack configurations we consider in

the present paper is considerably smaller than in [12], but nevertheless we recover

a large fraction of the standard model configurations of that paper. For example,

in [12], 2.8× 1015 configurations of type USUS were examined, in the present paper

only 26× 1014, ten times less. Nevertheless, we have already found about half of the

standard model configurations. This is because the number of brane configurations

is dominated by cases with a large number of branes, but very few standard model
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model nr. 617

      3 x  (A  ,0  ,0 ) chirality 3
     11 x  (V  ,V  ,0 ) chirality -3
      8 x  (S  ,0  ,0 ) 
      3 x  (Ad ,0  ,0 ) 
      1 x  (0  ,A  ,0 ) 
      3 x  (0  ,V  ,V ) 
      8 x  (V  ,0  ,V ) 
      2 x  (0  ,S  ,0 ) 
      4 x  (0  ,0  ,S ) 
      4 x  (0  ,0  ,A ) 

Gauge group is just SU(5)!

U5 O1 O1U(5)

(10)

(5*)

Hidden sector

O(1)
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model nr. 2880

     11 x ( 0 ,S ) chirality 3
      3 x ( A ,0 ) chirality 3
      5 x ( V ,V ) chirality -3
      8 x ( S ,0 ) chirality 0
      9 x ( Ad,0 ) chirality 0
      5 x ( 0 ,Ad) chirality 0
      4 x ( 0 ,A ) chirality 0
     12 x ( V ,V*) chirality 0

U5 U1U(5)

(10)

(5*)

Gauge group is SU(5) × U(1)

U(1)

Massless U(1)
Allows flipped SU(5)

No hidden sector!
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model nr. 2753

      7 x ( 0 ,S ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 3
      3 x ( A ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 3
      3 x ( V ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality -3
      2 x ( S ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,A ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      3 x ( Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,Ad,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      4 x ( 0 ,V ,0 ,0 ,V ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,V*) chirality 0
      4 x ( V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,0 ,V ,0 ,0 ) chirality 0
      2 x ( V ,0 ,0 ,0 ,0 ,0 ,0 ,V*,0 ) chirality 0
      2 x ( V ,V*,0 ,0 ,0 ,0 ,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,V ,0 ,0 ,0 ,0 ,0 ,0 ,V*) chirality 0
      3 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,A ) chirality -1
      1 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ) chirality 1
      1 x ( 0 ,0 ,0 ,V ,V ,0 ,0 ,0 ,0 ) chirality 1
      3 x ( 0 ,0 ,0 ,0 ,0 ,0 ,V ,0 ,V ) chirality 1
      2 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,S ) chirality -2
      1 x ( 0 ,0 ,V ,0 ,0 ,V ,0 ,0 ,0 ) chirality 1
      1 x ( 0 ,0 ,0 ,V ,0 ,V ,0 ,0 ,0 ) chirality -1
      1 x ( 0 ,0 ,0 ,0 ,0 ,A ,0 ,0 ,0 ) chirality -1
      5 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,A ,0 ) chirality -1
      1 x ( 0 ,0 ,0 ,0 ,V ,V ,0 ,0 ,0 ) chirality -1
      3 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ,V ) chirality 1
      2 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,V ,V*) chirality 2
      2 x ( 0 ,0 ,0 ,0 ,V ,0 ,0 ,0 ,V ) chirality 2
      1 x ( 0 ,0 ,V ,0 ,0 ,0 ,0 ,V ,0 ) chirality 1
      1 x ( 0 ,0 ,0 ,V ,0 ,0 ,V ,0 ,0 ) chirality 1
      1 x ( 0 ,0 ,0 ,V ,0 ,0 ,0 ,V ,0 ) chirality -1
      1 x ( 0 ,0 ,0 ,0 ,0 ,V ,V ,0 ,0 ) chirality 1
      1 x ( 0 ,0 ,0 ,0 ,0 ,V ,0 ,V ,0 ) chirality -1
      3 x ( 0 ,0 ,0 ,0 ,V ,0 ,0 ,V ,0 ) chirality -3
      6 x ( 0 ,0 ,0 ,0 ,0 ,0 ,V ,V ,0 ) chirality 0
      1 x ( 0 ,0 ,0 ,0 ,S ,0 ,0 ,0 ,0 ) chirality 0
      1 x ( 0 ,0 ,0 ,0 ,0 ,0 ,A ,0 ,0 ) chirality 0
      2 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,Ad,0 ) chirality 0
      2 x ( 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,Ad) chirality 0
      1 x ( 0 ,0 ,0 ,0 ,0 ,0 ,S ,0 ,0 ) chirality 0

U5 U1 O2 U2 O2 U5 S4 U1 U1

U(5)

(10)

(5*)

Hidden sector

U(1)

Massive U(1)
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GUTs in Strings?
 Charge Quantization
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Heterotic with standard U(1) normalization:
spectrum always contains particles violating this relation*
(may be heavy or confined by other interactions).

Orientifolds with x=1/2: half-integer charges in the 
OH-sector (if there is a hidden sector)

Orientifolds with x=0: SM charge quantization satisfied perturbatively.

Standard model:

Explained by SU(5) GUTs!

A.N Schellekens, Phys.Lett.B237:363,1990
X. Wen and E. Witten, Nucl.Phys.B261:651,1985(*)

True unification (higher level affine, x=0 orientifolds, 
SU(5) F-theory ...)

Heterotic strings, most x=1/2 orientifolds

☺

☹

t

3
+

s

2
+ Y = 0 mod 1
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Vacuum Selection

Aesthetics: makes no sense.

Statistics/Vacuum counting: seems unlikely.

Cosmologically?

Anthropically?

Could true GUTs with MGUT < Mplanck be prefered over 
generic string vacua?

Low energy gauge couplings don’t care about unification. 

Baryogenesis might be a candidate, but does not seem to work
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Guts in Strings?

• Beautiful!

• Unifies 3 of the 4 known interactions

• Explains family structure

• Explains charge quantization

• Predicts sin2θw

✖

✔

✖

✖

∼
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Nothing 
is 

better than
GUTs!

(inspired by W. Siegel)
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There is, in fact, a simple proof that superpea theory is 
superior to superstring theory in describing physics: 
(1) Nothing is better than superstrings. 
(2) Superpeas are better than nothing. 
(3) Therefore, superpeas are better than superstrings.

THEORY OF MORE THAN EVERYTHING*
V. Gates, Empty Kangaroo, M. Roachcock, and W.C. Gall**

from:
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