RCFT ORIENTIFOLDS:

SU(5) GUTS

What we can compute

9 Exact perturbative string spectra
Q Gauge couplings in rational points
Q RCFT instanton corrections

What we can't do (yet)

Q Compute Yukawa couplings
Q Compute couplings to moduli
Q Perturbations around rational points
Q Moduli stabilization

ORIENTIFOLD PARTITION FUNCTIONS

9 Closed $\frac{1}{2}\left[\sum_{i j} \chi_{i}(\tau) Z_{i j} \chi_{i}(\bar{\tau})+\sum_{i} K_{i} \chi_{i}(2 \tau)\right]$

Q Open $\frac{1}{2}\left[\sum_{i, a, n} N_{a} N_{b} A_{a b}^{i} \chi_{i}\left(\frac{\tau}{2}\right)+\sum_{i, a} N_{a} M_{a}^{i} \hat{\chi}_{i}\left(\frac{\tau}{2}+\frac{1}{2}\right)\right]$
i : Primary field label (finite range)
a : Boundary label (finite range)
χ_{i} : Character
N_{a} : Chan-Paton (CP) Multiplicity

COEFFICIENTS

9 Klein bottle

$$
K^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} U_{(m, J)} g_{J, J^{\prime}}^{\Omega, U^{\prime}} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

Q Annulus

$$
A_{\left[a, \psi_{a}\right]\left[b, \psi_{b}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} R_{\left[b, \psi_{b}\right]\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

9 Moebius

$$
M_{\left[a, \psi_{a}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{P^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

$g_{J, J^{\prime}}^{\Omega, m}=\frac{S_{m 0}}{S_{m K}} \beta_{K}(J) \delta_{J^{\prime}, J^{c}}$

BOUNDARIES AND CROSSCAPS

9 Boundary coefficients

$$
R_{\left[a, \psi_{a}\right](m, J)}=\sqrt{\frac{|\mathcal{H}|}{\left|\mathcal{C}_{a}\right|\left|\mathcal{S}_{a}\right|}} \psi_{a}^{*}(J) S_{a m}^{J}
$$

9 Crosscap coefficients

$$
U_{(m, J)}=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i\left(h_{K}-h_{K L}\right)} \beta_{K}(L) P_{L K, m} \delta_{J, 0}
$$

Cardy (1989)
Sagnotti, Pradisi, Stanes (~1995)
Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

Algebraic CHOICEs

Q Basic CFT (N=2 tensor "Gepner Models" ${ }^{(1)}$, free fermions ${ }^{(2)}$...)
Q Chiral algebra extension
May imply space-time symmetry (e.g. Susy: GSO projection).
But this is optional!
Reduces number of characters.
Q Modular Invariant Partition Function (MIPF)
May imply bulk symmetry (e.g Susy), not respected by all boundaries.
Defines the set of boundary states
(Sagnotti-Pradisi-Stanev completeness condition)
Q Orientifold choice

Pioneering work:
${ }^{(1)}$ Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev, Phys. Lett. B 387 (1996) 743
Blumenhagen, Wisskirchen, Phys. Lett. B 438, 52 (1998),
(2) Bianchi, Sagnotti (1989-1991)

Standard Model Searches:
${ }^{(1)}$ Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005
Anastasopoulos, Dijkstra, Kiritsis, Schellekens, Nucl.Phys.B759:83-146,2006
${ }^{(2)}$ Kiritsis, Lennek, Schellekens, JHEP 0902:030,2009.

SM REALIZATION

Vector-like: mass allowed by $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ Fully vector-like: mass allowed by all gauge symmetries

CONSISTENCY CONDITIONS

Q Tadpole cancellation
9 Absence of axion mixing for Y
Q Global anomalies*
(Same as for all other orientifold models)
(*) "Probe Branes" A.M. Uranga Nucl. Phys. B598, 225 (2001)
B. Gato-Rivera and A.N Schellekens Phys. Lett. B632, 728 (2006)

DHS RESULTS (2004-2005)

Dïkstra, Huiszoon, Schellekens

210000 distinct tadpole-free spectra found

(without chiral exotics, but distinguished by non-chiral exotics)

Best imaginable result:

The exact MSSM spectrum

```
Gauge group: U(3) x Sp(2) x U(1) x U(1)
```

$7 \mathrm{x}(\mathrm{V}, \mathrm{V}, 0,0)$ chirality 3
$3 \mathrm{x}(\mathrm{V}, 0, \mathrm{~V}, 0$) chirality -3
$9 \mathrm{x}(0, V, 0, V)$ chirality 3
$5 \mathrm{x}(0,0, V, V)$ chirality -3
$3 x(0,0, V, V *)$ chirality 3
$6 \mathrm{x}(\mathrm{V}, 0,0, V)$
$2 \mathrm{x}(\mathrm{Ad}, 0,0,0)$
$2 \mathrm{x}(\mathrm{A}, 0,0,0)$
$6 \times(S, 0,0,0)$
$14 \mathrm{x}(0, \mathrm{~A}, 0,0)$
$10 \times(0, S, 0,0)$
$9 \times(0,0, A d, 0)$
$6 \times(0,0, A, 0)$
$14 \mathrm{x}(0,0, S, 0)$
$3 \mathrm{x}(0,0,0, A d)$
$4 \times(0,0,0, A)$
$6 \times(0,0,0, S)$

No hidden sector
 No hidden sector
 B-L Massive (axion mixing)

Gauge group:
Exactly $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

cf. Gmeiner et. al.

Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005

ADKS RESULTS (2005-2006)

Anastasopoulos, Dijkstra, Kiritsis, Schellekens

SEARCH CRITERIA

Require only:

Q U(3) from a single brane
Q $U(2)$ from a single brane
Q Quarks and leptons, Y from at most four branes

- $G_{C P} \supset S U(3) \times S U(2) \times U(1)$

Q Chiral $G_{C P}$ fermions reduce to quarks, leptons (plus non-chiral particles)

Q Massless Y

CHAN-PATON GROUP

$G_{C P}=U(3)_{a} \times\left\{\begin{array}{c}U(2)_{b} \\ S p(2)_{b}\end{array}\right\} \times G_{c} \quad\left(\times G_{d}\right)$
Embedding of Y:

$$
Y=\alpha Q_{a}+\beta Q_{b}+\gamma Q_{c}+\delta Q_{d}+W_{c}+W_{d}
$$

Q: Brane charges (for unitary branes)
W: Traceless generators

CLASSIFICATION

$$
Y=\left(x-\frac{1}{3}\right) Q_{a}+\left(x-\frac{1}{2}\right) Q_{b}+x \underbrace{Q_{C}+(x-1)} Q_{D}
$$

Distributed over c and d

Allowed values for x

$1 / 2$	Madrid model, Pati-Salam, Flipped SU(5)
0	(broken) SU(5)
1	Antoniadis, Kiritsis, Tomaras model
$-1 / 2,3 / 2$	
any	Trinification $(x=1 / 3) \quad$ (orientable)

RESULTS

Q 19345 chirally distinct spectra (19 of Maдriة type)

Q 1900 distinct ones with tadpole solutions

RESULTS

Q 19345 chirally distinct spectra (19 of Maдrid type)

Q 1900 distinct ones with tadpole solutions (≈ 1900 distinct hep-th papers)

StATISTICS

Value of x	Total
0	24483441
$1 / 2$	138837612
1	30580
$-1 / 2,3 / 2$	0
any	1250080

A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Truly hidden

 hidden sector
A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Free-field realization with (2) ${ }^{6}$ Gepner model
(Kiritsis, Schellekens, Tsulaia, arXiv:0809.0083)

MOST FREQUENT MODELS

nr	Total occ.	MIPFs	Chan-Paton Group	spectrum	x	Solved
1	9801844	648	$U(3) \times S p(2) \times S p(6) \times U(1)$	VVVV	1/2	Y!
2	8479808(16227372)	675	$U(3) \times S p(2) \times S p(2) \times U(1)$	VVVV	1/2	Y!
3	5775296	821	$U(4) \times S p(2) \times S p(6)$	VVV	1/2	Y!
4	4810698	868	$U(4) \times S p(2) \times S p(2)$	VVV	1/2	Y !
5	4751603	554	$U(3) \times S p(2) \times O(6) \times U(1)$	VVVV	1/2	Y!
6	4584392	751	$U(4) \times S p(2) \times O(6)$	VVV	1/2	Y
7	4509752(9474494)	513	$U(3) \times S p(2) \times O(2) \times U(1)$	VVVV	1/2	Y !
8	3744864	690	$U(4) \times S p(2) \times O(2)$	VVV	1/2	Y !
9	3606292	467	$U(3) \times S p(2) \times S p(6) \times U(3)$	VVVV	1/2	Y
10	3093933	623	$U(6) \times S p(2) \times S p(6)$	VVV	1/2	Y
11	2717632	461	$U(3) \times S p(2) \times S p(2) \times U(3)$	VVVV	1/2	Y!
12	2384626	560	$U(6) \times S p(2) \times O(6)$	VVV	1/2	Y
13	2253928	669	$U(6) \times S p(2) \times S p(2)$	VVV	1/2	Y!
14	1803909	519	$U(6) \times S p(2) \times O(2)$	VVV	1/2	Y!
15	1676493	517	$U(8) \times S p(2) \times S p(6)$	VVV	1/2	Y
16	1674416	384	$U(3) \times S p(2) \times O(6) \times U(3)$	VVVV	1/2	Y
17	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	1/2	Y
18	1654086	340	$U(3) \times S p(2) \times U(3) \times U(1)$	VVVV	1/2	Y
19	1642669	360	$U(3) \times S p(2) \times S p(6) \times U(5)$	VVVV	1/2	Y
20	1486664	346	$U(3) \times S p(2) \times O(2) \times U(3)$	VVVV	1/2	Y!
21	1323363	476	$U(8) \times S p(2) \times O(6)$	VVV	1/2	Y
22	1135702	350	$U(3) \times S p(2) \times S p(2) \times U(5)$	VVVV	1/2	Y !
23	1050764	532	$U(8) \times S p(2) \times S p(2)$	VVV	1/2	Y
24	956980	421	$U(8) \times S p(2) \times O(2)$	VVV	1/2	Y
25	950003	449	$U(10) \times S p(2) \times S p(6)$	VVV	1/2	Y
26	910132	51	$U(3) \times U(2) \times S p(2) \times O(1)$	AAVV	0	Y

CURIOSITIES

nr	Total occ.	MIPFs	Chan-Paton Group	Spectrum	x	Solved
617	16845	296	$U(5) \times O(1)$	AV	0	Y
671	14744 (*)	29	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	
761	12067	26	$U(3) \times U(2) \times U(1)$	AAS	$1 / 2$	Y !
762	12067	26	$U(3) \times U(2) \times U(1)$	AAS	0	Y !
1024	7466	7	$U(3) \times U(2) \times U(2) \times U(1)$	VAAV	1	
1125	6432	87	$U(3) \times U(3) \times U(3)$	VVV	*	Y
1201	5764 (*)	20	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	
1356	5856(*)	10	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	Y
1725	2864	14	$U(3) \times U(2) \times U(1) \times U(1)$	VVVV	$1 / 2$	Y
1886	2381	115	$U(6) \times S p(2)$	AV	$1 / 2$	Y !
1887	2381	115	$U(6) \times S p(2)$	AV	0	Y!
1888	2381	115	$U(6) \times S p(2)$	AV	$1 / 2$	Y!
2624	1248	3	$U(3) \times U(2) \times U(2) \times U(3)$	VAAV	1	
2753	1136	74	$U(5) \times U(1)$	AS	0	Y
2880	1049	34	$U(5) \times U(1)$	AS	$1 / 2$	Y !
2881	1049	34	$U(5) \times U(1)$	AS	0	Y !
6580	146	18	$U(5) \times U(1)$	AS	0	
14861	12	2	$U(5) \times U(1)$	AS	0	

GUTS

(with M. Lennek, E. Kiritsis)

GUTS VS. STRINGS

- Heterotic (affine level 1)
- Heterotic (higher level)
- Orientifolds $(x=1 / 2)$
- Orientifolds ($\mathrm{x}=0$)
- F-theory?
+ Naturally (16)'s of SO(10) or 27's of E6
- No adjoints
- Wrong scale
- Fractional charges
+ Adjoint breaking, no fractional charges
- Statistically challenged
- Higher representations allowed
+ Scale adjustable
- No coupling unification
- No SU(5), SO(10)
- Higher representations allowed
- Half-integer charges often present
+ Standard SU(5) GUT possible (adjoint breaking, no fractional charges)
- Statistically challenged
- Higher reps allowed (15)
- No top Yukawa's perturbatively

MODEL NR. 617

Gauge group is just $\operatorname{SU}(5)$!

$\left.\begin{array}{rlll} & \mathrm{U} 5 \mathrm{O} 1 & \mathrm{O} \\ 3 \times & (\mathrm{A} & , 0 & , 0\end{array}\right)$ chirality 3

MODEL NR. 2880

Gauge group is $S U(5) \times U(I)$

(10)

U5 U1

$11 \times(0, S)$ chirality 3
$3 \times(\mathrm{A}, 0)$ chirality 3
$5 \times(\mathrm{V}, \mathrm{V})$ chirality -3
$8 \times(S, 0)$ chirality 0
$9 \times(\mathrm{Ad}, 0)$ chirality 0
$5 \times(0$,Ad) chirality 0
$4 \times(0, A)$ chirality 0
$12 \times\left(\mathrm{V}, \mathrm{V}^{*}\right)$ chirality 0

MODEL NR. 2753

U5 U1 O2 U2 O2 U5 S4 U1 U1

Hidden sector

MODEL NR. 6580

> Spectrum (without tadpole cancellation)

MODEL NR. 6580

Spectrum
(without tadpole cancellation)

+ NOTHING!
(no adjoints, mirrors, non-chiral matter)

MODEL NR. 6580

Spectrum (without tadpole cancellation)

 + NOTHING! (no adjoints, mirrors, non-chiral matter)
(but also no Higgs)

MODEL NR. 14861

Spectrum
(without tadpole cancellation)

U U
$5 \quad 1$
3 x (A ,0) Chirality 3
$6 \mathrm{x}(\mathrm{V}, \mathrm{V})$ chirality -6
5 x (V ,V*) chirality 3
$1 \mathrm{x}(\mathrm{Ad}, 0$) chirality 0
$4 \times(0, A d)$ chirality 0

All tadpole solutions for the $U(5) \times O(1)$ models

Candidates
(configurations prior to
tadpole cancellation)

Allowing chiral OH matter

Allowing only nonchiral OH matter(*)

(*) as in all previous work with Dijkstra et. al., Anastasopoulos et. al

YUKAWA COUPLINGS

Top quark Yukawa coupling is forbidden by $U(5)$ brane charge conservation.
$(10)(\overline{5})\left(\overline{5}_{\mathrm{H}}\right) \quad$ bottom quark masses: charge preserved*
$(10)(10)\left(5_{\mathrm{H}}\right) \quad$ top quark mass: charges violated

May be generated by stringy/exotic instantons
(Blumenhagen, Cvetic, Liüst, Richter, Weigand)
(More recent work on instantons: See Richter and Ibañez, ref. [18-65])
(*) forbidden by $\mathrm{O}(1)$ charge in the $\mathrm{U}(5) \times \mathrm{O}(1)$ models
[18] R. Blumenhagen, M. Cvetič, and T. Weigand, "Spacetime instanton models," Nucl. Phys. B771 (2007) 113-142, hep-th/0609191.
[19] M. Haack, D. Krefl, D. Lüst, A. Van Proeyen, and M. Zagermann "Gaugino condensates and D-terms from D7-branes," JHEP 01 (2007) 078, hep-th/0609211.
[20] L. E. Ibáñez and A. M. Uranga, "Neutrino Majorana masses from string theory instanton effects," JHEP 03 (2007) 052, hep-th/0609213

21] B. Florea, S. Kachru, J. McGreevy, and N. Saulina, "Stringy instantons and quiver gauge theories," JHEP 05 (2007) 024, hep-th/0610003.
[22] S. A. Abel and M. D. Goodsell, "Realistic Yukawa couplings through instantons in intersecting brane worlds," JHEP 10 (2007) 034, hep-th/0612110.
[23] N. Akerblom, R. Blumenhagen, D. Lüst, E. Plauschinn, and M. Schmidt-Sommerfeld, "Non-perturbative SQCD Superpotentials from String Instantons," JHEP 04 (2007) 076, hep-th/0612132.

24] M. Bianchi and E. Kiritsis, "Non-perturbative and Flux superpotentials for Type I strings on the Z3 orbifold," Nucl. Phys. B782 (2007) 26-50, hep-th/0702015.

25] M. Cvetič, R. Richter, and T. Weigand, "Computation of D-brane instanton induced superpotential couplings - Majorana masses from string theory," Phys. Rev. D76 (2007) 086002, hep-th/0703028.
26] R. Argurio, M. Bertolini, S. Franco, and S. Kachru, "Metastable vacua and D-branes at the conifold," JHEP 06 (2007) 017, hep-th/0703236.
27 R. Argurio, M. Bertolini, G. Ferretti, A. Lerda, and C. Petersson, "Stringy Instantons at Orbifold Singularities," JHEP 06 (2007) 067 , arXiv:0704.0262 [hep-th].
$28]$ M. Bianchi, F. Fucito, and J. F. Morales, "D-brane Instantons on the T6/Z3 orientifold," JHEP 07 (2007) 038, arXiv:0704.0784 [hep-th].

29] L. E. Ibáñez, A. N. Schellekens, and A. M. Uranga, "Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra," JHEP 06 (2007) 011, arXiv:0704. 1079 [hep-th].

30] N. Akerblom, R. Blumenhagen, D. Lüst, and M. Schmidt-Sommerfeld "Instantons and Holomorphic Couplings in Intersecting D- brane Models," JHEP 08 (2007) 044, arXiv:0705. 2366 [hep-th].

31] S. Antusch, L. E. Ibáñez, and T. Macri, "Neutrino Masses and Mixings from String Theory Instantons," JHEP 09 (2007) 087, arXiv:0706.2132 [hep-ph].
32] R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter, and T. Weigand, "Non-perturbative Yukawa Couplings from String Instantons," Phys. Rev Lett. 100 (2008) 061602, 0707.1871.
[33] O. Aharony and S. Kachru, "Stringy Instantons and Cascading Quivers," JHEP 09 (2007) 060, arXiv:0707.3126 [hep-th].

34] O. Aharony, S. Kachru, and E. Silverstein, "Simple Stringy Dynamical SUSY Breaking," Phys. Rev. D76 (2007) 126009, arXiv:0708.0493 [hep-th]

35] R. Blumenhagen, M. Cvetič, R. Richter, and T. Weigand, "Lifting D-Instanton Zero Modes by Recombination and Background Fluxes," JHEP 10 (2007) 098, arXiv:0708.0403 [hep-th].

36] M. Billó et al., "Instantons in N=2 magnetized D-brane worlds," JHEP 10 (2007) 091, arXiv:0708.3806 [hep-th]

37] M. Billó et al., "Instanton effects in N=1 brane models and the Kahle metric of twisted matter," JHEP 12 (2007) 051, arXiv:0709.0245 [hep-th].
[38] M. Aganagic, C. Beem, and S. Kachru, "Geometric Transitions and Dynamical SUSY Breaking," Nucl. Phys. B796 (2008) 1-24, Dynamical Sus Breaking,
[39] P. G. Camara, E. Dudas, T. Maillard, and G. Pradisi, "String instantons, fluxes and moduli stabilization," Nucl. Phys. B795 (2008) 453-489 arXiv:0710.3080 [hep-th].
[40] M. Cvetič and T. Weigand, "Hierarchies from D-brane instantons in globally defined Calabi-Yau Orientifolds," arXiv:0711.0209 [hep-th].
[41] L. E. Ibáñez and A. M. Uranga, "Instanton Induced Open String Superpotentials and Branes at Singularities," JHEP 02 (2008) 103, arXiv:0711.1316 [hep-th].
[42] I. García-Etxebarria and A. M. Uranga, "Non-perturbative superpotentials across lines of marginal stability," JHEP 01 (2008) 033, arXiv:0711.1430 [hep-th].
[43] C. Petersson, "Superpotentials From Stringy Instantons Without Orientifolds," arXiv:0711.1837 [hep-th].
[44] R. Blumenhagen, S. Moster, and E. Plauschinn, "Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds," JHEP 01 (2008) 058, arXiv:0711. 3389 [hep-th].
[45] M. Bianchi and J. F. Morales, "Unoriented D-brane Instantons vs Heterotic worldsheet Instantons," JHEP 02 (2008) 073, arXiv:0712.1895 [hep-th].
[46] R. Blumenhagen and M. Schmidt-Sommerfeld, "Power Towers of String Instantons for $\mathrm{N}=1$ Vacua," JHEP 07 (2008) 027, 0803.1562.
[47] Y. Matsuo, J. Park, C. Ryou, and M. Yamamoto, "D-instanton derivation of multi-fermion F-terms in supersymmetric QCD," JHEP 06 (2008) 051, 0803.0798.
[48] R. Argurio, G. Ferretti, and C. Petersson, "Instantons and Toric Quiver Gauge Theories," JHEP 07 (2008) 123, 0803.2041
[49] M. Cvetič, R. Richter, and T. Weigand, "(Non-)BPS bound states and D-brane instantons," JHEP 07 (2008) 012, 0803. 2513.
[50] M. Cvetič and P. Langacker, "D-Instanton Generated Dirac Neutrino Masses," 0803.2876.
[51] I. García-Etxebarria, F. Marchesano, and A. M. Uranga, "Non-perturbative F-terms across lines of BPS stability," JHEP 07 (2008) 028, 0805.0713.

52] M. Buican and S. Franco, "SUSY breaking mediation by D-brane instantons," 0806.1964
[53] D. Forcella, I García-Etxebarria, and A. Uranga, "E3-brane instantons and baryonic operators for D3-branes on toric singularities," 0806.2291.
[54] R. Blumenhagen, S. Moster, and E. Plauschinn, "String GUT Scenarios with Stabilised Moduli," 0806.2667.

55] P. G. Camara and E. Dudas, "Multi-instanton and string loop corrections in toroidal orbifold models," JHEP 08 (2008) 069, 0806.3102

56] M. Billó et al., "Flux interactions on D-branes and instantons," 0807.1666
[57] M. Cvetič and T. Weigand, "A string theoretic model of gauge mediated supersymmetry breaking," 0807.3953
58] M. Billó et al., "Non-perturbative effective interactions from fluxes," 0807.4098.

59] J. Kumar, "A Toy Model for Gauge-Mediation in Intersecting Brane Models," 0808.1264.

60] J. Marsano, N. Saulina, and S. Schäfer-Nameki, "Gauge Mediation in F-Theory GUT Models," 0808.1571.

61] J. Marsano, N. Saulina, and S. Schäfer-Nameki, "An Instanton Toolbox for F-Theory Model Building," 0808.2450.

62 A. M. Uranga, "D-brane instantons and the effective field theory of flux compactifications," 0808.2918.
[63] J. J. Heckman and C. Vafa, "F-theory, GUTs, and the Weak Scale," 0809.1098.
[64] I. García-Etxebarria, "D-brane instantons and matrix models," 0810.1482
[65] T. Jeliński and J. Pawelczyk, "Multi-Instanton Corrections to Superpotentials in Type II Compactifications," 0810.4369.
$66]$ N. Akerblom, R. Blumenhagen, D. Lust, and M. Schmidt-Sommerfeld, "D-brane Instantons in 4D Supersymmetric String Vacua," Fortsch. Phys. 56 (2008) 313-323, 0712.1793.

67] M. Cvetič, R. Richter, and T. Weigand, "D-brane instanton effects in Type II orientifolds: local and global issues," 0712.2845.

Sunday, 2 May 2010

FOR COMPARISON: NEUTRINO MASSES

NEUTRINO MASS GENERATION BY INSTANTONS*

Possible in "Madrid" models with massive B-L (391 out of the set of 200.000)

The desired neutrino mass term $v^{c} v^{c}$ violates c and d brane charge by two units.
To compensate this, we must have

$$
I_{M \mathbf{c}}=2 ; I_{M \mathbf{d}}=-2 \text { or } \quad I_{M \mathbf{d}^{\prime}}=2 ; I_{M \mathbf{c}^{\prime}}=-2
$$

and all other intersections 0 . (d^{\prime} is the boundary conjugate of d)
(*) Blumenhagen, Cvetic, Weigand, Nucl.Phys.B771:113-142,2007 Ibañez, Uranga, JHEP 0703:052,2007

Studied for Gepner orientifolds in
Ibañez, Schellekens, Uranga, JHEP 0706:011,2007

NEUTRINO-ZERO MODE COUPLING

The following world-sheet disk is allowed by all symmetries

$$
L_{\text {cubic }} \propto d_{a}^{i j}\left(\alpha_{i} \nu^{a} \gamma_{j}\right), a=1,2,3
$$

ZERO-MODE INTEGRALS

$$
\int d^{2} \alpha d^{2} \gamma e^{-d_{a}^{i j}\left(\alpha_{i} \nu^{a} \gamma_{j}\right)}=\nu_{a} \nu_{b}\left(\epsilon_{i j} \epsilon_{k l} d_{a}^{i k} d_{b}^{j^{l}}\right)
$$

Additional zero modes yield additional fermionic integrals and hence nullify the contribution

Therefore $\mathrm{I}_{\mathrm{Ma}_{\mathrm{a}}}=\mathrm{I}_{\mathrm{Mb}}=\mathrm{I}_{\mathrm{Mx}}=0$ ($\mathrm{x}=$ Hidden sector), and there should be no vector-like zero modes.

There should also be no instanton-instanton zero-modes except 2 required by susy.

UNIVERSAL INSTANTONINSTANTON ZERO-MODES

Q $\mathrm{U}(\mathrm{k}) \mathrm{i} 4 \mathrm{Adj}$
- Sp(2k): $2 \mathrm{~A}+2 \mathrm{~S}$
O $\mathrm{O}(\mathrm{k}): 2 \mathrm{~A}+2 \mathrm{~S}$

Only $O(1)$ has the required 2 zero modes

THE O1 INSTANTON

Type:
Dimension

U	S	U	U	U	O	O	U	0	0	O	U	S	S	0	S
3	2	1	1	1	2	2	3	1	2	3	1	2	2	2	--
V	0	V	0	0	0	0	0	0	0	0	0	0	0	0	0

$3 \mathrm{x}(\mathrm{v}, 0, \mathrm{~V} *, 0,0,0,0,0,0,0,0,0,0,0,0,0)$ chirality -3
$3 \mathrm{x}(0,0, v, v, 0,0,0,0,0,0,0,0,0,0,0,0)$ chirality -3
$3 x(\mathrm{v}, \mathrm{v}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0)$ chirality 3
$3 \times(0, V, 0, V, 0,0,0,0,0,0,0,0,0,0,0,0)$ chirality 3
$2 \mathrm{x}(\mathrm{O}, 0,0, \mathrm{v}, 0,0,0,0,0,0,0,0,0,0,0, v)$ chirality 2
$12 \mathrm{x}(0,0, \mathrm{v}, 0,0,0,0,0,0,0,0,0,0,0,0, v)$ chirality -2

$2 \mathrm{x}(0,0,0,0, \mathrm{v}, 0,0,0,0,0,0,0,0,0,0, v)$
$1 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0,0,0, v, V)$

$1 \mathrm{x}(\mathrm{O}, 0,0,0,0, \mathrm{v}, 0,0,0,0,0,0,0,0,0, v)$
$3 \times(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, S ~)$

$2 \mathrm{x}(\mathrm{O}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0, \mathrm{~A})$

$3 \mathrm{x}(0,0,0,0, \mathrm{~S}, 0,0,0,0,0,0,0,0,0,0,0)$ chirality -1
$3 \mathrm{x}(0,0,0,0,0, v, 0,0,0,0,0, v, 0,0,0,0)$ chirality 1
$1 \mathrm{x}(0,0,0,0$, $\mathrm{A}, 0,0,0,0,0,0,0,0,0,0,0$) chirality -1
$2 \mathrm{x}(0,0,0,0, v, 0, v, 0,0,0,0,0,0,0,0,0)$ chirality 2
$1 \mathrm{x}(0,0,0,0,0,0,0, v, 0,0,0,0,0,0, v, 0)$ chirality -1
$1 \mathrm{x}(0,0,0,0, \mathrm{v}, 0,0,0,0, \mathrm{v}, 0,0,0,0,0,0$) chirality -1
$1 \mathrm{x}(0,0,0,0,0,0,0,0, \mathrm{v}, 0,0, \mathrm{v}, 0,0,0,0)$ chirality 1
$\mathrm{x}(0,0,0,0,0,0,0,0,0,0, v, v, 0,0,0,0)$ chirality -1
$\mathrm{x}(0,0,0,0,0,0, v, 0,0,0,0, v, 0,0,0,0)$ chirality -1
$1 \mathrm{x}(0,0,0,0, \mathrm{v}, \mathrm{v}, 0,0,0,0,0,0,0,0,0,0)$ chirality -1
$1 \mathrm{x}(0,0,0,0, \mathrm{~V}, 0,0,0,0,0,0, \mathrm{~V}, 0,0,0,0)$ chirality 1
$1 \mathrm{x}(0,0,0,0, \mathrm{v}, 0,0,0,0,0,0, \mathrm{~V}, 0,0,0,0)$ chirality -1
$\mathrm{x}(0,0,0,0, v, 0,0,0,0,0,0,0,0,0, v, 0)$ chirality 1
$\mathrm{x}(0,0,0,0,0,0,0, \mathrm{v}, 0, \mathrm{v}, 0,0,0,0,0,0)$ chirality 1
$2 \mathrm{x}(0,0,0, v, 0,0,0,0,0,0,0,0,0, v, 0,0)$
$\mathrm{x}(\operatorname{Ad}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
$\mathrm{x}(0, \mathrm{~s}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
$1 \times(0,0,0, A d, 0,0,0,0,0,0,0,0,0,0,0,0)$
$6 \mathrm{x}(0,0, \mathrm{v}, 0,0,0,0,0,0,0,0,0,0, v, 0,0$)
$1 \mathrm{x}(0,0,0,0,0,0,0,0,0,0,0,0,0,0, \mathrm{~A}, 0$)
$1 \times(0,0,0,0, A d, 0,0,0,0,0,0,0,0,0,0,0)$

Back to Yukawa couplings...

Find a brane (boundary state) with the right zero mode structure, so that in combination with the following perturbatively allowed disk amplitudes ...

... the instanton associated with that brane can generate the missing couplings.

INSTANTONS

Nr.	Models	U1	S2	O1	Zeromodes OK	Solutions
617	16845	3.5×10^{6}	1.1×10^{6}	6.1×10^{5}	12889	0
2753	1136	4.9×10^{5}	1.5×10^{5}	4.8×10^{4}	84	6
2881	1049	2.1×10^{5}	5.5×10^{4}	4.5×10^{4}	30	0
6580	146	7.0×10^{4}	9680	8092	73	0
14861	12	1190	504	0	0	0

U Ulllllllllll
$\begin{array}{llllllllllll}5 & 1 & 1 & 1 & 3 & 1 & 2 & 4 & 2 & 2 & 1 & --\end{array}$
$5 \mathrm{x}(0, \mathrm{~S}, 0,0,0,0,0,0,0,0,0,0)$ chirality 3 $5 \mathrm{x}(\mathrm{A}, 0,0,0,0,0,0,0,0,0,0,0)$ chirality 3 $3 \mathrm{x}(\mathrm{V}, \mathrm{V}, 0,0,0,0,0,0,0,0,0,0)$ chirality -3 $1 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0,0,0,0,0,0, \mathrm{~V})$ chirality 1 $1 \mathrm{x}(\mathrm{V}, 0,0,0,0,0,0,0,0,0,0, V)$ chirality -1 $2 \mathrm{x}(\mathrm{V}, \mathrm{V} *, 0,0,0,0,0,0,0,0,0,0)$ chirality 0 $1 \mathrm{x}(\mathrm{V}, 0,0,0,0,0,0, V, 0,0,0,0)$ chirality 1 $1 \mathrm{x}(\mathrm{V}, 0,0,0,0,0,0,0,0, \mathrm{~V}, 0,0)$ chirality 1 $2 \mathrm{x}(\mathrm{V}, 0,0,0,0,0, V, 0,0,0,0,0$) chirality -2 $3 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0,0,0,0, v, 0,0)$ chirality -1 $1 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0, \mathrm{~V}, 0,0,0,0,0)$ chirality 1 $2 \mathrm{x}(\mathrm{V}, 0,0,0,0,0,0,0,0,0, \mathrm{~V}, 0)$ chirality -2 $2 \mathrm{x}(\mathrm{S}, 0,0,0,0,0,0,0,0,0,0,0)$ chirality 0 $4 \mathrm{x}(0, \mathrm{~A}, 0,0,0,0,0,0,0,0,0,0)$ chirality 0 $6 \mathrm{x}(\operatorname{Ad}, 0,0,0,0,0,0,0,0,0,0,0)$ chirality 0 $4 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0,0,0,0,0, V, 0)$ chirality 0 $2 \mathrm{x}(0, A d, 0,0,0,0,0,0,0,0,0,0)$ chirality 0 $2 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0,0, \mathrm{~V}, 0,0,0,0$) chirality 0 $4 \mathrm{x}(0, \mathrm{~V}, 0,0,0, V, 0,0,0,0,0,0)$ chirality 0 $2 \mathrm{x}(0, \mathrm{~V}, 0,0,0,0,0,0, \mathrm{~V}, 0,0,0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0, S, 0,0,0,0,0,0)$ chirality -1 $1 \mathrm{x}(0,0,0,0,0, A, 0,0,0,0,0,0)$ chirality 1 $1 \mathrm{x}(0,0,0,0,0, V, V, 0,0,0,0,0)$ chirality 1 $1 \mathrm{x}(0,0,0,0,0, V, 0, V, 0,0,0,0)$ chirality 1 $1 \mathrm{x}(0,0,0, \mathrm{~V}, 0,0,0,0, \mathrm{~V}, 0,0,0)$ chirality -1 $1 \mathrm{x}(0,0,0,0,0, V, 0,0, V, 0,0,0)$ chirality 1 $1 \mathrm{x}(0,0,0, \mathrm{~V}, 0,0,0,0,0, \mathrm{~V}, 0,0)$ chirality 1 $1 \mathrm{x}(0,0,0,0,0, V, 0,0,0, v, 0,0)$ chirality 1 $2 \mathrm{x}(0,0,0,0,0, \mathrm{~V}, 0,0,0,0, \mathrm{~V}, 0)$ chirality -2 $2 \mathrm{x}(0,0,0,0, V, V, 0,0,0,0,0,0)$ chirality 0 $1 \mathrm{x}(0,0, V, 0, V, 0,0,0,0,0,0,0)$ chirality 0 $2 \mathrm{x}(0,0,0, \mathrm{~V}, 0, \mathrm{~V}, 0,0,0,0,0,0)$ chirality 0 $1 \times(0,0,0,0, A, 0,0,0,0,0,0,0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0, A d, 0,0,0,0,0,0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0,0, S, 0,0,0,0,0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0,0, v, v, 0,0,0,0)$ chirality 0 $1 \times(0,0,0,0,0,0,0, S, 0,0,0,0)$ chirality 0 $2 \mathrm{x}(0,0, \mathrm{~V}, 0,0,0, \mathrm{~V}, 0,0,0,0,0)$ chirality 0 $2 \mathrm{x}(0,0,0,0, V, 0, V, 0,0,0,0,0)$ chirality 0 $2 \mathrm{x}(0,0,0,0, V, 0,0, v, 0,0,0,0)$ chirality 0 $1 \mathrm{x}(0,0, \mathrm{~V}, 0,0,0,0,0, \mathrm{~V}, 0,0,0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0,0,0,0,5,0,0,0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0,0,0, V, V, 0,0,0)$ chirality 0 $1 \mathrm{x}(0,0,0,0, V, 0,0,0,0,0, V, 0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0,0,0,0,0, \mathrm{~A}, 0,0)$ chirality 0 $2 \mathrm{x}(0,0,0,0,0,0,0,0,0, V, V, 0)$ chirality 0 $2 \mathrm{x}(0,0,0,0,0,0,0,0,0,0, A, 0)$ chirality 0 $2 \mathrm{x}(0,0,0,0,0,0,0, V, 0,0, V, 0)$ chirality 0 $1 \mathrm{x}(0,0,0,0,0,0,0,0, \mathrm{~V}, 0, \mathrm{~V}, 0)$ chirality 0

Quarks, Leptons

THE BOTTOM OF THE BARREL

- 2004: 200.000 SM spectra, 18 chiral types.
(with Dijkstra, Huiszoon)
- 2006: 19000 chiral types.
(with Anastasopoulos,Dijkstra, Kiritsis)
- Neutrino masses: No perfect solution found.
(with Ibañez, Uranga)
- Free Fermion Orientifolds: No solution.
(with Kiritsis, Lennek)
- Tachyon-free non-susy strings: No SM.
(with Gato-Rivera)
- Yukawa couplings from instantons: solution, but with chiral exotics.
(with Kiritsis, Lennek)

CONCLUSIONS

Q RCFT orientifolds have proved to be a powerful probe of the orientifold landscape.

Q In general "richer" than free field theory based methods.

Q We are reaching the end of statistics with RCFT.
Q A lesson: don't focus too much on 3 families?

